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Abstract

The present work deals with locating a defect buried in a medium composed of a fluid matrix and

small solid inhomogeneities. Classical imaging methods are based on delay and sum principle and

would implicitly assume that the undamaged medium is homogeneous. The topological imaging

framework however allows to take into account the heterogeneous nature of the undamaged medium

and potentially to take advantage of it. In this work, it is applied to a demanding test case with

different assumptions on the knowledge of the medium properties using a specifically-designed

fluid-solid compatible imaging function. It leads to the definition of three imaging processes whose

results are compared using respectively synthetic and experimental data. The results show the

relevance of using the inhomogeneities’ locations information, but not necessarily at all steps of

the imaging process, leading to the definition of so called hybrid topological imaging method.

Keywords: Nondestructive Testing; Ultrasonic Waves; Topological Imaging; Heterogeneous

Medium; Multiple scattering; Periodic Cluster.

Bullet Points

• Topological imaging allows locating a defect buried in a periodic cluster.

• Topological imaging takes advantage of medium heterogeneity to enhance resolution.

• An imaging function adapted to fluid-solid heterogeneous media is proposed.

• Classical imaging methods are retrieved from the topological imaging framework.
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1. Introduction

The detection, localization, and monitoring of the evolution of defects in diffusive media have

received a lot of attention because of the underneath theoretical interest and the large number of

industrial applications. Wave propagation in such media is complex and the challenge is that the

signature of the defect is hidden in the acoustic field reflected by the structure itself independently

of the defect. In the present work, only active ultrasonic inspection is considered. The principle

of active inspection is summarized in the following steps: one or several source(s) emit(s) a wave

into the medium; it is scattered by the inhomogeneities and the resulting wave is measured by

the same or other sensor(s). The measurement contains single scattering and multiple scattering

contributions. Several methods have been implemented to process the information contained in

the backscattered waves in order to characterize or image the medium. In a globally homogeneous

one-polarisation non-dispersive isotropic infinite or semi-infinite medium, the presence of a single

or a few inhomogeneities modify the wave field in a manner that multiple scattering contribution is

small in comparison to single scattering. In this case, we consider that the incident wave undergoes

only one scattering event before propagating to the sensor(s). This is the contribution used in

conventional imaging techniques, that rely on the direct relation between the arrival time t of the

echo and the distance d between the sensors and the scatterers, t = 2d/c (c is the sound velocity).

These analytical models of propagation allow the definition of efficient imaging methods based on

the delay and sum principle such as Synthetic Aperture Focusing Technique [1] and Total Focusing

method [2]. In more complex media, these methods require some improvements. Dispersion can

be compensated for [3] whereas anisotropy requires more complex processing [4]. In the presence

of several simultaneous wave polarizations, an experimental 2D sampling of the medium allows

discriminating them [5]. This step is required as each polarization corresponds to a different wave

velocity.

In reverberating or diffusive media, the conventional imaging methods based on the delay and sum

principle fail to detect or to locate the defects because the single scattering assumption is not valid

as multiple scattering contribution is dominant. In random heterogeneous media, like concrete for

instance, the waves are scattered multiple times by heterogeneities. The challenge in inspecting

such media is to deal with all the effects of the different objects in the wave propagation model. The

issue of characterization and imaging of random or even heterogeneous media has received special
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attention in the three past decades. The methods developed for this purpose can be classified into

two distinct categories: imaging methods without the prior knowledge of the local properties of

the heterogeneous medium, and others that use a partial or complete scattering model obtained

from the local properties of the medium. The methods presented in the present work belong to the

second category. Short reviews of both categories are respectively given in the next subsections.

1.1. Imaging methods for unknown heterogeneous media

The diffusion model is one of the most used models to describe the wave propagation phenomena

in unknown heterogeneous media because the energy of the waves is transported in a way which is

similar to the diffusion of heat. G. Bal and O. Pinaud [6] use the macroscopic model of the diffusion

equation to detect an inclusion buried in highly heterogeneous random media. The imaging of the

medium is based on the analysis of the fluctuations of the diffusion coefficient (estimated from

energy measurements) caused by the buried inclusions. The method is illustrated by numerical

simulations in two-dimensional space. Most of the results presented in this article have been

generalized to other macroscopic models such as the radiative transfer equation [7]. However,

this approach needs heavy numerical computations. Moreover, the final resolution of the image is

limited by the transport mean free path of the scattering medium instead of half the wavelength. A.

Aubry and A. Derode present another method to solve the same problem. Using a transducer array,

the impulse responses between all array elements are measured and form a matrix. A filtration

operation is then applied to this matrix in order to separate the single scattering contribution of the

inclusion from the multiple scattering contribution. The detection of the target is achieved applying

the DORT method [8] (french acronym for the decomposition of the time reversal operator) to the

filtered matrix. Finally, the random matrix theory is used to give a detection criterion. This method

is successfully applied to detect and image defects in highly scattering experimental media [9], and

weakly scattering media [10]. It is shown that the quality of detection is significantly better than

what is obtained with classical imaging methods, but this technique is limited to the detection of a

strong scatterer and is not sensitive to weak perturbations. In many practical applications such as

monitoring volcanoes and bioacoustical oceanography, the medium changes over time. M. Cowman

et al. [11] adapted the diffusing wave spectroscopy technique [12] to acoustic waves in order to relate

the temporal field fluctuations with the dynamics of the multiple scattering medium. J. D. Rosny

and P. Roux [13] used the multiple scattering theory to measure the density and the scattering
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strength of moving scatterers inside a highly reverberating cavity. They apply this theory to fish

counting in a tank, but it can also be used to estimate its volume, the sound velocity, the absorption

cross-sections, and other properties. A few months later, a parallel is established between these

results and the diffusing acoustic wave spectroscopy [14, 15]. Excellent agreement is found between

experiment and theory for steels balls moving in a water tank. Failing to accurately model the

wave propagation in the random heterogeneous medium, some methods use it as an interferometer.

The idea is to compare the response of the inspected medium before and after a change has been

introduced. Thereby, the major part of the incoherent field is eliminated. Nevertheless, the residual

coherent field can lead to detect, locate, or characterize a perturbation [16]. This technique can

be useful in warning mode, or in the detection of temporal changes in the medium. Coda wave

interferometry is an example of this type of method. It was used to estimate the variations in the

positions of small changes in granite from multiply scattered waves by cross-correlating perturbed

and unperturbed field [17]. Other studies use this method to detect larger changes [18] or to

determine the relative location of earthquakes [19]. Despite their noisy and chaotic appearance,

coda waves are highly repeatable. If a perturbation occurs, even if very small, an observable change

will be produced in the coda waves. Thereby, the coda wave interferometry is able to determine

the average motion of scatterers or change in the propagation velocity from the temporal change of

multiply scattered waves. However, it cannot determine the exact location or the spatial extent of

the change in the medium [20]. Inspired by coda wave interferometry C. Pacheco, and R. Snieder

[20] use it in conjunction with a diffusive model to obtain an expression that relates the mean

travel time change of multiply scattered waves with the localized perturbation in the propagation

velocity of the medium. E. Larose et al. [21] use the coherent field part to formulate an inverse

problem which is solved by a maximum likelihood approach in order to image and locate a weak

perturbation in concrete. S. T. Rakotonarivo et al. [22] backpropagate the coherent field in a

homogeneous reference medium in order to focus it on the position of the defect. In the latter

application, the medium background is known. Only the heterogeneities nature and localization

are unknown. These two studies are supported by conclusive experiments. However, the target

must be approximately the same size as the heterogeneities of the medium in order to be correctly

imaged.
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1.2. Imaging methods for known heterogeneous media

In the situations where all geometrical and physical properties of the inspected medium are

known, several methods allows performing NDT. Time-reversal exploits the reciprocity of wave

equations to refocus an incident wavefield, measured by an array of transmit-receive transducers,

to the location of the original source, regardless of the complexity of the propagation medium.

Therefore, NDT is still possible, even with very dense cluttering as long as the full Green function

is known [23]. The use of time reversal in imaging of cluttered media is also made in [24, 25] and in

[26] for electromagnetic waves applications. The sensitivity of the refocusing properties of the time-

reversed waves to the Green function accuracy is studied in [27, 28]. Usually, sufficiently accurate

knowledge of the media is out of reach in many applications. Borcea et al. [29] use the principle

of time-reversal in order to estimate the location of small scatterers in a randomly heterogeneous

medium. The resulting imaging methods are based on the computation of an objective functional

whose maxima are an estimation of the location of the scattering objects. This method is efficient

if the number of inclusions is less than the number of transducers composing the array. The more

the inclusions are separated, the more accurate the localization is. This approach leads to imaging

methods such as MUSIC [30] and SAT [29]. Topological optimization was first developed to solve

static structural inverse problems. It was then transposed to acoustics [31] and elastodynamics

[32]. The parameter to be optimized is the location of an object in the structure. This object

can be penetrable or a Dirichlet or a Neumann border inside the medium. Similarly to the Full

WaveForm Inversion [33] where the variables to be optimized are continuous parameters of the

medium (wave speed, density...), addressing the inverse problem implies the definition of a cost

function and the study of its sensitivity to the optimized parameters. In topological optimization,

this sensitivity is also referred as the topological gradient. It is a space dependent variable that takes

high magnitude negative values where the insertion of the object will tend to strongly decrease

the cost function. When looking for small Dirichlet or Neumann objects in a medium, simple

analytical formulations are obtained as functions of two wavefields that are to be computed in the

defect-free reference medium [34]. Similar formulas are also derived in Full Wave inversion when

optimizing the inverse of the squared wave velocity [35]. Using these observations, the topological

gradient (or one of its derivative) can be used as the imaging function [36] and is obtained with

two numerical computations performed in the defect-free medium. This corresponds to the so
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called topological imaging. Topological Imaging (TI) is thus a non-iterative process that is able

to take into account the complexity of a medium through those two numerical simulations whose

boundary conditions depend on the experimental excitation and measurements respectively. It

has been applied to strongly dispersive waves [37] as well as to reverberating [38] and bounded

media [39, 40]. It is shown with numerical experiments that defects are localized in anisotropic

homogeneous [41] and anisotropic heterogeneous media [42]. Bellis and Bonnet also showed that

cracks and their orientation could be retrieved in shells using the topological optimization approach

[43].

1.3. Outline

The inspection of heterogeneous media covers a wide application field. When the effect of the

heterogeneity on the acoustic field is small in comparison to the effect of the defect or easy to distin-

guish from, classical delay and sum methods allow appropriate imaging. Still, there are cases where

neglecting the heterogeneity lead to strong artifacts or prevent from defect detection or medium

characterization. For instance, weld inspection [42] or multi-material stratified media require the

heterogeneity to be taken into account for accurate defect location. In vivo bone characterization

[44] is another example where taking the heterogeneity into account allows previously unreleased

medium characterization. In the present paper, a more academic example is chosen in order to

assess the approach validity with a demanding test case, to compare the effect of choosing differ-

ent reference media and to propose an imaging function compatible with fluid-solid media. The

authors believe this could also be a first step toward phononic crystal nondestructive evaluation.

The work focuses on Nondestructive Testing (NDT) applications through active ultrasonic imaging

processes. Our aim is to apply the TI method to a known heterogeneous fluid-solid medium whose

heterogeneities are arranged in an even manner. The defect to be localized is not an object but the

absence of one of the heterogeneities. The paper is divided into four section. Section 2 explains the

principle of TI and the way it is here applied to a known heterogeneous medium. The specimen

under study and the numerical approach to model the acoustic wave propagation are described in

detail. Depending on how accurately the medium is known, three different imaging methods are

proposed. In section 3, the experimental apparatus and the imaging results obtained with syn-

thetic and with experimental data respectively are presented and analyzed. Finally, applications

and limitations of the techniques are discussed in section 4.
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2. Applying topological imaging to a known heterogeneous medium

2.1. The topological imaging framework

The topological imaging process consists first in an active acoustic investigation of the medium,

then in computing two specific wavefields and finally in computing the imaging from both wave-

fields. The wavefields are computed in a reference medium that includes all the knowledge of the

medium, except the possible defects. Some known acoustic sources generate waves propagating

and interacting with the medium and some known sensors measure the acoustic response. This

corresponds to the step described in Fig. 1a. Then, this response is simulated in the reference

medium, i.e. in the absence of defect (Fig. 1b). Finally, the residue is obtained as the difference

between the two (Fig. 1c). This corresponds to the acoustic signature of the defect.

The two required numerical wavefields correspond to the solutions of the direct and adjoint prob-

Figure 1: The active ultrasonic inspection for residue computation. (a) Experiments: acquisition of

the response of the perturbed medium Sexp(t). (b) Simulation: computation of the response of the

reference medium at the transducer location Usim(t). (c) Residue: difference between experimental

and simulated signals r(t).

lems respectively. The direct problem consists in simulating the measurement in the defect-free

medium. The experimental acoustic sources and sensors are thus simulated within the reference

medium. Two steps of the process use the solution of the direct problem. First the experimental

signals are compared to the simulated measurement, and their difference is defined as the residue.
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Second, the whole space- and time- or frequency-dependent wavefield is stored to be used in the

image computation. The adjoint problem consists in simulating the backpropagation of the residue

from the measuring sensors in the same reference medium as the one used in the direct problem.

The image is then obtained by computing a zero-lag convolution of direct and adjoint wavefields

(Fig. 2).

It has to be emphasized that residue computation may be difficult when the wave response of the

reference medium is complex. In the topological optimization approach, the residue is defined as

the difference between a measured signal and a numerical simulation. This implies a quantitative

measurement which is not easy when using for instance piezoelectric sensors. An alternative when

available is to make a measurement before damaging the medium. It corresponds to the defect-free

medium response and is used in residue computation to replace simulation [38].

Figure 2: Formation of the image with topological imaging method. (a) Computation of the direct

field. (b) Computation of the adjoint field. (c) Image computation.

2.2. The specimen under study

The specimen under study is a fluid-solid periodic cluster. This medium is made up of 275

steel rods immersed in water. The steel rods are arranged in an even manner forming a rectangle

of 11 rows and 25 columns. The inter-row space and the inter-column space are 9.6 and 11.9

mm respectively. As the diameter of each rod is one millimeter, the surface concentration of

the solid inclusions in the water is C ' 0.7 %. The elastic properties of steel are given by:
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E = 210.109 Pa for Young’s modulus, ρsteel = 7900 kg/m3 for density and ν = 0.285 for the Poisson

coefficient. That corresponds to a longitudinal wave velocity cL = 5902 m/s and a transversal wave

velocity cT = 3236 m/s. During the physical experiment, the water temperature was 19.8◦C, which

implies that the velocity of the longitudinal waves is cwater = 1477 m/s and that the density is

ρwater = 998 kg/m3.

2.3. Definition of the reference medium and the three corresponding imaging methods

Defining the reference medium is an important step of the method as it embeds all the knowledge

of the medium that we want to be taken into account in the final image. In the present application,

the natural choice is to simulate the steel bar cluster immersed in water assuming the locations

of the bars and of the transducers are known. Thus, the reference medium is made of steel bars

immersed in water and the transducers are facing the cluster according to the experiments. It

correspond to what is here defined as heterogeneous TI.

Nevertheless, the case where the steel bars are not taken into account is also studied. In this

second case, the reference medium is simply a semi-infinite water medium. This medium is of

interest as it corresponds to the one implicitly considered when applying classical delay and sum

methods. Delay and sum and topological methods have some physics in common. It is shown

in the Appendix that assuming a homogeneous infinite and single-polarization reference medium,

applying topological imaging allows retrieving the classical delay and sum method imaging function.

This case corresponds to what is here defined as homogeneous TI.

It has to be reminded that the reference medium is used for both direct and adjoint field and that

direct field is used for both residue and image computation. That’s why an alternative method

is also studied. It consists in taking a reference medium for residue computation and another

one for direct and adjoint fields that are necessary in image computation. In the present case,

the hybrid method consists in measuring the experimental residue by substracting the measure

obtained in the experimental defect free medium with that obtained in the real medium. Thus, the

heterogeneity of the medium is fully taken into account in the residue computation. Hence, the

reference medium is the heterogeneous medium. Then the experimental information (transducer

excitation and residue) is used to compute direct and adjoint fields in a homogeneous reference

medium. It has to be noted that this method is similar to that described by Rakotonarivo et al.

[22]. To sum up, three methods are here tested: the heterogeneous, the homogeneous and the
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hybrid TI methods (see Table 1).

Reference Medium
Caption

for residue for direct & adjoint fields

Heterogeneous TI Heterogenous Heterogeneous

Residue Dir./Adj.

Homogeneous TI Homogeneous Homogeneous

Residue Dir./Adj.

Hybrid TI Heterogenous Homogeneous

Residue Dir./Adj.

Table 1: The imaging methods compared in this study. This table specifies the reference media

used to obtain the images for each method.

2.4. Numerical modelling

The experiments are performed in three-dimensional space at a central frequency of 500 kHz.

The steel rods are all oriented along the x3 axis and so is the length of the transducers. All have

large dimensions in comparison to the wavelength in water. Thus the propagation is assumed two-

dimensional. The propagation space is noted (x1,x2) whereas the third dimension is noted x3 (Fig.

3). The plane strain assumption is applied along x3. Numerical simulations are performed using

frequency-domain finite elements in the 200 to 800 kHz bandwidth with the COMSOL Multiphysics

software2. Plane elasticity equations model the wave propagation in the fluid-solid periodic cluster.

The scalar wave equation is used in water and the vectorial equations are applied in the steel rod

sections. The continuity of normal displacements and normal stresses at the fluid/solid interfaces is

managed by the Multiphysics module of COMSOL software. The excitation source corresponding

to each transducer is modelled with normal velocity conditions applied at the boundary of the

medium. The semi-infinite nature of the medium is modeled by absorbing regions similar to

those defined in [45]. The absorbing region is defined as a region where the imaginary part of

wave velocity is progressively increasing in order to generate progressively increasing absorption.

Simultaneously, the density is modified so that the acoustic impedance is constant to achieve

minimal reflection. This method is especially suited to solid anisotropic media where PMLs are

2http://www.comsol.com
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harder to apply. Still it is also efficient in fluids. In this application, the thickness of the absorbing

region is three times the largest wavelength which is about 7.4 mm. The same mesh is used for

all computation frequencies. It is clear to the authors that this is not optimized but it eases the

processing and avoids re-meshing at each frequency. The mesh is composed of quadratic triangular

elements carrying second-order polynomial interpolation functions. The minimal size of an element

is taken as a fourth of the shortest wavelength. This would correspond to the eight of the shortest

wavelength using linear interpolation functions. The shortest wavelength is obtained at 800 kHz.

Thus, at the central frequency of 500 kHz, the mesh elements are smaller than a sixth of the

wavelength. This compromise was found to ensure low numerical dispersion.

Figure 3: Numerical model of the wave propagation in the investigation environment. The ultra-

sonic probe is represented by the bold broken line at the bottom of the rectangle. On the one hand,

the light gray rectangle represents water. On the other hand, the dark gray rectangle represents the

artificial absorbent layer. The black discs represent the steel rods composing the periodic cluster.

The target is buried deep in the periodic cluster, located at the intersection of 13th column and

10th row.

2.5. The imaging function

Following the topological imaging approach, the imaging function is defined as the norm product

between direct and adjoint wavefields integrated over the frequency domain. It can also be obtained

in the time-domain by taking the spatial envelope of the zero-lag convolution between both fields
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[37]. The specificity of present application is that the medium is made of fluid and solid. On the

one hand, the numerical degree of freedom is the hydrostatic pressure Pf . On the other hand, it

is the displacement vector us. The common physical variable chosen to compute the image is the

isostatic pressure noted P . It is expressed as:

P =

 Pf (x) if x ∈ fluid

−1
2Tr (σs(x)) if x ∈ solid

(1)

where Tr is the trace function and σs(x) is the 2D stress tensor. Thus, the image is simply given

by:

I(x) =

∣∣∣∣∫
R+

Pd(x, ω)Pa(x, ω)dω

∣∣∣∣ (2)

where Pd(x, ω) and Pa(x, ω) are the isostatic pressure fields in direct and adjoint wavefields respec-

tively. This definition is used for both pure fluid and fluid-solid reference media.

3. Theoretical and experimental results

This section is dedicated to the images of the test-specimen obtained with the three different

methods of Table 1. In what follows, the target is not an object but the absence of the rod located

in the 13th column and the 10th row of the cluster (Fig. 3). First, the experimental setup is

described, then the results obtained with synthetic and experimental data are presented for each

imaging method listed in Table 1.

3.1. The experimental apparatus

The experimental apparatus is presented Fig. 4. The cubic structure presented in the front view

(Fig. 4a) is composed of two horizontal thin steel plates. The plates are identical and perforated

according to a known periodic geometric pattern in order to hold the steel bars vertically. Each

of them is clamped between two thick PVC plates making the setup stiff and stable. To inspect

the medium in a pulse-echo configuration, an Imasonic ultrasonic transducer array is placed in

front of the medium of investigation, at a distance a=37 mm. In addition, the probe is centered

relative to the periodic cluster of steel rods and is parallel to its first row similarly to Fig. 3. The

ultrasonic array is composed of 128 programmable transmitters/receivers with a 500 ± 10 KHz

central frequency, the acoustic adaptation layer mechanical impedance is 3.2 MRayl. Each array

element is 2 mm wide and the array pitch p is 2.5 mm, which makes a total active length of 319.5
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mm. The transducer array is connected to a multi-channel Lecoeur Electronique measurement

system. This device is used at a 10 MHz sampling frequency. Note that the experiments take place

in a water tank as shown in the perspective view (Fig. 4b).

1

2

3
4

5

1

2

3

4

4

4

5

Figure 4: The experimental setup and the specimen under study before immersion. (a) Front view.

(b) Perspective view . (1) The ultrasonic transducers array. (2) The periodic cluster of steel rods.

(3) The perforated steel plates. (4) The PVC plates. (5) The water tank.

For each measure, the medium is insonified once by firing simultaneously all transducers with the

same three-period windowed sinusoidal signal in order to generate a quasi-plane wave. This choice is

not a restriction, any known excitation signal can be used. The residue that compares the response

of the unperturbed medium with the response of the perturbed medium requires two acquisitions.

The first one is the response of the medium with all the rods of the periodic cluster. The second one

is the response of the medium after removing the rod. A typical experimental waveform is plotted

Fig. 5. The backscattered wave is complex, as it combines the simple scattering contribution and

the multiple scattering contribution. First 11 wave packets corresponding to the rows of the periodic

cluster can be distinguished inside rectangle 2. The signal part in rectangle 3 is the superimposition

of late arrival partial waves. The later the wave arrives, the more multiple scattering it underwent

and the more it explored the medium. Rectangle 1 corresponds to the saturation of the receiving

channel during emission as it is also used to generate the acoustic wave. In practice, the electrical

excitation signal is distorted at the output of the transducers as the piezoelectric transducers have

their own transfer function. Consequently, the acoustic wave generated does not correspond exactly
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Figure 5: Typical normalized experimental signal.

to the electrical excitation signal. In the simulations the piezoelectric behaviour of the transducers

is here not simulated. Thus, the normal velocity signal applied to the boundary of the medium

(Fig. 3) should be proportional to the generated pressure signal. In order to identify this excitation

signal, a calibration of the physical experience is performed so that experimental and numerical

simulation are in accordance. The excitation signal obtained is presented Fig. 6.
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Figure 6: The experimental excitation signal
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3.2. Results

The imaging methods presented in Table 1 are tested using successively synthetic and ex-

perimental data. The difference lies in the way the measured signals are obtained, either with

simulations or with experiments respectively. The experimental data are obtained using the ul-

trasonic acquisitions of the real medium, in the absence and in the presence of the defect. This

data is then used to calculate the residue and to compute the adjoint problem associated with

each method. The synthetic data are obtained by computing the propagation of acoustic waves in

the virtual defective medium and in the virtual defect-free medium. Then, the residue is used to

compute the adjoint problem according to the method studied. The direct and the adjoint fields

are computed in the frequency domain according to the numerical model introduced in paragraph

2.4. The results obtained with the three methods described in Table 1 are successively presented.

3.2.1. Heterogeneous TI results

In heterogeneous TI, the heterogeneous reference medium is used to calculate the residue, the

direct, and the adjoint fields. Therefore, the residue contains the ballistic wave corresponding

to the defect (here, the absence of a rod) and the corresponding multiple interactions with the

other inclusions of the periodic cluster. On the one hand, the direct problem corresponds to the

simulation of the physical experiment in the defect-free medium (the one containing all the rods).

On the other hand, the adjoint problem corresponds to the backpropagation of the residue from

the measurement surface in the defect-free medium. The imaging function is normalized. Thus it is

defined by I(x)/max(I(x)) where I(x) is given by Eq. (2). The images obtained with synthetic and

experimental data are presented Fig. 7(a) and (b) respectively. The defect appears as a single point.

Artefacts are small so that no wrong defect detection is likely to occur. In the zoom dial, the white

circle indicates the true edges of the missing rod (the defect) in the medium. The spot maxima are

located at the lower edge of the defect. This can be explained by the single insonification coming

from the bottom that implies that the lower edge of the defect is more insonificated than the rest of

the defect. In both cases, the defect is accurately located and no artefacts could indicate a defect

where there is none.

The -6dB width of the spots is about 1.7 and 1.8 mm for the synthetic and the experimental data

cases respectively. These values correspond to 0.57λ0 ans 0.6λ0 where λ0 is the wavelength in water

at the central frequency 500 kHz. Such a high resolution is achieved with a single insonification.

15



This can be explained by the fact that topological imaging takes the complex nature of the medium

into account. It thus takes advantage of the enhanced refocusing properties of the time reversal

operation in such media when computing the adjoint field.

The spot of the experimental data based image is a little off the defect and a secondary spot is

present. They can be explained by a small transducer array location estimation in the experiments.
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Figure 7:

Residue Dir./Adj.

Images obtained with heterogenous TI and with: (a) synthetic data, (b)

Experimental data. The real defect is delimited by the white hollow circle.

3.2.2. Homogeneous TI results

In homogeneous TI, the heterogeneity of the medium is taken into account neither in the residue

computation, nor in the direct and adjoint fields computations. The direct problem corresponds
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to the propagation of a quasi-plane wave propagating in a homogeneous semi-infinite medium.

The adjoint problem corresponds to the backpropagation of the pressure field measured in the

experiments into the same homogeneous semi-infinite reference medium. The imaging function is

given by I(x)/max(I(x)). The images obtained with synthetic and experimental data are presented

Fig. 8(a) and (b) respectively. As the rods are not in the reference medium, they all corresponds to

perturbations and should thus appear as defects in the image. In practice, resolution and contrast

decrease with the investigation depth so that the rods of first six rows can be identified but deeper,

the image is poorly defined. In the image obtained with synthetic data (Fig. 8(a)) the last three

rows are too blurry to make any sure conclusion about the presence or the absence of the rods. In

the image obtained with experimental data (Fig. 8(b)), the missing rod can be better identified

but wrong missing rod detection occur elsewhere. It is shown in appendix 4 that in this case,

topological imaging is similar to classical delay and sum methods. As a conclusion, when not

taking the heterogeneity of the medium in the reference model, some defect may thus be missed

or detected even when not existing.

It should be noticed that the image obtained with the synthetic data (Fig. 8(a)) looks nosier than

that obtained with experimental data (Fig. 8(b)). This can be explained by a discrepancy between

synthetic and experimental apparent attenuation when measuring the acoustic field reflected by

the rods. As a matter of fact, experimental signals are attenuated in a shorter time than synthetic

signals. That means that synthetic data contain more multiple interactions between the rods

themselves and between the rods and the transducer boundary than the experimental data. Thus,

when considering a reference medium that is too different from the one investigated, the artifacts are

stronger. This explains the nosier look of the image when using the homogeneous reference medium.

The discrepancy between synthetic and experimental apparent attenuation can be explained by

several phenomena. First, the transducer array is neither generating a perfect plane wave nor a

perfectly collimated wave field and the induced diffraction in the x3 axis is not taken into account

in the 2D-model used to generate the synthetic data. A second possibility is that despite our

efforts, the rods may not be perfectly normal to the incident wave field. This could imply some

more diffraction along the x3 axis.
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Figure 8:

Residue Dir./Adj.

Images obtained with homogeneous TI and with: (a) synthetic data, (b)

Experimental data. The real defect is delimited by the white hollow circle.

3.2.3. Hybrid TI results

The implementation of this hybrid TI method requires two distinct reference media. The first

reference medium used to calculate the residue is heterogeneous. The second reference medium in

which the direct and adjoint fields are calculated is homogeneous. The spot in the images indicate

accurately the location of the defect and no misinterpretation is possible like in homogeneous TI.

When processing the synthetic data, the defect and the corresponding spot are superimposed in

the image. When processing the experimental data, the spot is shifted 1.1 mm to the right and

0.8 mm to the front. We interpret this error as an array location estimation error. We consider

it as small in comparison to the wavelength in water at the central frequency λ0 = 3 mm and

to the active size of the array (320mm). The -6dB width of the spot is respectively 2.5 mm and
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3.5 mm for the synthetic data and the experimental data image. They corresponds to 0.83λ0 and

to 1.16λ0 respectively which are very reasonable values for a one-insonification image. The spots

are clearly wider than those in the heterogeneous TI images. Taking into account the complexity

of the medium in the Heterogeneous TI gives better focusing in the backpropagation and thus a

better resolution in the image. This observation corroborates the results demonstrated in [23].
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Figure 9:

Residue Dir./Adj.

Images obtained with hybrid TI and with: (a) synthetic data, (b) Experi-

mental data. The real defect is delimited by the white hollow circle

4. Discussions and conclusions

The same heterogeneous medium is studied following three different methods, all deriving from

the topological imaging approach. The defect to be located is here the absence of one of the elements
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constituting the periodic cluster. The topological imaging framework allows the heterogeneous

complex nature of the defect-free medium to be taken into account in the imaging process. This

corresponds to the so called heterogeneous topological imaging. It allows an accurate location of the

defect both when applying it to synthetic or to experimental data. When ignoring the heteroeneous

nature of the medium, the reference medium used to build the image is homogeneous. Thus, all

cluster elements should appear as defects in the image. In practise, the first rows are accurately

described but the resolution and contrast decrease with the investigation depth so that the missing

element is hardly located and wrong defect detection may occur. It is demonstrated that the so

called homogeneous topological imaging is in fact similar to classical delay and sum methods. In

the hybrid topological imaging method, the heterogeneous nature of the defect-free medium is only

required for the residue measurement. It allows accurate location of the defect at the cost of a

degraded resolution in comparison with the heterogeneous TI. It has to be noted that hybrid TI is in

fact similar to the method presented in [22]. The advantage is that the wavefields required to obtain

the image are computed in a homogeneous medium which allows fast computation methods. Still,

in both, hybrid and heterogeneous TI, experimental residue is in practise required which implies

that the experimental acoustic response of the defect-free medium has to be known.

The medium investigated here present a small inclusion concentration. This work is a first step

towards more concentrated media investigation in order to prepare phononic crystal nondestructive

testing.
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Appendix: Equivalency between Delay and Sum methods and homogeneous Topolog-

ical imaging in infinite media

In this appendix, it is demonstrated that the delay and sum imaging function can be retrieved

from the application of topological imaging method to an homogeneous infinite medium. For

pedagogical purposes, the calculation is performed in the time domain. It could also be done in

the frequency domain.

Let us consider a homogeneous infinite fluid medium characterized by the wave velocity c and let
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us apply the topological imaging method to this medium. The transducer network consists of N

transducers located at ti on the x1 axis, where 1 < i < N (Fig. 10). The emitted and received

signals are noted e(t) and si(t) respectively. In the topological framework, the residue is defined

as the difference between responses obtained in the defect free medium and that in the presence of

possible defects. In a homogeneous infinite medium, no signal is measured in the absence of defect

as waves propagate to infinity. Thus, in that case, residue signals are simply the measured signal.

In that context the infinite medium hypothesis simply implies that the boundaries of the domain

are sufficiently far away regarding the acquisition duration. Let h(te,x, t) be the impulse response

between a source located at te and any given point x. Depending on the type of insonification the

distance df traveled by the wave to reach point x is given by:

1. df =‖ x− te ‖ if a single transducer is used to insonify the medium.

2. df =‖ n.x ‖ if a plane wave is used (given by the direction n). The direction of the wave

front is typically obtained applying appropriate delay laws to e(t).

Figure 10: Schematic representation of medium and excitation types. The red line represents the

wave front generated by all the transducers and given by the direction n. The blue line represents

the excitation by a single transducer located at te.
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The imaging function of topologcial imaging is given by the spatial envelope of the function

I(x) written as:

I(x) =

∫ ∞
−∞

u(x, t)v(x,−t)dt, (3)

where u and v are the solutions of the direct and the adjoint problems respectively. According to

the type of insonification, the direct field takes one of the following two forms:

1. A single emitter located at te :

u(x, t) = [e ∗ h (te,x, •)] (t), (4)

2. A plane wave front propagating in direction n:

u(x, t) =
[
e ∗ δ

(
• − n.x

c

)]
(t). (5)

The adjoint field is given by:

v(x, t) =

Nr∑
i=1

[s∗i ∗ h (ti,x, •)] (t), (6)

where s∗i (t) = si(−t) is the time reversed signal.

In the hypothesis of ray propagation, the impulse response is approximated by: h(te,x, t) =

δ
(
t− ‖x−te‖c

)
regardless of the size or shape of the source. Therefore, the fields u and v are

respectively expressed as follows:

u(x, t) =

[
e ∗ δ

(
• −

df
c

)]
(t)

= e

(
t−

df
c

)
,

(7)

v(x, t) =

Nr∑
i=1

[
s∗i ∗ δ

(
• − ‖ x− ti ‖

c

)]
(t). (8)

The time reversed adjoint field is thus given by:

v(x,−t) =

Nr∑
i=1

[
si

(
t+
‖ x− ti ‖

c

)]
. (9)

Inserting Eq. (7) and Eq. (9) in Eq. (3) leads to:

I(x) =

∫
u(x, t)v(x,−t)dt

=

∫
e

(
t−

df
c

) Nr∑
i=1

[
si

(
t+
‖ x− ti ‖

c

)]
dt

=

∫
e(τ)

Nr∑
i=1

[
si

(
τ +

df+ ‖ x− ti ‖
c

)]
dτ,

(10)
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where τ = t − df
c . Assuming that the emission signal is a Dirac impulse e(t) = δ(t), the function

I is given by:

I(x) =

Nr∑
i=1

si

(
df+ ‖ x− ti ‖

c

)
, (11)

As a matter of fact, Env(I(x)) corresponds to the definition of the imaging function of the delay

and sum method [2, 46]. This result can easily be generalized to any excitation with several emitters

located at xj and emitting with relative delays noted βj . In this case, the imaging function is given

by:

I(x) =
∑
i,j

si

(
‖ x− tj ‖ + ‖ x− ti ‖

c
+ βj

)
. (12)

Unlike conventional imaging methods, IT involves separate processing of transmitted and mea-

sured signals. Thus, the explicit computations of the distances between the emitters, the potential

defect and the receiver are not carried out. They are implicitly taken into account in the two

computation of direct and adjoint fields.

To sum up, assuming ray-tracing wave propagation, Dirac-like emission signals, the delay and sum

imaging functions are retrieved from the topological imaging framework. Let us recall that delay

and sum imaging function validity is limited to medium that are homogeneous and that can be

considered infinite or semi-infinite (it is to say whose boundaries are far enough regarding the signal

acquisition duration). Thus, topological imaging framework offers more general imaging heuristics

as it can also be applied to bounded and heterogeneous media.
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