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Abstract

Phylogeographic inference allows reconstruction of past geographical spread of
pathogens or living organisms by integrating genetic and geographic data. A popular
model in continuous phylogeography — with location data provided in the form of
latitude and longitude coordinates — describes spread as a Brownian motion (Brownian
Motion Phylogeography, BMP) in continuous space and time, akin to similar models of
continuous trait evolution. Here, we show that reconstructions using this model can be
strongly affected by sampling biases, such as the lack of sampling from certain areas. As
an attempt to reduce the effects of sampling bias on BMP, we consider the addition of
sequence-free samples from under-sampled areas. While this approach alleviates the
effects of sampling bias, in most scenarios this will not be a viable option due to the
need for prior knowledge of an outbreak’s spatial distribution. We therefore consider an
alternative model, the spatial Λ-Fleming-Viot process (ΛFV), which has recently gained
popularity in population genetics. Despite the ΛFV’s robustness to sampling biases, we
find that the different assumptions of the ΛFV and BMP models result in different
applicabilities, with the ΛFV being more appropriate for scenarios of endemic spread,
and BMP being more appropriate for recent outbreaks or colonizations.

Author summary

Phylogeography studies past location and migration using information from current
geographic locations of genetic sequences. For example, phylogeography can be used to
reconstruct the history of geographical spread of an outbreak using the genetic
sequences of the pathogen collected at different times and locations. Here, we
investigate the effects of different model assumptions on phylogeographic inference. In
particular, we examine the effects of the strategy used to collect samples. We show that
sample collection biases can have a strong impact on the quality of phylogeographic
reconstruction: geographically biased sampling scheme can be very detrimental for
popular continuous phylogeography models. We consider different ways to counter these
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effects, from utilising alternative phylogeographic models, to the inclusion of partially
informative samples (known cases without genetic sequences). While these strategies do
alleviate the effects of sampling biases, they also lead to considerable additional
computational burden. We also investigate the intrinsic differences of different
phylogeographic models, and their effects on reconstructed patterns in different
scenarios.

Introduction 1

Genetic data can be very informative of migration histories and spatial patterns of 2

living organisms, and of geographic spread of outbreaks, in particular when combined 3

with information regarding present and past geographic ranges. Phylogeography 4

combines genetic and geographic data to study geographical spread; in the context of 5

geographic spread of outbreaks, which we will focus on in this manuscript, 6

phylogeography often interprets observed genetic sequences as the result of sequence 7

evolution along an evolutionary phylogenetic tree (see [1]), while modeling spatial 8

spread as a separate evolutionary process along the same phylogeny (see e.g. [2–8]). 9

In recent years, Bayesian phylogeographic inference has gained remarkable popularity, 10

in large part due to convenient implementations such as in the Bayesian phylogenetic 11

inference software package BEAST [9,10]. Bayesian phylogeography in BEAST allows 12

users to investigate past geographical spread using genetic sequences possibly collected 13

at different times. Genetic data is integrated with geographical and temporal sampling 14

information, and all data is interpreted jointly in terms of evolution along a 15

phylogenetic tree with heterochronous leaves [6, 7, 11–15]. BEAST uses Markov chain 16

Monte Carlo (MCMC) to efficiently sample from the joint parameter space — which 17

can also include parameters related to demographic reconstruction and phenotypic trait 18

evolution — and in doing so, accurately accounts for uncertainty in phylogeny and 19

model parameters, and possibly uncertainty in sampling time and location. 20

Bayesian phylogeographic approaches in BEAST can be divided into two categories 21

depending on the type of geographical data: discrete space phylogeography and 22

continuous space phylogeography. Discrete space phylogeography is typically used when 23

samples are clustered based on their geographic location; this is appropriate when 24

spread within a geographical unit is more or less free, while spread between units is 25

hindered by geographical or political barriers (such as bodies of water, mountain chains, 26

national borders, etc). In this case, the geographical data for a collected sample consists 27

of a discrete geographical unit (e.g. a country). Oftentimes, the use of discrete 28

phylogeography is one of necessity, e.g. when only the country of origin of the collected 29

samples is known. Evolution of this location over time (e.g. spread between countries) 30

along the phylogeny is usually modeled using a continuous-time Markov chain 31

(see [6, 11]), similarly to popular phylogenetic models of sequence evolution (see [1]). 32

On the other hand, when the longitudinal and latitudinal coordinates of the samples 33

are known, and when spread is assumed to happen more or less in a geographically 34

homogeneous way over some area (such as on one island, or within one continent), 35

continuous space phylogeography is often employed as an alternative to binning samples 36

into discrete locations, which can be biasing [16]. In continuous phylogeography one 37

typically models geographical spread along the branches of the tree as a Brownian 38

motion process, which can be thought of as consisting of many small movements in 39

random directions over many short time intervals (see [7, 14]). The results of continuous 40

phylogeography can subsequently be used to determine factors causing 41

non-homogeneous spatial spread through space [17,18]. 42

A problem of discrete space phylogeography is that sampling bias (samples not being 43

collected across locations proportionally to their prevalence) can strongly affect 44
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statistical inference [13]. Unbiased sampling can be very hard to achieve, as it requires 45

knowledge of the full geographic range of an outbreak, access to the whole of this range, 46

and extensive sampling and sequencing efforts. An alternative is to use models that are 47

not affected, or less affected, by sampling biases, such as the structured coalescent and 48

its approximations (see [12,13,15], although note that these can be adversely affected by 49

unsampled or unknown demes [19–21]). The structured coalescent model, however, is 50

far more computationally demanding than classical discrete space phylogeography and 51

can differ from it on several aspects other than sampling assumptions. For example, the 52

structured coalescent assumes that the migratory process and the distribution of cases 53

across locations are at equilibrium, but these assumptions are rarely met in practice and 54

do not match outbreaks that recently expanded into new areas. 55

Here, we investigate the effect of sampling biases in continuous space 56

phylogeography. We show that sampling only certain areas of an outbreak can result in 57

strongly inaccurate inference of dispersal history and the related model parameters. A 58

possible alternative to the Brownian motion phylogeography (“BMP”) model used in 59

continuous space phylogeography is the spatial Λ-Fleming-Viot process (“ΛFV”) 60

recently introduced in population genetics (see [16,22–26]). The ΛFV addresses, among 61

other things, the undesirable equilibrium properties of classical models of geographic 62

spread [27]. The ΛFV represents an alternative to the BMP, which would be expected 63

to be mostly robust to sampling bias. We here show that the BMP and the ΛFV are 64

non-interchangeable models, which are suitable for very different evolutionary scenarios. 65

We also investigate the use of “sequence-free” samples (samples without genetic 66

information) as a means to correct or help diagnose the effects of sampling biases on 67

BMP. 68

Materials and methods 69

We assume that N samples s1, . . . , sN have been collected, and each sample si is 70

associated with a genetic sequence Si, a collection time ti, and a location of collection 71

li ∈ R2. Location li is made up of longitude l
(1)
i and latitude l

(2)
i , and represents the 72

location of the sample at the time ti of collection. Sequence Si represents the genome 73

(or part of the genome) of the sample, and usually provides most of the phylogenetic 74

information. We assume that the phylogenetic tree τ is a time-stamped phylogeny, 75

where the dates of the tips are known (corresponding to the collection times ti) and can 76

differ from each other; branch lengths are represented in units of time. 77

Our main focus is to infer the history of geographical spread, represented in 78

particular here by the reconstruction of the location of the root node of τ , and to infer 79

the parameters of the migration process itself. We use two models to simulate and infer 80

the migration process in continuous space: Brownian motion phylogeography (BMP) 81

and the spatial Λ-Fleming-Viot process (ΛFV). Below we describe both models in detail. 82

Brownian Motion Phylogeography (BMP) 83

BMP assumes that changes in location happen along branches of τ according to a 84

time-homogeneous Brownian (Wiener) diffusion process [28,29]. Given any branch b of 85

length t in τ , and assuming that we know the location l = (l(1), l(2)) of the parent node 86

of this branch, then, under the BMP, the distribution of potential locations of the child 87

node of b is centered on l and is multivariate normally distributed with variance tP−1, 88

where P is the precision matrix of the BMP. In other words, conditional on the parent 89

node of b being in position l, the location of the descendant node of the branch has 90

distribution N2(l, tP−1). We assume that the precision matrix P is the same for all 91

branches, and has three free parameters: two marginal precisions, and the correlation 92
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coefficient between dimensions. These parameters describe respectively how fast spatial 93

movement happens in each dimension and how correlated the movements are in the two 94

dimensions. For simplicity, we assume no changes in diffusion rates across branches, 95

although we recognize that variation in diffusion rates is important in many real-life 96

scenarios [7]. 97

Under the BMP, the posterior probability of a set of parameters τ (the phylogeny), 98

Θ (the parameters describing sequence evolution along τ), and P (the precision matrix 99

of the BMP) conditional on the data t1, . . . , tN , S1, . . . , SN , l1, . . . , lN is: 100

P (τ,Θ,P|t1, . . . , tN , S1, . . . , SN , l1, . . . , lN )

=
P (Θ)P (P)P (τ, t1, . . . , tN )P (S1, . . . , SN |τ, t1, . . . , tN ,Θ)P (l1, . . . , lN |τ, t1, . . . , tN ,P)

P (t1, . . . , tN , S1, . . . , SN , l1, . . . , lN )
(1)

This means that, given τ and P, the migratory history (and therefore the observed 101

locations) is independent of genetic data and evolution. Similarly, given τ and Θ, 102

sequence evolution (and therefore observed sequences) is independent of geographic data 103

and migratory process. It is usually not feasible to calculate the probability of the data 104

(known as the marginal likelihood, or the normalizing constant), 105

P (t1, . . . , tN , S1, . . . , SN , l1, . . . , lN ), which appears in the denominator above. Instead, 106

BEAST employs MCMC to obtain samples from the posterior density of model 107

parameters without the need to calculate this probability. The terms in the numerator 108

are: 109

• the prior P (P) on the precision matrix P (usually a Wishart distribution [7]), and 110

the prior P (Θ) on the substitution model and parameters Θ. For P (Θ), many 111

choices are possible, depending on prior information available regarding the 112

mutational process, and the models considered [30]. 113

• the tree prior P (τ, t1, . . . , tN ) which represents the prior probability of observing a 114

given tree and sampling times. Possible priors can be based on birth-death 115

models [31] or coalescent models [32] (note however that for coalescent priors a 116

different notation from Equation 1 is required, conditioning all probabilities on 117

the sampling times t1, . . . , tN ). 118

• the classical phylogenetic likelihood P (S1, . . . , SN |τ, t1, . . . , tN ,Θ) that depends 119

on a specific substitution model and parameters Θ and that can be calculated 120

using Felsenstein’s pruning algorithm [33]. 121

• the geographic likelihood P (l1, . . . , lN |τ, t1, . . . , tN ,P) is the probability of the 122

geographic locations given the precision matrix P and tree. This can be efficiently 123

calculated by integrating out the location of internal tree nodes, similarly to 124

Felsenstein’s pruning algorithm but for a continuous trait [14,34]. Some 125

approaches opt for Gibbs sampling the ancestral node locations, for example in the 126

work of [7]; in such cases, the notation of Equation 1 needs to be slightly modified. 127

There are a number of features that distinguish the BMP from the ΛFV presented in 128

the next section, which are important to keep in mind. In Fig 1A we give a graphical 129

representation of the BMP, and we here provide a short summary of the features of the 130

model: 131

• BMP assumes that the prior probability of the tree τ is not affected by the 132

migration process P. Note however that the posterior probability of the tree might 133

instead be very much affected by the geographic migration model and parameters. 134
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• BMP normally does not assume boundaries on possible geographic locations, so 135

sample and ancestral node coordinates can be anywhere in the considered space 136

(including in bodies of water, for example). Prior ancestral root locations can also 137

be specified, see [35], and a normal prior distribution over root location is 138

typically assumed, see [7]). 139

• BMP does not assume that the density of the overall population of cases over 140

space and over time is uniform or at equilibrium, and does not aim to describe, at 141

least explicitly, the migratory and reproductive dynamics of the whole population, 142

but only of the ancestral lineages of the considered samples. It assumes instead 143

that there is no interaction among cases (for example, limited resources or 144

susceptible individuals within one area), so that different lineages evolve and 145

spread independently of each other no matter how close they are in geographic 146

space. 147

• in BMP, sampling locations are considered a result of pathogen spread, and not an 148

arbitrary choice of the investigator. As such, sampling locations, even in the 149

absence of genetic sequences, can be very informative about the process of 150

geographic spread, as it is assumed that sampling locations are representative of 151

the geographic range of the pathogen. This also means that absence of samples 152

from certain areas will be interpreted by the model as evidence of absence of cases 153

from such areas. In practice, if the sampling process is dependent on geography, 154

for example when cases from some areas are more likely to be sampled than cases 155

from other areas, then the inference under BMP can be affected, as we show 156

below. This should not necessarily be considered a negative aspect of the model: 157

if there is no sampling bias, then considering sampling locations as informative of 158

the process of geographic spread can increase the inference power of the model. 159

• Currently, no backward-in-time descriptions of the BMP exist; such a description 160

of a dual process of the BMP could be useful for performing BMP inference while 161

avoiding assumptions about (and therefore biases from) the sampling process. 162

Spatial Λ-Fleming-Viot Process (ΛFV) 163

The ΛFV can be used to model migration and evolution of individuals within a 164

population distributed across an area. The geographical area A under consideration is 165

usually a torus (as in the simulator discsim [26]), or a rectangle (as in the 166

phylogeographic inference software PhyREX [16]). Migration is only allowed from and 167

into A, potentially representing, for example, the case of an island or a continental mass. 168

Individuals of the population are assumed to be spread over A with uniform density ρ. 169

Migration and reproduction of individuals are modeled through reproduction-extinction 170

events (from now on, just “events”) which happen at rate λ over time. Each event ei 171

happening at time ti is centered at a location ci taken at random uniformly from A. 172

Individuals in the population are affected by the event according to their distance from 173

ci. For example, in discsim all individuals within a radius r around ci are affected, while 174

in PhyREX individuals are affected with a probability that decreases with their distance 175

from ci (specifically, according to a normal kernel with variance θ2). Individuals affected 176

by ei then die with probability µ, and new individuals are born around ci. In the case 177

of disc events (as in discsim), new individuals are born uniformly within the event disc 178

with density ρµ. In the case of normal kernel events, as in PhyREX, new individuals are 179

similarly placed so to leave the population distribution uniform. Lastly, one (or more in 180

case of recombination [26,36]) parents for all the individuals born at ei are chosen, again 181
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Fig 1. Graphical example of BMP and ΛFV models. Here we compare a
graphical representation of the BMP model (A) against a graphical representation of
the ΛFV (B). In both cases, time (black) is on the Y axis, with the forward direction
pointing down, and τ (blue) is the phylogeny relating three samples s1, s2 and s3. In A,
samples are collected at different times (t1, t2 and t3 respectively), while in B all
samples are collected at the same time ts, reflecting the ultrametric tree constraint of
the ΛFV in its current simulation and inference software implementations. The time of
the most recent common ancestor of s2 and s3 is τ1, while the time of the root of τ is τ0.
On the right side of each plot we represent, for simplicity, a 1-dimensional space (red)
on the X axis, instead of the 2-dimensional space we actually use for simulation and
inference. l1, l2 and l3 are the locations where the three samples s1, s2 and s3 are
collected. (The X axis positions of s1, s2 and s3 within τ are however not meaningful,
as in typical phylogenetic graphical representations.) The right-side diagram of A
graphically mimics how the location of lineages changes along the phylogeny and along
time as it evolves according to a Brownian motion. The right-side diagram of B
similarly shows graphically how the location of lineages can change according to a ΛFV
model; events like e1 and e3 can cause lineages to coalesce (backward in time), that is,
to find a common ancestor, with the location of the parent lineage (respectively p1 and
p3) being different from the locations of the descendant lineages. Other events, like e2
and e4, might result in only changes of location for a lineage, which moves (backward in
time) to the location of the parent (respectively p2 and p4). Other events, not
represented here, might not result in any change of ancestry or location of the ancestral
lineages of the considered samples.

with a probability that decreases as a function of the distance from ci (again, either 182

uniformly on a disc as in discsim or with a normal kernel as in PhyREX, for example). 183

While the ΛFV is very different from the BMP, some aspects of the two models can 184

be compared. For example, for narrow event kernels (i.e. small θ), the position of one 185

lineage along one dimension after time t is approximately normally distributed with 186

variance tσ2, where σ2 = 4πθ4λµ/|A| and |A| is the area of A [16], and at the limit of 187

very small θ and very large λ, the movements of individuals approach a Brownian 188

motion with diffusion rate σ2. Similarly, in the case of disc events of radius r, the mean 189

per-dimension diffusion rate approaches σ2 = πr4λµ
2|A| (see S1 Text). 190

Despite the fact that for small and frequent events individuals might move almost in 191

a Brownian motion, there are still significant differences between the ΛFV and the BMP. 192

The posterior probability of ΛFV model parameters (which we collectively represent as 193

Λ), of a certain history E of events E = {e1, . . . , e|E|}, of tree τ , and of substitution 194

model parameters Θ is: 195

P (τ,Θ,Λ, E|t1, . . . , tN , S1, . . . , SN , l1, . . . , lN )

=
P (Θ)P (Λ)P (S1, . . . , SN |τ, t1, . . . , tN ,Θ)P (τ, E|Λ, t1, . . . , tN , l1, . . . , lN )

P (S1, . . . , SN |t1, . . . , tN , l1, . . . , lN )
. (2)

Similarly to the BMP, samples from the joint posterior density of model parameters 196

can be obtained using MCMC, as is done by PhyREX. The terms in the numerator are: 197

• the prior P (Λ) on the ΛFV model parameters, and the prior P (Θ) on the 198

substitution model parameters Θ. 199

• the classical phylogenetic likelihood P (S1, . . . , SN |τ, t1, . . . , tN ,Θ), as in the BMP. 200

• the likelihood of the history of events, and the ancestry and ancestral locations of 201
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the samples P (τ, E|Λ, t1, . . . , tN , l1, . . . , lN ), which can be computed 202

following [16]. 203

In Fig 1B we give a graphical representation of the ΛFV. From Equation 2 and the 204

description of the model, a number of differences with the BMP can be noted, of which 205

we again provide a summary here: 206

• in the ΛFV, the probability of a tree τ can be affected by the spatial dynamics of 207

the model. 208

• the ΛFV is defined over a finite space, and is hence more appropriate at 209

describing migration within a limited area (such as an island or continent). 210

• the ΛFV assumes that the spatial density of the population is homogeneous and 211

at equilibrium. This means that the model describes the case where resources are 212

homogeneously spread across the environment, and the pathogen or species is 213

endemic within an area (this excludes recent colonizations or recent outbreaks 214

where the pathogen has not yet spread across the whole area). 215

• calculating the likelihood of the ΛFV, at least in implementations proposed so 216

far [16, 37], requires the explicit parameterization of individual events. This means 217

that inference under this model is typically going to be more computationally 218

demanding than inference under the BMP, except for scenarios with very few 219

events. 220

• the ΛFV always conditions on sampling times and sampling locations (see 221

Equation 2). This is because, while the population is assumed homogeneously 222

distributed through time and space, the sampling process is assumed to be 223

arbitrary and not reflective or related to the density of the population or the 224

migratory history. As such, the ΛFV should not be affected by any sampling bias. 225

• the ΛFV model has a backward-in-time dual process [16,26]. This process 226

describes the distribution of past events given data collected later on (see term 227

P (τ, E|l1, . . . , lN , t1, . . . , tN ) above), thereby naturally accommodating possible 228

spatial sampling biases. 229

Results 230

Sampling biases in BMP 231

To investigate the effect of sampling bias on BMP, we simulated evolution and 232

migration under the same BMP model used for inference, and tested different sampling 233

scenarios. We simulated a Yule phylogenetic tree with birth rate 1.0, and stopped the 234

simulations when 1000 tips were generated. Genetic sequences were assumed 10kb long, 235

and we simulated their evolution using an HKY model (κ = 3 and uniform nucleotide 236

frequencies) and a substitution rate of 0.01 per unit time, ensuring reasonable levels of 237

genetic diversity to allow reliable phylogenetic inference. Trees and sequences were 238

simulated using DendroPy [38]. Using a custom python script, we simulated migration 239

along the tree under the BMP model with two independent dimensions each with 240

diffusion rate equal to 1 unit of square distance per time unit, and we always placed the 241

root in (0.0, 0.0). 242

Of the 1000 tips in the total tree (representing all the cases in the considered 243

outbreak), we sampled 50 tips (representing the samples collected and sequenced) under 244

four different strategies to simulate different types of sampling bias: 245
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• in the first scenario (“Random Sampling”), samples were collected independently 246

of their location, and as such no bias is expected and there is no model 247

mis-specification; 248

• in the second scenario (“Central Sampling”), the closest samples to the source of 249

the outbreak (0.0, 0.0) were collected; 250

• in the third scenario (“Diagonal Sampling”), the samples closest to the x = y 251

diagonal were collected; 252

• in the fourth and last scenario (“One-Sided Sampling”), the samples with the 253

highest X coordinate (the most eastern samples) were collected. 254

The sampling biases we simulate here can be considered extreme, and may not 255

represent real sampling scenarios, but they showcase the effects that different types of 256

sampling biases can have on phylogeographic inference. 257

We used BEAST v1.10.4 to perform inference under the classical BMP model [7], 258

assuming the default priors in BEAUti. During inference we did not restrict the two 259

diffusion processes in the two dimensions to be independent or of equal rate, and 260

inferred the correlation in the two diffusion processes and their rates. During both 261

inference and simulations we assumed a constant rate migration process (see [7]). We 262

ran the MCMC for 107 steps and sampled the posterior every 1000 steps, which was 263

sufficient to reach convergence (ESS much higher than 200, checked using Tracer [39]). 264

We ran 100 simulated replicates, and we analysed each replicate four times according to 265

the four sampling scenarios above. Under these four sampling scenarios, we find at least 266

moderate correlation between samples’ geographic distances and genetic distances: 267

averages over 100 simulations of 0.192 for random sampling, 0.042 for central sampling, 268

0.176 for diagonal sampling, and 0.260 for one-sided sampling. This suggests that, in all 269

scenarios, at least a moderate amount of signal to estimate geographic spread is present 270

in the generated data. 271

We found that the sampling strategy affects root location inference using BMP (Figs 272

2A and 2D and S1 Fig). In the absence of sampling bias, inference appears accurate 273

(unbiased and calibrated, Fig 2A). With central or diagonal sampling bias, the 274

uncertainty and error of root location is further reduced (S1C-F Figs), but this 275

probably reflects the fact that samples were collected close to the true origin of the 276

simulated outbreak. When collecting samples at one extreme end of the outbreak, 277

instead, we found that root location inference is strongly biased, with posterior 278

distributions usually not containing the true simulated origin locations (Fig 2D). 279

The effects of sampling bias on the inference of BMP migration parameters are even 280

more noticeable (Figs 2B, 2C, 2E and 2F and S2 Fig). While inference of diffusion rate 281

with no sampling bias is correct and calibrated (Fig 2B), in every biased sampling 282

scenario it is underestimated. In particular, with central and diagonal sampling the 283

posterior distributions usually do not contain the true value (Fig 2E and S2 Fig). The 284

reason for this is probably that the small sampled range (compared to the actual range 285

of the outbreak) is interpreted as evidence of a small outbreak range, and therefore as 286

low diffusion rate (absence of samples in an area interpreted as absence of cases). In the 287

case of diagonal sampling, BMP also infers a strong correlation between the migration 288

processes in the two dimensions (the true value of 0 covariance is never covered by the 289

posterior distributions, Fig 2F). 290

To test the effects of tree uncertainty and sequence data, we also ran inference under 291

the scenario that the simulated tree is perfectly known, representing the case in which 292

sufficient genetic information is available so that there is negligible uncertainty in tree 293

inference. We provided no input alignment and specified no phylogenetic likelihood or 294

substitution model, but instead fixed the tree to the simulated one and removed all 295
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Fig 2. Effects of sampling bias on BMP inference. Here, a BMP model was
used both for simulation and inference. Plots show inferred posterior distributions for
the root X coordinate (plots A,D,G), the diffusion rate along the X dimension (plots
B,E,H), and the correlation between the diffusion in the two dimensions (plots C,F,I).
In each plot, the 100 distributions represent 100 independent replicates, which are
vertically sorted based on the posterior median. Vertical black lines show the true
simulated values. Plots A-C are from simulations with non-biased sampling. Plots D-F
are respectively with “One-sided” sampling bias, “Central” sampling bias, and
“Diagonal” sampling bias. Plots G-I are like D-F but with the addition of 50
sequence-free samples (see Section ) collected independently of their geographic location.
When plotting root locations, since in many cases the MRCA (root) of the collected
samples is not the root of the whole simulated phylogeny (which is always located at
(0.0, 0.0)), in each replicate all posterior locations are translated (in mathematical sense)
so that the true MRCA location is always at (0.0, 0.0).

transition kernels in BEAST that affect the tree. In this case, our analyses required 296

substantially fewer MCMC steps (104), with parameters sampled every 10 steps. We 297

found virtually identical results as those presented in Fig 2 (S3, S4 and S5 Figs). 298

We also performed an additional set of simulations under the One-Sided Sampling 299

scenario, but this time with different levels of proportions of biased samples, so to 300

investigate the effects of the sampling bias intensity. We simulated a phylogeny of 301

10,000 cases under BMP and we sampled 100 of them under 5 different intensities of 302

one-sided sampling bias. At 100% intensity, only samples with the highest X coordinate 303

are collected. At 75% intensity, we collected 75 samples with the highest X coordinate 304

and 25 at random. Similarly for 50% and 25% intensities. At 0% intensities, 100 305

samples are collected uniformly at random. We find that at 75% bias intensity already a 306

large part of the inference bias alreay disappears (S6 Fig). Further lowering the 307

intensity of the bias reduces inference bias, but with diminishing returns. It is surprising 308

to see that, at intermediate sampling bias intensities, diffusion rate on the X dimension 309

is not underestimated (as at 100% bias intensity) but is rather slightly overestimated. 310

Compensating the effects of sampling biases using sequence-free 311

samples 312

The biases shown above originate from the fact that the BMP assumes that samples are 313

collected independently of location, and so the absence of samples from an area is 314

evidence — for the BMP — of absence of cases in that area. Here, we explore the 315

possibility of compensating for the effects of sampling bias in BMP by adding 316

“sequence-free” samples to the analyses. This is representative of the case, for example, 317

that we know that an outbreak has spread into a location, and we know the time and 318

place of some of the cases in that location, but we cannot collect or sequence samples 319

from those cases; so, some of the samples will be “proper”, that is, will encompass 320

genetic sequences, while the other “sequence-free” samples will have sampling location 321

and time, but no genetic sequence (see also [40,41]). 322

To recreate this scenario, we used the 100 Yule trees simulated before. As before, 323

from each simulation, we considered 50 tips sampled according to the four sampling 324

scenarios, representing “proper” samples with genetic sequence. Then, we selected 325

another 50 sequence-free tips randomly (and independently of location) from the 326

remaining 950 tips. These other 50 sequences were added to the BEAST analyses (for a 327

total of 100 samples per replicate) without sequence data (or, more precisely, with 328

uninformative sequences made only of gap characters “-”) but with correct sampling 329
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location and date. 330

Adding these extra sequence-free samples greatly reduces the effects of sampling 331

biases, but does not eliminate them (Figs 2G-I and S7 and S8 Figs). To further 332

investigate how many extra sequence-free samples would be needed to compensate for 333

sampling biases, we simulated a One-Sided Sampling scenario with a reduced number of 334

cases (100, so to make it computationally feasible to add most of them as sequence-free 335

samples) and with 20 samples. We then perform inference either with no added 336

sequence-free samples, or with a number of extra sequence-free samples between 20 and 337

80. Adding 80 extra samples means considering all cases simulated during inference, but 338

only considering the sequences of the 20 biased samples. We find that, in this scenario, 339

adding 20 extra sequence-free samples removes most of the biases, and adding more 340

than 40 extra sequence-free samples in this scenario brings no clear advantage (S9 Fig) 341

while it considerably increases computational demands. This suggests that, while a 342

considerable number of sequence-free samples is needed to compensate for sampling 343

bias, it generally seems not necessary to add as many samples as to make the 344

geographical sampling unbiased. 345

Can the ΛFV correct the sampling bias in BMP? 346

As mentioned before, the ΛFV has a number of differences from the BMP. One of these 347

differences is that the model does not assume that the sampled locations are 348

representative of the range of the outbreak, but instead the model assumes uniform 349

density of cases over a considered, limited space. For this reason, the ΛFV should not 350

be affected by sampling bias (see “Models” Section). We performed inference using the 351

software PhyREX within the package PhyML v3.3.20190909 [16] downloaded on 4th of 352

January 2020 from https://github.com/stephaneguindon/phyml.git. PhyREX 353

implements the ΛFV model on a rectangular space. We fixed the tree to the simulated 354

true one to greatly reduce the parameter space to be explored and to consider the case 355

in which tree uncertainty is negligible (for example due to abundant genetic data). We 356

used PhyREX to infer the diffusion rate (σ2) of the migration process (see S1 Text) and 357

the migration histories, together with the other parameters of the ΛFV model. We ran 358

each PhyREX replicate analysis for 1 week or a maximum of 2× 108 MCMC steps, 359

sampling every 2000 steps. This seemed generally sufficient to reach convergence in all 360

scenarios and most replicates; however, we note that achieving convergence under the 361

ΛFV was considerably harder than under the BMP, probably due to the larger number 362

of free parameters and the considerable uncertainty in their values. In 57 out of 600 363

replicate runs of PhyREX, at least one of the considered parameters had an effective 364

sample size (ESS) below 100. We show below results both including and excluding these 365

non-converged replicates. 366

First, we considered the same exact 1000-tips simulated Yule trees as described 367

above, with BMP migration, four different sampling bias scenarios and 50 collected tips. 368

The ΛFV model used for inference might now be very different from the BMP model 369

used for simulations, and so model mis-specification could have a considerable impact. 370

One important difference is that the BMP has no spatial boundaries by default, while 371

the ΛFV is defined over a finite space. In PhyREX, we define the geographical space 372

(where the migration process takes place) to be a square with dimension double the 373

maximum coordinate of any simulated outbreak case, and centered in (0.0, 0.0), so that 374

all simulated samples are contained within the considered square. We find results from 375

PhyREX to be very different from those in BEAST. Credible intervals of the root 376

location are now much broader, and always contain the truth (Fig 3A and S10 and S11 377

Figs). On the other hand, the diffusion rate is highly overestimated, up to hundreds of 378

times, and the corresponding posterior distributions usually do not contain the truth 379

(Fig 3B and S12 and S13 Figs). The large uncertainty in the root location is probably 380

December 13, 2020 10/26

https://github.com/stephaneguindon/phyml.git


Fig 3. Comparison of BMP and ΛFV models. Similarly to Fig 2, here we show
posterior distributions of inferred root location and diffusion parameters. In plots A,B
we show PhyREX inference (which uses the ΛFV model) under BMP simulations with
no sampling bias. In plots C,D we show BEAST inference (which uses the BMP model)
under discsim ΛFV simulations with wide sampling. In plots E,F we show PhyREX
inference under discsim wide sampling simulations. Plots A,C,E show inference of root
X coordinate; plots B,D,F show inference of diffusion rate: for BEAST we show the
diffusion rate in the X dimension, while for PhyREX we use the diffusion rate
calculated using Equation 1 in S1 Text. Here phylogenetic trees were not inferred, but
were assumed to be known.

caused by the fact that the ΛFV model uses less information than the BMP (by not 381

assuming that sampling locations are representative of prevalence) and is less affected 382

by sampling bias; however, the high inferred diffusion rates suggest that model 383

mis-specification also plays a strong role in these analyses. We found that setting a 384

prior on the radius parameter so as to mimic BMP (i.e., migration events preferentially 385

taking place over short distances) can reduce this bias. 386

To further investigate the differences between the BMP and ΛFV models, we 387

simulated trees and migration under the ΛFV model implemented in discsim [26]. The 388

ΛFV models in discsim and PhyREX differ in some aspects. One difference is that 389

discsim assumes that death and recolonization events happen uniformly over discs, 390

while PhyREX uses normal distribution kernels. Another difference is that discsim 391

assumes that migration happens on a torus, while PhyREX uses a rectangle (no 392

migration outside the rectangle allowed, representing, for example, the edges of a 393

continent or island). In discsim, we always assume a torus of length and width L = 100, 394

and in PhyREX we run inference assuming a square space with the same dimensions. 395

We simulated discs of radius r = 0.1, impact u = 0.1, and event rate λ = 2L2

ur4π ; these 396

parameters were chosen so that migration histories are composed of many small 397

migration events, therefore approximating a Brownian motion, with diffusion rate per 398

dimension approximately σ2 = 1.0 (see ??). 399

We consider two sampling strategies: 400

• “wide sampling”, where 100 samples are collected uniformly at random from the 401

central square of dimensions 50× 50. 402

• “narrow sampling”, where 100 samples are collected uniformly at random from a 403

central square of dimensions 10× 10. 404

In both sampling strategies, differently from BMP simulations, the diffusion rate was 405

not overestimated by PhyREX (Fig 3F and S14 and S15 Figs). Root location inference 406

in PhyREX is accurate, but posterior intervals usually span most of the simulated 407

geographical range (Fig 3E and S16 and S17 Figs). 408

When we run BEAST inference on the discsim simulations, BMP seems to 409

consistently underestimate the diffusion rate σ2 (Fig 3D and S18 Fig). While usually 410

containing the true values, posterior distributions of root locations are even broader 411

than those inferred by PhyREX, and, in particular, broader than the allowed 412

geographical range (Fig 3C and S19 Fig). 413

These results suggest that the large discrepancies between the simulations under 414

BMP and inference in PhyREX are due to model mis-specification and the inherent 415

differences between the BMP and ΛFV models. In BMP simulations, the very high 416

diffusion rate inferred by PhyREX is likely because the ΛFV model would usually 417

assume that ancestral lineages traverse the considered geographical space several times, 418
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backward in time, before finally coalescing, at least in the limit of small and frequent 419

events. The BMP, instead, not assuming endemicity but a rapid spread from an original 420

location, expects shorter distances traveled before lineages find a common ancestor 421

backward in time. 422

This seems, conversely, also the most plausible reason why the BMP infers low 423

diffusion rate in ΛFV simulations. It seems harder instead to explain why root location 424

posterior distributions inferred by the BMP are broader than those inferred with the 425

ΛFV in ΛFV simulations, while the opposite is true for BMP simulations. A possible 426

reason is that, because the ΛFV assumes a finite space, inferred root locations have to 427

be contained within this space, even if, as typical, lineages are inferred to travel, 428

backward in time, long distances before reaching the root. Under the BMP, in contrast, 429

geographical space is unlimited, and in ΛFV simulations the simulated tree is very long, 430

suggesting long traveled distances from the root to the tips, and therefore high 431

uncertainty in root locations, which more than offsets the effect of sample locations 432

being concentrated inside the ΛFV finite space of interest. 433

Analysis of a West Nile Virus Outbreak 434

To showcase the importance of these observations with respect to practical 435

epidemiological and phylodynamic investigations, we consider a dataset from a recent 436

West Nile Virus outbreak in North America [14]. We choose this particular dataset due 437

to availability of the data and of clear instructions on how to repeat the published 438

analyses in BEAST 439

https://beast.community/workshop_continuous_diffusion_wnv (accessed on 440

August 2019), reducing the chances of errors on our part. As described in the tutorial, 441

we include sampling time, sampling location, and genetic sequence data for each sample. 442

We use a separate HKY model for each of the three codon positions, but assume no 443

variation in substitution rates across codons, and we assumed an uncorrelated relaxed 444

molecular clock model [42] with an underlying lognormal distribution. As the tree prior, 445

we employ an exponential growth coalescent model. We assume homogeneous Brownian 446

motion along tree branches. 447

To investigate the possible effects of sampling bias, we consider two datasets: the 448

first including all samples, and the second including only the western-most half of the 449

samples. This second scenario artificially recreates sampling bias, such as the case 450

where only cases from one half of the country are accessible or considered. This 451

sampling scenario might seem extreme, but it’s not uncommon for phylogeographic 452

studies to focus, for example, on a single country or area within a continent, see 453

e.g. [43, 44]. We consider the inference of the location of the root (MRCA) of the 454

western half of the samples. The posterior densities of this same ancestor in the two 455

analyses is very different: when using only western samples, this phylogenetic node is 456

confidently placed in western USA, but when using the whole dataset this same node is 457

confidently placed in the eastern USA instead (Fig 4). Another difference between the 458

two analyses is that when restricting to just the western samples diffusion was inferred 459

to be slower (95% HPD interval [166, 284] km/yr versus [339, 498] in the full analysis). 460

If we adopt a less extreme degree of sampling bias, for example including 5 or 10 461

eastern samples in addition to the western ones, we see that, similarly to our simulation 462

results, most of the inference bias is removed (S20 and S21 Figs). 463

Next, we wanted to see whether, in this scenario, including some sequence-free 464

samples from the eastern side of the country could help in the scenario of biased 465

sampling. To do so, we ran an analysis of the 52 western samples with additionally the 466

52 eastern samples added as sequence-free samples. These sequence-free eastern samples 467

were included with correct location and sampling time data but without sequence data. 468

In this analysis, the inferred location of the considered node (the MRCA of the western 469
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Fig 4. Recreating the effects of biased sampling over a West Nile Virus
outbreak investigation. We re-analysed the West Nile Virus North America dataset
of Pybus and colleagues [14]. At top, we show the maximum clade credibility tree.
Branch lengths are in years. Green circles represent eastern samples while red squares
represent western samples. The red triangle in the tree represents the node whose
location is considered here: the most recent common ancestor (MRCA) of all western
samples. Below, the sample locations are shown on a map of the USA. Sample numbers
are only used to link samples on the map onto the phylogeny. All three kernel density
estimate areas (red, orange and blue) on the map represent the posterior densities of the
location of the MRCA of all western samples (red triangle in the phylogeny). The red
area represents the posterior from the analysis of only western samples; the blue area is
the posterior from the analysis of all samples; the orange area is the posterior from the
analysis of the western samples and of sequence-free eastern samples (eastern samples
included but without sequence data).

Fig 5. PhyREX inference and artificial westward sampling bias in a West
Nile Virus dataset. We re-analysed the dataset of Fig 4 using PhyREX for both the
full dataset and the one containing only western samples. In PhyREX we defined a
rectangular space (outlined in black) with latitude interval [20, 45] and longitude
interval [−130,−60]. The red area represents the posterior ancestral location from the
analysis of only western samples in BEAST. The orange area is the same for PhyREX.
The blue area is the posterior from the analysis of all samples in BEAST. The green
area is the posterior from the analysis of all samples in PhyREX. Posterior distribution
of the diffusion rate inferred by PhyREX has a mean of 329.9 (95% HPD interval
[149.5, 497.4]) km/year in the full dataset and of 133.0 ([15.9, 240.7]) km/year with only
western samples.

samples) is now shifted eastward, but it is still very different from the inferred location 470

of the same node from the full analysis (Fig 4). It is remarkable that in this dataset, 471

unlike in our simulations, the addition of sequence-free samples does not seem to 472

alleviate the effects of sampling bias very much. One possible explanation for this 473

observation is that, unlike in our BMP simulations, in this case the outbreak seems to 474

migrate westward as time progresses [14], a feature that sequence-free samples are 475

insufficient, in this case, to capture, and that a more specific model might be able to 476

address [45]. This is also hinted at by the fact that performing the same analyses as 477

above but removing the western samples from the full dataset instead of the eastern 478

ones shows almost no effects of the artificially introduced sampling bias (S22 Fig). 479

Analysing the same datasets with PhyREX also shows different estimates after 480

removing the eastern samples, although this time there is considerable overlap between 481

the different ancestral location estimates and different diffusion rate estimates (Fig 5 482

and S23, S24 and S25 Figs). In principle we would not expect to see considerable 483

differences for different subsampling schemes since the ΛFV model should be robust to 484

sampling biases, as shown in our simulations. This further supports the hypothesis that 485

the progressive westward shift of the outbreak plays a major role in the apparent strong 486

effects of sampling bias in this case. A noticeable difference between BEAST and 487

PhyREX results, also observed in simulations, is that the inferred uncertainty in 488

ancestral location is much larger in PhyREX than in BEAST. 489
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Fig 6. Phylogeographic analyses of Yellow Fever Virus in Brazil and effects
of location over/under-sampling. Here we compare the results of BMP analysis
using all the data from [46], versus reducing the number of samples from each location
to allow maximum two samples per location. The map on the left shows the Brazilian
states of Minas Gerais (center), Rio de Janeiro (south-east) and Esṕırito Santo (east);
blue samples are the ones used in both analyses, while orange circles represent locations
that were downsampled — numbers in parentheses are the samples that were removed
in the downsampled analysis. The blue area on the map shows the inferred posterior
distribution (kernel density estimate) of root location in the full analysis; the green area
shows the posterior distribution of root location in the downsampled analysis. On the
right is the maximum clade credibility phylogeny inferred from the analysis of the whole
dataset. Orange tips are the ones that were removed in the downsampled dataset; the
red triangle marks the root node.

Analysis of a Yellow Fever Virus Outbreak 490

As a second example of real world epidemic analysis, we considered a recent dataset of 491

Yellow Fever Virus (YFV) from Brazil [46]. 65 YFV genomes were collected between 492

January and April 2017, mostly from the Brazilian state of Minas Gerais. Again, we 493

chose this dataset due to availability of data and instructions for repeating the analysis 494

https://beast.community/workshop_continuous_diffusion_yfv (accessed on 495

August 2019). Following the tutorial, we used the same substitution model as for the 496

West Nile Virus dataset, a skygrid coalescent [47] tree prior with 36 grid points, and a 497

Cauchy relaxed random walk model [7]. 498

When recreating sampling bias along a north-south gradient, we find little impact 499

from removing southern samples (S26 Fig), while directional sampling bias seems to 500

have considerable effect in BEAST analyses when removing northern samples (S27 Fig); 501

this bias is greatly reduced by introducing sequence-free samples. PhyREX inference 502

seems, expectedly, mostly unaffected by sampling bias, and shows much broader 503

posterior distributions for ancestral locations (S28 and S29 Figs). 504

We also observed that many samples of this dataset were collected from few 505

locations: six from Ladainha, five from Novo Cruzeiro, seven from Teófilo Otoni and 506

five from Itambacuri. So, in a second alternative sub-sampling strategy, we reduced the 507

maximum number of samples from any of these locations to two. As before, we aim to 508

artificially recreate different sampling scenarios. We find that, after downsampling, the 509

origin of the outbreak is not inferred anymore to be solely nearby Teófilo Otoni, but 510

also possibly south, close to another cluster of samples near Caratinga (Fig 6). A third 511

possible, but low-probability area remains near Belo Horizonte, close to the phylogenetic 512

outgroup location. 513

These results further suggest that the decision of where to collect samples and which 514

samples to include or exclude from a BMP analysis can significantly impact its 515

conclusions, and that great care should be taken to make sure that the range of samples 516

collected and their density reflect real geographic distributions. 517

Conclusion 518

We have shown that continuous space phylogeographic inference can be negatively 519

affected by sampling biases, such as sampling efforts being focused in certain areas over 520

others. These biases can lead to strongly mis-inferred ancestral node locations, up to 521

completely excluding the true origin of outbreaks with complete confidence. These 522

biases also usually lead to underestimating the dispersal velocity of pathogens, and can 523
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in some cases lead to inference of artificial patterns of correlated spread across space 524

dimensions. 525

We explored possible ways to tackle these issues. A possible approach is to include 526

sequence-free samples, which correspond to known cases (for which we know date and 527

location) which have no corresponding genetic information. We find that sequence-free 528

samples can considerably improve inference and compensate sampling biases, but that 529

in most scenarios it would be computationally unfeasible or unrealistic to completely 530

eliminate the effects of sampling biases, if possible at all. We confirm these results on 531

real datasets from West Nile Virus and Yellow Fever Virus outbreaks by artificially 532

recreating scenarios of sampling bias. 533

As an alternative, we investigated the use of an inference model that is in theory not 534

affected by sampling biases: the ΛFV implemented in PhyREX. Similarly to the 535

structured coalescent, in fact, the ΛFV model conditions on sampling locations, and so 536

should not be adversely affected when samples are not collected proportionally to 537

prevalence; note however that the ΛFV might be affected by geographical biases in the 538

case where the true geographical range of the organism being studied is not known, but 539

we don’t focus on this aspect here. We confirm that indeed this model is seemingly 540

unaffected by different sampling strategies, but, more importantly, the model is also 541

very different from the BMP, resulting in very different estimates. The assumptions and 542

applicability of these two models being so different, we would expect few scenarios of 543

common applicability. The BMP, in fact, well-describes the spread of outbreak within a 544

new, unlimited environment, or at least within an area that is large compared to the 545

current range of the outbreak. For example, in BMP simulations, lineages generally 546

spread out from the original source and move in all directions, on average spreading 547

further away from the origin as time progresses. The ΛFV, instead, fits better a 548

scenario where an outbreak (or any population) has become endemic within an area, or 549

at least where lineages are expected to have migrated across the area since their 550

introduction. For example, in ΛFV simulations lineages usually tend to cross the 551

considered geographic space several times before they all find a common ancestor. One 552

practical consequence of this is that inference under the ΛFV of possible root locations 553

can be, on the same data, much broader than the same inference under the BMP. 554

Similarly, diffusion rates estimated under the ΛFV can be much higher than those 555

estimated under the BMP. It is possible, however, that, in some scenarios or with some 556

modifications, these two models would more substantially overlap in applicability. An 557

example could be when restricting the allowed geographic range within the BMP to a 558

limited space, that is, not allowing BMP migration outside of a confined area. In fact, 559

we suspect that simulating migration under such a version of the BMP, and simulating 560

a long phylogeny (in terms of distance traveled from the root before samples are 561

collected) would lead to patterns very close to those simulated under the ΛFV. Another 562

possibility is that considering samples collected at different points in time would reduce 563

uncertainty in the inference under both models. 564

In the future, it would be of great interest to make the BMP robust to sampling 565

biases by conditioning the BMP geographical likelihood on the location of collected 566

samples, or to consider alternative, possibly approximate models that share this 567

property, which is a topic we are currently working on. While in this manuscript we 568

have only considered a simple model of migration, that is with no directional bias and 569

no variation in diffusion rate over time, location or lineages, it will be interesting in the 570

future to investigate how the relaxation of these assumptions [7, 45] would impact the 571

results presented here. Another issue that we think would be important to address in 572

the future is the elevated computational demand and slow convergence of inference 573

under the ΛFV model; further work on this model, for example in the form of efficient 574

approximations, could greatly improve its applicability in practical scenarios. While the 575
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simulation scenarios considered here are quite extreme in terms of sampling biases, it 576

will be important to consider the degree and type of sampling biases in real life 577

outbreaks (see e.g. [48]) in future research. 578

In conclusion, we report that often the choice of model and of sampling strategy has 579

dramatic effects on the results of a continuous phylogeographic analysis. We therefore 580

recommend attention be paid when deciding a sampling strategy for BMP so that the 581

range and distribution of collected samples would reflect the geographical distribution of 582

the outbreak as much as possible. We also recommend an appropriate phylogeographic 583

model to be used, depending on the history and range of the considered outbreak. 584

Supporting Information 585

S1 Text. Supplementary Text. The Supplement contains additional information 586

regarding the methods used. 587

Fig S1. Effects of sampling bias on BMP root location inference. Here a
BMP model was used both for simulation and inference. Plots show inferred posterior
distributions for the X dimension position of the tree root (plots A,C,E,G), and its Y
dimension position (plots B,D,F,H). In each plot, the 100 distributions represent 100
independent replicates, and are vertically sorted based on the posterior median. Vertical
black lines show the true, simulated values (in this case always 0). Plots A,B are from
simulations with non-biased samples, plots C,D with “Central” biased samples, plots
E,F with “Diagonal” biased samples, and plots G,H with “One-sided” sampling bias.
Since in many cases the MRCA of the collected samples is not the root of the whole
simulated phylogeny (which was simulated at location (0, 0)), in each simulation all
locations are translated (in mathematical sense) so that the true simulated sample
MRCA is always at (0, 0).

Fig S2. Effects of sampling bias on BMP inference of diffusion parameters.
Here a BMP model was used both for simulation and for inference. Plots show inferred
posterior distributions for the diffusion rate in the X dimension (plots A,D,G,J), in the
Y dimension (plots B,E,H,K), and for the correlation between the diffusion in the two
dimensions (plots C,F,I,L). In each plot, the 100 distributions represent 100
independent replicates, and are vertically sorted based on the posterior median. Vertical
black lines show the true, simulated values (in this case 1 for rates and 0 for the
correlation). Plots A-C are from simulations with non-biased samples, plots D-F with
“Central” biased samples, plots G-I with “Diagonal” biased samples, and plots J-L with
“One-sided” sampling bias.
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Fig S3. Effects of sampling bias on BMP inference with no phylogenetic
uncertainty. Here a BMP model was used both for simulation and inference, and the
phylogenetic tree is assumed to be known without uncertainty. Plots show inferred
posterior distributions for the X dimension position of the tree root (plots A,D), the
diffusion rate along the X dimension (plots B,E), and the correlation between the
diffusion in the two dimensions (plots C,F). In each plot, the 100 distributions
represent 100 independent replicates, and are vertically sorted based on the posterior
median. Plots A-C are from simulations with non-biased samples. Plots D,E,F are
respectively with “One-sided” sampling bias, “Central” sampling bias, and “Diagonal”
sampling bias.

Fig S4. Effects of sampling bias on BMP root location inference, no
phylogenetic uncertainty. Similarly to S1 Fig, here we show BMP inference of root
locations under BMP simulations, but this time the phylogenetic tree is assumed to be
known without uncertainty.

Fig S5. Effects of sampling bias on BMP inference of diffusion parameters,
no phylogenetic uncertainty. Similarly to S2 Fig, here we show BMP inference of
diffusion parameters under BMP simulations, but this time the phylogenetic tree is
assumed to be known without uncertainty.

Fig S6. Effects of varying intensities of sampling bias on BMP inference. A
BMP model was used both for simulation of 10,000 cases and inference from 100 samples.
Plots show inferred posterior distributions for the X dimension position of the tree root
(plots A,C,E,G,I) and the diffusion rate along the X dimension (plots B,D,F,H,J). In
each plot, the 100 distributions represent 100 independent replicates, and are vertically
sorted based on the posterior median. Plots A,B are from simulations with non-biased
samples, while plots I,J are from simulations where all samples are biased. The other
plots show intermediate levels of sampling bias, where 25% (plots C,D), 50% (plots
E,F), and 75% (plots G,H) of samples are respectively collected at the positive
extreme end of the X axis range, while the remaining samples are randomly selected.

Fig S7. Effects of extra sequence-free samples on BMP root location
inference. Similarly to S1 Fig, here we show BMP inference of root locations under
BMP simulations, but this time we include 50 extra sequence-free samples (without
genetic sequence but with correct date and sampling location).

Fig S8. Effects of extra samples on BMP inference of diffusion parameters.
Similarly to S2 Fig, here we show BMP inference of diffusion parameters under BMP
simulations, but this time we include 50 extra sequence-free samples (without genetic
sequence but with correct date and sampling location).
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Fig S9. Effects of number of extra sequence-free samples on BMP
inference. Here we simulate under a BMP model and “One-sided” sampling bias, but
only simulate 100 cases and sample 20 of them. A-B Show inference of root X location
and diffusion rate in the X dimension respectively. C, E, G, I show inference of root X
location after adding some (respectively 20, 40, 60, and 80) of the 80 non-sampled cases
to the analysis as sequence-free samples. D, F, H, J show inference of diffusion rate in
the X dimension in the same scenarios.

Fig S10. Root location inference with the ΛFV under BMP simulations.
Similarly to S1 Fig, here we show inference of root locations under BMP simulations,
but this time inference is performed under the ΛFV model implemented in PhyREX.

Fig S11. Root location inference with the ΛFV under BMP simulations,
only converged runs. Similar to S10 Fig, but showing only converged MCMC runs
(where all considered parameters have ESS> 100).

Fig S12. Inferred diffusion rate with the ΛFV under BMP simulations.
Similarly to S2 Fig, here we show inference of diffusion parameters under BMP
simulations, but this time inference is performed under the ΛFV model implemented in
PhyREX. Plots A,E,I,M show inferred diffusion rate σ2 using Equation 1 in S1 Text,
plots B,F,J,N use method “dispersion across short distance from the tips”, plots
C,G,K,O use method “dispersion across long distance from the tips”, and plots
D,H,L,P use method “dispersion from the root”; see S1 Text for more details.

Fig S13. Inferred diffusion rate with the ΛFV under BMP simulations,
only converged runs. Similar to S12 Fig, but showing only converged MCMC runs
(where all considered parameters have ESS> 100).

Fig S14. Inferred diffusion rate with the ΛFV under ΛFV simulations.
Similarly to S12 Fig, here we show PhyREX inference of diffusion parameters, but this
time simulations are performed under the ΛFV model implemented in discsim.

Fig S15. Inferred diffusion rate with the ΛFV under ΛFV simulations, only
converged runs. Similar to S14 Fig, but showing only converged MCMC runs (where
all considered parameters have ESS> 100).

Fig S16. Root location inference with the ΛFV under ΛFV simulations.
Similarly to S10 Fig, here we show PhyREX inference of root locations, but this time
simulations are performed under the ΛFV model implemented in discsim.

Fig S17. Root location inference with the ΛFV under ΛFV simulations,
only converged runs. Similar to S16 Fig, but showing only converged MCMC runs
(where all considered parameters have ESS> 100).
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Fig S18. Inference of diffusion parameters using the BMP from simulations
under the ΛFV model. Here the BEAST BMP model was used for inference, while
the discsim ΛFV model was used for inference. Plots show inferred posterior
distributions for the diffusion rate in the X dimension (plots A,D), in the Y dimension
(plots B,E), and for the correlation between the diffusion in the two dimensions (plots
C,F). In each plot, the 100 distributions represent 100 independent replicates, and are
vertically sorted based on the posterior median. Vertical black lines show the true,
simulated values (in this case 1 for rates and 0 for the correlation). Plots A-C are from
simulations with wide sampling, while plots D-F are with narrow sampling.

Fig S19. Inference of root location using the BMP from simulations under
the ΛFV model. Here the BEAST BMP model was used for inference, while the
discsim ΛFV model was used for inference. Plots show inferred posterior distributions
for the X dimension position of the tree root (plots A,C), and its Y dimension position
(plots B,D). In each plot, the 100 distributions represent 100 independent replicates,
and are vertically sorted based on the posterior median. Vertical black lines show the
true, simulated values (in this case always 0). Plots A,B are from simulations with wide
sampling, while plots C,D are from simulations with narrow sampling. Since in many
cases the MRCA of the collected samples is not the root of the whole simulated
phylogeny (which was simulated at location (0, 0)), in each simulation all locations are
translated (in mathematical sense) so that the true simulated sample MRCA is always
at (0, 0).

Fig S20. Recreating the effects of strong biased sampling over a West Nile
Virus outbreak investigation. Similarly as in Fig 4, we recreate sampling bias in a
West Nile Virus dataset by comparing the inference between the full dataset and the
same dataset after excluding eastern samples. For all analyses we compare the inference
of the ancestral location of the MRCA of all western samples. Here, we consider three
analyses: the one with all samples (blue kernel density on the map), the one with only
western samples (red kernel density), and one with western samples plus 5 random
eastern samples (pink kernel density) representing a scenario of strong, but not extreme,
sampling bias. The 5 random eastern samples are also represented in the phylogeny as
pink tips.

Fig S21. Recreating the effects of moderate biased sampling over a West
Nile Virus outbreak investigation. Same as S20 Fig, but this time with 10 extra
eastern samples instead of 10 (yellow tips and orange kernel density), representing a
scenario of moderate sampling bias.
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Fig S22. Recreating eastward biased sampling in a West Nile Virus
outbreak investigation. We re-analysed the West Nile Virus North America dataset
of Pybus and colleagues [14] as in the main text, but this time selecting only the
east-most samples. At top, we show the maximum clade credibility tree from the full
dataset. Branch lengths are in years. Green circles represent western samples while red
squares represent eastern ones. The red triangle in the tree represents the node whose
location is considered here: the most recent common ancestor (MRCA) of all samples.
Below, the sample locations are shown on a map of the USA. Sample numbers are only
used to link samples on the map to samples on the phylogeny. All three kernel density
estimate areas (red, orange and blue) on the map represent the posterior densities of the
location of the MRCA (red triangle in the phylogeny). The red area represents the
posterior from the analysis of only eastern samples; the blue area is the posterior from
the analysis of all samples; the orange area is the posterior from the analysis of the
eastern samples and of sequence-free western samples (western samples included but
without sequence data).

Fig S23. PhyREX inference and artificial westward sampling bias in a
West Nile Virus dataset, with a broader space. Same analysis as in 5 Fig, but
using a broader rectangular space (outlined in black) in PhyREX, latitude interval
[6, 50] and longitude interval [−140,−35]. Posterior distribution of the diffusion rate
inferred by PhyREX has a mean of 389.2 (95% HPD interval [132.4, 642.3]) km/year in
the full dataset and of 150.5 ([16.6, 287.8]) km/year with only western samples.

Fig S24. PhyREX inference and artificial eastward sampling bias in a West
Nile Virus dataset. We re-analysed the dataset of S22 Fig, using PhyREX for both
the full dataset and the one containing only eastern samples. In PhyREX we defined a
rectangular space (outlined in black) with latitude interval [20, 45] and longitude
interval [−130,−60]. The red area represents the posterior ancestral location from the
analysis of only eastern samples in BEAST. the orange area is the same for PhyREX.
The blue area is the posterior from the analysis of all samples in BEAST. The green
area is the posterior from the analysis of all samples in PhyREX. Posterior distribution
of the diffusion rate inferred by PhyREX has a mean of 329.9 (95% HPD interval
[149.5, 497.4]) km/year in the full dataset and of 219.4 ([39.3, 391.5]) km/year with only
eastern samples.

Fig S25. PhyREX inference and artificial eastward sampling bias in a West
Nile Virus dataset, with a broader space. Same analysis as in S24 Fig, but using
a broader rectangular space (outlined in black) in PhyREX, latitude interval [6, 50] and
longitude interval [−140,−35]. Posterior distribution of the diffusion rate inferred by
PhyREX has a mean of 389.2 (95% HPD interval [132.4, 642.3]) km/year in the full
dataset and of 304.7 ([36.2, 580.4]) km/year with only eastern samples.
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Fig S26. Recreating the effects of biased sampling over a Yellow Fever
Virus outbreak investigation. To investigate the possible effects of sampling bias,
we again consider the effects or restricting an analysis to a geographical subsample of an
original dataset. Here we compare the results of BMP analysis using all the data
from [46] versus using only the northern samples (latitude above −19.0, red squares in
the phylogeny and on the map). On top is the maximum clade credibility phylogeny
inferred from analysing the whole dataset. On the map (bottom) we show the location
of the samples and the inferred location of the most recent common ancestor of all
southern samples (red triangle in the phylogeny). The three, almost completely
overlapping colored areas on the map show the inferred posterior distribution (kernel
density estimate) of the location of this ancestor from three analyses: using only the
northern samples (red area), using all samples (blue area) or using only the northern
samples but adding the southern ones as sequence-free samples (orange areas). The
three small areas completely overlap, masking each other in the figure. A noticeable
difference between the analyses is that when restricting to just the northern samples
diffusion was inferred to be slower (95% HPD interval [152, 1018] km/yr versus
[471, 1512] of the full analysis).

Fig S27. Southward biased sampling in a Yellow Fever Virus outbreak
investigation. Complementarily to S26 Fig, we consider the effects or restricting an
analysis to a southern geographical subsample of the YFV dataset. We compare the
results of BMP analysis using all the data from [46] versus using only the southern
samples (latitude below −19.0, red squares in the phylogeny and on the map). On top
is the maximum clade credibility phylogeny inferred from analysing the whole dataset.
On the map (bottom) we show the location of the samples and the inferred location of
the most recent common ancestor (red triangle in the phylogeny). The three colored
areas on the map show the inferred posterior distribution (kernel density estimate) of
the root location from three analyses: using only the southern samples (red area), using
all samples (blue area) or using only the southern samples but adding the northern ones
as sequence-free samples (orange areas). Due to difficulties in convergence, and
following results from the analysis with all samples, in the analysis with sequence-free
samples we added a normal distribution prior over root height with mean 0.7 and
standard deviation 0.25.

Fig S28. PhyREX inference and Northward biased sampling in a Yellow
Fever Virus dataset. Similarly to S26 Fig, we consider the effects or restricting an
analysis to a northern geographical subsample of the YFV dataset, and we compare
PhyREX and BEAST inference. The colors on the map show the posterior distribution
of the location of the considered ancestor for the analysis with BEAST and northern
samples (red), PhyREX and northern samples (orange), BEAST and all samples (blue),
and PhyREX and all samples (green). In PhyREX we defined a rectangular space with
latitude interval [−23,−15] and longitude interval [−48,−40]. Posterior distribution of
the diffusion rate inferred by PhyREX has a mean of 537.0 (95% HPD interval
[56.8, 1030.3]) km/year in the full dataset and of 1132.2 ([68.4, 2373.6]) km/year with
only northern samples.
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Fig S29. PhyREX inference and Southward biased sampling in a Yellow
Fever Virus dataset. Similarly to S27 Fig, we consider the effects or restricting an
analysis to a southern geographical subsample of the YFV dataset, and we compare
PhyREX and BEAST inference. The colors on the map show the posterior distribution
of the location of the considered ancestor for the analysis with BEAST and southern
samples (red), PhyREX and southern samples (orange), BEAST and all samples (blue),
and PhyREX and all samples (green). In PhyREX we defined a rectangular space with
latitude interval [−23,−15] and longitude interval [−48,−40]. Posterior distribution of
the diffusion rate inferred by PhyREX has a mean of 537.0 (95% HPD interval
[56.8, 1030.3]) km/year in the full dataset and of 825.6 ([66.6, 1562.5]) km/year with
only southern samples.

Fig S30. Effects of location over/under-sampling and use of PhyREX on
YFV dataset. Here we compare the results of using all the YFV dataset versus
downsampling each location up to allowing a maximum of two samples per location,
similarly to Fig 6. Here we also compare BEAST and PhyREX inference. The green
area on the map shows the inferred posterior distribution (kernel density estimate) of
root location in the full analysis in BEAST, while red is the same for PhyREX. The
blue area shows the posterior distribution of root location in the downsampled analysis
in BEAST, while cyan is the same for PhyREX. In PhyREX we defined a rectangular
space with latitude interval [−23,−15] and longitude interval [−48,−40]. Posterior
distribution of the diffusion rate inferred by PhyREX in the sownsampled analysis has a
mean of 537.1 (95% HPD interval [60.8, 1049.4]) km/year.
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