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The parallel developments of genetically-encoded calcium indicators and fast fluorescence imag-
ing techniques allows one to simultaneously record neural activity of extended neuronal populations
in vivo. To fully harness the potential of functional imaging, one needs to infer the sequence of
action potentials from fluorescence traces. Here we build on recently proposed computational ap-
proaches to develop a blind sparse deconvolution (BSD) algorithm based on a generative model for
inferring spike trains from fluorescence traces. BSD features, (1) automatic (fully unsupervised)
estimation of the hyperparameters, such as spike amplitude, noise level and rise and decay time
constants, (2) a novel analytical estimate of the sparsity prior, which yields enhanced robustness
and computational speed with respect to existing methods, (3) automatic thresholding for binarizing
spikes that maximizes the precision-recall performance, (4) super-resolution capabilities increasing
the temporal resolution beyond the fluorescence signal acquisition rate. BSD also uniquely pro-
vides theoretically-grounded estimates of the expected performance of the spike reconstruction in
terms of precision-recall and temporal accuracy for each recording. The performance of the algo-
rithm is established using synthetic data and through the SpikeFinder challenge, a community-based
initiative for spike-rate inference benchmarking based on a collection of joint electrophysiological
and fluorescence recordings. Our method outperforms classical sparse deconvolution algorithms in
terms of robustness, speed and/or accuracy and performs competitively in the SpikeFinder chal-
lenge. This algorithm is modular, easy-to-use and made freely available. Its novel features can thus
be incorporated in a straightforward way into existing calcium imaging packages.
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Highlights

• Functional calcium imaging allows one to monitor large neuronal networks yet the fluorescence signal is only an
indirect measure of the neural activity.

• Here we introduce a Blind Sparse Deconvolution (BSD) algorithm for inferring spike trains from fluorescence
recordings.

• BSD features fully-unsupervised estimation of metaparameters, and temporal super-resolution.

• It provides theoretical bounds on the expected precision-recall performance and temporal accuracy.

• BSD is shown to outperform standard sparse deconvolution algorithm in terms of speed and/or accuracy.

• It is modular, easy-to-use and made freely available to the community on github servers.

Introduction

In the last two decades, functional calcium imaging has emerged as a popular method for recording brain activity in-
vivo. This technique relies on calcium sensors, either synthetic or genetically expressed, that are designed to optically
report the transient rise in intra-cellular calcium concentration that accompany spiking events. Compared to standard
electrophysiology methods, calcium imaging is non-invasive, allows monitoring extended neuronal networks (up to a
few tens of thousands of units) and can be combined with genetic methods in order to target specific neuronal
populations. However, calcium imaging only provides a proxy measure of the neuronal activity. The kinetics of the
calcium/reporter complexation being relatively slow, a spike-evoked fluorescence transient lasts much longer (0.1-1s)
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than the action potential itself (<5ms). As the fluorescence signal is generally noisy and/or weakly sampled, its
interpretation heavily relies on deconvolution methods to infer approximated spike trains. With the rapid increase in
data-throughput offered by current fast imaging techniques [1–4], these methods need to be fast and unsupervised,
as any manual check of the produced inference signals would be prohibitively tedious. Due to the high noise level,
simple inference methods such as naive linear deconvolution and Wiener filtering prove inadequate. In the last decade,
numerous alternative deconvolution algorithms have thus been proposed [1, 5–18]; among them, a powerful family of
algorithms is based on non-negative sparse deconvolution [8, 16, 17]. In short, it consists in solving the inverse problem
using the a priori knowledge that the spikes are sparse and non-negative. This framework, introduced by Vogelstein et
al. in [8], was shown to efficiently recover spike trains from fluorescence signals. However, its performance is strongly
dependent on the algorithm’s hyperparameters, namely the sparsity prior that controls the mean spike rate and the
time constants characterizing the calcium reporter dynamics.

Despite extensive efforts for automatically adjusting these parameters [16, 17], progress are still needed to achieve
the adequate robustness of the inference [19]. Another drawback of current algorithms is that the interpretation of
the output can be challenging due to a paucity of theoretical understanding of their performance. No information
is provided regarding the expected error rate of the inference or the time-precision of the output signal, i.e. the
probability that a given spike be inferred in advance or delayed with respect to the true spike. Such information
would be highly valuable, not only for downstream analysis but also for prior experimental design. In functional
imaging, a trade-off has to be made between the sampling frequency, the signal-to-noise ratio and the imaged volume
(that in turn sets the number of recorded neurons). Such choice of experimental parameters could be rationalized if one
could forsee the achievable performance in terms of spike detection and timing precision for any given configuration.
To address these various requirements, the inference algorithm should thus be accurate enough to make the most of
the data, while being simple enough to be interpretable. It should provide a robust and unbiased extraction of the
experimental parameters, such as signal-to-noise ratio or kernel shape, from the raw fluorescence datasets. It should
finally offer a theoretically-grounded estimate of the inference performance for any given value of these parameters.

In the present study, we build on a recently proposed non-negative sparse inference method to develop the so-
called Blind Sparse Deconvolution (BSD) algorithm. This novel implementation features automatic estimation of the
hyperparameters, enhanced speed, similar-to-better reconstruction performances and super-resolution capabilities. We
additionally provide thresholding guidelines and theoretical bounds on its performance, in terms of inference efficiency
and temporal accuracy as a function of the experimental parameters. These various features are benchmarked on
both synthetic and real data, covering a large spectrum of experimental contexts.

I. MATERIALS AND METHODS

A. Generative model

Standard inference methods are based on a generative model, which describes the relationship between a spike train
and the resulting fluorescence time trace. It reads:

Fi ≡ F (ti) = a

∫
K(τ)N(ti − τ)dτ + b+ εi (1)

where ti = i∆t is the time of measurement, N(t) =
∑
j δt,tj denotes the spike train, b is the baseline fluorescence

(spikeless signal), and εi is a discrete gaussian white noise: < εi >= 0, < εiεj >= σ2δi,j . The convolution kernel
K(t), which reflects the complexation kinetics, is of the form:

K(t) ∝ (e
− t
τd − e−

t
τr )1t>=0 (2)

where the rise and decay time constants τr, τd – typically in the range of 10-100ms and 50-1000ms, respectively –
mostly depend on the calcium indicator but can also vary with the targeted neuron. In the following, we normalize
K such that maxtK(t) = 1, hence each spike produces a transient of maximum height a. The signal-to-noise ratio
(SNR) is thus defined as SNR = a

σ . The noise stems from fluctuations of intra-cellular chemical concentration, light
source and detector noise, incorrect baseline estimation, and other modeling errors. Typical SNR values range from
below 1 to 10.

This description corresponds to configuration in which reporter sensitivity and acquisition rates allow the detection
of individual spikes. In many real situations, this is not the case and one can only detect bursts of spikes over
timescales shorter than the sampling window. In this case, the signal N to be inferred is not binary anymore but



3

remains sparse, and it reflects the instantaneous spike rate. The amplitude a is a characteristic scale of the (non-zero)

signal e.g. such that V ar(N)
<N> = a.

B. Non-Negative Sparse Deconvolution

We recall first the non-negative sparse deconvolution approach for inferring N(t). We rewrite Eqn. 1 as:

Fi = a
∑
l

K(ti − tl) + b+ σεi

Fi = a

T∑
j=1

K [∆t(i− j + 1)]Nj + b+ σεi

⇔ F = aKN + b + σε

(3)

where i ∈ [1, T ] is the time frame index, ∆t ≡ 1
f is the sampling interval, K is the convolution matrix Kij =

K [∆t(i− j + 1)] and Nj =
∫ j∆t
t′=(j−1)∆t

N(t′) ∈ N is the number of spikes in the time interval [(j − 1)∆t, j∆t] [42] .

Note that the first and second lines are not equivalent. The second expression implicitly assumes that:

• The boundary condition N(t) = 0,∀t < 0 holds, which is generally true in recordings that start during inactive
periods. This simplification can be easily relaxed for inference. [43]

• One can approximate K(ti − tl) = K(i∆t− tl) as K [i∆t− (jl − 1)∆t] where jl − 1 = b tl∆tc. This discretization
error is negligible when ∆t is small [44], yet it ensures that the matrix K is translation invariant, i.e. Kij =
φ(i− j).

From Eqn. 3, a naive estimate for N can be written as:

N̂ =
1

a
K−1(F− b)

⇔ N̂ = arg min
N

{
1

2

T∑
i=1

[Fi − a(KN)i − b]2
} (4)

In practice however, this approach fails to recover any spike at typical noise level SNR = 2.5 as shown in Section
II-A and illustrated in Figure 1. To understand this failure, one may reason in the continuous framework for which
Eqn. 4 reads N̂(t) ∝

∫
K−1(τ) [F (t− τ)− b] dτ . Here, the inverse convolution kernel K−1 is proportional to δ′′(t)−[

1
τr

+ 1
τd

]
δ′(t) + 1

τrτd
δ(t) thus the naive deconvolution reads:

N̂ ∝ ∂2
t F (t) +

[
1

τr
+

1

τd

]
∂tF (t) +

1

τrτd
F (t) (5)

A naive estimator of the signal thus involves computing the derivatives of the original signal, and is therefore
extremely sensitive to high frequency noise. An intuitive solution to mitigate this issue consists in filtering out the
high frequency component before carrying out the deconvolution, as is the basis of the Wiener deconvolution method.
Vogelstein et al. showed that it also performs poorly because such filtering smoothes out the fast rise of the spike-
evoked fluorescence transients. In contrast, non-negative sparse deconvolution estimators achieve both filtering of
the noise while preserving the high-frequency signal. They are given by the outcome of the following optimization
problem:

N̂ = arg min
N≥0

{
1

2

T∑
i=1

[Fi − a(KN)i − b]2 + λNi

}
(6)

or equivalently :
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N̂ =
1

a
arg min

N ′≥0

{
1

2

T∑
i=1

(Fi − (KN ′)i − b)2 + λ′N ′i

}
(7)

where λ, λ′ = λ
a are L1 penalty coefficients that control the sparsity of the optimum (the higher λ, the sparser the

optimum). When λ = 0 and the N ≥ 0 constraint is relaxed, the optimal value N̂ is exactly given by Eqn. 4. As
shown in the next Section, the choice of λ is crucial for efficient denoising and proper spike inference. Notice that
the optimization problem is convex and can be solved efficiently in O(T ) for double-exponential kernels using the
interior-point method, see [8]. This unusual linear scaling for a matrix inversion-like operation owes to the fact that

K−1 is tridiagonal for double-exponential kernels: K−1
ij ∝ δij−γ1δi,j+1 +γ2δi,j+2, with γ1 = exp

(
−∆t
τr

)
+exp

(
−∆t
τd

)
,

γ2 = exp
(
−∆t
τr
− ∆t

τd

)
. In [17], the authors apply the Pool-Adjacent Violator Algorithm originally developed for

isotonic regression problems to solve this optimization in an even faster but approximate way.

C. Determination of the sparsity prior λ and signal threshold value

The choice of the regularization parameter λ is crucial. If it is too large, the inferred spike train is N̂ = 0 and
all spikes are missed, whereas if it is too small, noise-induced transients are interpreted as spikes yielding large false
positive rates. Intuitively, we expect the optimal choice to depend on the parameters of the generative model (noise
level, spike amplitude, etc.) Here we review the expressions of λ previously used and we then introduce our method.
We adopt the convention from Eqn. 7 and drop the primes. We assume for now that all generative model parameters
are known.

1. Existing methods: fast-oopsi and constrained-oopsi

In [8], the authors derive the non-negative sparse deconvolution from an approximate Maximum A Posteriori
principle. They assume that the spike count Ni at time step i follows a Poisson distribution of mean ν∆t, where ν
is the firing rate. After approximating the Poisson prior with an exponential distribution, they compute the negative
log-likelihood − logP (F,N), which they find to be proportional to (7) with a sparsity prior λ given by:

λoopsi =
σ2

aν∆t
(8)

This approach thus provides an analytical expression for λ. However, using an exponential approximation instead of
Poisson can largely overestimate the threshold required (it is illustrated for a simple example in Annex I), and result
in improper behavior in several realistic experimental conditions as shown in Section II-A and illustrated in Figure
1. To address this issue, a non-analytical method called constrained-oopsi (referred to as con-oopsi in the following)
was recently introduced in [16]. The authors propose the following constrained deconvolution:

N̂ = arg min
N≥0

∑
i

Ni

subject to
∑
i

[Fi − (KN)i]
2 ≤ σ2T

(9)

Where T is the number of observations. The problem can be rewritten using the Karush-Kuhn Tucker conditions
by introducing the Lagrangian L =

∑
iNi + ρ

∑
i [Fi − (KN)i]

2
where ρ is the Lagrange multiplier associated with

the constraint. There exists ρ such that the critical point N? of L is the solution of the constrained optimization
problem. Clearly, N? satisfies the constraint only if ρ is non-negative; in this case L is convex and the critical point
is a minimum of L. Overall, the optimization problem can be rewritten as:

N̂(ρ) = arg min
N≥0

{∑
i

Ni + ρ
∑
i

[Fi − (KN)i]
2

}
(10)
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Identifying λ = 1
2ρ , the constrained deconvolution is equivalent to a sparse deconvolution with an adaptive sparsity

prior λ. Since
∑
i N̂i(ρ) is a decreasing function of ρ, the expression for λ reads:

λcon−oopsi = max{λ ∈ R+,
∑
i

[
Fi − (KN̂)i

]2
≤ σ2T} (11)

In practice, λcon−oopsi is found by alternatively solving Eqn. 7 and updating λ, decreasing it if the reconstruction
error is too large, and increasing it otherwise. This non-analytical approach performs better than fast-oopsi (see
Section II-A and Figure 1).

2. Blind Sparse Deconvolution

We propose a different analytical expression for λ, inspired by [20]. It is deduced from the analysis of the optimization
problem for two simple configurations, in which there is either zero or one spike in the original signal. We show that
this solution combines the computational speed of fast-oopsi and the robustness of con-oopsi.

3. Spikeless Signal

In the following, we use matrix notations and rewrite the cost function as :

L(N) =
1

2
[F−KN]

T
[F−KN] + λ1TN (12)

The gradient writes:

−∇NL = KT (F−KN)− λ1

−∇NL = −(KTK)N +KTF− λ1
(13)

Let’s first assume that the signal is spikeless, such that Fi = σεi, where εi is a gaussian white noise. Since
(KTK)N > 0, we have:

− ∂L
∂Ni

< σ(KT ε)i − λ ∼ N
(
−λ, σ2‖K‖2

)
⇒ P

[
− ∂L
∂Ni

> 0

]
< Φ

[
λ

σ‖K‖

] (14)

where Φ(x) =
∫ +∞
x

e−
z2

2√
2π

, and ‖K‖ ≡
√∑∞

i=−∞K2 [i∆t]

Therefore, if λ = λ1 ≡ z1σ‖K‖ with z1 large enough, the gradients are almost always negative, and the global

optimum of L is N̂ = 0. Hence for instance, setting z1 = 2.326, yields a probability of false positive event per time
bin PFP < 0.01.

4. Single spike signal

We now examine a configuration in which a single spike is present in the data :

N0
i = δi,i0

Fi = aK [∆t(i− i0 + 1)] + σεi
(15)

The gradient writes:

−∇NL = −(KTK)(N− aN0) + σKT ε− λ1 (16)
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We look for an optimum of the form N̂i = anδi,i0 . The optimization with respect to n gives:

n = max

{
1− λ

a
∑T
i=1K

2 [(i− i0 + 1)∆t]
+
σ

a

∑T
i=1K [(i− i0 + 1)∆t] εi∑T
i=1K

2 [(i− i0 + 1)∆t]
, 0

}

n ∼ max

[
N
(

1− λ

a‖K‖2
,

σ2

a2‖K‖2

)
, 0

] (17)

where the last line assumes that
∑T
i=1K

2 [(i− i0)∆t] ≈
∑∞
i=−∞K2 [i∆t] ≡ ‖K‖2, which is true provided that i0 is

far from the boundaries. Thus, if the spike position is known in advance, the inferred spike is a thresholded gaussian
variable.

Importantly, the effective noise level σ′ = σ
a‖K‖ that appears in this expression is smaller than σ

a by a factor 1
‖K‖ .

This has an important consequence: since max(K) = 1, the norm ‖K‖ =
√∑

iK(i∆t)2 of the discretized kernel is

proportional to
√
M where M is the typical number of time frames over which K is non-zero. Thus, σ′ ∼ σ

a
√
M

as if

the noise had been averaged over the duration of the transient. This suggests that even signals with low SNR can be
efficiently inferred provided that the spike-induced fluorescence transient is sufficiently well sampled.

Eqn. 17 shows that when λ is too large, the probability that a given spike is undetected reads:

PFN = P [n = 0] = Φ

‖K‖
(
a− λ

‖K‖2

)
σ

 (18)

Therefore, setting λ ≤ λ2 ≡ ‖K‖2a− z2σ‖K‖, with, say, z2 = 2.326, guarantees a low false negative rate (FNR) as
the probability that a spike is detected is then larger than 0.99.

The sparsity prior λBSD is chosen to minimize both the FPR and FNR. For a = 1, σ = 0.1, τr = 0.1, τd = 0.5,
f = 10Hz, λ2 = 4.1379 is much higher than λ1. In this case, setting λBSD = λ1 is the best solution, as smaller values
of λBSD lead to less signal deformation. In contrast, for configurations such that λ1 > λ2, i.e. when σ > σmax =
a‖K‖
z1+z2

, it is impossible to satisfy both constraints (low FPR and low FNR); in this case we use the crossover value

λ = z1a‖K‖
z1+z2

= λ1(σmax).

5. Sparsity prior for BSD

To summarize, in our Blind Sparse Deconvolution (BSD) algorithm, the sparsity prior is set analytically as:

λBSD = z1‖K‖min

(
σ,

a‖K‖
z1 + z2

)
(19)

where ‖K‖ =
√∑+∞

i=−∞K(i∆t)2 is the L2 norm of the discretized convolution kernel K, and z1, z2 are two numbers

∼ 2 that control the precision and recall, respectively.
We expect the sparse deconvolution to perform more consistently with λBSD than with λoopsi. Indeed, if a = 1, σ =

0.1, τr = 0.1, τd = 0.5,∆t = 0.1s, ν = 1Hz, we find λoopsi = 0.1 and λ1 = 0.51; using λoopsi therefore results in multiple
noise-induced false spikes. Conversely, for σ = 0.25 and ν = 0.1Hz, we have λ1 = 1.25, λ2 = 3.39 λoopsi = 6.25; in
this case, λoopsi is too large and most, if not all the spikes are missed.

Robust performances are also expected using λcon−oopsi, although a slightly larger FPR is expected compared to
λBSD. Indeed, in the absence of spikes, N = 0 satisfies the reconstruction constraint in the large T limit and is
correctly found by the algorithm. In the presence of spikes, we expect λcon−oopsi to be slightly lower than λBSD,
resulting in small overfitting of the noise. Indeed, as soon as λ > 0, the spikes are on average underestimated, see
Eqn. 17; therefore, any good choice of λ that perfectly filters the noise also underestimates the reconstructed trace

KN , yielding a reconstruction error
∑T
i=1 (Fi − anK [(i− i0)∆t])

2
> σ2T and is therefore not a valid solution for

the constrained optimization. Instead, λ is further decreased until false (noise-induced) spikes appear and reduce the
reconstruction error below σ2T .
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6. Thresholding the BSD inferred signal

Some applications, such as network connectivity inference, may require to threshold the signal in order to get a binary
spike train. Unlike previous methods, BSD provides rationale for choosing a threshold. Indeed, the computations
performed in Sections 1C3-4 show that the (unnormalized) inferred spikes in the absence (resp. presence) of spikes are

thresholded gaussians variables, with means − λ
‖K‖2 and a− λ

‖K‖2 , respectively, and identical variance σ2

‖K‖2 . Picking

a threshold that separates the two distributions yields:

θ = min

[
z3

σ

‖K‖
, u

(
a− λBSD
‖K‖2

)]
(20)

where z3 is a quantile of the normal distribution, and u a number between 0 and 1, say, 0.5. When θ equals the left
term, the vast majority of the noise is efficiently filtered out such that any non-zero value in the output signal can be
safely assigned to a spike; the right-hand term in turn prevents the threshold from becoming larger than the signal
itself.

D. Theoretical limits on the precision-recall and temporal resolution

We now present a similar analysis to derive theoretical estimates of the true and false positive rates, and of the
temporal accuracy of the predicted spikes trains as function of the generative model parameters. The corresponding
scripts are also implemented in the BSD package, and can be directly applied for a given fluorescence recording once
the generative model parameters have been inferred.

1. Precision-Recall for isolated spikes

The theoretical false positive and negative rates (FPR, FNR) are first computed within the sparse deconvolution
framework with λBSD. For the false positive rate, the computation was performed in Section I-C3: we obtain a
probability of false positive rate per time bin:

PFP = Φ

[
z1 min

(
1,

a‖K‖
σ(z1 + z2)

)]
(21)

For the false negative rate, we follow a similar reasoning as in Section I-C4: we consider a signal of the form
Fi = an0K [∆ti− t0]+σεi with t0 = (i0−1)∆t+δt0 and 0 ≤ δt0 < ∆t. Note that we have now relaxed the previously
made approximation K [∆ti− t0] ≈ K [∆t(i− i0 + 1)] in order to probe the effect of intermittent sampling. We obtain
a lower bound [45] for the probability of false negative per spike:

N̂ = arg max
N≥0
L(N) ≈ anδi,i0

=⇒ n ∼ max

[
N
(
n0 cos θ(−δt0)−min

(
z1σ̃,

z1

z1 + z2

)
, σ̃2

)
, 0

]

=⇒ PFN (δ0) = Φ

n0 cos θ(−δt0)−min
(
z1σ̃,

z1
z1+z2

)
σ̃


(22)

where:

cos θ(δt) =

∑∞
l=−∞K [∆tl]K [∆tl + δt]∑∞

l=−∞K [∆tl]
2

σ̃ =
σ

a‖K‖

(23)

Note that the probability depends on δt0; for instance if τr = 0 and δt0 << ∆t, spikes emitted right after a
measurement yield low-amplitude fluorescent transients and are thus likely to be missed. Overall, the probability of
false negative is given by:
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PFN =
1

∆t

∫ ∆t

δt0=0

PFN (δt0)dδt0 (24)

2. Temporal Resolution for isolated spikes

Intuitively, the temporal resolution depends on three factors: the signal-to-noise ratio, the sampling rate, the shape
of the fluorescence kernel. It is characterized by the point-spread function (PSF) of the inferred spikes with respect
to the true spikes, namely the conditional average given a fluorescence signal with a single-spike at t = 0:

PSFτ = E
[
N̂t0+τ |N0

t = δt,t0

]
(25)

Where N̂ = arg minN L(N) is the spike train inferred from the fluorescence signal see Eqn. 12 and the expectation

is taken over the Gaussian noise realizations, see Eqn. 1. The distribution of N̂ is not tractable and, therefore, the
PSF cannot be derived by exact analytical computation. Instead, we use two heuristics to obtain analytical insights
into the width of the PSF and an efficient numerical approximation of the PSF.

For the analytical computation, we focus on the distribution of the initial negative gradients − ∂L
∂Ni
|N=0 rather

than the one of N̂. Consider indeed the gradient descent optimization dynamics: because of the L1 penalty, large
components Ni tend to grow faster and to screen neighboring small components, yielding sparse solutions with only
few non-zero components. It is therefore likely that the largest components of N after one gradient descent step (after
which Ni ∝ − ∂L

∂Ni
|N=0) remains the largest at the end of the optimization. Hence if the initial negative gradient is

larger at position i0 + δ than at position i0, we expect the inferred spike N̂ to be similarly delayed with respect to
the true spike position. The probability of such an error can be computed as:

− ∂L
∂Ni0

|N=0 = a‖K‖2 + σ
∑
i

K [∆t(i− i0 + 1)] εi − λ

− ∂L
∂Ni0+δ

|N=0 = a‖K‖2 cos θ(δ∆t) + σ
∑
i

K [∆t(i− i0 − δ + 1)] εi − λ

⇒ ∆

[
− ∂L
∂N

]
∼ −2a‖K‖2 sin2 θ(δ∆t)

2
+ 2σ‖K‖ sin

θ(δ∆t)

2
N (0, 1)

(26)

where the angle θ(δt) is defined in Eqn. 23.
Thus, the initial gradient at the offset time i0 + δ is higher than its value at the spike time i0 with probability

Φ

[
a‖K‖ sin

θ(δ∆t)
2

σ

]
, typically resulting in a time-shifted inferred spike. This results in a typical timing error δt on the

spike position of the order of:

δt s.t. sin
θ(δt)

2
=

σ

a‖K‖
(27)

This timing error is a non-trivial function of the kernel K and the noise level. The higher the effective noise level
σ

a‖K‖ , the higher δt. The second factor is small for rapidly growing θ(δt), i.e. when the overlap between the kernel

K(t) and its lagged version K(t+ δt) is a fast decaying function of δt. Hence, the ’sharper’ the kernel, the lower δt.
For the numerical approximation of the PSF, we restrict the optimization search space to solutions of the form

N̂i(τ, n) = anδi,i0+τ . Using this simplification, the optimization over n can be carried out analytically (similarly
as Eqn. 22) for each τ , and PSFτ is given by the probability that the optimal solution is located at τ . After
rearrangement, we obtain:

PSFτ ≈ P (Xτ ≥ 0 & Xτ ≥ Xτ ′ ∀τ ′) (28)

Where Xτ , τ ∈ Z is a Gaussian vector with mean E [Xτ ] = cos(θ(τ∆t)) − min
[
z1σ
a‖K‖ ,

z1
z1+z2

]
and covariance

Cov(Xτ , Xτ ′) = σ
a cos θ(∆t|τ − τ ′|).
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Eqn. 28 is efficiently evaluated by Monte Carlo, with values of |τ | ≤ 20 and is valid for the discrete generative
model; the computation can be generalized for the continuous generative model, see Annex D. The final formula is
given by:

PSF (δt) =
1

∆t2

∫ ∆t

δt0=0

∑
τ∈Z

PSFτ (δt0) 1τ∆t−δt0<δt (29)

Where PSFτ (δt0) is the discrete PSF of Eqn. 28, but with a term cos(θ(τ∆t− δt0)) instead of cos(θ(τ∆t)) in the
mean value of Xτ .

E. Hyperparameters learning

All sparse devonvolution methods rely on the knowledge of the generative model’s parameters. However, owing
to the variability in the calcium reporters intracellular concentration and other biochemical cellular processes, these
paramaters may significantly vary from experiment to experiment, and for different neuronal types. In the fast-oopsi
implementation, the authors proposed to infer the parameters (a, b, σ, ν) in an iterative way: an initial guess is
made, deconvolution is performed, parameters values are then updated based on the deconvolution result, whereas for
con-oopsi, the authors propose to estimate σ,K only once. We follow the same iteration-based approach as fast-oopsi,
but the parameters are inferred and refined differently; we also add a method to infer and refine the kernel K.

1. Initial estimation of the parameters

We are given a time series of the form F = aKN + σε + b, with unknown a,b,σ, K. In the following, we assume
that the baseline is constant or equivalently that the variable baseline has been previously estimated and subtracted
from the signal. From the knowledge that N is non-negative and sparse, we deduce that:

• The baseline b is essentially the most often observed value of F ; the data histogram is computed, and b is
estimated as the center of the interval with highest frequency. Using the median of S also provides a good
estimator.

• All activity below the baseline originates from the noise, hence F ′ = F [F < b] − b follows a half-Gaussian
distribution min

[
N
(
0, σ2

)
, 0
]
; it is fitted to deduce σ.

We estimate the convolution kernel K through the signal auto-correlation matrix. Indeed, observe that :

AF (l) ≡< FiFi+l > − < F >2= a2
∑
j,k

[
< NjNj+k > − < N >2

]∑
i

K [(i− j − 1)∆t]K [(i+ l − k − j − 1)∆t]+σ2δl,0

(30)
Under the assumption that the spiking events Ni are independent, identically distributed Poisson variables, we have

< NjNj+k > − < N >2= a2ν∆tδk,0 and Eqn. 30 can be simplified as:

AF (l) = a2ν∆t

∞∑
j=−∞

K [j∆t]K [(l + j)∆t] + σ2δl,0

⇐⇒
(
AF (l)− σ2δl,0

)
∝

∞∑
j=−∞

K [j∆t]K [(l + j)∆t]

(31)

The auto-correlation matrix can be estimated from the data as ÂF (l) = 1
T

∑
i FiFi+l −

[∑
i Fi
T

]2
. Together with

the previous estimate of σ, the left-hand side of the equation can thus be estimated. In practice, ÂF obtained is
not necessarily positive definite, because the estimate of σ can be incorrect - this can lead to very bad estimates
of τr, τd. To mitigate this issue, we subtract min(σ2, λmin) instead of σ2, where λmin is the smallest eigenvalue of
the Toepliz autocorrelation matrix. The right-hand side is the overlap between the kernel K and its delayed version
K ′(t) = K(t+ l∆t). We can normalize both terms to 1 for l = 0, and use a least square fit to estimate K.



10

Lastly, the spike amplitude a and frequency ν can be deduced from the following equations, that hold under the
model assumption:

< F >= aν∆t
∑
i

K [i∆t]

< F 2 > − < F >2= a2ν∆t
∑
i

K [i∆t]
2

(32)

Although they yield very good results for synthetic datasets, these estimators can fail in several frequently encoun-
tered situations in practice:

• When the neural activity is not sparse, we do not expect b to be the most frequent fluorescence value. An error
in the estimation of b can result in a misestimation of σ as well.

• When the neuron displays bursting activity (i.e. several spikes in short time intervals), the hypothesis that the
Ni are independent usually fails. This may result in overestimating τr and/or τd.

• In the same situation, Eqn. 32 is incorrect and a can be overestimated.

• When the noise exhibits temporal correlation (streaking artefacts in light sheet imaging, small sample drifts,
fluctuations in laser intensity, etc.), the white-noise hypothesis does not hold, which may result in a misestimation
of τr and τd.

When the estimated time constants τr and τd differ from their true values, τ0
r and τ0

d , systematic estimation errors
arise. Suppose for instance that τr < τ0

r and τd = τ0
d . Then a spike-induced fluorescence transient tends to exhibit

a faster initial rise than expected. Hence, from a Bayesian perspective, such a transient is likely to be interpreted as
two small consecutive spikes. Hence, inferred spikes will tend to be duplicated. In general, the nature of the error
depends on the kernel mismatch; some simulation results are presented in Annex B. These results highlight the need
to refine the kernel parameters estimators.

2. Iterative parameter estimation: adaptive blind deconvolution

At fixed hyperparameters, the cost function to minimize is the sum of a reconstruction error and a sparse penalty
on N :

L(N,K, b, σ, a) =
1

2
‖F−KN− b‖2 + λBSD(‖K‖, σ, a)‖N‖1 (33)

We can further refine the model hyperparameters by jointly minimizing this cost function with respect to both
the spike train and the hyperparameters. In other words, we look for the convolution kernel that achieves the best
trade-off between inferred spikes sparsity and reconstruction error. Such optimization yields non-trivial kernels, since
a very sharp kernel (τr, τd → 0) would give a perfect reconstruction but dense spikes, whereas a wide kernel would give
very sparse spikes but poor reconstruction. Furthermore, it can be shown that such sparsity-reconstruction trade-off
maximization, which is also featured in Sparse Dictionary Learning [21] or Blind Deconvolution in image deblurring
[22] is equivalent to a Maximum A Posteriori optimization of the likelihood, assuming a gaussian noise, a sparse prior
for spikes and a flat prior for the hyperparameters [22]. In practice, we optimize over K and b iteratively through the
following coordinate descent algorithm:

N̂(t) ← arg min
N
L(N,K(t−1),b(t−1), σ,a)(

K(t),b(t)
)
← arg min

K,b
L(N̂(t),K,b, σ, a)

(34)

The first optimization step was discussed in Section I-B. The second optimization is a parametric temporal regression
problem; it can be solved efficiently in O

(
τr+τd

∆t

)
by introducing the cross-correlation Xτ = 1

T

∑
i FiN̂i−τ and auto-

correlation Aτ = 1
T

∑
i N̂iN̂i−τ functions up to some cut-off τm ∼ τr+τd

∆t (see details in Annex C). The purpose of this

step is that if N (t) = N0, then the optimum is exactly K0 if σ is small or T is large. More generally (N0,K0) is a
fixed point of the optimization dynamic in the low noise limit, and intuitively, we expect that at finite noise, another
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fixed point close to (N0,K0) exists and can be reached. We show in Annex C that K0 is the global optimum in the
case of isolated spikes and low noise level. The optimization will not necessarily converge to such solution because
the function L(N,K) is not convex, and only local minima are found. In practice, the optimum is usually very close
to the original convolution kernel, and is reached if the initial estimate is good enough. The convergence can be
improved by thresholding the spikes before updating the kernel, as it prevents false spikes from contributing to the
cross-correlation. The iterative process is no longer an optimization but it still converges.

The noise σ and spike amplitude a can be refined as well, using

â =

∑
t N̂
′
t∑

t 1N̂t>0

+
λ

‖K‖2
(35)

Where the last term corrects the bias due to the sparse prior (see Eqn. 17)

σ̂ =

√
1

T

∑
t

[(Fi − (KN ′)i − b)2] (36)

F. Super-resolution

Most fluorescent microscopy techniques –two-photon, confocal or light-sheet – involves the sequential scanning of a
laser beam at different locations within the sample. Hence, for a given dwell time of the laser at each neuron position,
there is a trade-off between the sampling rate and the total number of sampled neurons. In other experimental fields,
resolution limitations due to recording constraints have been significantly circumvented through signal processing
algorithms. For instance, super-resolution microscopy achieves imaging at higher resolution than the diffraction limit
[23–27], and compressed sensing applied to MRI allows to drastically reduce the number of measurements required to
reach a given resolution [28]. These algorithms rely on the hypothesis that the original signal is sparse in a certain
basis; it is therefore tempting to apply them to our problem, given that neural spikes are sparse in the canonical
basis. This possibility had been discussed in the context of bayesian inference [7]. Temporal resolution was shown
to be slightly improved in very specific settings, i.e. when using prior knowledge of inputs (stimulus) and spiking
history dependence of the neuronal activity. In this section, we extend the Blind Sparse Deconvolution framework
to super-resolution, i.e. we develop a method to infer spiking events timing with a temporal resolution beyond the
sampling rate.

1. Qualitative analysis

We start off with a qualitative analysis and consider the fluorescence signal produced by an isolated single spike of
amplitude n:

Fi = anK(∆ti− t0) + σεi + b (37)

Denoting j = b t0∆tc, δt = t0− j∆t ∈ [0,∆t], λd = e
− t
τd , λr = e−

t
τr , and assuming for simplicity that b = 0 and that

K is unnormalized, we write, for i > j:

Fi = an
[
λ
i−j− δt

∆t

d − λi−j−
δt
∆t

r

]
+ σεi

⇐⇒ Fi = anλ
− δt

∆t

d λi−jd − anλ−
δt
∆t

r λi−jr + σεi

(38)

Thus, the observed fluorescence is a double exponential with non-equal coefficients of the form f(i) = Aλid +Bλir.

Fitting the coefficients with a least-square method yields estimates of anλ
− δt

∆t

d and anλ
− δt

∆t
r , which can be converted

to estimates of δt and n. Thus, it is possible in principle to find the exact spike position in the noiseless case, if we
know a priori that the signal contains a single spike. Notice that this is possible only if λr > 0, i.e. τr > 0; if τr = 0,

the observed fluorescence is a single exponential of amplitude anλ
− τ

∆t

d , and we cannot recover both n and τ without
ambiguity [46]. In the case of a noisy signal, we expect that super-resolution can be achieved only if τr

∆t is large enough



12

with respect to some function of σ. Notice also that if multiple spikes occur within the same time bin, the observed
fluorescence transient is still a double exponential with non-equal coefficients, and it cannot be distinguished from the
one produced by a single large spike at some average position. More generally, resolving two spikes in the same time
bin would require the use of more complex convolution kernels.

2. Generative model

With these limitations in mind, we now extend the deconvolution framework to implement super-resolution. The
fluorescence signal is constructed using a discrete generative model at a fine-grained time scale ∆t

s , where s is a
non-zero integer, which is then down-sampled by the same factor s. This yields the following generative model:

F sk = a

sT∑
j=1

K

[
∆t

s
(k − j + 1)

]
Ns
j + b+ σεsk

Fi ≡ F sis = a

sT∑
j=1

K

[
i∆t− (j − 1)

∆t

s

]
Ns
j + b+ σεi

⇔ F = aKNs + b + σε

(39)

where Fi is the fluorescence measurement at ti = i∆t and Ns
j =

∫ j∆t
s

(j−1) ∆t
s

N(t)dt is the number of spikes emitted in the

time interval [(j − 1)∆t
s , j

∆t
s ]. [47] The convolution matrix K is now rectangular, of size T × sT . It is not translation

invariant anymore with respect to the spikes index j as the norm of the transient, ‖Kj‖ =
√∑

iK2
ij now depends on

j. Indeed, writing j = (p− 1)s+ r, we have:

‖Kj‖ =

√√√√ T∑
i=1

K

[
i∆t− (j − 1)

∆t

s

]2

=

√√√√ T∑
i=1

K

[
(i− p)∆t+

s+ 1− r
s

∆t

]2

≈

√√√√ ∞∑
k=−∞

K

[
k∆t+

s+ 1− r
s

∆t

]2

= f(r)

(40)
Typically, spikes occurring right after a fluorescence measurement (small r) have smaller ‖Kj‖ than spikes occurring

right before a measurement (large r).

3. Sparse Deconvolution

A sparse deconvolution algorithm is applied to estimate the spikes Ns:

N̂
s

= arg min
Ns≥0

1

2

T∑
i=1

[Fi − a(KN)i − b]2 +

Ts∑
j=1

λjNs
j

 (41)

Notice that, although K is not invertible anymore, the optimum is still well-defined because of the sparsity penalty
and non-negativity constraint. Compared to Eqn. 6, the main difference is that λ is not uniform anymore: λj ∝ ‖Kj‖.
This property has an important consequence, as can be seen by considering the limit case τr = 0, σ << a. As discussed
previously, a transient observed for i ≥ i0 can be interpreted either as a small spike right before the i0 measurement,
or a ’large’ one right after the i0 − 1 measurement. Thus, using a constant λ would systematically select the small
spike interpretation, i.e. the inferred spike train would be systematically delayed with respect to the original spike
train. This behavior is not desirable, and we would rather have both solutions to be degenerate global optima. This
can be achieved by setting λ to a smaller value right after the i0 − 1 measurement. We show in Annex E that both
efficient noise filtering and unbiased estimation of spike timing for isolated spikes can be obtained with the following
expression for λjBSD:

λjBSD = z1‖Kj‖min

(
σ,
a
∑s
r=1 ‖Kr‖
s

z1 + z2

)
(42)



13

In practice, the optimization can also be performed efficiently using the interior-point method [8]. Adding a small
L2 penalty

∑
j µjN

2
j , with µj ∝ ‖Kj‖2 often provides better conditioning of the hessian, and faster convergence. It

also ensures the unicity of the solution, in particular when τr = 0. The kernel inference can also be adapted efficiently
to support super-resolution, see Annex F.

G. Methods for Performance Evaluation

The algorithm is evaluated based on three criteria: whether the spikes are correctly detected or not; if they are
detected, whether their timing is accurate; and whether the inferred generative model parameters match the ground
truth values.

1. Spike detection

For the spike detection assessment, we adopt the SpikeFinder main metric [13], i.e. the Pearson correlation between
the ground-truth spike train discretized at a frequency feval and the inferred spike train resampled at the same
frequency. Resampling is performed as follows: (i) if feval = f/s for integer s, s consecutive frames are summed;
(ii) if feval = f × s for integer s, we write N ′j = Ndj/se/s. (iii) otherwise, (e.g. for SpikeFinder), the signal is first
resampled to the closest multiplier or divider of feval by linear interpolation, then resampled using (i) or (ii). When
feval = f , the metric penalizes equally an undetected spike and a spike that is detected either in advance or delayed
with respect to the true spike; when feval < f , the metric is tolerant to timing errors of order 1/feval.

2. Spike timing

The accuracy of the timing is assessed by measuring the point spread function (PSF), i.e the average (over noise)
of the inferred spike train in presence of an isolated single spike:

PSFτ = E
[
N̂t0+τ |N0

t = δt,t0

]
(43)

Where τ ∈ Z is the lag. Ideal point spread functions are centered around 0 and decay fast to ∼ 0 with |τ |. [48]. Then,
the timing error can be characterized by the mean and standard deviation of a Gaussian curve fitted the point spread
function. [49]

A naive estimator of PSF would be the cross-correlation between the ground-truth spikes and the inferred spikes

Xτ = 1
T

∑T
i=1N

0
i N̂i+τ . Such estimator is correct when the spike train are Poisson-distributed, but is biased when

the spikes are temporally correlated: in the best case scenario where the spike is perfectly recovered N̂i = N0
i ∀i, we

obtain the auto-correlation of the spike trains Xτ = 1
T

∑T
i=1N

0
i N

0
i+τ ≡ Aτ . To overcome this issue, we estimate the

PSF as the kernel of a linear temporal regression model:

N̂t =

m∑
τ=−m

PSFτN
0(t− τ) + ε (44)

The least square estimator for the PSF is then:

PSF = A−1X

Aij = A(i− j)
(45)

where PSFτ , Xτ are indexed formally as vectors R,X.
This estimator is defined for N0, N̂ with identical sampling rate; if N̂ has lower sampling rate, it is first upsampled

using the above procedure.
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3. Generative model parameters

Finally, we assess the accuracy of the blind generative model parameters inference. For simulated train spikes,
ground truth generative model parameters exist and they can be directly compared with the inferred ones. For real
fluorescence data with joint electrophysiological recordings, we derive ’ground truth’ generative parameters using the
knowledge of the spike positions. The kernel parameters and the baseline are obtained by minimizing the following
mean square error:

MSE =
∑
i

Fi −∑
j

K [(i− j + 1)∆t] ajN
0
j − b

2

(
τGT
r , τGT

d , bGT
)

= arg min
τr,τd,b,a≥0

MSE (τr, τd, b,a)

(46)

Where the ground-truth spikes are discretized at the fluorescence sampling frequency. Note that we relax the hypoth-
esis that all transients have the same amplitude a, and optimize over all the amplitudes aj ≥ 0. This is particularly
important for spike bursts, where strong non-linear effects are observed. In practice, the optimization is carried out
by using the exact same algorithm as for the fully blind setting, but with a position-dependent sparsity prior λi that
takes the value 0 for positions where a ground truth spike is present and a large value (e.g. 20) elsewhere. Once

inference is performed, the transient amplitude a is computed as the average transient amplitude
(∑

j aj

)
/
(∑

iN
0
i

)
.

II. RESULTS

The Blind Sparse Deconvolution (BSD) method, whose algorithmic details were presented in the preceding section,
allows for unsupervised spike inference, i.e. both the algorithm hyperparameters - sparsity prior λ and generative
model parameters - kernel time constants τr, τd, transient amplitude a, noise level σ - are automatically evaluated.
BSD can infer spike trains at or beyond the fluorescence sampling rate. Importantly, the expected performances of
BSD can be predicted as well and this possibility is integrated in the publicly available program.

Section II A is dedicated to simulated data; we demonstrate that the choice of sparsity prior outperforms other
methods in terms of spike and/or computational speed and that the kernel parameters can be accurately recovered
using our iterative approach. We also demonstrate super-resolution capabilities for a wide range of experimental
conditions. In Section II C , we apply BSD to the SpikeFinder contest, a collection of joint electrophysiological and
fluorescence recordings. We show that i) our choice of sparsity prior outperforms others ii) the kernel inference is
accurate, allows robust performance even in the absence of training data and can improve spike detection performance
when interneuron variability is important. iii) the predicted temporal errors are consistent with empirical errors and
that integrating it into the prediction can improve spike detection. iv) super-resolution significantly increases the
temporal accuracy for some datasets. Overall, our best submission is competitive across all datasets with state-of-
the-art Machine Learning algorithms, while not requiring any training data or hyperparameter fine-tuning. In
Section II D , we show that BSD scales well to large-scale zebrafish recordings. Finally, section II B is dedicated
to experimental design: we use BSD to predict the expected accuracy for various standard calcium reporters and
imaging parameters.

A. Simulated data

1. Spike detection accuracy

In BSD, the sparsity prior λBSD is computed analytically and allows one to simultaneously minimize, in a tractable
way, both the false-positive rate (FPR) and false-negative rate (FNR) (see Methods). In contrast, the expression
λoopsi used in the fast-oopsi algorithm [8] offers no guarantee that either is small in all situations (see Methods).
This issue has motivated the recent development of the constrained-oopsi algorithm [16] where the sparsity prior is
determined iteratively. Figure 1 illustrates the strong impact of the chosen value of the sparsity prior on the inference
performance, as it compares the results of the four inference algorithms (BSD, oopsi, con-oopsi, and non-negative,
i.e. with λ = 0) for a signal with σ = 0.4, f = 10Hz. For fast-oopsi, the sparsity prior is too large, and no spikes are
inferred, whereas for both con-oopsi and BSD, the signal is correctly recovered. Here, BSD infers slightly less false



15

spikes than con-oopsi in this particular configuration. As a baseline, we also show the non-negative deconvolution
without any sparsity prior, which is significantly better than naive deconvolution but shows significantly more false
positives than con-oopsi and BSD. One may notice that the BSD’s reconstructed signal is systematically lower than
the original signal. This difference directly derives from Eqn. 17, which indicates that a spike of amplitude a is
reconstructed with an amplitude a− λ

‖K‖2 . However, this systematic bias in the reconstructed signal does not impact

the quality of the inferred spike signal.

FIG. 1: Example of fluorescence signal and inference results for various deconvolution frameworks. The
fluorescence signal was generated using parameters f = 10Hz, σ = 0.4, a = 1, τr = 0.1, τd = 0.5. The naive inference
corresponds to the result of Eqn. 5.

The performances of the four algorithms are now compared on a systematic benchmark. A random spike train is
drawn from a Poisson distribution of mean firing rate ν = 0.1Hz over a duration t = 10000s. The signal is generated
according to the discrete model Eqn. 3 with a fixed transient amplitude a = 1 and variable sampling frequency f and
noise level σ. We use a double exponential kernel K with τr = 0.1, τd = 0.5 (see Eqn. 2), akin to a GCaMP6 reporter.

Spike trains N̂ are inferred with knowledge of the generative model parameters and compared with the original spike
train N using the metric defined in Section I G 1. We show in Fig. 2 the correlation as function of the signal-to-noise
ratio for various sampling frequencies, and at evaluation frequencies feval = f (top row) and feval = 10Hz (bottom
row).
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FIG. 2: Comparison of the reconstruction performances on synthetic data between BSD, con-oopsi, oopsi, and non-
negative deconvolution. For each algorithm, the correlation between the inferred and ground truth spike train is
shown as a function of the noise-to-signal ratio. The different plots correspond to various sampling frequencies f and
evaluation frequency (indicated on the y axis legend).

We observe that the fast-oopsi algorithm sometimes performs very well (f = 100Hz, high SNR) sometimes equiva-
lently as con-oopsi and BSD (f = 100Hz, lower SNR), but often very poorly (f = 20Hz, σ > 0.2); Such unreliability
may be highly detrimental in actual experiments. BSD and con-oopsi yield comparable results, with BSD slightly
outperforming con-oopsi in most configurations and particularly at low sampling rate (f = 1Hz). The non-negative
deconvolution without sparsity prior baseline is more stable than oopsi (as was previously reported in [29]) and per-
forms equivalently as BSD and con-oopsi at high SNR, but, as expected, has a significantly higher false positive rate
than BSD and con-oopsi at low SNR. Similar results are found when increasing the firing rate (see same simulations
for ν = 1Hz, Supplementary Figure 11); then differences tend to vanish at large firing rates (same experiment for
ν = 5Hz, Supplementary Figures 11).

We also compare the computational cost of the various algorithms. BSD, non-negative deconvolution and fast-
oopsi all share the same core algorithm and therefore have similar computational cost. In contrast, the con-oopsi
implementation is slower because the sparse deconvolution has to be performed many times with different values of
λ until convergence is reached. In practice, for experiments performed on a MacBook Air 2013, with 1.3 GHz Intel
Core i5, we find a 3 to 25-fold increase in computation speed, depending on the array size. Our experiments shows
that the number of iterations can be suprisingly large in practice. In particular, if the noise level is underestimated by
con-oopsi, the error constraint is tighter and adding the positivity constraint may lead to no solutions at all - yielding
many iterations in vain and increased computational time, see Table I. This reflects in the fact that the computing
time is largely dependent on whether or not the noise level is provided.

Notice that the exact gain in speed depends on which version of con-oopsi is used (here, Matlab implementation,
con-oopsi version of Dec. 2015, with cvx). Although we did not test the PAVA optimizer [17], we expect a gain of
the same order of magnitude between constrained-PAVA and BSD-like PAVA. Such a difference in computation load
may prove highly beneficial for real-time inference in high data-throughput recordings, as illustrated in Section II-D.
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Nframes BSD/ fast-oopsi (s) con-oopsi (s) con-oopsi σ user-provided
104 0.7 2.4 2.1
5104 2.6 8.2 8.3
2105 10 84 45
5105 27 529 128
106 49 1594 290

TABLE I: Comparison of BSD, fast-oopsi and con-oopsi computational speed. For con-oopsi, under-estimation of the
noise level σ, even for synthetic data, can lead to a large increase in computational time

2. Kernel inference accuracy

When deconvolution is performed with an incorrect kernel, systematic biases arise in the inferred spike trains and
the accuracy decreases both in terms of spike timings and spike detections: for instance, spikes may be split into two
time frames if the rise time is too short, or some spikes may be missed if the decay time is too long, see Annex B
and Figure 10 for a detailed study. We now relax the assumption that the generative model parameters are known
and attempt to retrieve them from the raw fluorescence recordings. For long recordings of Poisson-distributed spike
trains with sufficiently high signal-to-noise ratio and purely white Gaussian noise, the task is relatively easy. Indeed,
the autocorrelation function follows exactly Eqn. 31, and the initial kernel estimation is excellent. However, most real
datasets feature bursts of spikes, temporally correlated noise, artifacts, limited spike counts and low signal-to-noise
ratio. Under these conditions, Eqn. 31 becomes incorrect.

We thus build a more realistic collection of synthetic fluorescence traces as follows: for each recording of the
SpikeFinder dataset (see next section), we generate five synthetic fluorescence recordings according to the generative
model of Eqn. 1 using the actual spike train measured by electrophysiology and the rise and decay time constants and
signal-to-noise ratio inferred from the recording (see next section). This synthetic dataset has diverse spike counts,
signal-to-noise ratios, sampling rates, kernel parameters and spiking patterns. We jointly infer the spike trains and
kernel parameters using either BSD or adaptive BSD (iterative parameter estimation). Results are shown in Figure 3.
Panels (a) and (c) show the outcome of the initial kernel estimation, compared with the ground truth kernel values.
We find that the decay time is often vastly overestimated. This systematic bias reflects the existence of large temporal
correlations in the experimental spike signal whereas the inference model assumes none. The algorithm thus tends to
confuse spike bursts with long fluorescence transients, and the kernels are therefore poorly inferred at first. However,
after kernel refinement (Panels (b) and (d) ), the inferred kernel becomes very similar to its experimental counterpart
in most experiments. Upon closer inspection, we can identify the main sources of error for the algorithm. Coarse
errors arise when the algorithm starts from largely incorrect initial kernel values and ends up trapped in a wrong
local minimum of the cost function. These errors can be easily avoided by providing realistic bounds for the rise and
decay time constants. For all the remaining cases, three main factors affect the quality of inference parameter, see
Supplementary Figure 13: the spike count (higher is better), the effective signal-to-noise ratio (higher is better) and
the spike ’burstiness’, i.e. the deviations from Poisson-distributed spikes (lower is better).
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Kernel	inference:	
BSD	

Kernel	inference:		
Adap2ve	BSD	

(a)	 (b)	

(c)	 (d)	

FIG. 3: Kernel inference benchmark for realistic simulated data For each recording of the SpikeFinder datasets
(see Section II C), we generate five simulated fluorescence traces according to Eqn. 3 using the actual spike trains,
and signal-to-noise ratios and kernel parameters estimated, see Section II C for derivation of the generative model
parameters. Then, BSD and adaptive BSD are applied to infer the spike trains and the kernel parameters. Panels
(a),(b): ground-truth rise and decay time constants vs inferred values using BSD. Panels (c),(d): Same, with adaptive
BSD. In all panels, crosses denote spike recordings with fewer than 20 spikes.
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3. Super-resolution

Figure 4a shows an example of reconstruction of a signal generated at f0 = 20Hz, and sampled at 5Hz. We observe
a good agreement with the original spike train. In particular, it appears that in spite of the sparse sampling, the
onsets of the green and dark curves transients are very close to one another.

We test our algorithm on synthetic datasets generated using the model Eqn. 39 at f0 = 500Hz, with τr = 0.1,
τd = 0.5, spike frequency ν = 2Hz. The fluorescence signal is down sampled to recording frequencies ranging from
f = 1 Hz to 500Hz. Spike trains are inferred with and without super-resolution. For super-resolution, we use a
frequency gain s = f0

f in order to reconstruct a spike train at the original frequency f0. We perform the spike

inference for various sampling frequencies and noise levels, and we estimate the point spread function of the inferred
spike train (i.e. the average response to a single spike, see the method in Section I-G2). Results are depicted in
Figure 4 (b) and (c). They demonstrate that super-resolution is perfectly workable at small noise levels, and that a
significant resolution gain can be achieved at intermediate noise level typical of actual experimental conditions. For
instance, at f = 10 Hz, SNR = 5, the point spread function width is ∼ 2× smaller than without super-resolution.
Figure 4 (c) shows that the gain in resolution becomes significant as soon as f & 4Hz.

/a	
/a	
/a	

/a	
/a	
/a	

(a)	 (b)	 (c)	

FIG. 4: Super-resolution for synthetic data (a) Example of super-resolution inference: a fluorescence signal is
generated at f0 = 20 Hz, sampled at 5 Hz and reconstructed at 20 Hz. Parameters: τr = 0.1, τd = 0.5, σ = 0.2,
a = 1. (b) point spread function at 10Hz for various noises. Notice a smaller width than the sampling interval 0.1s
(c) Inverse width δt−1 of the point-spread function, as function of the sampling frequency for regular reconstruction
(full) and SR reconstruction (dotted).

B. Theoretical limits of calcium reporter accuracy

The fundamental motivations for spike train inference are to denoise the fluorescence signal and to improve the
temporal resolution of the neural recording. Theoretically, if the generative model is correct, the convolution kernel
is known and the signal is noiseless, then perfect retrieval of the spike train in terms of detection and timing can be
achieved. Because of the noise, the accuracy is in practice limited by the rise and decay times: some spikes can be
missed, have a wrong timing or be split across two successive time bins (see Annex B and Fig 10). These limitations
have been characterized quantitatively in [30] in the context of Bayesian inference, when the noise is Poisson-like, τr
is negligible and without super-resolution. However, no such analysis has been performed for sparse deconvolution
algorithms.

We derived in Section I D theoretical bounds of performance of our deconvolution algorithm; we present hereafter
the main findings. We display in Figure 5a the true-positive rate (TPR) for different sampling rates, as a function
of the noise level for τr = 0.1, τd = 0.5. The false-positive rate (FPR) is set at 0.01/frame (i.e. λBSD = λ1 and
z1 = 2.366, see Methods). An important insight of this graph is that at low sampling rate, the TPR quickly decays
with the noise level because spikes emitted shortly after a measurement are often completely missed. Conversely,
improving the TPR (with e.g. z2 = 2.366) yields a large number of false positives at low sampling rate. Some
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point spread functions are displayed in Figure 5b-inset for typical calcium indicators. We used the parameters: (i)
GCaMP6s: τr = 180ms, τd = 0.55, (ii) GCaMP5k: τr = 58ms, τd = 0.52s, (iii) GCaMP6f: τr = 25ms, τd = 0.38s,
(iv) OGB1-like: τr = 20ms, τd = 80ms. For the 3 first sets of time constants, the values are deduced from the
fluorescence recordings on mice V1 cells reported in [31].

We also display in Figure 5b the width δt of the point spread function (extracted using a gaussian fit) as a function
of the noise level, for a sampling frequency f = 60Hz. As expected, the temporal resolution of the spikes can be
lower than the sampling period if the noise is large, and we observe that reporters with large τr yield lower temporal
resolution.

We finally examine the impact of the sampling frequency on the temporal resolution. In an experiment with a
fixed number of sampled neurons, increasing the sampling rate f ≡ ∆t−1 by a factor s typically comes at the cost of
reducing the exposure time τe by the same factor s, which in turn increases the noise σ by

√
s. Therefore, there is no

guarantee that increasing the sampling frequency improves the time-resolution. We display in Figure 5c for the same
set of calcium indicators, the inverse width δt−1 as a function of the sampling rate f , for various signal-to-noise ratios
(SNRs) at a reference frequency of 10Hz. We see that δt−1 saturates at a value that depends on the SNR and on
the rise and decay constant times. For instance, with GCaMP6s and SNR10Hz = 5, increasing the frequency beyond
50Hz does not result in improving the temporal resolution.

The observation that the temporal resolution saturates at high sampling rate can be understood by examining
Eqn. 27: asymptotically, we have ‖K‖ ∝

√
∆t, and since σ ∝

√
∆t, the effective noise level σ

a‖K‖ reaches a well-

defined limit - and so does δt.

(a)	 (c)	

(b)	

FIG. 5: Theoretical limits of calcium reporters (a) True positive rate of BSD as a function of the noise level
for different sampling rates, for a fixed FPR of 0.01/frame, (b) Width of the point spread function as function of
the noise for various calcium indicators, at fixed frequency f = 60Hz, (c) Width of the point spread function as a
function of the sampling frequency for various calcium indicators and reference noises.

C. Joint electrophysiological and fluorescence recordings: the SpikeFinder contest

SpikeFinder (http://spikefinder.codeneuro.org/) [32] is a public contest for spikes train inference from
calcium recordings. It consists of a compilation of 10 datasets of joint electrophysiological and calcium recordings from
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mouse V1 or retina, for six different calcium probes (OGB-1,GCaMP5k,GCaMP6s,GCaMP6f, jRCaMP1a,jRGECO1a)
at various sampling rate, see Table II. The data was compiled from various sources [14, 31, 33, 34]. All the recordings
are upsampled to f = 100Hz, and the metric used to assess performance is the correlation between the inferred spike
train and the electrophysiological spike train, computed after downsampling at 20Hz. Dozens of algorithms based on
Supervised Machine Learning, generative models and others have been benchmarked on SpikeFinder, and the results
are publicy available.

Dataset 1 2 3 4 5 6 7 8 9 10
Calcium Indicator OGB-1 OGB-1 GCaMP6s OGB-1 GCaMP6s GCaMP5k GCaMP6f GCaMP6s jRCAMP1a jRGECO1a
Brain region V1 V1 V1 Retina V1 V1 V1 V1 V1 V1
Number of recordings 11 21 13 6 9 9 37 21 20 27
Spikes per recording 1012 525 1240 1304 872 363 127 96 75 232
Sampling rate (Hz) 40 12 60 8 60 50 60 60 15 30
Rise time (s) 0.02 0.02 0.00? 0.03 0.00? 0.05 0.02 0.10 0.09 0.01
Decay Time (s) 0.95 1.00 1.10 0.55 0.99 0.65 0.33 0.97 1.32 0.68
Noise level σ

a
1.06 0.68 0.83 1.06 0.90 0.41 0.26 0.21 0.39 0.29

TABLE II: SpikeFinder data sets summary. For recording-specific variables, the median value across recordings was
provided. The rise and decay time constants and signal-to-noise ratios, as defined by Eqn. 2, are obtained by a
parametric linear regression of the true spikes against the fluorescence, see Section I G 3. ? The rise time for datasets
3 and 5 are unreliable because of important delays between the fluorescence and electrophysiological recordings

We benchmark several inference algorithms and postprocessing variants on the SpikeFinder dataset using the
following pipeline:

• Preprocessing. For all datasets, we started from the raw data, before upsampling or detrending. Indeed, when
the fluorescence is upsampled, the noise becomes temporally correlated between time frames and the white noise
assumption used to compute the sparsity prior λ is violated. Then, each fluorescence recording is normalized
(zero mean and unit variance). The variable component of the baseline is further removed by substracting a
moving percentile (quantile q = 0.15, variable window size ∈ [10s, 60s] adjusted by validation). Such baseline
slow modulations are unrelated to the calcium signal but reflect experimental artefact such as photobleaching
or minute axial motions of the specimen.

• Initial values of rise and decay time. We tested four initialization procedures: Blind: no information is
provided and the automated initial kernel estimation described in Section I E 1 is used; Literature parameters
are taken from the literature, see values and sources in Supplementary Table VI; Ground Truth for each
recording, we compute ground truth rise and decay time constants by temporal regression of the fluorescence
from the true spikes, see Section I G 3. Train Set for each dataset, we use the median values of the ground
truth rise and decay time as initial values, see values in Table II. We also use the minimum and maximum
values found in the dataset as bounds for adaptive BSD. Note that the ground-truth initialization is not a valid
algorithm as it requires prior knowledge of the spikes for each neuron. We thys only use it as a reference for
validating the kernel inference and as an upper bound of performance.

• Inference Algorithm We tested four sparse deconvolution variants: non-negative deconvolution (i.e. with
λ = 0), con-oopsi, BSD and adaptive BSD.

• Postprocessing. The inferred signal is upsampled to 100Hz by linear interpolation, and we add a temporal
offset (adjusted on the training set). it is mostly relevant for datasets 3 and 5 to account for a delay between the
fluorescence time and electrophysiological time, in agreement with other submissions [32]. Then, the inferred
spike is optionally convolved with the point-spread function computed in Section I D 2, using the parameters
inferred from the recording. This can be viewed as a poor man (but computationally efficient) version of posterior
averaging: one first computes the most likely spike train given the fluorescence using BSD, and then convolve
it with the point-spread function (PSF) to account for the temporal uncertainty, see examples in Fig. 6

Quantitative results are displayed in Table III and selected examples are shown in Figure 6.
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Dataset 1 2 3 4 5 6 7 8 9 10 Mean
Calcium Indicator OGB-1 OGB-1 GCaMP6s OGB-1 GCaMP6s GCaMP5k GCaMP6f GCaMP6s jRCAMP1a jRGECO1a Score
non-negative 0.378 0.439 0.223 0.416 0.189 0.439 0.649 0.610 0.579 0.760 0.468

con-oopsi 0.370 0.452 0.253 0.551 0.213 0.444 0.659 0.619 0.586 0.728 0.487
BSD 0.425 0.439 0.277 0.545 0.279 0.533 0.707 0.595 0.583 0.747 0.513
adaptive BSD 0.451 0.450 0.294 0.542 0.332 0.621 0.747 0.686 0.625 0.835 0.558
non-negative ∗ PSF 0.405 0.457 0.333 0.442 0.291 0.464 0.631 0.547 0.526 0.747 0.484
BSD ∗ PSF 0.450 0.466 0.410 0.544 0.344 0.554 0.681 0.575 0.553 0.758 0.533
adaptive BSD ∗ PSF 0.487 0.466 0.424 0.537 0.413 0.613 0.740 0.674 0.559 0.820 0.573
non-negative 0.372 0.391 0.288 0.419 0.312 0.562 0.605 0.646 0.580 0.760 0.493

con-oopsi 0.372 0.427 0.288 0.541 0.312 0.562 0.627 0.651 0.585 0.794 0.516
BSD 0.396 0.435 0.291 0.525 0.305 0.565 0.625 0.649 0.601 0.800 0.519
adaptive BSD 0.451 0.459 0.453 0.541 0.420 0.611 0.733 0.643 0.613 0.837 0.576
non-negative ∗ PSF 0.421 0.398 0.396 0.451 0.411 0.547 0.584 0.601 0.537 0.733 0.508
BSD ∗ PSF 0.440 0.439 0.368 0.529 0.391 0.549 0.628 0.641 0.572 0.788 0.535
adaptive BSD ∗ PSF 0.486 0.473 0.493 0.546 0.497 0.600 0.725 0.620 0.577 0.823 0.584
non-negative 0.456 0.457 0.441 0.442 0.403 0.600 0.701 0.654 0.588 0.794 0.554

con-oopsi 0.441 0.458 0.440 0.550 0.405 0.600 0.715 0.654 0.588 0.811 0.564
BSD 0.446 0.458 0.449 0.539 0.398 0.598 0.734 0.641 0.611 0.803 0.568
adaptive BSD 0.446 0.459 0.453 0.540 0.420 0.621 0.737 0.705 0.618 0.835 0.583
non-negative ∗ PSF 0.488 0.467 0.485 0.473 0.479 0.598 0.681 0.641 0.536 0.777 0.563
BSD ∗ PSF 0.497 0.470 0.491 0.543 0.475 0.599 0.717 0.645 0.582 0.802 0.582
adaptive BSD ∗ PSF 0.495 0.475 0.493 0.546 0.498 0.613 0.730 0.684 0.574 0.817 0.593

non-negative 0.461 0.460 0.270 0.444 0.395 0.613 0.723 0.681 0.592 0.777 0.542
con-oopsi 0.461 0.462 0.270 0.550 0.395 0.613 0.741 0.681 0.592 0.789 0.555
BSD 0.446 0.456 0.269 0.539 0.390 0.610 0.747 0.671 0.609 0.790 0.553
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TABLE III: Correlation scores for the SpikeFinder data (train sets), for various choices of inference algorithms,
postprocessings (convolved with the Point-Spread function or not) and initial kernel values: Blind = no information
at all; Literature = using parameters derived from the literature, see Supplementary Table VI; Train set = using
parameter derived from the train set, see Table II; Ground-truth = using different parameters for each neuron,
derived using the knowledge of the spike positions. The best score for each dataset and configuration is indicated in
bold

Sparsity prior. As expected, introducing a sparsity prior reduces the false detection rate (see Figure 6) and
significantly improves the correlation regardless of the kernel choice. At fixed kernel parameters, BSD and con-oopsi
are virtually equivalent but the former is faster.

Kernel Inference. When no training data is available, adaptive kernel inference is critical for performance as
was found in the simulated data. Even when training data is available, adaptive kernel inference is always equivalent
or better to using fixed kernels derived from training data as it takes into account inter-neuron variability. The
most important gains is found for dataset 8, where non-linear effects result in large variability of decay rates. The
quantitative results are corroborated by Figure 7, which compares the rise and decay time constants and transient
amplitude a inferred by the blind algorithm with their ground truth counterparts. Adaptive BSD successfully captures
the rise and decay time constants variability both across experiments, and across neurons in a given experiment,
notably for dataset 8 where the decay time can vary by more than two-fold. When the training data is of low quality
as for data sets 3 and 5, blind inference actually outperforms the ground-truth. Importantly, although our best
submission was obtained with the train set initial value, the blind and literature initialization follow closely: BSD
almost does not require any training data. We note however that the correlations are slightly smaller than the values
found using synthetic data with similar parameters (see Figure 3). This can be explained by artifacts, temporally
correlated noise and non-linear effects. The inferred transient amplitudes also correlate with the ground-truth values,
but less accurately. For the OGB-1 datasets, which have low signal-to-noise ratio, a is systematically overestimated
because the algorithm frequently misses isolated spikes and can only detect bursts of consecutive spikes, see Figure
6 panel (c); it therefore confuses the latter with individual spikes. Such confusion is expected and inevitable: for
instance, in dataset 4, only bursts of more than 10 spikes produce visually detectable transients. For dataset 8
(GCaMP6s), we find conversely that some transients amplitudes are largely underestimated, because the algorithm
infers many small (but above threshold) spurious spikes due to artifacts or non-linear effects, and confuses them with
real spikes.

Temporal resolution. We assess the temporal accuracy of the algorithms as follows: for each recording, we
computed the empirical point-spread function (PSF) between the ground-truth spikes and the inferred spikes using
Eqn. 45. An average PSF is then computed for each dataset by weighted average of the PSFs (normalized to max = 1,
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(a)	

(c)	 (d)	

(b)	

FIG. 6: Selected examples from the SpikeFinder datasets Four fluorescence traces from the SpikeFinder
dataset and the corresponding inferred and ground truth spike trains for various algorithms. (a): GCaMP6s,
f = 60Hz (dataset 8), blind initial kernel. (b), (c): OGB-1 f = 40Hz (dataset 1), train set initial kernel (d)

GCaMP6f f = 60Hz (dataset 7), train set initial kernel. For panels (b),(c),(d), insets show the same inferred spike
trains, zoomed-in on a spike to illustrate timing errors.
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then weighted by the number of spikes). We also predicted for each dataset a theoretical Point-Spread Function, using
Eqn. 29 and either the parameters of Table II or the parameters inferred by BSD for each recording. Results are
shown in Table IV and Figure 8. Empirical PSF and the fluorescence kernel for the last five datasets are displayed
in Figure 8. The PSF have smaller width than the kernel, i.e. the temporal resolution is significantly improved by
deconvolution; it is in general of order ∆t (the inter-frame period) rather than τd (the calcium reporter decay time),
see Table II. The results hold even in the absence of information about the kernel: in most datasets, the temporal
resolution of blind adaptive BSD is very close if not equal to the one of BSD with ground-truth kernel parameters.
Importantly, we find an excellent overall agreement between the empirical PSF and the predicted one using the train
set parameters: except for datasets 3 and 5 which have unreliable ground-truth, the predicted widths are notably more
accurate than naive estimates such as the rise time τr or the sampling rate ∆t. The prediction is overly pessimistic for
dataset 4 because the PSF is computed for an isolated spikes, whereas only spike bursts are detected in practice. The
offsets are accurate for datasets 6-10 but not for datasets 1-5, probably due to delays between the electrophysiological
and fluorescence recordings. When the inferred parameters are used, the prediction is less accurate owing to the
difficulty to estimate the signal-to-noise ratio for single spikes.

Interestingly, we found that convolving the inferred spike train with the point-spread function computed using
the inferred parameters significantly improves the accuracy for all algorithms and kernel initializations for the first
five datasets, and has little to no impact for the last five datasets. Indeed at low signal-to-noise ratio, fluorescence
transients may appear in advance (Fig. 6 b) or delayed (Fig. 6 c) with respect to the action potential and the
corresponding point-spread function spans across several time windows. In contrast, datasets 6,7,8,10 have higher
signal-to-noise ratio, hence thinner point-spread function (see Fig. 6 (d) ) and convolution does not change significantly
the prediction at 20Hz. The small performance drop for dataset 8 can be explained by the overall underestimation
of the signal-to-noise ratio.

Super-resolution We tested super-resolution for the datasets 6-10 which have the largest signal-to-noise ratios.
The same pipeline is used, but BSD is applied with super-resolution upsamplings factors of 2 (datasets 6,7,8), 6
(dataset 9) and 3 (dataset 10). Figure 8 shows for each dataset the empirical point-spread function of the inferred
spikes with (yellow) and without (red) super-resolution. Super-resolution reduces both the offset and the width of
the point-spread function for all datasets, see Table IV. The most significant improvement is for dataset 9, which has
high a signal-to-noise ratio and a relatively low sampling rate. Overall, super-resolution is relevant when the main
source of temporal error is the sampling rate rather than the noise level.
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(a)	 (b)	 (c)	

FIG. 7: Evaluation of the generative models parameter inference for the ten SpikeFinder datasets
For each recording, we derive ’ground-truth’ generative model parameters τr,τd,a by a temporal regression of the
fluorescence against the spikes measured by electrophysiology, see Section I G 3. The values are compared to blind
estimates obtained using adaptive BSD. (a) Rise time. (b) Decay time. (c) transient amplitude a (each fluorescence
trace is normalized to unit variance). Recordings from datasets 3 and 5 are represented as squares, and the others
as disks. The correlation coefficient are computed either using all datasets or excluding datasets 3 and 5 (values
in parenthesis), for which the ground-truth is inaccurate due to offset between electrophysiological and fluorescence
recordings.
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(a)	 (b)	

(d)	

(c)	

(e)	

FIG. 8: Temporal accuracy of BSD for datasets 6-10 of SpikeFinder. For each dataset, spikes are inferred with
adaptive BSD either using super-resolution or not. After resampling to 100Hz, empirical point-spread function are
computed and averaged for each dataset. Dashed blue curves denote the predicted point-spread function using Eqn. 29
and Table II. The corresponding fluorescence kernel is displayed for comparison. Asterisks indicate fluorescence
measurements.

Comparison with other submissions Our algorithm compares positively with other algorithms that have been
tested during the competition. According to the current leaderboard, it performs similarly as Team 6 (OASIS [17]), and
is above Team 7 (Suite2p [35]) of the original contest. Both teams also used a non-negative deconvolution framework,
followed by a reconvolution by a PSF-like kernel. Both teams used the training set to determine hyperparameter
values: Team 6 for the convolution kernel, sparsity prior and PSF and Team 7 for the convolution kernel and the
PSF; for Team 7 the sparsity prior λ = 0 was used as in the non-negative deconvolution baseline presented here. In
contrast, our approach does not require any training set; the fluorescence kernel, sparsity prior and PSF are determined
automatically for each neuron; it can therefore be applied to any experimental configuration.
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Dataset 1 2 3 4 5 6 7 8 9 10
Calcium Indicator OGB-1 OGB-1 GCaMP6s OGB-1 GCaMP6s GCaMP5k GCaMP6f GCaMP6s jRCAMP1a jRGECO1a
BSD (train set) −1± 36 −36± 66 115± 194 −34± 96 142± 117 4± 19 3± 12 −4± 16 14± 39 13± 22
adaptive BSD (blind) −1± 37 −42± 67 3± 136 −54± 111 31± 72 5± 19 5± 13 5± 19 35± 46 14± 23
adaptive BSD (train set) −2± 36 −37± 66 98± 175 −31± 96 121± 93 5± 19 6± 13 1± 14 32± 46 16± 23
adaptive BSD + SR (train set) / / / / / 2± 16 4± 11 −3± 11 19± 30 14± 19

(-16%) (-22%) (-15%) (-37%) (-14%)
BSD (ground truth) −8± 33 −40± 67 15± 129 −32± 87 132± 115 4± 19 3± 12 −6± 18 11± 42 14± 22
BSD + SR (ground truth) / / / / / 0± 16 0± 11 −9± 16 −13± 25 10± 16

(-16%) (-15%) (-2%) (-36%) (-28%)
Predicted (train set) 9± 43 14± 66 0± 19 23± 167 0± 17 9± 19 7± 9 8± 12 28± 49 9± 17
Predicted (blind) 5± 24 3± 46 3± 25 1± 60 2± 19 9± 16 5± 10 8± 18 24± 50 8± 19

TABLE IV: Empirical and predicted point-spread functions for the SpikeFinder challenge. For each
dataset and each algorithm, the point-spread function is fitted with a Gaussian distribution of mean µ and standard
deviation σ. the latter are displayed as µ ± σ in ms. For super-resolution BSD, we also indicate in parenthesis the

relative gain in mean square temporal error
√
µ2 + σ2 compared to regular BSD.

D. Light-sheet Imaging of Zebrafish

Compared to standard fluorescence microscopy techniques, such as confocal or two-photon epifluorescence mi-
croscopy, light-sheet imaging allows for a parallelization of the recording, yielding ∼ 100-fold increase in data-
throughput [2–4]. When applied to zebrafish larvae, this enables simultaneous recording of the quasi-entirety of
the neurons (∼ 100, 000 units) at typically 1 brain/second. The BSD algorithm might prove to be particularly useful
for such experiments, as the size of individual datasets precludes supervision. Furthermore, the gain in speed with
respect to con-oopsi should also be beneficial as it may allow one to carry out the spike inference on the fly.

To illustrate this latter claim, we test con-oopsi and BSD inference algorithms, as well as MLspike, one of the
top performing algorithms of the SpikeFinder contest [13] on a typical whole-brain recording, consisting of 1,800
successive volumetric stacks sampled at 1 stack/second, each of them comprising 20 z-sections. The experiment is
performed on a 5 dpf larva expressing the GCaMP5 reporter panneurally. After segmentation, 255463 fluorescence
traces encompassing the brain volume are processed independently. The baseline is computed as described before and
the spike deconvolution is then carried out using both BSD and con-oopsi on an Intel Xeon Phi (28 cores) computer.
In line with our observations of Section II-D2, we find that BSD achieves a 7-fold increase in speed compared to con-
oopsi, and a X-fold increase compared to MLspike, see table V. Under these experimental conditions, the computation
time with BSD matches the duration of the experiment itself (20 minutes), and is thus compatible with real-time
spike inference. Importantly, the computation time per voxel is fairly stable with BSD, whereas some voxels use up
to 200 times more time to be processed than others with con-oopsi.

These brain-scale simultaneous recordings allow one to compute the correlation of neuronal pairs activity, which
might then be used to extract information regarding the large-scale functional organization of the brain. In this
context, we examine whether the correlation statistics of the spike-inferred signals may be significantly different from
the one computed using the raw DF/F signals. For this purpose, we use a 2D recording acquired at 20 frame/second
for 20 minutes in a 5dpf-old zebrafish larva expressing the genetically encoded indicator GCaMP3 (elavl3:GCaMP3).
Automatic segmentation allowed us to identify 8082 individual neurons or neuropil regions of similar area, and the
inference is then carried out on the ROI-averaged fluorescence traces. The rise and decay times are inferred for all
neurons (see Annex H). The average values of these two time-constants are then used to perform spike inference.

Figure 9a displays the time-averaged image of the brain section. Fluorescent traces and associated inferred spike
trains for 5 representative neurons located in various brain regions are shown in Figure 9b. As expected, the decon-
volved spike trace appear much sparser and less noisy than the original fluorescent signal. The pair-wise correlations,
corrected for uniform coherent noise, are then computed for both the raw DF/F signal and the inferred spike traces.
We find the correlation distribution to be much more peaked after deconvolution (Figure 9c) which reflects in the
more uniform appearance of the associated correlation matrix (Figure 9d).

This difference may have two possible origins. First, it may reflect the gain in temporal precision brought along
by the spike inference, which may reduce the correlation of neuronal pairs that tend to discharge coherently (due to
common inputs for instance), but with a slight systematic time-lag. A second explanation is related to the denoising
property of the inference. In light-sheet imaging, the noise tends to display significant spatial correlation. This is
notably due to the motion of small absorbing objects such as red cells that project elongated shadows and produce
characteristic streaking features. Provided that these artifacts have characteristic timescales distinct from the spike-
induced fluorescent transient, they are not interpreted as actual spike by BSD. This latter interpretation is confirmed
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by the fact that the highly negatively correlated pairs in the raw fluorescence signals are mostly confined within thin
bands aligned along the beam direction (Figure 9e). For the same neuronal pairs, the correlation value computed
from the inferred signal is thus largely reduced (Figure 9f).

Algorithm Total run time Average run time per voxel
con-oopsi 124 minutes 0.38s (min: 0.31 s, max: 110s)
MLspike 120 minutes 0.37s
BSD 18 minutes 0.051 s

TABLE V: Time for perfoming deconvolution on voxelated data
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FIG. 9: (a) Bottom: Individual traces of 5 neurons recorded at 20Hz from 6dpf larvae, in black curve DF/F, in red
resulting signal from BSD deconvolution algorithm. Top: Time-averaged image of a brain slice of the larva, the white
arrows give the location of the 5 neurons. (b) Distribution of pair-wise correlations of DF/F (black) and signal after
BSD deconvolution. The data were obtained from a 20Hz, 20 min long experiment on a 6dpf larva. (c) Time-averaged
image of a brain slice of the larva . In yellow, pairs of neurons that display a correlation on DF/F inferior to -0.4 .
(d) Top : Pair of neuron DF/F traces that display a pair-wise correlation calculated on DF/F of -0.61 and a pair-wise
correlation calculated after BSD deconvolution of -0.09. Down : Pair of neuron DF/F traces that display a pair-wise
correlation calculated on DF/F of -0.41 and a pair-wise correlation calculated after BSD deconvolution of -0.07. (e)
Correlation matrix computed from DF/F. (f) Correlation matrix computed from the signal after deconvolution
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Discussion

The last few years have seen the release of numerous spike inference algorithms [32]. Their increasing complexity
make them poorly interpretable and their performance, beyond the specific conditions for which they have been
optimized, can thus be difficult to predict. This is particularly true for supervised machine learning approaches.
Although they can offer excellent results on datasets on which they have been trained [14] - which requires the
availability of a ground truth, i.e. a simultaneous electrophysiological measurement of the actual spike train - they
become less reliable when generalized to other experimental conditions and/or calcium reporters.

In this context, forward generative models, such as non-negative sparse deconvolution, offer a more robust and
tractable solution to this problem. These models are based on explicit hypothesis regarding the form of the fluorescence
response kernel, the statistics of the spike train and the noise signal, and are thus less prone to systematic bias.
However, their performance can still be very sensitive to the way the different model parameters are set, as exemplified
by the unreliable results that we obtained with the oopsi algorithm. Due to a paucity of theoretical understanding
of the expected performances, these failures are generally impossible to anticipate. The broad implementation of
inference methods in functional imaging laboratories will thus depend on the robustness of these algorithms as much
as on their optimal performance. Neuroscientists need algorithms that are not only efficient and fast, to accommodate
the rapidly growing size of calcium imaging datasets, but that also provide them with a reliable way to assess the
quality of the inferred signals.

Here we introduced a novel non-negative sparse algorithm, named Blind Sparse Deconvolution (BSD), which was
designed to specifically address these issues. This fully unsupervised algorithm features state-of-the-art computational
speed, accuracy and adaptability while incorporating a theoretically-grounded framework to derive estimates of the
expected deconvolution performance in terms of temporal accuracy and precision-recall of the inferred spike train.
These information may be used before recording as guidelines for experimental design, allowing one to choose, in a
given experimental context and for a given calcium reporter, the recording rate that will provide the optimal temporal
resolution. They also can be used a posteriori to estimate error rates and thus provide bounds on the reliability of
the inferred spike trains.

One of the main assets of BSD, compared to other generative models, owes to the fact that most model parameters
are analytically derived, in particular the sparsity prior. This allows a tractablity of the algorithm, but also a gain
in speed compared to other approaches (such as constrained-oopsi) that require recursive evaluations of the sparsity
prior.

The main output of the algorithm is a continuous signal that approximates the spike-evoked calcium influx for each
recorded neuron. This signal can be directlty used to characterize e.g. the tuning properties of a sensory-responsive
neuron through correlation with the sensory input. BSD also provides automatic theoretically-grounded thresholding
and thus enables to binarize the signal into active and non-active periods. Although such binarization comes at a
cost of a loss of information, as revealed by the cross-correlation with the actual spike train, it can be necessary for the
implementation of graphical circuit inference approaches, such as RBM [36] or Ising models, [37–39]. These models
aim at interpreting the collective dynamics of large neuronal ensembles by infering effective interactions between
neurons using the measured pairwise firing statistics. In this particular context, the knowledge of the temporal PSF,
as offered by BSD, is also very beneficial as it indicates the minimal time bin over which the pairwise correlations can
be robustly evaluated.

In calcium imaging, the temporal resolution is generally thought to be limited by the recording rate. However,
at high enough SNR, one may in principle overcome this limit. BSD thus introduces temporal super-resolution,
which was shown to significantly increase the temporal accuracy of inferred spikes on real data, yielding a temporal
resolution better than the recording period. As both calcium reporters and imaging methods will gain in sensitivity
and speed, this capability may help to reveal spatio-temporal short term dynamics, such as activity propagating
waves, or to investigate the role of spike-timing in neural coding.

Although we demonstrated that BSD provides consistent results over a large spectrum of reporters and experimental
conditions, this algorithm would benefit from embedding more features that would address specific conditions. In
particular, we noticed that the performance tends to degrade when neurons display sustained periods of bursting
activity. First, the moving percentile method may provide inconsistent estimate of the slowly drifting baseline in this
case. [We have shown however that the iterative baseline estimation allows to partially correct this issue]. Second,
kernel inference and SNR estimate become less reliable as bursts of activity are mistaken for individual spiking
events. One way around would consist in constraining the infered parameters based on their values estimated on
neurons exhibiting sparser activity. A second aspect, ignored in the present implementation, is the non-linearity of
the fluorescence response of usual calcium reporters. Since the predicted signal is continuous, this could be accounted
for a posteriori in a straightforward way provided that an experimental characterization of the fluorescence vs spike-
rate relationship is available. Importantly, the modularity of the different features introduced in BSD - sparsity
parameter estimation, iterative kernel iteration and PSF estimation makes it straighforward to incorporate them
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into complete calcium imaging packages such as CaIman [40] Suite2P [35] that address other challenges of calcium
imaging processing, such as spatial filtering.

Availability

The spike inference program BSD and its companion program for evaluating its accuracy are implemented in
MATLAB and both available at https://github.com/jertubiana/BSD. By design, it is straightforward to infer
spike trains and evaluate a posteriori the precision-recall and temporal accuracy for each recording. Then, users can
optionally convolve the inferred spikes with the predicted point-spread function to account for the uncertainty on the
spike location. Tutorial scripts are provided for all use cases and the scripts for generating all figures of this article
and reproducing the SpikeFinder experiments are also made available.
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[25] M. Fernández-Suárez and A. Y. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nature Reviews

Molecular Cell Biology, vol. 9, no. 12, pp. 929–943, 2008.
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Annex A: Stability of the single spike solution and the half-spike problem

In Section II, we have not studied the stability of the single-spike solution. We study it here, and discuss when it

is a global optimum. Assuming N̂i = δi,i0 max
{
a− λ∑

iK
2(t) + σ

∑
iK(t)εi∑
iK

2(t) , 0
}
> 0 and looking for the stability of the

solution, w.r.t the other coordinates, we find:

− ∂L
∂Ni0+δ

= σ
∑
i

{K(∆t(i− i0 − δ))−K(∆t(i− i0) cos(θ(δ∆t)} εi − λ(1− cos(θ(δ∆t))) (47)

P

(
− ∂L
∂Ni0+δ

> 0

)
= Φ

[
λ tan θ(δ∆t)

2

σ‖K‖

]
(48)

Where Φ(x) =
∫ +∞
x

1√
2π
e−

u2

2 du. Therefore, the Dirac solution is stable only if the above probability is small

enough for all values of δ. Far away from the spike δ →∞, the angle θδ → π
2 and we recover P = Φ

[
λ

σ‖K‖

]
, as in the

spikeless signal. On the other hand, the smaller δ, the smaller θδ and the probability is higher. For λ = λBSD and
low noise, the above probability reduces to P = Φ

[
z1 tan θδ

2

]
; the Dirac solution can become unstable. In practice,

the result depends on the level of noise: for low σ, the optimum remains close to the Dirac solution, whereas for high
noise, we can find ’half-spikes’ solutions, of the form Ni = an

2 (δi,i0 + δi,i0±1)

Annex B: Impact of kernel parameters mismatch on inference

We systematically studied the bias in spike inference that arises when the estimated time constants τr and τd differ
from their true values, τ0

r and τ0
d . As illustrated in Figure 10 a-d, inferring the spikes with an incorrect convolution

kernel leads to systematic errors.The nature of the error depends on the kernel mismatch:

• τr < τ0
r , τd = τ0

d (Figure 10a): the inferred spikes are split in two, to compensate for the smaller rise time than
expected for a single spike.

• τr > τ0
r , τd < τ0

d (Figure 10b): the inferred spikes are in advance, to compensate for the faster rise of the
fluorescence signal.

• τr = τ0
r , τd < τ0

d (Figure 10c): the inferred spikes exhibit ’echos’ to compensate for the slower than expected
decay of F .

• τr = τ0
r , τd > τ0

d (Figure 10d): the inferred subsequent spikes are ’screened’ (lower amplitude) to compensate
for the slower than expected signal decay.
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FIG. 10: Left: Example results of spike inference on synthetic data with mismatched convolution kernels. For each of
the four figures, a fluorescence signal is generated with a kernel K0; inference is performed with true parameters (blue
curves) and with mismatched parameters (red curves). The true and mismatched kernels K0 and K are depicted
(insets). Systematic errors appear in the spike timings. Right: Area Under Curve classification performance with
time tolerance δt = 0s, as a function of the rise and decay time constants. The parameters used to generate the signal,
depicted in red, are typical of a GCaMP6 reporter.

We quantified how a kernel misestimation degrades the decoding performance by evaluating the relative reduction
in precision-recall (area under curve) for various offsets of τr and τd (Figure 10e). Interestingly, some direction of
the mismatch vector can be less deleterous: when both τr > τ0

r , τd < τ0
d or τr > τ0

r , τd < τ0
d , the loss in performance

remains modest. These findings motivate the use of parameter refinement.

Annex C: Kernel inference: proof of convergence and fast algorithm

We prove here that for isolated spikes and small noise, the cost function L(N,K) = 1
2‖F − KN‖2 + λ(K)1TN

admits solution K = K0 as local minimum. Denoting N̂ = arg minN≥0 L(N,K)
For a signal with a single spike Fi = aK [∆t(i− i0 + 1)] + σεi, if the noise is small and K is close enough to K0,

we have: N̂i = anδi,i0 , λ = zσ‖K‖. Optimizing over n yields:

n = max

{
cosφK‖K0‖
‖K‖

+
σ

a‖K‖
(ε̃1 − z), 0

}
L(N̂,K) =

1

2
a2‖K0‖2(1− cos2 θK) + zaσ‖K0‖ cos θK

+
σ2

2
(
∑
i

ε2i − ε̃21 − z2) + σ2zε̃1 − aσ‖K0‖
√

2(1− cosφK)ε̃2

(49)
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Where:

‖K‖ =

√∑
l

K(l∆t)2

‖K0‖ =

√∑
l

K0(l∆t)2

cosφK =

∑
iK

0 [(i− i0 + 1)∆t]K [(i− i0 + 1)∆t]

‖K‖‖K0‖

(50)

Note that we recover Eqn. 17 when K = K0. For a signal of multiple isolated spikes Fi = a
∑
lK [∆t(i− il + 1)] +

σεi, with |il − i′l| >>
τd+τr

∆t , a similar solution N̂i =
∑
l anlδi,il can be derived, and L is self averaging:

L(N̂,K) ∝< L(N̂,K) >∝ 1

2
a2‖K0‖2(1− cos2 φK) + zaσ‖K0‖ cosφK + Constant (51)

Hence, the function depends on K only through cos θK . One can check that when zσ
a‖K‖ < 1, the minimum is

reached at cosφK = 1, i.e. K = K0. This concludes the proof. Although we can not prove more about the radius of
convergence, good convergence was achieved in practice after starting from the initialization.

In practice, the optimization with respect to K can be performed efficiently using standard temporal regression
tricks. Observe that:

1

2
‖F −KN‖2 =

1

2
(FTF − 2FTKN +NTKTKN)

=
1

2

(
FTF − 2Trace

[
KNFT

]
+ Trace
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(KTK)NNT

])
=

1

2

{
T∑
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F 2
i − 2

∞∑
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K(∆t(l + 1))

(
T−l∑
i=1

Fi+lNi

)

+

∞∑
l=−∞

 min(T,T−l)∑
i=max(1,1−l)

Ni+lNi

 ∞∑
j=−∞

K [∆tj]K [∆t(j + l)]


−

∞∑
j=T+1

(∑
i

K [(j − i+ 1)∆t]Ni

)2


(52)

To go from the second line to the third line, we used the translation invariance property of K, the causality of K
(Kij = 0∀j ≥ i) and wrote

∑T
l=1KliKlj =

∑∞
l=−∞KliKlj−

∑∞
l=T+1KliKlj Hence, L(N,K) depends on N and F only

through:

• the sums S1 =
∑T
i=1Ni and S2 =

∑T
i=1 F

2
i

• the unnormalized cross-correlation between fluorescence and inferred spikes X(l) =
∑T−l
i=1 Fi+lNi.

• the unnormalized autocorrelation function of the inferred spikes A(l) =
∑min(T,T−l)
i=max(1,1−l)Ni+lNi.

• the boundary term
∑∞
j=T+1

(∑T
i=1K [(j − i+ 1)∆t]Ni

)2

The first three terms can be precomputed in O(T ) once for all, and the second and third up to a cutoff lmax ∼
b5 τr+τd

∆t c, such that K(lmax) << 1. The last one can be computed in O(lmax), by noting that after T , the convolved
spikes is a double exponential, with coefficients depending on the ∼ lmax last time bins. Overall, the cost function
can be evaluated in O(lmax) and optimized efficiently.
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Annex D: Detailed computations for the point spread function estimation

We assume a noisy single spike signal, Fi = aK [∆ti− t0] +σεi, where we write formally t0 = ∆t (i0 − 1 + r0), with
r0 ∈ [0, 1[; i.e. the spike is emitted before measurement i0. The likelihood becomes:

Ni = anδi,i0+δ

L(n, δ) =
1

2

∑
i

F 2
i +

a2

2

{
−2n

∑
i

K [∆t(i− i0 + 1− r)]K [∆t(i− i0 + 1− δ)]

+n2
∑
i

K [∆t(i− i0 + 1− δ)]2
}
− aσ

∑
i

K [∆t(i− i0 + 1− δ)] εi + λan

nδ = arg max
n≥0
L(n, δ) =

min
{∑

iK [∆t(i− i0 + 1− r)]K [∆t(i− i0 + 1− δ)] + σ
a

∑
iK [∆t(i− i0 + 1− δ)] εi − λ

a , 0
}∑

iK [∆t(i− i0 + 1− δ)]2

L(nδ, δ) =
1

2

∑
i

F 2
i +

min
{∑

iK [∆t(i− i0 + 1− r)]K [∆t(i− i0 + 1− δ)] + σ
a

∑
iK [∆t(i− i0 + 1− δ)] εi − λ

a , 0
}

2
∑
iK [∆t(i− i0 + 1− δ)]2

(53)

In the last expression, the term ρr,δ =
∑
iK [∆t(i− i0 + 1− r)]K [∆t(i− i0 + 1− δ)] can be computed analytically

for all δ and r and is independent of i0; the term
∑
iK [∆t(i− i0 + 1− δ)]2 is the usual ‖K‖2 and the term involving

noise can be rewritten by introducing new, correlated gaussian noises:

ε̃δ =
∑
i

K [∆t(i− i0 + 1− δ)] εi

< ε̃δ > = 0

< ε̃δ ε̃δ′ > =
∑
i

K [∆t(i− i0 + 1− δ)]K [∆t(i− i0 + 1− δ′)]

L(nδ, δ) =
1

2

∑
i

F 2
i +

min
{
ρr,δ + σ

a ε̃δ −
λ
a , 0
}

2‖K‖2

(54)

For a given r and noise realization, we can thus compute the optimal δ - and by Monte Carlo averaging, we obtain
an estimate of the probability distribution P (δ|r). To obtain a point spread function in continuous time, it is then

transformed into a continuous piecewise-constant probability density through: P c(δc ∈ R|r) = P (bδcc|r)
∆t

And the overall point spread function is obtained by averaging over r, yielding:

R(δc) =

∫ 1

r=0

P c(δc + r|r)

In practice, R and r are computed over a discrete grid of the form k∆t
s .

For the super-resolution case, the computation is almost the same; the only difference being that we reconstruct
the spikes with a thinner resolution.

Annex E: Proof of unbiased estimation for super-resolution

We show here that the choice λj = zσ‖Kj‖ is best suited for an unbiased (in time) reconstruction of the spikes.
We consider again the single-spike setting, with a single spike of a at position k0 = (i0 − 1)s + r0, for which Fi =

aK
[
∆t(i− i0) + ∆t(2−r0)

s

]
+ σεi.

We now look for optima of L(N,K) of the form N̂(i−1)s+r = anδi,i0+∆δr,r0+δ. Note that instead of doing this

computation, we can simply observe that it is a special case of Annex B, using reference kernel K0(t) ≡ K(t), and
measurement kernel K(t) ≡ K(t−∆∆t− δ∆t

s ).
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n = max

{
‖Kr0‖
‖Kr0+δ‖

cos θ∆,δ +
σ

a
‖Kr0+δ‖(ε̃1 − z)

}
L(N̂,K) =

1

2
‖Kr0‖2(1− cos2 θ∆,δ) + zaσ‖Kr‖ cos θ∆,δ

+
σ2

2
(
∑
i

ε2i − ε̃12 − z2) + σ2zε̃1 − aσ‖Kr‖
√

2(1− cos θ∆,δ)ε̃2

(55)

Where:

‖Kr‖ =

√√√√∑
l

K

[
l∆t+

∆t(s+ 1− r)
s

]2

cos θ∆,δ =

∑
iK

[
i∆t+ ∆t(s+1−r)

s

]
K
[
(i+ ∆)∆t+ ∆t(s+1−r′)

s

]
‖Kr‖‖Kr′‖

(56)

And ε̃1, ε̃2 are gaussian noises of variance unity (see Annex D). Thus, the optimum over ∆, δ is with highest
probability δ = ∆ = 0, and the estimator is unbiased. Note that this result is expected: using the equivalence with a
LASSO regression developed in Sec. 5, we know that the coefficients (here, the spikes) are correctly estimated with
a uniform λ only when the features (Here, K) are normalized to unity

∑
iK

2
ij = 1∀j.

Annex F: Kernel inference in the super-resolution setting

Since the convolution matrix K is not fully translation invariant in the super-resolution setting, the estimation of
the kernel is slightly different. For the initial estimation, Eqn. 30 becomes:

AF (l)− σ2δl,0 = a2ν
∆t

s

Ts∑
k=1

K

[
∆ti− ∆t

s
(k − 1)

]
K

[
∆t(i+ l) +

∆t

s
(k − 1)

]

= a2ν∆t

T∑
j=1

1

s

(
s∑
r=1

K

[
∆t(i− j − 1) +

∆t(s+ 1− r)
s

]
K

[
∆t(i+ l − j − 1) +

∆t(s+ 1− r)
s

])

≈ a2ν∆t

∞∑
m=−∞

1

s

(
s∑
r=1

K

[
∆tm+

∆t(s+ 1− r)
s

]
K

[
∆t(m+ l) +

∆t(s+ 1− r)
s

])
(57)

For s > 1, this formula is different from Eqn. 30. It can be shown (see Annex G) that the right-hand side has a
well-defined limit when s→∞, ie in the continuous setting.

Similarly, the iterative kernel update Eqn. 52 is different:

1

2
‖F −KN‖2 =

1

2

{
T∑
i=1

F 2
i − 2

∞∑
l=−∞

s∑
r=1

K

[
∆tl +

s+ 1− r
s

]( T∑
i=1

Fi+lNs(i−1)+r

)

+

∞∑
l=−∞

s∑
r=1

s∑
r′=1

( ∞∑
m=−∞

K

[
∆tm+

∆t(s+ 1− r)
s

]
K

[
∆t(m+ l) +

∆t(s+ 1− r′)
s

])( T∑
i=1

N(i+l−1)s+rN(i−1)s+r′

)}
(58)

The sparsity penalty becomes:

λTN =

sT∑
j=1

λjNj = zσ

s∑
r=1

√√√√ ∞∑
m=−∞

K

[
m∆t+

(s+ 1− r)∆t
s

]( T∑
i=1

N(i−1)s+r

)
(59)

Hence, L(N,K) now depends on F and N through the following quantities:
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• the sum S2 =
∑T
i=1

• the sums vector S1(r) =
(∑T

i=1N(i−1)s+r

)
• the cross-correlation matrix X(l, r) =

(∑T
i=1 Fi+lNs(i−1)+r

)
• the autocorrelation tensor A(l, r, r′) =

(∑T
i=1N(i+l−1)s+rN(i−1)s+r′

)
Altogether, the cost function can be evaluated relatively fast. Note that the complexity of the kernel optimization

is now O(lmaxs
2).

Annex G: Various explicit formulas for the double exponential kernel

Various useful formulas for blind sparse deconvolution are consigned, here for double exponential kernels.
Kernel normalization. We normalize K such that maxt≥0K(t) = 1. This gives:

K(t) =
1

M(τr, τd)

[
e
− t
τd − e−

t
τr

]
1t≥0

M(τr, τd) =

(
τr
τd

)− τr
τd−τr

−
(
τr
τd

) τd
τd−τr

(60)

Kernel norms. The L1 and L2 norms are computed as follow:

λd = e
−∆t
τd

λr = e−
∆t
τr

‖K‖ ≡

√√√√ ∞∑
i=−∞

K [∆ti]
2

=
1

M(τr, τd)

√
λ2
d

1− λ2
d

− 2λdλr
1− λdλr

+
λ2
r

1− λ2
r

‖K‖1 ≡
∞∑

i=−∞
K [∆ti] =

1

M(τr, τd)

(
λd

1− λd
+

λr
1− λr

)
(61)

Kernel norms for super-resolution. The L1 and L2 norms for a spike emitted at time (j − 1)s + r, r ∈ [1, s]
are given by:

‖Kr‖ =
1

M(τr, τd)

√√√√∑
i

K

[
∆i+

∆t(s+ 1− r)
s

]2

=

√√√√λ
2 s+1−r

s

d

1− λ2
d

− 2
(λdλr)

s+1−r
s

1− λdλr
+
λ

2 s+1−r
s

r

1− λ2
r

‖Kr‖1 =
1

M(τr, τd)

λ
s+1−r
s

d

1− λd
+
λ
s+1−r
s

r

1− λr

(62)

Kernel overlaps Useful for assessing temporal uncertainty and for kernel estimation

cos θ(δ∆t) ≡
∑+∞
i=−∞K [i∆t]K [(i+ δ)∆t]

‖K‖2
=

λ2+δ
d

1−λ2
d
− (λδd+λδr)λdλr

1−λdλr +
λ2+δ
r

1−λ2
r

λ2
d

1−λ2
d
− 2λdλr

1−λdλr +
λ2
r

1−λ2
r

(63)

Boundary term The estimation of the kernel involves the computation of the following boundary term:

∞∑
j=T+1

(
T∑
i=1

K [(j − i+ 1)∆t]Ni

)2

=
1

M(τr, τd)2

∞∑
j=T+1

(
λj−Td

[∑
i

λT−i+1
d Ni

]
− λj−Tr

[∑
i

λT−i+1
r Ni

])2

=
1

M(τr, τd)2

(
λ4
d

(∑
i λ

T−i
d Ni

)2
1− λ2

d

−
2(λdλr)

2
(∑

i λ
T−i
r Ni

) (∑
i λ

T−i
d Ni

)
1− λdλr

+
λ4
r

(∑
i λ

T−i
r Ni

)2
1− λ2

r

) (64)
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Kernel overlaps for super-resolution Useful for assessing temporal uncertainty and for kernel estimation

AK(l, r1, r2) =
∑
i

K

[
(i+ l +

s+ 1− r1

s
)∆t

]
K

[
(i+

s+ 1− r2

s
)∆t

]

=
1

M(τr, τd)2

λl+ 2(s+1)−r1−r2
s

d

1− λ2
d

−
λ
l+

s+1−r1
s

d λ
s+1−r2

s
r + λ

l+
s+1−r1

s
r λ

s+1−r2
s

d

1− λdλr
+
λ
l+

2(s+1)−r1−r2
s

r

1− λ2
r

 (65)

In particular:

1

s

s∑
r=1

AK(0, r, r) =
1

M(τr, τd)2

(
φs(λ

2
d)

1− λ2
d

− φs(λdλr)

1− λdλr
+
φs(λ

2
r)

1− λ2
r

)
φs(x) =

1− x
s(−1 + x−

1
s )

(66)

Boundary-term for super-resolution

∞∑
i=T+1

 sT∑
j=1

K

[
i∆t− (j − 1)∆t

s

]
Nj

2

=
1

M(τr, τd)2

∞∑
i=T+1

(
λi−Td

[∑
i

λ
Ts−j+1

s

d Nj

]
− λi−Tr

[∑
i

λ
Ts−j+1

s
r Nj

])2

=
1

M(τr, τd)2


λ

4
s

d

(∑
j λ

Ts−j
s

d Nj

)2

1− λ2
d

−
2(λdλr)

2
s

(∑
j λ

Ts−j
s

r Nj

)(∑
j λ

Ts−j
s

d Nj

)
1− λdλr

+

λ
4
s
r

(∑
j λ

Ts−j
s

r Nj

)2

1− λ2
r


(67)

Annex H: Heterogeneity in rise and decay time constants in Zebrafish

Application of BSD to zebrafish data yields heterogeneous distributions of rise and decay times. This means that
different regions show different patterns of fluorescence bursts. We see that the heterogeneities have a spatial structure:
for instance neurons in the spinal chord tend to have longer rising time constants than neurons in the hindbrain, and
neuropil regions have longer decay time. The two possible explanations are that the spike patterns are different in
these regions (e.g., regular vs sparse spike trains), and/or that the expression of GCaMP is significatively different.
Overall, they motivate the use of heterogeneous time constants.

Annex I: Drawback of approximating Poisson prior to exponential prior in MAP

In order to see why approximating a Bernoulli or Poisson distribution with an exponential approximation with
same mean, as is done in oopsi can be problematic for signal reconstruction, we consider the following single-variable
inference problem:

y = aN + ε (68)

Where ε ∼ ′, σ∈, N ∼ Bernoulli(ν). Given y, we wish to estimate N by MAP using either the exact or approximate
prior. In the first case, P (N |y) writes:

p(N = 1|y) =
e−

(y−a)2

2σ2 ν

e−
(y−a)2

2σ2 ν + e−
y2

2σ2 (1−ν)
(69)

Such that:

N? = arg max p(N |y) =

{
1ify > a

2 −
σ2

a log ν
1−ν

0Otherwise
(70)



40

In the second case, P (N |y) writes:

P (N |y) ∝ e−
(y−aN)2

2σ2 −νaN (71)

Such that:

N? = arg max p(N |y) =
1

a
max(y − σ2

ν
, 0) (72)

For typical values such as a = 1, σ = 0.2, ν = 0.01, we get thresholds at respectively 0.32 and 4. Clearly, all spikes
(N = 1) would be missed using the MAP with approximate exponential prior. On the other hand, the MAP with an
exact prior is an unbiased estimate i.e. such that < N? = ν, and correctly reproduces the average spike rate.

Annex J: Supplementary figures and tables

FIG. 11: Correlation between original and ground-truth spike train for various sampling frequencies, evaluation
frequency as function of the signal-to-noise ratio; same as Figure 2 for a spiking rate of 1Hz
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FIG. 12: Correlation between original and ground-truth spike train for various sampling frequencies, evaluation
frequency as function of the signal-to-noise ratio; same as Figure 2 for a spiking rate of 5Hz
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(a)	 (b)	

FIG. 13: Causes of kernel mismatch for adaptive BSD For each synthetic spike recording generated for Figure 3,

we measure the kernel inference error as:

√
1− (

∑
iKtrue(i∆t)Kinferred(i∆t))

2

(
∑
iKtrue(i∆t)2)(

∑
iKinferred(i∆t)2)

. Then, we compare it against (a)

the effective signal-to-noise ratio a‖K‖
σ (b) the spike ’burstiness’. We measure the later by the width of the spike

autocorrelation function divided by the duration of the kernel transient τr + τd. The lower the effective SNR and the
wider the autocorrelation (in units of kernel transient duration), the larger the mismatch. Additionally, spike trains
with fewer than 20 spikes (shown as crosses) frequently result in large kernel mismatch.
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Calcium Indicator Rise time Decay time Source
OGB-1 0.010 0.40 Figure 1,2 of [41]
GCaMP5k 0.021 0.27 Supp. Table 3 of [31]
GCaMP6s 0.098 0.38 Supp. Table 3 of [31]
GCaMP6f 0.023 0.10 Supp. Table 3 of [31]
jRCAMP1a 0.0065 1.38 Figure 2 of [34]
jRGECO1a 0.0062 0.32 Figure 2 of [34]

TABLE VI: Rise and decay time constants for a single action potential as defined by Eqn. 2, derived from the
literature. When the reference provides the time of peak and half-time decay, the rise and decay constant are

obtained by numerical inversion

FIG. 14: (a) Distribution of rise and decay time. (b) Mapping of rise and decay time across a neurons




