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NONPARAMETRIC ADAPTIVE INFERENCE OF BIRTH AND DEATH

MODELS IN A LARGE POPULATION LIMIT

ALEXANDRE BOUMEZOUED, MARC HOFFMANN AND PAULIEN JEUNESSE

Abstract. Motivated by improving mortality tables from human demography databases, we

investigate statistical inference of a stochastic age-evolving density of a population alimented by

time inhomogeneous mortality and fertility. Asymptotics are taken as the size of the population
grows within a limited time horizon: the observation gets closer to the solution of the Von Fo-

erster Mc Kendrick equation, and the difficulty lies in controlling simultaneously the stochastic

approximation to the limiting PDE in a suitable sense together with an appropriate parametri-
sation of the anisotropic solution. In this setting, we prove new concentration inequalities that

enable us to implement the Goldenshluger-Lepski algorithm and derive oracle inequalities. We

obtain minimax optimality and adaptation over a wide range of anisotropic Hölder smoothness
classes.

Mathematics Subject Classification (2010): 62G05, 62M05, 60J80, 60J20, 92D25.
Keywords: Age-structured models, large population limit, concentration inequalities, nonpara-

metric adaptive estimation, anisotropic estimation, Goldenshluger-Lepski method.
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1. Introduction

1.1. Setting. Suppose one wishes to recover a probability density g over the nonnegative real
line R+ = [0,∞) from a N -sample a1, . . . , aN , where the ai are not necessarily independent.

If ZN = N−1
∑N
i=1 δai denotes the empirical distribution of the N -sample, designing a good

statistical estimator of g requires a fine quantitative control of the fluctuations in the convergence

(1)

∫
R+

ψ(a)ZN (da)→
∫ ∞

0

ψ(a)g(a)da

(at least in probability) as N grows, for a large enough class of test functions ψ. Moreover,
the performance of such a procedure depends on the smoothness properties of the function g,
typically quantified by a smoothness parameter, like a (possibly fractional) number of derivatives
in any reasonable sense and is usually unknown by the practitioner. For suitable ψ (possibly
data-dependent), optimal estimators can be found provided good concentration inequalities are
available for (1), following the broad guiding principle of Lepski’s method [30, 17, 18] or other
adaptive methods like model selection or wavelets, see for instance the comprehensive textbooks
of Giné and Nickl [16] or Härdle et al. [19] or Tsybakov [44]. In this paper, we generalise the
classical situation described above by adding a time variable. We investigate statistical inference
of a time-evolving particle system governed by stochastic dynamics: for every t ∈ [0, T ], we observe
the state of a population of (approximately) N particles, encoded by its empirical measure ZN =(
ZNt (da)

)
0≤t≤T . Informally, ZN is solution to a certain stochastic differential equation (SDE)

HN
b,µ

(
ZN
)

= 0,

constructed in (7) below; HN
b,µ is parametrised by two functions b and µ and ZNt (da) represents

the state of a population structured in age a ∈ R+, alimented by a time-inhomogeneous fertility
rate b(t, a) and decimated by a mortality rate µ(t, a). Moreover, we are given an initial empirical
age distribution ZN0 at time t = 0. Under appropriate regularity conditions we have a convergence
HN
b,µ → Hb,µ in a large population limit N →∞, where Hb,µ(g) = 0 is an inhomogeneous version
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of the classical McKendrick Von Foerster renewal equation [35, 46], given by
∂tg(t, a) + ∂ag(t, a) + µ(t, a)g(t, a) = 0

g(0, a) = g0(a), g(t, 0) =

∫ ∞
0

b(t, a)g(t, a)da.
(2)

and that reveals the interplay between the limiting solution g and the model parameter b and µ.
In particular, we have a convergence

(3)

∫ T

0

∫
R+

ψ(t, a)ZNt (da)dt→
∫ T

0

∫ ∞
0

ψ(t, a)g(t, a)da dt

(at least in probability) as N grows for a rich enough class of functions ψ, and this situation gen-
eralises (1) in a time-dependent framework.

Informally, our statistical problem takes the following form: estimate g or the parameters of the
model b, µ from data ZN in the limit N →∞. In this setting, it is crucial to understand: (i) the
quantitative properties of the convergence (3) and in particular, how concentration inequalities can
be obtained (with a view towards an adaptive estimation scheme in the idea of Lepski’s principle)
and (ii) what is the structure of the equation Hb,µ(g) = 0 in terms of identification and interplay
between the parameters b, µ, g and their smoothness properties. In particular, the anisotropic
smoothness of g viewed as a graph-manifold can benefit from the structure Hb,µ(g) = 0 and lead
to better approximation properties in certain directions along the characteristics of the transport.

1.2. Motivation. Of primary interest for us is human demography through the recent efforts
and contributions for improving mortality estimates, see [8, 4, 5] among others and the references
therein. In particular, the recent development of large human datasets like the Human Mortality
Database (HMD) and Human Fertility Database (HFD) [21, 20] – in open access – allows one
to process fertility and mortality data simultaneously, and subsequently addresses demographical
issues such as the anomalies of cohort effects that have long fascinated demographers and actuaries
[41, 7]. In this rejuvenated context, it becomes reasonable to study the estimation of population
density or mortality rate in the enriched dynamical framework provided by birth-death particle
systems that converge to the classical McKendrick Von Foerster equation in a large population
limit, and revisit classical studies like e.g. [24, 38] for statistical estimation of the death rate; see
the detailed literature review in next section. In this setting, we consider the idealised model where
we can observe the (renormalised) evolution of the state of the population ZNt continuously for
t ∈ [0, T ], where t = 0 is the starting date for the observation of the population and t = T a terminal
time horizon, fixed once for all. We are interested in identifying or estimating the parameters of
the model. Of major importance is the inhomogeneous death rate µ(t, a). In our framework, we
cannot recover the birth rate since we are not given any genealogical input: mathematically, this
simply expresses the lack of injectivity of the mapping b 7→ g. Still, our observation enables us
to identify the functions (t, a) 7→ g(t, a) and (t, a) 7→ µ(t, a) in the limit N → ∞ and establish a
thorough nonparametric estimation program, in the methodology of adaptive minimax estimation.

1.3. Link with literature on death rate inference. The main difficulty in establishing a
consistent theory to estimate mortality rates comes from two key points: (i) incorporate the
fact that the death rate depends on both age and time (non-homogeneous setting) and (ii) use
as observables the outcome of a stochastic population dynamics (birth-death process). In the
literature, we argue that each point is treated separately. The inference of a time-dependent
death rate also related to a time-dependent covariate (possibly age), which relates to the first
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point has been addressed from a nonparametric perspective by e.g. [1, 12, 24, 34, 39, 6, 11]
and the references therein. From [24], ”One way of understanding the difficulties in establishing an

Aalen theory in the Lexis diagram is that although the diagram is two-dimensional, all movements are

in the same direction (slope 1) and in the fully non-parametric model the diagram disintegrates into a

continuum of life lines of slope 1 with freely varying intensities across lines. The cumulation trick from

Aalen’s estimator (generalizing ordinary empirical distribution functions and Kaplan & Meier’s (1958)

nonparametric empirical distribution function from censored data) does not help us here.” On the other
side, the inference of an age-dependent death rate in an homogeneous birth-death model (or similar)
- oiuyr second point - has been addressed in [9, 13, 22] among others. To the best of our knowledge,
no statistical method deals with the usual problem faced by demographers related to the inference of
a time and age-dependent death rate table based on the observation of population dynamics. Note
that in this paper, the observation of the population is assumed to be continuous over time, whereas
in practice the information on population exposure is extracted from census (point observation);
these practical considerations are discussed in a companion paper, see [5].

1.4. Results and organisation of the paper. In a first part of the paper, Section 2, we con-
struct the SDE that describes the state of the population ZN by means of a birth-death process
characterised via a stochastic differential equation – given in (7) – driven by a random Poisson
measure. We recall its convergence in a large population limit to the solution of the McKendrick
Von Foerster equation g based on classical results of [43, 36]. Our next step consists in quantifying
the stability of the convergence ZN → g. To that end and anticipating the subsequent statistical
analysis, we introduce two pseudo-distances:

WN
w2

(F)t = sup
f∈F

∫
R+

w2(t− a)f(t, a)
(
ZNt (da)− g(t, a)da

)
and its integrated version

WN
w1,w2

(F)t = sup
f∈F

∫ t

0

w1(s)

∫
R+

w2(s− a)f(s, a)
(
ZNs (da)− g(s, a)da

)
ds,

where w1 and w2 are two bounded weight functions and F a rich enough class of function with
complexity measured in terms of entropy conditions. Note that formally WN

w2
(F)t is a degenerate

version of WN
w1,w2

(F)t. Taking w1 = w2 = 1 is reminiscent of the 1-Wasserstein distance if F

consists of 1-Lipschitz functions. However, for the statistical analysis, we must be able to handle
approximating kernels that do not have bounded Lipschitz norms, hence the presence of the weights
w1 and w2 that can accomodate such kernels. The main result of this section, Theorem 6 states
that under appropriate regularity conditions on b and µ, if |w2|−1

1,∞WN
w2

(F)0 is of (small) order rN ,
so are

|w2|−1
1,∞WN

w2
(F)T and

(
|w1|1,∞|w2|1,∞

)−1
WN

w1,w2
(F)T .

The rate of decay rN possibly inflates by an order N−1/2 and the result holds in terms of expo-
nential decay of the fluctuation probabilities. The functional control | · |1,∞ = (‖ · ‖L1‖ · ‖L∞)1/2

interpolates between L1 and L∞-norms, and is sufficient to handle the behaviour of statistical
kernels in an optimal way, since it can therefore be compared to the usual L2-norm that appears in
variance terms. The concentration of WN

w2
(F)T expresses a kind of stability of the particle system

from t = 0 to t = T , while the more intricate control of WN
w1,w2

(F)T is crucial to control variance
terms in bi-variate kernel estimators for the nonparametric estimation of g(t, a) and µ(t, a). The
proof relies on a combination of martingales techniques in the spirit of Tran [43], a central reference
for the paper, combined with classical tools from concentration of processes indexed by functions
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under entropy controls, following for instance Ledoux-Talagrand [28].

In a second part, Section 3, we construct nonparametric estimators of g(t, a) and µ(t, a) by
means of kernel approximation: we consider estimators of the form

ĝNh (t, a) = Kh ? Z
N
t (a)

for g(t, a), where ? denotes convolution and Kh = h−1K(h−1·), with |K|1 = 1, is a kernel nor-
malised in L1 with bandwidth h > 0. It is noteworthy that for estimating the population density
g(t, a) at time t, the information ZNt is sufficient and we do not need the data (ZNs , s 6= t). The
situation is very different for estimating µ(t, a) the main parameter of interest. We constuct a
quotient estimator, inspired from a Nadaraya-Watson type procedure, and use

(4) µ̂Nh1,h2,h3
(t, a) =

(Hh1
⊗Kh2

◦ ϕ) ? ΓN (du, ds)

ĝNh3
(t, a)

where ΓN (du, ds) is the point process of the death occurences in the population lifetime that can
be extracted from ZN and that converges to π = µg, see (17) in Section 3.2 for the details. In (4),
we consider a bivariate kernel H ⊗K with bandwidth (h1, h2) and ϕ(t, a) = (t, t− a) is a certain
change of coordinates that enables one to benefit from the smoothness along the characteristics of
the transport. The choice of the bandwidths h1, h2, h3 is chosen according to the data ZN itself,
in the spirit of Lepski’s principle [17, 18]. In Theorems 11 and 13, we derive oracle inequalities
that control the pointwise risk of ĝNh (t, a) and µ̂Nh1,h2,h3

(t, a) in terms of optimal balance between
the error propagation of Theorem 6 and the linear approximation kernels.

Section 4 is devoted the adaptive estimation of g and µ for the pointwise risk under smoothness
constraints. In a first part, we study the smoothness of g when b and µ belong to anisotropic
Hölder spaces (and for simplicity, we assume that the initial condition g0 is sufficiently smooth).
Thanks to the relatively explicit form of the solution of the McKendrick Von Foester equation,
we establish in Proposition 16 that when parametrised via ϕ, the function g̃ in the representation
g = g̃ ◦ ϕ has explicitly quantifiable improved smoothness over g, suggesting to consider the ap-
proximation kernel Hh1

⊗Kh2
◦ ϕ for estimating π via the quotient estimator (4) that implicitly

uses the representation of µ = π/g. We establish in Theorem 18 minimax lower bounds for esti-
mating g(t, a) and µ(t, a) and prove in Theorems 19 and 20 that these bounds are optimal in some
cases, thanks to the oracle inequalities established Theorems 11 and 13. In particular, we achieve
minimax adaptation over anisotropic Hölder smoothness constraints, up to poly-logarithmic terms.

The techniques developed in this paper have at least two possible lines of extensions for consider-
ing more general models than (2): (i) first, when we replace the constant transport by an arbitrary
aging function solution to dXt = v(Xt)dt if Xt denotes the age evolution of an individual, and (ii)
if we allow for interacting particle system in the following sense: we replace µ(t, a) by a population
dependent mortality rate µ̃(t, a) +

∫
R+
U(a, a′)ZNs (da′), as already studied for instance by Tran [9]

for some baseline mortality rate µ̃(t, a) affected in a mean-field sense by a kernel U(a, a′). Under
appropriate regularity assumptions, the limiting model takes the form

∂tg(t, a) + ∂a
(
v(a)g(t, a)

)
+
(
µ̃(t, a) +

∫
R+
U(a, a′)g(t, a′)da′

)
g(t, a) = 0

g(0, a) = g0(a), g(t, 0) =

∫ ∞
0

b(t, a)g(t, a)da.
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We intend to describe the extension to this situation in a forthcoming work. Sections 6 is
devoted to the proof of the main concentration result of Theorem 6 and auxiliary stability results
of Section 2. In Section 7, we give the proofs of the statistical results of 3 and 4. The Appendix
Section 8 contains some useful technical and auxiliary results.

2. The microscopic model and its large population limit

2.1. Notation.

The function spaces. We fix once for all a terminal time T > 0 and D = [0, T ] × R+. We work
with the set of (measurable) functions

L∞D =
{
f : D→ R, sup

t,a
|f(t, a)| <∞},

implicitly continuated on R× R by setting f(t, a) = 0 for (t, a) /∈ D and also introduce

Ltime
D =

{
f : [0, T ]→ R, sup

t
|f(t)| <∞}, L

age
D =

{
f : R+ → R, sup

a
|f(a)| <∞},

with natural embeddings Ltime
D ⊂ L∞D and also L

age
D ⊂ L∞D for appropriate arguments. For p = 1, 2,

we set

(5) |f |p =
( ∫

D

|f(t, a)|pdtda
)1/p

, |f |∞ = sup
(t,a)∈D

|f(t, a)|, |f |1,∞ =
(
|f |1|f |∞

)1/2
.

We obviously have |f |2 ≤ |f |1,∞, but also the following interesting stability property under dilation:
for every τ > 0,

|f |2|τ1/2f(τ ·)|1,∞ = |τ1/2f(τ ·)|2|f |1,∞.
For 0 ≤ s ≤ 1, we denote by CsD the set of s-Hölder continuous functions f on D that satisfy

(6) |f(t, a)− f(t′, a′)| ≤ c(|t− t′|s + |a− a′|s)

for every (t, a), (t′, a′) ∈ D and some c > 0.

The random measures. MF denotes the set of finite point measures on R+ = [0,∞) and MF+ the
set of positive finite measures on R+. Any Z ∈ MF admits the representation Z =

∑n
i=1 δai for

some ordered set {a1, . . . , an} ⊂ R+. For a real-valued function f defined on R+, we write

〈Z, f〉 =

∫
R+

f(a)Z(da) =

n∑
i=1

f(ai).

In particular n = 〈Z,1〉. For Z =
∑n
i=1 δai ∈ MF , abusing notation slightly, we define the

evaluation maps ai(Z) = ai and for t ≥ 0, the shift τtZ =
∑n
i=1 δai+t.

2.2. Construction of the model. The basic assumptions on the model are the following:

Assumption 1. We have

(i) b ∈ L∞D and µ ∈ L∞D ,
(ii) NZN0 ∈MF is random and satisfies1 supN 〈ZN0 ,1〉 . 1 almost-surely; moreover ZN0 → ξ0

narrowly, for some deterministic ξ0 ∈M+,
(iii) ξ0(da) = g0(a)da for some g0 ∈ L

age
D such that

∫∞
0
g0(a)da <∞.

1where aN . bN means supN≥1 aN b
−1
N <∞.
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For t ∈ [0, T ], consider the equation

ZNt = τtZ
N
0 +N−1

∫ t

0

∫
N×R+

δt−s(da)1{
0≤ϑ≤b(s,ai(ZN

s−
)),i≤〈NZN

s−
,1〉
}Q1(ds, di, dϑ)

−N−1

∫ t

0

∫
N×R+

δai(ZN
s−

)+t−s(da)1{
0≤ϑ≤µ(s,ai(ZN

s−
)),i≤〈NZN

s−
,1〉
}Q2(ds, di, dϑ),(7)

where Qi, i = 1, 2 are independent Poisson random measures on R+ ×N \ {0} ×R+ with intensity
measure ds

(∑
k≥1 δk(di)

)
dϑ. In this setting, the distribution ZN0 describes the renormalised state

of the population at time t = 0 and N〈ZN0 ,1〉 its size.

Under Assumption 1 (i), we have existence and strong uniqueness of a solution to (7) in
D([0, T ],M+), the Skorokhod space of càdlàg processes with values in M+. Under Assumption
1 (i) and (ii)2, we even have the narrow convergence of ZN in D([0, T ],M+) to a deterministic
limit ξ ∈ C([0, T ],M+), see e.g. [43, 15]. Under Assumption 1 (iii), the limit ξ = (ξt(da))0≤t≤T is

6

T t
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-
0

a s

�
�
�
�

�
�
�
�
�
�c

c

pppppp
pppppp
pppppp
pppppp
p

�
�
�
�
�
�
�
�
��

6

T t
NZNT (da)

-
0

a s

�
�
�
�

�
�
�
�
�
�c c

c

pppppp
pppppp
pppppp
pppppp
p

�
�
�
�
�
�
�
�
��

�
�
�
�

�
�
�
�
��

s

�
�
�
s

Figure 1. Sample path of NZN0 (da) and its evolution without births (left), sam-
ple path of (NZNt (da))0≤t≤T (right).

smooth in the following sense: we have that ξt(da) = g(t, a)da, where g is a weak solution to the
McKendrick Von Foerster equation (2) defined in Section 1.1 above (see [35, 46] and the compre-
hensive textbook of Perthame [40]). With the notation of Section 1.1, the equation HN

b,µ(ZN ) = 0

is given by (7) while Hb,µ(g) = 0 is given by (2).

2.3. Stability of the model.

Preliminaries. The stability of ZNt (da) relative to its limit g(t, a) will be expressed in terms of
weighted quantities of the form

WN
w2

(F)t = sup
f∈F

∫
R+

w2(t− a)ft(a)
(
ZNt (da)− g(t, a)da

)
and also

WN
w1,w2

(F)t = sup
f∈F

∫ t

0

w1(s)

∫
R+

w2(s− a)fs(a)
(
ZNs (da)− g(s, a)da

)
ds,

2Actually, the condition of the almost-sure bound supN 〈ZN0 ,1〉 . 1 can be relaxed to the significant weaker

moment condition supN≥1 E[〈ZN0 ,1〉1+ε] <∞ for some ε > 0.
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where wi, 1 = 1, 2 are two bounded weight functions (possibly taking negative values). For
notational simplicity, we write ft(a) = f(t, a) for f ∈ L∞D when no confusion is possible. Implicitly,
we assume that F is well-behaved in the sense that WN

w2
(F)t and WN

w1,w2
(F)t are measurable, as

random variables on the ambient probability space over which ZN is defined.

The structure of F. We describe the minimal structure we need to put on F so that the subsequent
concentration properties hold for WN

w2
(F)t and WN

w1,w2
(F)t. In particular, we must be able to

control the complexity of F measured in terms of entropy. Let st, tt and ut be the operators on
L∞D defined by

st(f) =
(
(s, a) 7→ f(t, a+ t)

)
, tt(f) =

(
(s, a) 7→ f(t, t− s)

)
, ut(f) =

(
(s, a) 7→ f(t, t+ a− s)

)
.

Assumption 2. We have 0, c0, c0b, c0µ ∈ F for some constant c0 > 0. Moreover, for every
t ∈ [0, T ], the class F is stable under the following operations:

(8) f 7→ −f, (f, g) 7→ fg, f 7→ st(f), f 7→ tt(f), f 7→ ut(f).

Let diam|·|∞(F) = supf,g∈F |f − g|∞ and write N(F, | · |∞, ε) for the minimal number of ε-balls
for the | · |∞-metric that are necessary to cover F.

Proposition 3. Let F be the minimal set satisfying Assumption 2 for some c0 > 0 such that
c1 = c0 max(|b|∞, |µ|∞) < 1. If moreover b, µ ∈ CsD for some s > 0 (Cs is the set of Hölder
continuous functions defined in (6)), then

(9) e(F) =

∫ 1

0

log
(
1 + N(F, | · |∞, ε)

)
dε <∞.

Concentration properties.

Definition 4 (mild concentration). A sequence of nonnegative random variables (XN )N≥1 has a
mild concentration property of order 0 ≤ rN → 0 if for large enough N , we have

P
(
XN ≥ (1 + u)rN

)
≤ 1

eu − 1
for every u ≥ 0.

Assumption 5. The sequence

|w2|−1
1,∞ max

h=1,w2

WN
h (F)0

has a mild concentration property of order rN for some 0 ≤ rN → 0.

Theorem 6. Work under Assumptions 1, 2 and 5. Assume moreover diam|·|∞(F) ≤ 1 and

e(F) =

∫ 1

0

log
(
1 + N(F, | · |∞, ε)

)
dε <∞.

If w2 has compact support with length support bounded in N by some u > 0 and satisfies an estimate
of the form

(10) |w2|∞ . max(N1/2, r−1
N )|w2|1,

then (
|w1|1,∞|w2|1,∞

)−1
WN

w1,w2
(F)T and |w2|−1

1,∞WN
w2

(F)T

share both a mild concentration property of order C max(rN , N
−1/2), for an explicitly computable

C = C(u, e(F), T, |b|∞, |µ|∞, g0, |w1|1, |w2|1) > 0 continuous in its arguments. In particular, if
|wi|1, i = 1, 2 is uniformly bounded in N , then C can be chosen independently of N .
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Several remarks are in order: 1) If the initial condition ZN0 is close to its limit g0 in Ww2
(F)0-

norm of order rN , Theorem 6 states that the error inflates in Ww2
(F)t-norm by a factor no worse

than N−1/2 for t ∈ [0, T ]. In particular, whenever rN . N−1/2, the error propagation is stable.
2) The order of magnitude of the error propagation is max(N−1/2, rN ), as one could expect. As
for the order in terms of w1 or w2, the ideal order would be the integrated squared-error norm
|wi|2 as a variance term in a central limit theorem for instance. Here, we obtain the slightly worse
interpolation quantity |wi|1,∞ which is always bigger than |wi|2. However, for statistical purposes,

when wi is replaced by a kernel wi = h−1
N K(h−1

N ·) for some kernel K such that |K|1 = 1, the order
is sharp, since in that case

|wi|1,∞ ≈ h−1/2
N ≈ |wi|2

and moreover |wi|1 is uniformly bounded in N . The fact that we have here the correct order for
dilating kernels is crucial for nonparametric estimation and is the main purpose (and difficulty)
of Theorem 6. This seems to be a standard situation for nonparametric estimation in structured
populations, where such effects are also met, see [13, 22, 3]. 3) If w2 is not compactly supported
or if (10) does not hold, we still have that(

|w1|1,∞|w2|∞
)−1

WN
w1,w2

(F)T and |w2|−1
∞WN

w2
(F)T

share both a mild concentration property of order C max(rN , N
−1/2), as explicitly obtained in

the proof. However, such a result is not sufficient for nonparametric estimation: picking w2 =

h−1
N K(h−1

N ·) yields |w2|∞ ≈ h−1
N which is dramatically worse than the expected h

−1/2
N in kernel

estimation. 4) The constant C also depends on the length of the support of w2, but that may be
considered as fixed once for all for later statistical purposes. 5) Assumption 5 implies the moment
estimate

(11) E
[

max
h=1,w2

WN
h (F)p0

]
. |w2|p1,∞r

p
N for every p > 0.

6) We finally give a reasonable and sufficient condition for Assumption 5 to hold.

Proposition 7. If F is uniformly bounded (in particular if F is the minimal set of Proposition 3)
and if if NZN0 (da) consists of a N -drawn of independent random variables with common distribu-
tion g0(a)da (with the normalisation assumption

∫
R+
g0(a)da = 1), we have Assumption 5.

The proof is based on a concentration inequality of Klein and Rio [25] and is developed in a
statistical setting in Comte et al. [10] and is delayed until Appendix 8.2

We end this section by giving a global stability result for the propagation of the error ZNt (da)−
g(t, a)da, given a preliminary control on ZN0 (da) − g(0, a)da, which relies on the techniques de-
veloped in Theorem 6, but with a weaker moment condition for the initial control of the particle
system.

Proposition 8. Work under Assumptions 1 and 2. If

(12) E
[

max
k=1,w2

WN
k (F)p0

]
≤ |w2|p1,∞r

p
N

for some rN ≥ 0 and p ≥ 1, and if w2 is compactly supported and satisfies an estimate of the form
|w2|∞ . max(N1/2, r−1

N )|w2|1, then

(13) E
[
WN
w2

(F)pT
]
. |w2|p1,∞max(N−p/2, rpN )

and

(14) E
[
WN
w1,w2

(F)pT
]
. (|w1|1,∞|w2|1,∞)p max(N−p/2, rpN ).
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3. Nonparametric estimation of g and µ

3.1. Kernel approximation.

Definition 9. A kernel K of (integer) order `0 ≥ 1 is a bounded function with compact support
in R+ such that ∫ ∞

0

κ`−1K(κ)dκ = 1{`=1}, for ` = 1, . . . , `0 − 1.

For a bandwidth h > 0, we set Kh(κ) = h−1K(h−1κ) so that |Kh|1 = |K|1. In order to
approximate functions of L∞D , we use bivariate kernels defined by

H ⊗K(t, a) = H(t)K(a) for (t, a) ∈ D,

with H ∈ L time
D , K ∈ L

age
D . For a bivariate bandwidth h = (h1, h2) with hi > 0, let

(H ⊗K)h(t, a) = Hh1(t)Kh2(a)

and define the linear approximation

(15) (H ⊗K)h ? f(t, a) =

∫ T

0

∫ ∞
0

f(s, u)(H ⊗K)h(t− s, a− u)dsdu.

We may also approximate f in another system of coordinates: if ϕ : D → D is invertible,
reparametrise f via

f(t, a) = f̃ ◦ ϕ(t, a)

and define the ϕ-skewed linear approximation

(H ⊗K)h ◦ ϕ) ? f(t, a) =

∫ T

0

∫ ∞
0

f(s, u)
(
(H ⊗K)h ◦ ϕ

)
(s− t, u− a)dsdu

so that
(
(H ⊗K)h ◦ϕ

)
? f(t, a) = (H ⊗K)h ? f̃

(
ϕ(t, a)

)
. The ϕ-skewed approximation potentially

has better approximation properties for f̃ in the viscinity of ϕ(t, a) than f in the viscinity of (t, a),
as will become transparent in Section 4 below.

3.2. Construction of estimators of g and µ.

Construction of an estimator of g. Let K ∈ L
age
D be a kernel of order `0 ≥ 0. For (t, a) ∈ D, we

consider the family of estimators

(16) ĝNh (t, a) = Kh ? Z
N
t (a) =

∫
R+

Kh(u− a)ZNt (du), h > 0.

Remark 10. At first glance, it may seem slightly suprising to build an estimator of the bivariate
function g(t, a) by means of (16) that uses data ZNt only and discards the observation (ZNs , s 6= t).
For instance, one may consider estimators of the form(

(H ⊗K)h ◦ ϕ
)
? ZN (t, a) =

∫ T

0

∫
R+

(
(H ⊗K)h ◦ ϕ

)
(s− t, u− a)ZNs (du)

Formally ĝNh (t, a) = (Hh1=0 ⊗ Kh) ? ZN (t, a) without any specific change of coordinates and we
will see that such a simple procedure already achieves minimax optimality, see Section 4.3 below.



BIRTH AND DEATH MODELS IN A LARGE POPULATION LIMIT 11

Construction of the process of death occurences. We first extract from the data (ZNt (da))0≤t≤T the
random measure

ΓN (dt, da) =
∑
i≥1

δ(Ti,Ai)(dt, da) on [0, T ]× R+

associated with the successive times Ti of the death occurences of the population during the
observation period [0, T ], together with the corresponding ages Ai of the individuals that die at
time Ti.

Remember that the evaluation mappings ai(Z
N
t ) in the representation ZNt = N−1

∑
i≥1 δai(ZNt )

are ordered:

a1(ZNt ) < a2(ZNt ) < . . .

and that t 7→ ai(Zt) is increasing with slope one unless a birth or a death occurs, in which case we
have a non-negative or a negative jump. It follows that

(17) ΓN (dt, da) =
∑
s>0

1{i?=inf{i≥1,∆ai(ZNs )>0}<∞}δ(s,ai? (ZN
s−

))(dt, da)

on [0, T ]×R+, where we set ∆ai(Z
N
s ) = ai(Z

N
s )−ai(ZNs−) and with the usual convention inf ∅ =∞.

This second representation in terms of the jump measure of the processes ai(Z
N
t ) gives an explicit

construction of ΓN (dt, da) as a function of (ZNt (da), t ∈ [0, T ]).

Construction of an estimator of µ. Let H ∈ Ltime
D and K ∈ L

age
D be two kernels. For (t, a) ∈ D

and ϕ(t, a) = (t, t− a), consider the family

(18) π̂Nh (t, a) =

∫ T

0

∫
R+

(
(H ⊗K)h ◦ ϕ

)
(s− t, u− a)ΓN (ds, du), h = (h1, h2) with hi > 0,

that estimate the function π = µg. An estimator of µ(t, a) is obtained by considering the ratio

(19) µ̂Nh,h(t, a)$ =
π̂Nh (t, a)

ĝNh (t, a) ∨$
for some threshold $ > 0, and is thus specified by the bandwidths h > 0, h = (h1, h2) with hi > 0
and $ > 0.

3.3. Oracle inequalities.

Estimation of g, data-driven bandwidth. Pick a lattice GN1 included in [N−1/2, (logN)−1] and
such that Card(GN1 ) . N . The algorithm, based on the Lepski’s principle as defined in the
Goldenshluger-Lepski’s method [17, 18] requires the family of linear estimators(

ĝNh (t, a), h ∈ GN1

)
defined in (16) and selects an appropriate bandwidth h = ĥN (t, a) from the data (ZNt (da))0≤t≤T .
For (t, a) ∈ D, writing {x}+ = max(x, 0), define

ANh (t, a) = max
h′≤h,h′∈GN1

{(
ĝNh (t, a)− ĝNh′(t, a)

)2 − (VNh + VNh′)
}

+
,

where

(20) VNh =
(
4(logN)C?N−1/2|Kh|1,∞

)2
and C? is a (known) upper bound of the constant C of Theorem 6. (Remember that the constant
C depends on the parameters of the model via |b|∞, |µ|∞ and g0.) Let
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ĥN (t, a) ∈ argminh∈GN1

(
ANh (t, a) + VNh

)
.

The data-driven Goldenshluger-Lepski estimator of g(t, a) is defined as

(21) ĝN? (t, a) = ĝN
ĥN (t,a)

(t, a).

Oracle estimate. We need some notation. Given a kernel Kh, the bias at scale h of g at point (t, a)
is defined as

(22) BNh (g)(t, a) = sup
h′≤h,h′∈GN1

∣∣∣ ∫ ∞
0

Kh′(u− a)g(t, u)du− g(t, a)
∣∣∣.

We are ready to give our first estimation result for every (t, a) ∈ D− = D \ {t = a}.

Theorem 11. Work under Assumptions 1, 2 and 5 with rN ≤ N−1/2 and some F that satisfies
e(F) < ∞. For (t, a) ∈ D−, specify ĝN? (t, a) with a bounded and compactly supported kernel K.
The following oracle inequality holds true

E
[(
ĝN? (t, a)− g(t, a)

)2]
. inf
h∈GN1

(
BNh (g)(t, a)2 + VNh

)
+ δN

for large enough N , with δN = N−1 and up to a constant that depends on C? and K.

Some remarks: 1) The fact that we measure the performance of ĝN? at point (t, a) in pointwise
squared-error loss is inessential here. Other integrated norms like | · |p would work as well, following
the general proof of Lepski’s principle [29, 17, 18]. However, if we need a fine control of the bias
in terms of smoothness space, this is no longer true and is linked to the anisotropic and spatial
inhomogeneous smoothness structure of the solution g. This will become transparent in Theorems
19 and 33 below. 2) In (20), the choice of C? has to be set in principle prior to the data analysis
and is of course difficult to calibrate. It depends on upper bounds on many quantities like e(F)
that appear in the constant of Theorem 6 or supremum of norms of the unknown parameters b
and µ. Moreover, the explicit value C? obtained by tracking the constants in the computations
of Section 6 is certainly too large. In practice, we need to inject some further prior knowledge
and calibrate the threshold by some other method, possibly using data. Such approaches in the
context of Lepski’s principle have been developed lately in [26]. 3) The proof relies on Theorem 6
which requires e(F) to be finite. However, this requirement is not heavy, as soon as b and µ have
a minimal global Hölder smoothness, as stems from Proposition 3.

Estimation of µ, data-driven bandwidth. Analogously to the bandwidth-selection method for es-
timation of g following Lepski’s principle, we pick a discrete set GN2 ⊂ [N−1/2, (logN)−1]2 with
cardinality CardGN2 . N . The construction is similar to that of ĝN? (t, a), given in addition the
family of estimators (

π̂Nh (t, a),h ∈ GN2
)

defined in (18). For (t, a) ∈ D, let

ANh (t, a) = max
h′∈GN2

{(
π̂Nh (t, a)− π̂Nh′(t, a)

)2 − (VNh + VNh′)
}

+
,

where

(23) VNh =
(
4(logN)C?N−1/2|Hh1

|1,∞|Kh2
|1,∞

)2
and C? is a (known) upper bound of the constant C of Theorem 6. Let

ĥ
N

(t, a) ∈ argminh∈GN2

(
ANh (t, a) + VNh (t, a)

)
.
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The data-driven Goldenshluger-Lepski estimator of µ(t, a) is defined as

(24) µ̂N? (t, a)$ = µN
ĥN (t,a),ĥ

N
(t,a)

(t, a)$.

Oracle estimates. In order to estimate µ in squared-error loss consistently with the quotient esti-
mator (24), we need a (local) lower bound assumption on g(t, a). Let

DU = {(t, a) ∈ D, a > t},
DL = {(t, a) ∈ D, a < t},

and D− = D \ {t = a} so that D− = DL ∪DU . A sufficient condition is given by the following

Assumption 12. For every (t, a) ∈ D− there exists an open set U(t,a) such that

(25) inf
u∈U(t,a)

b(t− a, t− a+ u)g0(u) ≥ δ if (t, a) ∈ DL

and

(26) g0(t− a) ≥ δ if (t, a) ∈ DU ,

for some δ > 0.

We need some notation. For h = (h1, h2) and h′ = (h′1, h
′
2) in GN2 , we say that h ≤ h′ if h1 ≤ h′1

and h2 ≤ h′2 hold simultaneously. Given a bivariate kernel H ⊗K, the bias at scale h of π = µg
at point (t, a) in the direction ϕ is defined as

(27) BNh (µg)(t, a) = sup
h′≤h,h′∈GN2

∣∣∣ ∫
D

(
(H ⊗K)h′ ◦ ϕ

)
(s− t, u− a)π(s, u)duds− π(t, a)

∣∣∣.
Theorem 13. Work under Assumptions 1, 2, 5 with rN ≤ N−1/2 and some F that satisfies
e(F) <∞ together with Assumption 12. For (t, a) ∈ D− specify µ̂N? (t, a)$ with kernels H,K. The
following oracle inequality holds true

E
[(
µN? (t, a)$ − µ(t, a)

)2]
. inf
h∈GN1

(
BNh (g)(t, a)2 + VNh

)
+ inf

h∈GN2

(
BNh (µg)(t, a)2 + VNh

)
+ δN

for large enough N and small enough $ > 0, with δN = N−1 and up to a constant that depends
on C? and the kernels H,K.

Some remarks: 1) Similar to the case of Theorem 11, other loss functions can be chosen. 2)
We see that the performance of µ̂N? (t, a)$ is similar to the worst performance of the estimation of
the product π = µg and the estimation of g, as is standard in the study of quotient estimator in
the classical Nadaraya-Watson (NW) sense [2, 37]. However, the situation is quite different here
than what is customary in standard nonparametric regression with NW: the estimation of g(t, a) is
actually equivalent to the estimation of a univariate function, while π(t, a) is related to a genuinely
bi-variate estimation problem that suffers from a dimensional effect. Therefore, there is good
hope to obtain here an optimal procedure, as will become transparent under Hölder anisotropic
smoothness scales in the subsequent minimax theorems 18 and 20 below. 3) The same remark
about the choice of C? (and also the threshold $) as in Theorem 11 above are valid in the context
of the estimation of µ(t, a).
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4. Adaptive estimation under anisotropic Hölder smoothness

4.1. The smoothness of the McKendrick Von Foerster equation.

Definition 14. Let α > 0, x0 ∈ R and Ux0
be a neighbourhood of x0. We say that f : Ux0

→ R
belongs to Hα(x0) if3 for every x, y ∈ Ux0

(28) |f (n)(y)− f (n)(x)| ≤ C|y − x|{α}

having α = n+ {α} for a non-negative integer n and 0 < {α} ≤ 1.

We obtain a semi-norm by setting |f |Hα(x0) = supx∈Ux0
|f(x)|+CUx0

(f), where CUx0
(f) is the

smallest constant C for which (28) holds. The extension to multivariate functions is straightfor-
ward:

Definition 15. The bivariate function f belongs to the anisotropic Hölder class Hα1,α2(x0, y0) if

|f |Hα1,α2 (x0,y0) = |f(·, y0)|Hα1 (x0) + |f(x0, ·)|Hα2 (y0) <∞.

We write f ∈ H if for every (t, a) ∈ D, we have f ∈ Hσ,τ (t, a).

Assumption 16. For some α, β, γ, δ > 0, ν ≥ max(γ, δ) + 1 and for every (t, a) ∈ D, we have

b ∈ Hα,β(t, a), µ ∈ Hγ,δ(t, a), g0 ∈ Hν(a).

We give two results about the pointwise smoothness of the solution of the McKendrick Von
Foester equation on D− = D \ {t = a}, depending on the choice of coordinates. The smoothness
of g differs on DU where only mortality affects the population and DL, where both mortality and
birth come into play. Introduce also the change of coordinates ϕ(t, a) = (t, t− a) that maps

DU → ϕ(DU ) = D̃U = {(t, a′) ∈ D, 0 ≤ t ≤ T, a′ < 0}

DL → D̃L = ϕ(DL) = {(t, a′) ∈ D, 0 ≤ t ≤ T, 0 < a′ < t}

onto smoothly. This defines in turn

g̃ : D̃U ∪ D̃L → R+ via g(t, a) = g̃ ◦ ϕ(t, a).

Proposition 17. Work under Assumptions 1, and 16.

(i) We have

g ∈ Hmin(α,β,γ+1,δ),min(α,β,γ+1,δ) on DL and g ∈ Hmin(γ+1,δ),max(γ∧(δ+1),δ) on DU .

(ii) We have the following improvement of the anisotropic smoothness when the parametrisation
is given by g̃:

g̃ ∈ Hmin(γ+1,δ+1),min(α,β,γ+1,δ) on D̃L and g̃ ∈ Hmin(γ+1,δ+1),max(γ∧(δ+1),δ) on D̃U .

The proof of Proposition 17 is relatively straightforward, given explicit representations of the
solution g in terms of b, µ and g0, and is given in Appendix 8.3.

3The definition depends on Ux0 , further omitted in the notation.
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Figure 2. g̃ ∈ Hmin(γ+1,δ+1),min(α,β,γ+1,δ) on D̃L and g̃ ∈ Hmin(γ+1,δ+1),min(γ,δ+1) on D̃U .

4.2. Minimax lower bounds. For α, β > 0 and L > 0, we set

H
α,β
L (t, a) =

{
f ∈ L∞D , |f |∞ + |f |Hα,β(t,a) ≤ L

}
,

where the semi-norm | · |Hα,β(t,a) is defined after Definition 15. We also set, for ε > 0,

L∞D,ε =
{
f ∈ L∞D , inf

(t,a)∈D
f(t, a) ≥ ε

}
Remember that under Assumption 1, any point (b, µ, g0) with b, µ, g0 ∈ L∞D defines a unique

solution g to the McKendrick Von Foester equation (2). Let

s−dens = max(γ, δ) and s−death =
(
γ−1 + δ−1

)−1
.

Under a non-degeneracy condition of the form µ ∈ L∞D,ε, we obtain the following minimax lower
bound:

Theorem 18. Work under Assumptions 1 and 12. Let α, β, γ, δ > 0, ν ≥ max(γ, δ)+1 and L > 0.
For every (t, a) ∈ D−, we have

(29) inf
F

sup
b,µ,g0

E
[
|F − g(t, a)|

]
& N−s

−
dens/(2s

−
dens+1)

and

(30) inf
F

sup
b,µ,g0

E
[
|F − µ(t, a)|

]
& N−s

−
death/(2s

−
death+1),

where the infimum is taken over all estimators and the supremum over

b ∈ H
α,β
L (t, a), µ ∈ H

γ,δ
L (t, a) ∩ L∞D,ε and g0 ∈ Hν

L(t, a).

Some remarks: 1) As for the previous estimation results in Theorems 11 and 13, a glance at the
proof shows that the lower bound actually holds for a wider class of loss functions, including loss in
probability. We keep up to the statements (29) and (30) in expected pointwise absolute value for
simplicity. 2) If we take γ = δ for simplicity, we see that s−dens = γ while s−death = γ/2. Therefore,
although we are estimating bi-variate functions, the estimation difficulty for g(t, a) is really that
of a 1-dimensional function while the estimation of µ(t, a) remains that of a genuinely bivariate
function. Heuristically, there is no information about the population density g(t, a) captured by
(ZNs , s 6= t) while the estimation of the death rate µ(t, a) requires dynamical knowledge from the
process ΓN (ds, du) for which a truly 2-dimensional information domain around (t, a) is required in
order to identify µ(t, a).
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4.3. Adaptive estimation under anisotropic Hölder smoothness. Our next result shows
the performance of gN? (t, a) defined in (21) and gives optimal up to inessential logarithmic factors
in some cases. Moreover, gN? (t, a) is nearly smoothness adaptive. More precisely, let

(31) s+
dens(t, a) = max(γ ∧ (δ + 1), δ)1DU

(t, a) + min(α, β, γ + 1, δ)1DL
(t, a),

and note that s+
dens(t, a) ≤ s−dens(t, a) always.

Theorem 19. Work under Assumptions 1, 2, 5 with rN ≤ N−1/2 and some F that satisfies
e(F) <∞, and Assumption 12. Specify ĝN? (t, a) with a compactly supported kernel of order `0 ≥ 0
and pick

GN1 = (xN1 < xN2 < . . . < xNN )

a subdivision of [N−1/2, (logN)−1] with max1≤i≤N−1(xNi+1 − xNi ) . N−1 so that CardGN1 . N .
For every (t, a) ∈ D− and large enough N , we have

(32) sup
b,µ,g0

(
E
[(
ĝN? (t, a)− g(t, a)

)2])1/2
.
( (logN)2

N

)s+dens(t,a)∧`0/(2s+dens(t,a)∧`0+1)

,

where the supremum is taken over b ∈ H
α,β
L (t, a), µ ∈ H

γ,δ
L (t, a), g0 ∈ Hν

L(t, a) with α, β, γ, δ >
0, ν ≥ max(γ, δ) + 1 and L > 0.

Some remarks: 1) Comparing with the minimax lower bound of Theorem 18, we see that both
upper and lower bounds (29) and (32) agree on DU if δ ≤ γ ≤ δ + 1 and on DL if δ − 1 ≤ γ ≤ δ
(and if α and β are sufficiently large too), provided the order `0 of the kernel K is sufficiently large.
The rates are tight up to an inessential logarithmic factor. We do not know about the optimality
in g beyond this domain, but we see that the difficulty of the estimation of g(t, a) is equivalent
to the difficulty of the univariate function a 7→ g(t, a) for which the time variable t is simply a
parameter: it suffices to piece together the estimators ĝN? (t, a) for every t in order to estimate the
graph (t, a) 7→ g(t, a). 2) While we already know that a logarithmic payment is unavoidable for
a smoothness adaptive estimator (see the classical Lepski-Low phenomenon, [29, 33]) we do not
know whether the order we find in the log term is correct (i.e. (logN)2 versus the classical logN
payment). This stems from Theorem 6 and the mild concentration property as we define it, where
exponential tail are obtained versus subgaussian tails, but this order seems genuinely linked to the
Poissonian behaviour of the noise and it is not clear that we can extend our statistical result in
order to remove the extra logN error-term in (32).

Similarly, µN? (t, a) defined in (24) also shares near optimality in some cases. Define

sL(α, β, γ, δ) =
(

min(γ, δ)−1 + min(α, β, γ + 1, δ)−1
)−1

,

sU (γ, δ) =
(

min(γ, δ)−1 + δ−1
)−1

,

and

(33) s+
death(t, a) = sU (γ, δ)1DU

(t, a) + sL(α, β, γ, δ)1DL
(t, a).

Note that s+
death(t, a) ≤ s−death always.

Theorem 20. Work under Assumptions 1, 2, 5 with rN ≤ N−1/2 and some F that satisfies
e(F) < ∞, and Assumption 12. Specify µN? (t, a) with kernels H,K of order `0 ≥ 0 and pick
GN2 = GN1 × GN1 so that CardGN2 . N

2. For every (t, a) ∈ D− and large enough N , we have

(34) sup
b,µ,g0

(
E
[(
µ̂N? (t, a)− µ(t, a)

)2])1/2
.
( (logN)2

N

)s+death(t,a)∧`0/(2s+death(t,a)∧`0+1)

,
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where the supremum is taken over b ∈ H
α,β
L (t, a), µ ∈ H

γ,δ
L (t, a), g0 ∈ Hν

L(t, a), with α, β, γ, δ >
0, ν ≥ max(γ, δ) + 1 and L > 0.

Some remarks: 1) The same remark as 2) after the statement or Theorem 19 holds here. 2)
The minimax optimality situation is somewhat clearer for estimating µ: we see that we have near
optimality on DU as soon as γ ≤ δ, while the upper and lower bounds only agree if γ ≤ δ ≤ γ+1 on
DL (and if α and β are sufficiently large too), provided the order `0 of the kernel K is sufficiently
large. Thus situation is somewhat similar to the estimation of g on DU , see Theorem 19 above.
3) The rate of estimation is triggered by the smoothness of π = µg since the estimation of the
quotient g will always be better, for

s+
death(t, a) ≤ s+

dens(t, a) for every (t, a) ∈ D−

always. However, in order to achieve optimality, we need to optimise the approximation property
of π by looking at the smoothness of π̃ = µ̃g̃, with µ = µ̃ ◦ ϕ. This benefit is obtained thanks to
Proposition 17 and is given in details in the proof. We would lose by a polynomial order in the
rate of convergence given in (34) if we used a kernel of the form (H ⊗K)h instead of (H ⊗K)h ◦ϕ
for the estimation of the numerator π in the representation µ = π/g.

5. Numerical illustration

We briefly explore the performance of our estimators on simulated data. We use the following
parameters:

(i) The initial condition g0 is taken as the density of Gaussian random variable centred in 40
with variance of 152 (i.e. a standard deviation of approximately 12 years), conditioned on
living between 0 and 120.

(ii) We pick b(t, a) = 1{120≤a≤40}. Although b is not globally Hölder continuous, we still have
(and can prove) similar results for such simple piecewise constant functions.

(iii) We pick µ(t, a) = 4 · 10−2 exp(7.4 · 10−3a) exp(−5 · 10−3t). We pick a relatively high death
rate in order to guarantee sufficiently many events of death for the estimation of µ(t, a)
and avoid artefacts.

We consider the domain D = [0, 20] × [0, 120] which means T = 20 and a maximal possible age
of 120. We estimate g on the grid Gg = Tg × Ag, with Tg = {k × 1.005, 0 ≤ k < 20} and
Ag = {k × 0.2002, 0 ≤ k < 600}. We estimate the functions µ and π = µ · g on the grids
Gµ = Tµ ×Aµ, with Tµ = Tg and Aµ = {k × 1.0008, 0 ≤ k < 120}.

We first estimate g and π = µ · g and obtain consistent results in the regime N = 4000.
We end this section by exploring the estimation of µ via our quotient estimator.

6. Proof or Theorem 6

This section is devoted to the proof of the concentration properties of the model stated in
Theorem 6. Recall that w1 ∈ L time

D and w2 ∈ L
age
D are two continuous weight functions. We

introduce two fundamental processes for which we will establish concentration properties:

MN
w1,w2

(F)t = sup
f∈F

∣∣ ∫ t

0

w1(s)MN
s

(
w2(s− ·)fs

)
ds
∣∣,

where MN
t (f) is defined in (36) below and

MN
w2

(F)t = sup
f∈F

∣∣MN
t

(
w2(t− ·)ft

)∣∣.
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Figure 3. Left: true population density g. Right: ĝN
ĥN

with N = 4000 over a single

simulation of ZN . X-axis, Y -axis: units in years.
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Figure 4. Left: true π = µ · g. Right: implementation of π̂N
ĥ
N with N = 4000. X-axis,

Y -axis: units in years.

6.1. A first stability result.

Proposition 21. Work under Assumptions 1 and 2. Then WN
w1,w2

(F)T is bounded above by

|w1|1WN
w2

(F)0 + c−1
0

∫ T

0

|w1(t)|
(
WN
w2,1(F)t + WN

1,w2
(F)t

)
dt+ MN

w1,w2
(F)T ,

where c0 is defined in Assumption 2.

Proof. By (7), the action 〈ZNt , ft〉 of ZNt (da) for f ∈ L∞D can be written as

〈ZNt , ft〉 =

∫ ∞
0

ft(t+ a)ZN0 (da)

+

∫ t

0

∫ ∞
0

(
b(s, a)ft(t− s)− µ(s, a)ft(a+ t− s)

)
ZNs (da)ds+MN

t (ft),(35)
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Figure 5. For fixed t = 10, and N = 4000, comparison between the true function (solid
black) and a (pointwise) 95% confidence interval based on 50 Monte-Carlo simulations.
Oracle estimator in green and our adaptative estimator in yellow. Left: Estimation of
a 7→ g(10, a). Right: Estimation of a 7→ π(10, a) = µ(10, a)g(10, a). X-axis: units in
years, Y-axis: rate per unit of time.
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Figure 6. log10-integrated error of pointwise estimation against approximatively
log10N based on 50 Monte-carlo simulations. We compare the theoretical line given
by the minimax theory (green) with a linear regression given by the oracle estima-
tion (blue) and our estimation method (orange) for different values of log10N at
two given points in DL and DU respectively. Left: estimation of g(t, a) at (t, a) =
(16.08, 20.82) and (t, a) = (19.10, 0.40). Right: estimation for π(t, a) = µ(t, a)g(t, a) at
(t, a) = (14.07, 86.07) and (t, a) = (11.06, 0.00). X-axis: integers 0 to 5 correspond to
N = 102, 5 · 102, 103, 2 · 103, 4 · 103, 8 · 103.

with

(36) MN
t (ft) = N−1

∫ t

0

∫
{i≤nN

s−
}×R+

(
ft(t−s)1{θ≤b}−ft(ai(ZNs−)+t−s)1{b≤θ≤b+µ}

)
Q̃(ds, di, dθ).

In the above formula, nNt = N〈ZNt ,1〉 is the size of the population at time t, the functions b

and µ in the indicators are evaluated at points (s, ai(Z
N
s−)) and Q̃(ds, di, dθ) = Q(ds, di, dϑ) −
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Figure 7. For fixed t = 10, and N = 4000, comparison between the true function (solid
black) and a (pointwise) 95% confidence interval based on 50 Monte-Carlo simulations.
Oracle estimator in green and our adaptative estimator in yellow. Estimation of a 7→
µ(10, a). Left: $ = 10−2. Right: $ = 5 · 10−3. X-axis: units in years, Y-axis: rate
per unit of time. In order to improve on these results, one must either lower down $ or
expect to be in a more favourable regime N � 4000.

ds
(∑

k≥1 δk(di)
)
dϑ is the compensated measure of the Poisson measure Q.

Apply now (35) to the test function a 7→ w2(t − a)ft(a) with f ∈ F, substract g(t, a)da in the
equation above, noting that g(t, a) solves (2), set ηNt (da) = ZNt (da)− g(t, a)da and obtain∫

R+

w2(t− a)ft(a)ηNt (da) =

∫
R+

w2(−a)ft(t+ a)ηN0 (da)

+

∫ t

0

∫
R+

(
w2(s)ft(t− s)b(s, a)− w2(s− a)ft(a+ t− s)µ(s, a)

)
ηNs (da)ds+MN

t (w2(t− ·)ft).

Multiplying each term by ω1(t), integrating from 0 to T and taking absolute values, we also have

∣∣ ∫ T

0

w1(t)

∫
R+

w2(t− a)ft(a)ηNt (da)dt
∣∣ ≤ I + II + III + IV,

with

I =
∣∣ ∫ T

0

w1(t)

∫
R+

w2(−a)ft(t+ a)ηN0 (da)dt
∣∣,

II =
∣∣ ∫ T

0

w1(t)

∫ t

0

∫
R+

w2(s)ft(t− s)b(s, a)ηNs (da)dsdt
∣∣,

III =
∣∣ ∫ T

0

w1(t)

∫ t

0

∫
R+

w2(s− a)ft(a+ t− s)µ(s, a)ηNs (da)dsdt
∣∣,

IV =
∣∣ ∫ T

0

w1(t)MN
t (w2(t− ·)ft)dt

∣∣.
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By Assumption 2, we have ft(t+ a) ∈ F therefore I ≤WN
w2

(F)0. Using that c0ft(t− s)b(s, a) ∈ F,
we also have∣∣ ∫ t

0

∫
R+

w2(s)ft(t− s)b(s, a)ηNs (da)ds
∣∣ ≤ c−1

0 sup
f∈F

∣∣ ∫ t

0

∫
R+

w2(s)1(s− a)ft(a)ηNs (da)ds
∣∣

= c−1
0 Ww2,1(F)t,

Therefore II ≤ c−1
0

∫ T
0
|w1(t)|Ww2,1(F)tdt. In the same way,

∣∣ ∫ t

0

∫
R+

w2(s− a)ft(a+ t− s)µ(s, a)ηNs (da)ds
∣∣ ≤ c−1

0 sup
f∈F

∣∣ ∫ t

0

∫
R+

1(s)w2(s− a)ft(a)ηNs (da)ds
∣∣

= c−1
0 W1,w2

(F)t

and III ≤ c−1
0

∫ T
0
|w1(t)|W1,w2

(F)tdt follows likewise. Finally,

|IV | ≤ sup
f∈F

∣∣ ∫ T

0

w1(t)MN
t (w2(t− ·)ft)dt

∣∣ = MN
w1,w2

(F)t.

Summing up the estimates, we obtain the conclusion noting that

sup
f∈F

∣∣ ∫ T

0

w1(t)

∫
R+

w2(t− a)ft(a)ηNs (da)ds
∣∣ = WN

w1,w2
(F)T

since F is stable under f 7→ −f by Assumption 2. �

Proposition 22. Work under Assumptions 1 and 2 . We have

WN
w1,w2

(F)T . |w1|1 max
(k1,k2)

|k1|L1([0,T ])W
N
k2

(F)0 + max
(l1,...,l4)

|l1|L1([0,T ])|l2|L1([0,T ])M
N
l3,l4(F)T ,

where (k1, k2) and (l1, . . . , l4) range over permutations of (1, w2) and (1, 1, w1, w2) respectively. The
symbol . means inequality up to an explicitly computable constant depending on T and c0 from
Assumption 2.

Proof. Apply first Proposition 21 with w1 = 1 and w2 = 1 to obtain

WN
1,1(F)T ≤ TWN

1 (F)0 + 2c−1
0

∫ T

0

WN
1,1(F)tdt+ MN

1,1(F)T

≤
(
TWN

1 (F)0 + MN
1,1(F)T

)
e2c−1

0 T

= G(1),N (F)T ,

say, by Grönwall lemma. Next, by Proposition 21 applied to (w2, 1), we obtain

WN
w2,1(F)T ≤ |w2|L1([0,T ])W

N
1 (F)0 + 2c−1

0

∫ T

0

|w2(t)|WN
1,1(F)tdt+ MN

w2,1(F)T

≤ |w2|L1([0,T ])

(
WN

1 (F)0 + 2c−1
0 G(1),N (F)T

)
+ MN

w2,1(F)T

= G(2),N
w2

(F)T ,
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say. Apply now Proposition 21 with (1, w2) so that

WN
1,w2

(F)T ≤ TWN
w2

(F)0 + c−1
0

∫ T

0

(
WN
w2,1(F)t + WN

1,w2
(F)t

)
dt+ MN

1,w2
(F)T

≤ TWN
w2

(F)0 + c−1
0 TG(2),N

w2
(F)T +

∫ T

0

WN
1,w2

(F)tdt+ MN
1,w2

(F)T

≤
(
TWN

w2
(F)0 + CTG(2),N

w2
(F)T + MN

1,w2
(F)T

)
ec
−1
0 T

= G(3),N
w2

(F)T

say, by the previous estimate and Grönwall lemma again. By Proposition 21 and the two previous
bounds, we infer that WN

w1,w2
(F)T is less than

|w1|L1([0,T ])W
N
w2

(F)0 + c−1
0 |w1|L1([0,T ])

(
G(2),N
w2

(F)T + G(3),N
w2

(F)T
)

+ MN
w1,w2

(F)T .

Expanding the estimates G
(2),N
w2 (F)T and G

(3),N
w2 (F)T in terms of their appropriate arguments con-

cludes the proof. �

By Proposition 22, we see that the stability of the system is controlled by the initial approxi-
mation WN

w2
(F)0 (including w2 = 1) and the propagation of the stochastic term MN

w1,w2
(F)T . We

now turn to that latter term.

6.2. Stability of the stochastic term. For f ∈ L
age
D , let

M̃N
w1,w2

(f)t =

∫ t

0

w1(s)MN
s

(
w2(s− ·)f

)
ds

and
M̃N

w2
(f)t = MN

t

(
w2(t− ·)f

)
.

In particular, since F is stable under f 7→ −f , we have

(37) sup
f∈F

M̃N
w1,w2

(f)T = sup
f∈F

∣∣M̃N
w1,w2

(f)T
∣∣ = MN

w2
(F)T

and
sup
f∈F

M̃N
w2

(f)T = sup
f∈F

∣∣M̃N
w2

(f)T
∣∣ = MN

w2
(F)T .

For κ ≥ 0, consider the event

(38) ANκ =
{

sup
0≤t≤T

〈ZNt ,1〉 ≤ exp(|b|∞T )(1 + κ)
}
,

and for λ ≥ 0, set

ϑNw1,w2
(f)λ = 2NT |w1|−1

∞ exp(|b|∞T )(|b|∞ + |µ|∞
)
ρ
(
N−1λ|w1w2|∞|f |∞

)
,

where ρ(x) = ex − x− 1.

Proposition 23. Work under Assumptions 1. For large enough N , we have

(39)

∫ ∞
0

P
(
(ANκ )c

)
eκdκ ≤ 1

2

and for λ ≥ 0,

(40) E
[

exp
(
λ
∣∣M̃N

w1,w2
(f)T − M̃N

w1,w2
(g)T

∣∣)1ANκ

]
≤ 2 exp

(
|w1|1(1 + κ)ϑNw1,w2

(f − g)λ
)
.

Moreover, (40) remains true with M̃N
w2

(f)T − M̃N
w2

(g)T , replacing formally w1 by 1 in the right-
hand side of the inequality.
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Proof. We first prove (39), namely∫ ∞
0

eκP
(

sup
0≤t≤T

〈ZNt ,1〉 > exp(|b|∞T )(1 + κ)
)
dκ ≤ 1

2 .

Step 1) Consider the equation

Z̃Nt = τtZ
N
0 +N−1

∫ t

0

∫
N×R+

δt−s(da)1{0≤ϑ≤|b|∞,i≤N〈Z̃N
s−
,1〉}Q1(ds, di, dϑ)

defined on the same probability space as (Zt(da))0≤t≤T . Applying (35) with b = |b|∞, µ = 0 and
ft = 1, we obtain

〈Z̃Nt ,1〉 = 〈Z̃N0 ,1〉+ |b|∞
∫ t

0

〈Z̃Ns ,1〉ds+MN
t (1),

and for every λ ≥ 0, by Itô’s formula:

exp
(
λ〈Z̃Nt ,1〉

)
= exp

(
λ〈Z̃N0 ,1〉

)
+N |b|∞

(
eλ/N − 1

) ∫ t

0

〈Z̃Ns ,1〉 exp
(
λ〈Z̃Ns ,1〉

)
ds+ ξt,

where (ξt)0≤t≤T is a local martingale. By localisation, one can prove that E[ξt] = 0. Writing

f(t, λ) = E[exp
(
λ〈Z̃Nt ,1〉

)
], it follows that

(41) f(t, λ) = f(0, λ) +N |b|∞
(
eλ/N − 1

) ∫ t

0

∂λf(s, λ)ds.

The solution of the transport equation (41) at time t = T with initial condition f(0, λ) = f0(λ) is
given by

f(T, λ) = f0

(
N log

eλ/N−|b|∞T

1− (1− e−|b|∞T )eλ/N

)
≤ exp

(
qN log

eλ/N−|b|∞T

1− (1− e−|b|∞T )eλ/N

)
,

where the last inequality stems from f0(λ) = E[exp(λ〈Z̃N0 ,1〉)] = E[exp(λ〈ZN0 ,1〉)] ≤ eqλ for some
q by Assumption 1 (ii).

Step 2) With the notation r = exp(−|b|∞T ), the usual Chernoff bound argument yields

logP
(
〈Z̃NT ,1〉 > r−1(1 + κ)

)
≤ − λr−1(1 + κ) + qN log reλ/N

1−(1−r)eλ/N

≤ −Nr−1(1 + κ) log
((

1− rq
κ+1

)
1

1−r
)

+ qN log κ+1−rq
1−r

≤ logC1 − C2Nκ

for the choice λ = N log
(
(1 − rq

κ+1 ) 1
1−r
)

and for two constants Ci = Ci(q, r) > 0 that do not

depend on N . Noting that by construction, supt≤T 〈ZNt ,1〉 ≤ 〈Z̃NT ,1〉, we finally obtain∫ ∞
0

eκP
(

sup
0≤t≤T

〈ZNt ,1〉 > r−1(1 + κ)
)
dκ ≤

∫ ∞
0

eκP
(
〈Z̃NT ,1〉 > r−1(1 + κ)

)
dκ

≤ C1

∫ ∞
0

e(1−C2N)κdκ =
C1

C2N − 1
≤ 1

2

for N ≥ (1 + 2C1)/C2, and (39) is proved.

Step 3) We now turn to (40). For t0 ∈ [0, T ] and f ∈ L
age
D , define

(42) BNt,t0(f) = N

∫ t∧t0

0

∫
R+

(
b(s, a)ρ

(
N−1f(t0 − s)

)
+ µ(s, a)ρ

(
N−1f(a+ t0 − s)

))
ZNs (da)ds.
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Lemma 24. For every t0 ∈ [0, T ] and f, g ∈ L
age
D , there exists a nonnegative random variable

ΛNt0,t0(f − g) with E[ΛNt0,t0(f − g)] = 1 such that

E
[

exp
(
MN
t0 (f)−MN

t0 (g)
)]

= E
[
ΛNt0,t0(f − g) expBNt0,t0(f − g)

]
.

Proof. Fix t0 ∈ [0, T ] and for f ∈ L
age
D , define the random process

M̃N
t,t0(f) = N−1

∫ t∧t0

0

∫
{i≤nN

s−
}×R+

(
f(t0− s)1{b≤θ}− f(ai(Z

N
s−) + t0− s)1{b≤θ≤b+µ}

)
Q̃(ds, di, dθ),

obtained by keeping t = t0 fixed in the integrand of MN
t∧t0(f) defined in (36). By construction,

(M̃t,t0(f))0≤t≤T is a martingale. In turn, a simple consequence of Itô’s formula, see e.g. Tran [43]
shows that the random process

t 7→ ΛNt,t0(f) = exp
(
M̃N
t,t0(f)−BNt,t0(f)

)
is a martingale such that E[ΛNt,t0(f)] = 1. Noting that MN

t0 (f) = M̃N
t0,t0(f) at t = t0, we also have

E
[

exp
(
MN
t0 (f)−MN

t0 (g)
)]

= E
[

exp
(
MN
t0 (f − g)

)]
= E

[
exp

(
M̃N
t0,t0(f − g)

)]
= E

[
ΛNt0,t0(f − g) expBNt0,t0(f − g)

]
.

�

Let λ ≥ 0. We substitute f − g by a 7→ λw1(t0)w2(t0 − a)(f(a) − g(a)) and look for an upper
bound for

BNt0,t0
(
λw1(t0)w2(t0 − ·)(f − g)

)
.

Step 4) Observe first that ρ(x) = ex − x− 1 implies that for any nonnegative function ψ ∈ L
age
D ,

we have

ρ
(
N−1λψ(a′)(f(a)− g(a))

)
≤ N−1ψ(a′)|f − g|∞

∫ λ

0

(
exp(κN−1|ψ|∞|f − g|∞)− 1

)
dκ

=
ψ(a′)

|ψ|∞
ρ
(
N−1λ|ψ|∞|f − g|∞

)
.

Therefore, with ψ(a′) = w1(t0)w2(t0 − a′) and a′ = t0 − s, we derive

ρ
(
N−1λw1(t0)w2(s)(f(t0 − s)− g(t0 − s))

)
≤ w1(t0)w2(s)

|w1w2|∞
ρ
(
N−1λ|w1w2|∞|f − g|∞

)
and

ρ
(
N−1λw1(t0)w2(s−a)(f(a+ t0−s)−g(a+ t0−s))

)
≤ w1(t0)w2(s− a)

|w1w2|∞
ρ
(
N−1λ|w1w2|∞|f−g|∞

)
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with a′ = a+ t0 − s follows likewise. Plugging these two estimates in the definition (42) of BNt0,t0 ,

we infer on ANκ = {sup0≤t≤T 〈ZNt ,1〉 ≤ exp(|b|∞T )(1 + κ)} the chain of inequalities

BNt0,t0
(
λw1(t0)w2(t0 − ·)(f − g)

)
≤N(|b|∞ + |µ|∞)

w1(t0)

|w1w2|∞
ρ
(
N−1λ|w1w2|∞|f − g|∞

) ∫ t0

0

∫
R+

(
w2(s) + w2(s− a)

)
ZNs (da)ds

≤N(|b|∞ + |µ|∞)
w1(t0)

|w1|∞
ρ
(
N−1λ|w1w2|∞|f − g|∞

)
2T sup

0≤t≤T
〈ZNt ,1〉

≤N(|b|∞ + |µ|∞)
w1(t0)

|w1|∞
ρ
(
N−1λ|w1w2|∞|f − g|∞

)
exp(|b|∞T )(1 + κ)2T

=w1(t0)(1 + κ)ϑNw1,w2
(f − g)λ.

We derive

exp
(
λw1(t0)MN

t0 (w2(t0 − ·)(f − g))
)
1ANκ

(43)

≤ exp
(
w1(t0)(1 + κ)ϑNw1,w2

(f − g)λ
)
ΛNt0,t0(λw1(t0)w2(t0 − ·)(f − g)

)
1ANκ

.

Step 5) For every integer n ≥ 1 and λ ≥ 0, f ∈ L
age
D , define

∆N,n
w1,w2

(f − g)λ = exp
(
λTn−1

n∑
i=1

w1(iTn−1)MN
iTn−1(w2(iTn−1 − ·)(f − g))

)
.

Applying repeatedly (43) with t0 = iTn−1 and integrating with respect to EANκ
[·] = P(ANκ )−1E[·1ANκ

],
we obtain

EANκ

[
∆N,n
w1,w2

(f − g)λ
]
≤ exp

(
Tn−1

n∑
i=1

w1(iTn−1)(1 + κ)ϑNw1,w2
(f − g)λ

)
×

× EANκ

[ n∏
i=1

ΛNiTn−1,iTn−1(λTw1(t0)w2(t0 − ·)(f − g)
)1/n]

≤ exp
(
Tn−1

n∑
i=1

w1(iTn−1)(1 + κ)ϑNw1,w2
(f − g)λ

)
P
(
ANκ
)−1

,

where we used the fact that the geometric mean is controlled by the arithmetic mean:

n∏
i=1

ΛNiTn−1,iTn−1(λw1(t0)w2(t0 − ·)(f − g)
)1/n ≤ n−1

n∑
i=1

ΛNiTn−1,iTn−1(λw1(t0)w2(t0 − ·)(f − g)
)

and the fact that

EANκ

[
ΛNiTn−1,iTn−1(λw1(t0)w2(t0 − ·)(f − g)

)]
≤ P

(
ANκ
)−1E

[
ΛNiTn−1,iTn−1(λw1(t0)w2(t0 − ·)(f − g)

)]
= P

(
ANκ
)−1

since ΛNiTn−1,iTn−1(λw1(t0)w2(t0 − ·)(f − g)
)

has expectation 1 by Lemma 24. Using

lim inf
n→∞

∆N,n
w1,w2

(f − g)λ = exp
(
λ

∫ T

0

w1(s)MN
s (w2(s− ·)(f − g))ds

)
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by convergence of Riemann sums, letting n→∞, we obtain by Fatou lemma

(44) EANκ

[
exp

(
λ

∫ T

0

w1(s)MN
s (w2(s−·)(f−g))ds

)]
≤ P

(
ANκ
)−1

exp
(
|w1|1(1+κ)ϑNw1,w2

(f−g)λ
)
.

Noting that Lemma 24 also holds for −MN
s (f) and applying (44) to −MN

s (w2(s − ·)(f − g)), we
infer

EANκ

[
exp

(
λ
∣∣ ∫ T

0

w1(s)MN
s

(
w2(s− ·)(f − g)

)
ds
∣∣)] ≤ 2P

(
ANκ
)−1

exp
(
|w1|1(1 + κ)ϑNw1,w2

(f − g)λ
)
,

but since
∫ T

0
w1(s)MN

s

(
w2(s− ·)(f − g)

)
ds = M̃N

w1,w2
(f)T − M̃N

w1,w2
(g)T , the estimate (40) is es-

tablished.

Step 6) It remains to prove (40) for MN
w2

(f − g)T . We first integrate (43) for w1 = 1 at t0 = T so
that |w1|1 = T and proceed exactly as in Step 5) to obtain

EANκ

[
exp

(
λMN

T (w2(T − ·)(f − g))
)]
≤ P(ANκ )−1 exp

(
T (1 + κ)ϑN1,w2

(f − g)λ
)
.

Applying the same argument for −MN
T , we also have

EANκ

[
exp

(
λ
∣∣MN

T (w2(T − ·)(f − g))
∣∣)] ≤ 2P(ANκ )−1 exp

(
T (1 + κ)ϑN1,w2

(f − g)λ
)

which is the desired result.
�

Proposition 23 is the main ingredient to obtain a concentration inequality for the processes

(M̃N
w2

(f)T )f∈F and (M̃N
w1,w2

(f)T )f∈F, and in turn, a deviation bound for Mw1,w2(F)T and Mw2(F)T
thanks to (37). The proof is given in Section 6.4 below.

More precisely, consider the apparently more general situation where we have a real-valued
process ξ(f)f∈F indexed by some metric set (F, d) and a family of events A(κ)κ>0 satisfying the
following properties:

(45)

∫ ∞
0

P
(
A(κ)c

)
eκdκ ≤ 1

2 ,

and

(46) E
[

exp
(
λ|ξ(f)− ξ(g)|

)
1A(κ)

]
≤ 2 exp

(
c1(1 + κ)ρ(c2d(f, g)λ)

)
,

for every λ ≥ 0 and some c1, c2 > 0.

Proposition 25. Assume that ξ(f)f∈F and A(κ)κ>0 satisfy (45) and (46) and that ξ(f0) = 0 for
some f0 ∈ F. Then there exists a choice $ = $(c1, c2) > 0 such that for every u ≥ 0:

P
(

sup
f∈F
|ξ(f)| ≥ 8

(
u+

∫ diam
d̃
(F)

0

log
(
1 + N(F, d̃, ε)

)
dε
))
≤
(
eu/diam

d̃
(F) − 1

)−1
,

where d̃ = $d, diamd̃(F) = supf,g∈F d̃(f, g) and N(F, d̃, ε) is the minimal number of balls of d̃-size
ε > 0 that are necessary to cover F.

Remark 26. We show in Remark 36 at the end of the proof of Proposition 25 that if c1 ≥ 308,
we may pick $(c1, c2) = k

√
c1c2, with k = 2

√
77.

The proof of Proposition 25 relies on standard concentration techniques and goes back to Dudley
[14]. We use the classical textbook of Ledoux-Talagrand [28] and detail the computations in the
Appendix section 8. Combining Proposition 23 and 25, we obtain the following
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Theorem 27. Work under Assumptions 1. Assume diam|·|∞F ≤ 1 and

e(F) =

∫ 1

0

log
(
1 + N(F, | · |∞, ε)

)
dε <∞.

For large enough N , there exists an explicit choice of C = C(e(F), T, |b|∞, |µ|∞) > 0, given in the
proof below, such that for every u ≥ 0:

(47) P
(
MN

w1,w2
(F)T ≥ (1 + u)CN−1/2|w1|1,∞|w2|∞

)
≤ (eue(F) − 1)−1

and

(48) P
(
MN

w2
(F)T ≥ (1 + u)CN−1/2|w2|∞

)
≤ (eue(F) − 1)−1.

Proof. We plan to apply Proposition 25 with ξ(f) = M̃N
w1,w2

(f)T , having ξ(f0) = 0 for f0 = 0.

We take A(κ) = ANκ defined in (38) and notice that (45) is satisfied by (39). Also, we have (46)
by (40) with

(49) c1 = 2NT |w1|1|w1|−1
∞ exp(|b|∞T )(|b|∞ + |µ|∞

)
and c2 = |w1w2|∞N−1,

for the metric d(f, g) = |f − g|∞. Setting d̃ = $d with $ taken from Proposition 25, we have

diamd̃(F) = $ diamd(F) ≤ $ by assumption and also N(F, d̃, ε) ≤ N(F, d, ε/$). It follows that∫ diam
d̃
(F)

0

log
(
1 + N(F, d̃, ε)

)
dε ≤

∫ $

0

log
(
1 + N(F, d, ε/$)

)
dε = $ e(F),

which is finite by assumption. Since MN
w1,w2

(F)T = supf∈F |ξ(f)| = supf∈F ξ(f), remember (37),
we may apply Proposition 25 and obtain, for every u ≥ 0,

P
(
MN

w1,w2
(F)T ≥ 8($ e(F) + u)

)
≤ (eu/$ − 1)−1,

or equivalently

P
(
MN

w1,w2
(F)T ≥ 8$ e(F)(1 + u)

)
≤ (eue(F) − 1)−1.

By Remark 26 (see also Remark 36), we pick $ = $(c1, c2) = k
√
c1c2 with k = 2

√
77, assuming

c1 ≥ 308 which is satisfied for sufficiently large N by (49). Using (49) again, it follows that

8k
√
c1c2e(F)(1 + u) = (1 + u)8k e(F)e

1
2 |b|∞T

√
2T (|b|∞ + |µ|∞)1/2N−1/2(|w1|1|w1|∞)1/2|w2|∞

= (1 + u)CN−1/2|w1|1,∞|w2|∞,

say, with

(50) C = C(e(F), T, |b|∞, |µ|∞) = 8k e(F)e
1
2 |b|∞T

√
2T (|b|∞ + |µ|∞)1/2

and (47) follows. The proof of (48) is obtained in the same way and is omitted. �

Remark 28. (i) Up to inflating the constant C by a multiplicative factor max(1, e(F)), we see
that Theorem 27 implies a mild concentration property for

(|w1|1,∞|w2|∞)−1MN
w1,w2

(F)T and |w2|−1
∞MN

w2
(F)T

with rate CN−1/2.
(ii) The initial bound |w2|1,∞ of Assumption 5 inflates to |w2|∞ in (48). This defect actually

has dramatic consequences when applied to subsequent statistical estimation: w2 becomes a kernel
depending on N that mimicks a Dirac mass which is not stable for the | · |∞ metric. Improving on
this estimates is actually the key difficulty in the proof of Theorem 6.
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6.3. Proof of Theorem 6. The weakness of Theorem 27 lies in the use of Proposition 23, where
the control (40) somehow needs to be improved. This improvement however uses the results of
Theorem 27 that we are going to iterate.

Step 1) By Proposition 22, we have WN
w1,w2

(F)T . I + II, with

I = |w1|1 max
(k1,k2)

|k1|L1([0,T ])W
N
k2

(F)0

and

II = max
(l1,...,l4)

|l1|L1([0,T ])|l2|L1([0,T ])M
N
l3,l4(F)T .

Since |w1|1 max(k1,k2) |k1|L1([0,T ])W
N
k2

(F)0 . maxk=1,w2
WN
k (F)0 up to a constant that only de-

pends on T , |w1| and |w2|L1([0,T ]), we have by Assumption 5 that (|w1|1,∞|w2|∞)−1I has a mild
concentration property (actually, we can even replace |w2|∞ by |w2|1,∞). Next, by Theorem 27,
the mild concentration property also holds for

(|w1|1,∞|w2|∞)−1WN
k,l(F)T , with (k, l) ∈ {(1, 1), (w2, 1), (1, w2)}

up to an appropriate change in the constants, and therefore it carries over to (|w1|1,∞|w2|∞)−1II
since max(l1,...,l4) |l1|L1([0,T ])|l2|L1([0,T ])M

N
l3,l4

(F)T .
∑

(k,l) W
N
k,l(F)T where the summation holds

over {(1, 1), (w2, 1), (1, w2)}. In turn,

(|w1|1,∞|w2|∞)−1WN
w1,w2

(F)T

has a mild concentration property of order C ′max(rN , N
−1/2), for some C ′ > 0 that depends on

c0 of Assumption 2, T , |w1|1, |w2|L1([0,T ]) and the constant C(e(F), T, |b|∞, |µ|∞) of Theorem 27
defined in (50).

Step 2) We next carefully revisit Step 4) of the proof of Proposition 23. We have

BNt0,t0
(
λw1(t0)w2(t0 − ·)(f − g)

)
≤N(|b|∞ + |µ|∞)

w1(t0)

|w1w2|∞
ρ
(
N−1λ|w1w2|∞|f − g|∞

) ∫ T

0

∫
R+

(
w2(s) + w2(s− a)

)
ZNs (da)ds.

Adding and substracting the limit g(t, a)da, we also have∫ T

0

∫
R+

(
w2(s) + w2(s− a)

)
ZNs (da)ds

≤
∫ T

0

∫ ∞
0

(
w2(s) + w2(s− a)

)
g(s, a)dads+ WN

w2,1(F)T + WN
1,w2

(F)T

≤ |w2|g + WN
w2,1(F)T + WN

1,w2
(F)T ,

where, for f ∈ F
age
b we set

(51) |f |g = |f |L1([0,T ]) sup
0≤t≤T

∫ ∞
0

g(t, a)da+ T |f |1|g|∞ ∧ |f |∞|g|1.

This bound is tighter than the estimate 2|w2|∞T sup0≤t≤T 〈ZNt ,1〉 that we used in Step 4) of the
proof of Proposition 23. Introduce now the family of events

BNκ =
{
WN
w2,1(F)T ≤ 5C ′max(rN , N

−1/2)|w2|1,∞(1 + κ)
}
, κ > 0,
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and

CNκ =
{
WN

1,w2
(F)T ≤ 5C ′max(rN , N

−1/2)
√
T |w2|∞(1 + κ)

}
, κ > 0,

where C ′ is the constant of Step 1). On BNκ ∩ CNκ , we now have

BNt0,t0
(
λw1(t0)w2(t0 − ·)(f − g)

)
≤N(|b|∞ + |µ|∞)

w1(t0)

|w1w2|∞
ρ
(
N−1λ|w1w2|∞|f − g|∞

)(
|w2|g + CNw2

)
(1 + κ)

=w1(t0)(1 + κ)ϑ̃Nw1,w2
(f − g)λ,

say, with

(52) CNw2
= 5C ′max(rN , N

−1/2)
(
|w2|1,∞ + |w2|∞

√
T
)

and

ϑ̃Nw1,w2
(f − g)λ = N(|b|∞ + |µ|∞)

|w2|g + CNw2

|w1w2|∞
ρ
(
N−1λ|w1w2|∞|f − g|∞

)
.

We thus have established that (40) of Proposition 23 holds with ϑ̃Nw1,w2
(f − g)λ instead of

ϑNw1,w2
(f − g)λ and BNκ ∩ CNκ instead of ANκ .

Step 3) We now prove an analogous bound as (39) replacing ANκ by BNκ ∩CNκ . Applying Theorem 27
with (w1, w2) = (w2, 1) up to an inflation of C by max(e(F), 1) with the substitution 1+u = 5(1+κ),
we obtain

P
(
(BNκ )c

)
= P

(
WN
w2,1(F)T ≥ 5C ′max{rN , N−1/2}|w2|1,∞(1 + κ)

)
= P

(
WN
w2,1(F)T ≥ (1 + u)C ′max(rN , N

−1/2)|w2|1,∞
)

≤ (exp(u)− 1)−1 = (exp(4 + κ+ 4κ)− 1)−1 ≤ e−5κ.

It follows that ∫ ∞
0

P
(
(BNκ )c

)
eκdκ ≤

∫ ∞
0

e−4κdκ = 1
4 .

In the same way, applying Theorem 27 with (w1, w2) = (1, w2) and up to an inflating the constant
C again, we obtain

P
(
(CNκ )c

)
= P

(
WN

1,w2
(F)T ≥ 5C ′max(rN , N

−1/2)|w2|∞
√
T (1 + κ)

)
≤ e−5κ

Hence
∫∞

0
P
(
(CNκ )c

)
eκdκ ≤ 1

4 follows likewise and (39) is proved with BNκ ∩ CNκ in place of ANκ .

Step 4) We may now reproduce the proof of Theorem 27 with our new estimates from Step 2) :
the estimate (49) now becomes

c′1 = N(|b|∞ + |µ|∞)
|w1|1
|w1w2|∞

(
|w2|g + CNw2

)
and c′2 = c2 = N−1|w1w2|∞,

and thanks to Step 3), we may apply in this new setting Proposition 25 to obtain

P
(
MN

w1,w2
(F)T ≥ 8$(c′1, c

′
2) e(F)(1 + u)

)
≤ (eue(F) − 1)−1.
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Again, we may pick $ = $(c′1, c
′
2) = k

√
c′1c
′
2 with k = 2

√
77, assuming c1 ≥ 308 which is true for

N is large enough, and it follows that

8k
√
c′1c
′
2e(F)

= 8k e(F)(|b|∞ + |µ|∞)1/2N−1/2|w1|1,∞|w2|1/2∞
(
|w2|g + CNw2

)1/2
≤C ′′N−1/2|w1|1,∞|w2|1/2∞

(
|w2|g + CNw2

)1/2
say, with

C ′′ = C ′′(e(F), T, |b|∞, |µ|∞) = 8k max(1, e(F))(|b|∞ + |µ|∞)1/2 max(5C ′
√
T , 1)1/2.

For f ∈ L
age
D , define now

[f ]εN1,∞ = |f |1/2∞
(
|f |g + εN (|f |1,∞ + |f |∞)

)1/2
.

We have proved that for εN = max(rN , N
−1/2), the sequence

(|w1|1,∞[w2]εN1,∞)−1MN
w1,w2

(F)T

has a mild concentration property with rate C ′′N−1/2. Applying the same argument as for Step
1) above, the mild concentration property carries over to

(|w1|1,∞[w2]εN1,∞)−1WN
w1,w2

(F)T

with rate C ′′max(rN , N
−1/2), possibly up to inflating the constant C ′′ > 0.

Step 5) We finally show that [w2]εN1,∞ . |w|1,∞ up to a constant that only depends on |b|∞, |µ|∞,

|g0|∞ and T , under the additional assumption that w2 has compact support and |w2|∞ . ε−1
N |w2|1.

By definition of |w2|g in (51), we have

|w2|g . |w2|1
(

sup
0≤t≤T

∫ ∞
0

g(t, a)da+ |g|∞
)
. |w2|1

by the estimates of Lemma 38 in Appendix 8.4. Moreover, the compact support of w2 implies
|w2|1,∞ ≤ |w2|∞|supp(w2)|1/2 . |w2|∞. It follows that

[w2]εN1,∞ . |w2|1/2
(
|w2|1 + εN |w2|∞

)1/2
. |w2|1,∞.

Let us note that the constant may possibly depend on |supp(w2)| which is bounded above by u by
assumption.

Step 6) It remains to prove a mild concentration property for ([w2]εN1,∞)−1WN
w2

(F)T with rate

C ′′max(rN , N
−1/2). The property holds for

([w2]εN1,∞)−1MN
w2

(F)T

with the same proof as for (|w1|1,∞[w2]εN1,∞)−1MN
w1,w2

(F)T . We omit the details. Next, reproducing

the beginning of the proof of Proposition 21 and applying (35) to the test function a 7→ w2(t −
a)ft(a) with f ∈ F, we obtain

WN
w2

(F)T ≤WN
w2

(F)0 + c−1
0

(
WN
w2,1(F)T + WN

1,w2
(F)T

)
+ MN

w2
(F)T .

By Proposition 22, we further have

WN
w2,1(F)T .WN

1 (F)0 + max
h,k=1,w2

MN
h,k(F)T
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and

WN
1,w2

(F)T . max
k=1,w2

WN
k (F)0 + max

h,k=1,w2

MN
h,k(F)T ,

up to a constant that only depends on T , c0, |w1|1 and |w2|L1([0,T ]), therefore WN
w2

(F)T is of order

max
k=1,w2

WN
k (F)0 + max

h,k=1,w2

MN
h,k(F)T + MN

w2
(F)T .

The mild concentration property of ([w2]εN1,∞)−1MN
w2

(F)T and (|w1|1,∞[w2]εN1,∞)−1WN
w1,w2

(F)T en-
ables us to control the last two terms. The first term has the correct order by Assumption 5. The
proof of Theorem 6 is complete.

6.4. Remaining proofs of Section 2.

Proof of Proposition 8. We repeat the argument of Step 6) in the proof of Theorem 6 above. By
Proposition 22, we have

WN
w2

(F)T . max
k=1,w2

WN
k (F)0 + max

h,k=1,w2

MN
h,k(F)T

and thus

E
[
WN
w2

(F)pT
]
. E

[
max
k=1,w2

WN
k (F)p0

]
+ E

[
max

h,k=1,w2

MN
h,k(F)pT

]
+ E

[
MN
w2

(F)pT
]
,

up to a constant that depends on p, T , c0, |w1|1 and |w2|L1([0,T ]). The first term is of order

|w2|p1,∞rN by Assumption. For the two other terms we use the identity E
[
Zp
]

= p
∫∞

0
xp−1P(Z ≥

x)dx for a nonnegative random variable Z and conclude with the mild concentration property of
([w2]εN1,∞)−1MN

w2
(F)T and (|w1|1,∞[w2]εN1,∞)−1WN

w1,w2
(F)T .

Proof of Proposition 3. Let F0 denote the minimal set that contains 0, c0, c0µ, c0b and that is stable
under the operations defined in (8) except for the pointwise product (f, g) 7→ f · g. We also set,
for f ∈ L∞D :

A(f)
(k,l)
t1,t2 =

(
(s, a) 7→ f(t1, t2 + ka− ls)

)
with t1, t2 ∈ [0, T ] and k, l = 0, 1.

Step 1) We claim that

(53) F0 ⊆
{

0,±c0,±c0µ,±c0b,±L(c0b)
(k,l)
t1,t2 ,±A(c0µ)

(k,l)
t1,t2 , for every t1, t2 ∈ [0, T ], k, l = 0, 1

}
.

Indeed, one can check the following stability properties:

st(A(f)
(k,l)
t1,t2)(s, a) = A

(k,l)
t1,t2(t, t+ a) = f(t1, t2 + kt+ ka− lt) = A

(k,0)
t1,t2+kt−lt(s, a),

tt(A(f)
(k,l)
t1,t2)(s, a) = A

(k,l)
t1,t2(t, t− s) = f(t1, t2 − lt+ ka− ks) = A

(0,k)
t1,t2+kt−lt(s, a),

ut(A(f)
(k,l)
t1,t2)(s, a) = A

(k,l)
t1,t2(t, t− s+ a) = f(t1, t2 + kt− ks+ ka− lt) = A

(k,k)
t1,t2+kt−lt(s, a).

This proves (53).

Step 2) We now prove that if b, µ ∈ Cs for some 0 < s ≤ 1 with Hölder constant L > 0, then

(54) N(F0, | · |∞, ε) . ε−2/s,
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up to a constant that only depends on s, T and L. Indeed, if f ∈ Cs with Hölder constant L > 0,
we have ∣∣L(f)

(k,l)
t1,t2 − L(f)

(k,l)
t′1,t
′
2

∣∣
∞ = sup

s,a
|f(t1, t2 + ka− ls)− f(t1, t2 + ka− ls)|

≤ L(|t1 − t′1|s + |t2 − t′2|s),

therefore, for fixed (k, l) and f ∈ Cs, the ε-covering number of {L(f)
(k,l)
t1,t2 , t1, t2 ∈ [0, T ]} in |·|∞ is the

same as that of [0, T ]2 equipped with the metric d
(
(t1, t2)−(t′1, t

′
2)
)

= L(|t1−t′1|s+|t2−t′2|s). Since

N([0, T ], ε, L| · |γ) = T N([0, T ], (ε/L)1/s, | · |) = TL1/sε−1/s, we have that N([0, T ]2, ε, d) . ε−2/s

and (54) is established.

Step 3) We now consider the class F
prod
0 that contains F0 and that is stable under the operation

(f, g) 7→ fg. Since st(fg) = st(f)st(g), tt(fg) = tt(f)st(g), ut(fg) = ut(f)st(g), the class F
prod
0

contains the minimal class F.

Let f =
∏m
`=1 f` ∈ F

prod
0 , with f` ∈ F0. For every `, we have |f`|∞ ≤ c1 < 1, with c1 =

c0 max(b|∞, |µ|∞) < 1 by assumption. Therefore, if m ≥ log ε/ log c1 = m(ε), we have |f |∞ =
|f − 0|∞ ≤ ε. Now, let gi be N(F0, εm(ε)−1, | · |∞) functions in F0 such that, for every f ∈ F0,
there exists an index i(f) such that |f − gi(f)|∞ ≤ εm(ε)−1. If m ≤ log ε/ log c0, we have

∣∣f − m∏
`=1

gi(f`)
∣∣
∞ =

∣∣ m∏
`=1

f` −
m∏
`=1

gi(f`)
∣∣
∞ ≤ c

m−1
1 mεm(ε)−1 ≤ ε.

As a result, the family
{

0,
∏k
`=1 g`, k = 1, . . . ,m(ε)

}
is a family of centers of balls of radius at most

ε that are sufficient to cover F
prod
0 . It follows that

N(Fprod
0 , ε, | · |∞) ≤ N(F0,m(ε)ε, | · |∞)m(ε)+1 .

(
εm(ε)

)−2m(ε)/s
.

Step 4) We have established F ⊆ F
prod
0 and therefore

e(F) =

∫ 1

0

log
(
1 + N(F, | · |∞, ε)

)
dε ≤

∫ 1

0

log
(
1 + N(Fprod

0 , ε, | · |∞)
)
dε

.
∫ 1

0

log
(
εm(ε)

)−2m(ε)/s
dε .

∫ 1

0

(log ε)2dε <∞.

The proof of Proposition 3 is complete.

7. Proofs of Section 3 and 4

7.1. Proof of Theorem 11. Remember that the condition rN ≤ N−1/2 is in force in this section.

Preliminaries. We first write a standard bias-variance decomposition in squared-error loss, based
upon the stability result of Corollary 8.

Lemma 29. Let h ∈ GN1 . If ĝNh is specified with a bounded and compactly supported kernel K, we
have

E
[(
ĝNh (t, a)− g(t, a)

)2]
. BNh (g)(t, a)2 + VNh ,

where Bh(g)(t, a) and VNh are defined in (27) and (20) respectively.
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Proof. Write ĝNh (t, a)− g(t, a) = I + II, with

I =

∫ ∞
0

Kh(u− a)g(t, u)du− g(t, a)

and

II =

∫
R+

Kh(u− a)
(
ZNt (du)− g(t, u))du.

We have I2 ≤ Bh(g)(t, a)2. For the stochastic term, we have

(55) |II| ≤WN
Kh(t−a−·)(F)t

Moreover

(56) |Kh(t− a− ·)|∞ ≤ |Kh(t− a− ·)|∞ = h−1|K|∞ . |Kh(t− a− ·)|1N1/2

as soon as h−1 . N1/2 since |Kh(t − a − ·)|1 = |K|1 = 1. This condition is true for any h ∈ GN1
using the fact that K is bounded and compactly supported. We may then apply Corollary 8 and
obtain

E[II2] . |Kh(t− a− ·)|21,∞N−1 .
(
C?N−1/2|Kh|1,∞

)2
= VNh .

�

Completion of proof of Theorem 11. We essentially repeat the main argument of the Goldenshluger-
Lepski method (see e.g. [17, 18] for the pointwise risk) in a setting that we need to adapt to our
context.

Step 1) For any h ∈ GN1 , forcing ĝNh (t, a) in the risk decomposition and by definition of ANh (t, a)

and ĥN (t, a), we successively have

E
[(
ĝN? (t, a)− g(t, a)

)2]
. E

[(
ĝN? (t, a)− ĝNh (t, a)

)2]
+ E

[(
ĝNh (t, a)− g(t, a)

)2]
. E

[{(
ĝN
ĥN (t,a)

(t, a)− ĝNh (t, a)
)2 − VNh − VN

ĥN (t,a)

}
+

+ VNh + VN
ĥ(t,a)

]
+ E

[(
ĝNh (t, a)− g(t, a)

)2]
. E

[
AN

max(ĥN (t,a),h)
(t, a) + VNh + VN

ĥN (t,a)

]
+ E

[(
ĝNh (t, a)− g(t, a)

)2]
. E

[
ANh (t, a)

]
+ VNh + E

[
AN
ĥN (t,a)

+ VN
ĥN (t,a)

]
+ E

[(
ĝNh (t, a)− g(t, a)

)2]
. E

[
ANh (t, a)

]
+ VNh + BNh (g)(t, a)2

where we applied Lemma 29 to obtain the last line.

Step 2) We first estimate ANh (t, a). Write gh(t, a) for
∫
R+
Kh(u− a)g(t, u)du. For h, h′ ∈ GN1 with

h′ ≤ h, since(
ĝNh (t, a)− ĝh′(t, a)

)2
≤ 4
(
ĝNh (t, a)− gh(t, a)

)2
+ 4
(
gh(t, a)− g(t, a)

)2
+ 4
(
gh′(t, a)− g(t, a)

)2
+ 4
(
ĝNh′(t, a)− gh′(t, a)

)2
,

we have (
ĝNh (t, a)− ĝh′(t, a)

)2 − VNh − VNh′

≤ 8BNh (g)(t, a)2 +
(
4(ĝNh (t, a)− gh(t, a))2 − VNh

)
+
(
4(ĝNh′(t, a)− gh′(t, a))2 − VNh′

)
.
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using h′ ≤ h in order to bound (ĝNh′(t, a)− gh′(t, a))2 by the bias at scale h. It follows that(
ĝNh (t, a)− ĝh′(t, a)

)2 − VNh − VNh′

≤ 8BNh (g)(t, a)2 + 4
(
ĝNh (t, a)− gh(t, a)

)2 − VNh + 4
(
ĝNh′(t, a)− gh′(t, a)

)2 − VNh′ ,

and taking maximum over h′ ≤ h, we obtain

max
h′≤h

{(
ĝNh (t, a)− ĝh′(t, a)

)2 − VNh − VNh′
}

+
(57)

≤ 8BNh (g)(t, a)2 +
{

4
(
ĝNh (t, a)− gh(t, a)

)2 − VNh
}

+
+ max
h′≤h

{
4
(
ĝNh′(t, a)− gh′(t, a)

)2 − VNh′
}

+
.

Step 3) We estimate the expectation of the first stochastic term in the right-hand side of (57).
Since |ĝNh (t, a)− gh(t, a)| ≤WN

Kh(t−a−·), we successively have

E
[{

4
(
ĝNh (t, a)− gh(t, a)

)2 − VNh
}

+

]
=

∫ ∞
0

P
(
4
(
ĝNh (t, a)− gh(t, a)

)2 − VNh ≥ κ
)
dκ

=

∫ ∞
0

P
(
|ĝNh (t, a)− gh(t, a)| ≥ 1

2 (VNh + κ)1/2
)
dκ

≤
∫ ∞

0

P
(
WN
Kh(t−a−·) ≥ 1

2 (VNh + κ)1/2
)
dκ.

We may apply Theorem 6 with w2 = Kh(t − a − ·) since K is compactly supported and having
(56) of Lemma 29 above. By the change of variable

1
2 (VNh + κ)1/2 = (1 + u)C ′′|Kh|1,∞N−1/2,

we then obtain

E
[{

4
(
ĝNh (t, a)− gh(t, a)

)2 − VNh
}

+

]
≤ 8C ′′|Kh|1,∞N−1/2

∫ ∞
1

2C′′ (V
N
h )1/2|Kh|−1

1,∞N
1/2−1

(1 + u) min
(
(eu − 1)−1, 1

)
du

. exp
(
− 1

2C′′ (V
N
h )1/2|Kh|−1

1,∞N
1/2
)
≤ N−2

by definition of VNh .

Step 4) For the second stochastic term, we use the rough estimate

E
[

max
h′≤h

{
4
(
ĝNh′(t, a)− gh′(t, a)

)2 − VNh′
}

+

]
≤
∑
h′≤h

E
[{

4
(
ĝNh′(t, a)− gh′(t, a)

)2 − VNh′
}

+

]
. Card(GN1 )N−2 . N−1

where we used Step 3) to bound each term E
[{

4
(
ĝNh′(t, a) − gh′(t, a)

)2 − VNh′
}

+

]
independently

of h together with Card(GN1 ) . N . In conclusion, we have proved through Steps 2)-4) that
E
[
ANh (t, a)

]
. δN . Therefore, from Step 1), we conclude

E
[(
ĝN? (t, a)− g(t, a)

)2]
. BNh (g)(t, a)2 + VNh + δN

for any h ∈ GN1 . The proof of Theorem 11 is complete.

7.2. Proof of Theorem 13.
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Preliminaries. We first study the behaviour of the process ΓN (dt, da) of death occurences intro-
duced in Section 3.2 and represented via (17).

Lemma 30. With the notation of Section 2.2, we have

(58) ΓN (dt, da) = N−1

∫
N\{0}×R+

δai(ZN
s−

)(da)1{0≤ϑ≤µ(s,ai(ZN
s−

)),i≤〈NZN
s−
,1〉}Q2(dt, di, dϑ),

where Q2 is a Poisson random measure on R+ × N \ {0} × R+ with intensity dt
(∑

k≥1 δk(di)
)
dϑ.

Moreover, for nonnegative weights w1 ∈ L time
D and w2 ∈ L

age
D , we have

(59)
∣∣ ∫ T

0

∫
R+

w1(s)w2(s− u)
(
ΓN (ds, du)− µ(s, u)g(s, u)duds

)∣∣ ≤WN
w1,w2

(F)T + |(∆N
w1,w2

)T |,

where t 7→ (∆N
w1,w2

)t is a square integrable martingale with predictable compensator

(60) 〈∆N
w1,w2

〉t = N−1

∫ t

0

∫
R+

w1(s)2w2(s− u)2µ(s, u)ZNs−(du)ds.

Proof. The representation (58) is straightforward. We add and substract in the left-hand side of

(59) the term
∫ T

0

∫∞
0
w1(s)w2(s− u)µ(s, u)ZNs (du)ds and obtain the desired inequality with

(∆N
w1,w2

)t =

∫ t

0

∫
R+

w1(s)w2(s− u)
(
ΓN (ds, du)− µ(s, u)ZNs (du)

)
= N−1

∫ t

0

∫
N\{0}×R+

w1(s)w2(s− u)δai(ZN
s−

)(da)1{0≤ϑ≤µ(s,ai(ZN
s−

)),i≤〈NZN
s−
,1〉}Q̃2(ds, di, dϑ),

where Q̃2(ds, di, dϑ) = Q2(ds, di, dϑ)−ds
(∑

k≥1 δk(di)
)
dϑ is the associated compensated measure.

Thus (∆N
w1,w2

)t is a martingale and (60) follows. �

We next study the deviation of (∆N
w1,w2

)T . Define

(61) V Nw1,w2
=
(
4C?(logN)N−1/2|w1|1,∞|w2|1,∞

)2
.

where C? is the constant defined in (23) in Section 3.3. Let also

χNw1,w2
= N−1|w1|∞|w2|∞|µ|∞

and

(62) ξNw1,w2
= 16N−1|µ|∞|g|∞|w1|22|w2|22(V Nw1,w2

)−1/2(logN)

Lemma 31. For u > 2−6V Nw1,w2
(logN)−2, we have

P
(∣∣(∆N

w1,w2
)T
∣∣ ≥ u1/2

)
≤ 2 exp

(
− u1/2

2(χNw1,w2
+ ξNw1,w2

)

)
+2P

(
N−1|µ|∞Ww2

1,w
2
2
(F)T ≥ 1

2ξ
N
w1,w2

u1/2
)
.

Proof. We plan to apply a classical deviation inequality for martingales (see e.g. Lemma 2.1 in
van de Geer [45] or the classical textbook by Shorak and Wellner [42]), namely:

(63) P
(
(∆N

w1,w2
)T ≥ v, 〈∆N

w1,w2
〉T ≤ w

)
≤ exp

(
− v2

2(vχNw1,w2
+ w)

)
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for every v, w ≥ 0, where χNw1,w2
= N−1|w1|∞|w2|∞|µ|∞ is an almost-sure bound of the size of the

jumps of (∆N
w1,w2

)T . With v = u1/2 and w = ξNw1,w2
u1/2, inequality (63) gives

P
(∣∣(∆N

w1,w2
)T
∣∣ ≥ u1/2

)
≤ 2 exp

(
− u1/2

2(χNw1,w2
+ ξNw1,w2

)

)
+ 2P

(
〈∆N

w1,w2
〉T ≥ ξNw1,w2

u1/2
)
.

Inserting the term N−1
∫ t

0

∫
R+
w1(s)2w2(s− u)2g(s, u)duds in (60), we obtain

〈∆N
w1,w2

〉T ≤ N−1|µ|∞
(
|w1|22|w2|22|g|∞ + Ww2

1,w
2
2
(F)T

)
,

therefore

P
(
〈∆N

w1,w2
〉T ≥ ξNw1,w2

u1/2
)
≤ P

(
N−1|µ|∞Ww2

1,w
2
2
(F)T ≥ 1

2ξ
N
w1,w2

u1/2
)

as soon as

(64) N−1|µ|∞|g|∞|w1|22|w2|22 < 1
2ξ
N
w1,w2

u1/2,

but by definition of ξNw1,w2
in (62), this condition is equivalent to u > 2−6V Nw1,w2

(logN)−2. �

Under Assumption 12, we have a uniform lower bound on g(t, a).

Lemma 32. Work under Work under Assumptions 1 and 12. Then, there exists ε > 0 depending
on δ(t, a) defined in (25) and (26) and |µ|∞ and T such that g(t, a) ≥ ε.

The proof uses an explicit representation of g(t, a) established in Proposition 17 and is delayed
until Appendix 8.4.

7.2.1. Completion of proof of Theorem 13. Let (h,h) ∈ GN1 × GN2 and set π(t, a) = µ(t, a)g(t, a).

Step 1) We plan to use the following decomposition

µ̂Nh,h(t, a)$ − µ(t, a) = I + II,

with

I =
π(t, a)

(
g(t, a)− ĝNh (t, a) ∨$

)
g(t, a)ĝNh (t, a) ∨$

and

II =

(
π̂Nh (t, a)− π(t, a)

)
g(t, a)

g(t, a)ĝNh (t, a) ∨$
.

First, we have

|I| ≤ (ε$)−1|µ|∞|g|∞|g(t, a)− ĝNh (t, a) ∨$| ≤ (ε$)−1|µ|∞|g|∞|g(t, a)− ĝNh (t, a)|

thanks to Lemma 32 as soon as $ ≤ ε ≤ g(t, a). In the same way,

|II| ≤ (ε$)−1|g|∞|π̂Nh (t, a)− π(t, a)|

follows. Picking h = ĥN (t, a), h = ĥ
N

(t, a) and taking square and expectation, we have thus
established

(65) E
[(
µ̂N? (t, a)$ − µ(t, a)

)2]
. E

[(
ĝN
ĥN (t,a)

(t, a)− g(t, a)
)2]

+ E
[(
π̂N
ĥ
N

(t,a)
(t, a)− π(t, a)

)2]
as soon as $ ≤ ε. By Theorem 11, we already have the desired bound for the first term in the
right-hand side of (65).
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Step 2) We study the second term in the right-hand side of (65). For any h ∈ GN2 , repeating Step
1) of the proof of Theorem 11, we have

E
[(
π̂Nh (t, a)− π(t, a)

)2]
. E

[
ANh (t, a)

]
+ VNh + BNh (π)(t, a)2.

In order to estimate E
[
ANh (t, a)

]
, we repeat Step 2) of the proof of Theorem 11 and obtain

max
h′≤h

{(
π̂Nh (t, a)− π̂h′(t, a)

)2 − VNh − VNh′
}

+
(66)

. BNh (π)(t, a)2 +
{

4
(
π̂Nh (t, a)− πh(t, a)

)2 − VNh
}

+
+ max

h′≤h

{
4
(
π̂Nh′(t, a)− πh′(t, a)

)2 − VNh′
}

+
.

Step 3) We estimate the expectation of the first stochastic term in the right-hand side of the last
inequality. Using the same trick as in (55), we have by (59) that{

4
(
π̂Nh (t, a)− πh(t, a)

)2 − VNh
}

+
. I + II,

with

I =
{

8WN
Hh1

(·−t),Kh2
(·−(t−a))(F)2

T − 1
2V

N
h

}
+

and

II =
{

8(∆N
Hh1

(·−t),Kh2
(·−(t−a)))

2
T − 1

2V
N
h

}
+
.

We bound each term separately. First, we have

E
[
I
]

=

∫ ∞
0

P
(
8WN

Hh1
(·−t),Kh2

(·−(t−a))(F)2
T − 1

2V
N
h ≥ κ

)
dκ

=

∫ ∞
0

P
(
WN
Hh1

(·−t),Kh2
(·−(t−a))(F)T ≥ 1

2
√

2
( 1

2V
N
h + κ)1/2

)
dκ . N−3

applying Theorem 6 with w1 = Hh1
(· − t) and w2 = Kh2

(· − (t − a)) in the same way as Step 3)
in the proof of Theorem 11. As for II, we have

(67) E
[
II
]

=

∫ ∞
1
2VNh

P
(∣∣∆N

Hh1
(·−t),Kh2

(·−(t−a)))T
∣∣ ≥ 1

2
√

2
κ1/2

)
dκ

and we plan to apply Lemma 31 with w1 = Hh1(·−t) and w2 = Kh2(·−(t−a)). Setting u = 1
8κ, the

condition of Lemma 31 is fulfilled as soon as κ > 8 · 2−6V NHh1
,Kh2

(logN)−2 = 1
8V

N
Hh1

,Kh2
(logN)−2

which is the case here since the integral in (67) above is taken for κ ≥ 1
2V

N
h = 1

2V
N
Hh1

,Kh2
. It

follows that

E[II] ≤ III + IV,

with

III = 2

∫ ∞
1
2VNh

exp
(
− κ1/2

4
√

2(χNHh1
,Kh2

+ ξNHh1
,Kh2

)

)
dκ

and

IV = 2

∫ ∞
1
2VNh

P
(
N−1|µ|∞W(Hh1

)2,(Kh2
)2(F)T ≥ 1

4
√

2
ξNHh1

,Kh2
κ1/2

)
dκ.

First, we write

III = 4(χNHh1
,Kh2

+ ξNHh1
,Kh2

)2

∫ ∞
vN

κe
− κ

4
√

2 dκ

with

vN =
√

2
2 (VNh )1/2(χNHh1

,Kh2
+ ξNHh1

,Kh2
)−1.
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Note that
(V NHh1

,Kh2
)1/2 = h

−1/2
1 h

−1/2
2 N−1/2(logN)4C?|H|1,∞|K|1,∞.

It follows that

χNHh1
,Kh2

+ ξNHh1
,Kh2

= N−1|Hh1 |∞|Kh2 |∞|µ|∞ + 16N−1|µ|∞|g|∞|Hh1 |22|Kh2 |22(V N|Hh1
|,|Kh2

|)
−1/2(logN)

= N−1h−1
1 h−1

2 |µ|∞|H|∞|K|∞ +N−1/2h
−1/2
1 h

−1/2
2 4C?|µ|∞|g|∞ |H|22|K|

2
2

|H|1,∞|K|1,∞ .

By definition of GN2 we have hi ≥ N−1/2 hence

(χNHh1
,Kh2

+ ξNHh1
,Kh2

)2 ≤
(
|µ|∞|H|∞|K|∞ + 4C?|µ|∞ |H|22|K|

2
2

|H|1,∞|K|1,∞

)2
follows and the term in front of the integral in III is bounded. Moreover,

vN =
√

2
2

(logN)4C?|H|1,∞|K|1,∞
N−1/2h

−1/2
1 h

−1/2
2 |µ|∞|H|∞|K|∞ + 4C?|µ|∞|g|∞ |H|22|K|

2
2

|H|1,∞|K|1,∞

≥
√

2
2

C?|H|1,∞|K|1,∞
|µ|∞(|H|∞|K|∞ + 4C?|g|∞ |H|22|K|

2
2

|H|1,∞|K|1,∞ )
(logN) = C(3) logN

say. Since ∫ ∞
vN

κe
− κ

4
√

2 dκ . vNe
− 1

4
√

2
vN
. (logN)N−C

(3)

it suffices to check that C(3) > 2 in order to have that III is smaller in order than N−2 and thus
asymptotically negligible. We finally bound the term IV . Applying Theorem 6 with (w1, w2) =
(H2

h1
,K2

h2
), by the change of variable

N
4
√

2|µ|∞
ξNHh1

,Kh2
κ1/2 = (1 + u)C ′′|H2

h1
|1,∞|K2

h2
|1,∞N−1/2

we obtain that IV is of order

yN

∫ ∞
zN

(1 + u) min
(
(exp(u)− 1)−1, 1

)
du,

with

yN =
(
(ξNHh1

,Kh2
)−1|H2

h1
|1,∞|K2

h2
|1,∞N−3/2

)2
and zN =

N3/2ξNHh1
,Kh2

(VNh )1/2

8C′′|H2
h1
|1,∞|K2

h2
|1,∞ − 1.

Straightforward computations show that yN . h
−2
1 h−2

2 N−2 . 1 by construction of GN2 . Finally

zN =
8|g|∞|H|2|K|2
C ′′|H|∞|K|∞

logN

h
1/2
1 h

1/2
2 N−1/2

− 1 ≥ C(4) logN − 1.

say. One can check that C(4) > 2 and we can therefore conclude that IV also has a negligible order.

Step 4) The control of the second term in the right-hand side of (66) is done in the same way as
in Step 4) of the proof of Theorem 11 and only inflates the previous bound by a factor or order
Card(GN2 ) . N2. In turn E

[
ANh (t, a)

]
. N−1 and we have established by Step 2) that for any

h ∈ GN2 ,

(68) E
[(
π̂Nh (t, a)− π(t, a)

)2]
. BNh (π)(t, a)2 + VNh + δN

holds true with δN . N−1. Putting together Step 1) and Theorem 11 completes the proof.
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7.3. Proof of Theorem 18.

Preliminaries. We let (Zt)0≤t≤T denote the canonical process on4 D([0, T ],MF+) endowed with
the weak topology and equipped with its Borel sigma-field. If Υ is a probability measure on MF+

and if b, µ ∈ L∞D , we write PNb,µ,Υ for the (necessarily unique) probability measure on D([0, T ],MF+)

under which (Zt)0≤t≤T is a weak solution to (7) with L(Z0) = Υ.

Proposition 33. For i = 1, 2, let bi, µi ∈ L∞D such that supp(b2) ⊂ supp(b1) and supp(µ2) ⊂
supp(µ1). For any initial condition L(Z0) = Υ, we have

‖PNb1,µ1,Υ − PNb2,µ2,Υ‖TV . N
1/2
(∣∣b−1

1 b2 − 1
∣∣
2

+
∣∣µ−1

1 µ2 − 1
∣∣
2

)
,

where ‖ · ‖TV denotes total variation distance, up to an explicitly computable constant that only
depends on µ1 and b1.

Proof. The proof is classical, and we only sketch it. Thanks to the Doléans-Dade exponential for
semimartingales (see e.g. [23] or Löcherbach [32, 31] in the context of birth and death processes)
and abbreviating f

(
s, ai(Z

−
s )
)

by f i(s), we have

dPNb2,µ2,Υ

dPNb1,µ1,Υ

= N−1

∫ T

0

∫
R+

(
b2(s, a)− b1(sa) + µ2(s, a)− µ1(s, a)

)
ZNs (da)ds

+

∫ T

0

∫
N\{0}×R+

1{i≤〈NZNs ,1〉}

(
1{0≤ϑ≤bi1(s)} log

bi2(s)

bi1(s)
+ 1{bi1(s)≤ϑ≤µi1(s)} log

µi2(s)

µi1(s)

)
Q1(ds, di, dϑ),

where Q1 is a Poisson random measures on R+ × N \ {0} × R+ with intensity ds
(∑

k≥1 δk(di)
)
dϑ

under PNb1,µ1,Υ
. By Pinsker’s inequality, it follows that

‖PNb1,µ1,Υ − PNb2,µ2,Υ‖
2
TV

≤ 1
2EPNb1,µ1,Υ

[
log

dPNb1,µ1,Υ

dPNb2,µ2,Υ

]
= − 1

2EPNb1,µ1,Υ

[
log

dPNb2,µ2,Υ

dPNb1,µ1,Υ

]
= N

2 EPNb1,µ1,Υ

[ ∫ T

0

∫
R+

(
b2 − b1 + µ2 − µ1 − b1 log

b2
b1
− µ1 log

µ2

µ1

)
(s, a)ZNs (da)

]
= N

2 EPNb1,µ1,Υ

[ ∫ T

0

∫
R+

(
b1ϕ(b−1

1 b2 − 1) + µ1ϕ(µ−1
1 µ2 − 1)(s, a)ZNs (da)

]
,

with ϕ(x) = x− log(1 + x) ≤ x2 for x ≥ 0. Therefore

‖PNb1,µ1,Υ − PNb2,µ2,Υ‖
2
TV .

N
2 EPNb1,µ1,Υ

[ ∫ T

0

∫
R+

(
(b−1

1 b2 − 1)2 + (µ−1
1 µ2 − 1)2

)
(s, a)ZNs (da)

]
. N(|b−1

1 b2 − 1|22 + |µ−1
1 µ2 − 1|22)

and Proposition 33 is proved. �

4remember that MF+ denotes the set of positive finite measures on R+
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Representation of g in terms of (g0, b, µ). We need some notation. Let

Lb,µ(t, a) = b(t, a) exp
(
−
∫ t

t−a
µ(s, s− t+ a)ds

)
for (t, a) ∈ DL,

Mb,µ,g0
(t) =

∫ ∞
0

b(t, t+ u)g0(u) exp
(
−
∫ t

0

µ(s, u+ s)ds
)
du, for t ∈ [0, T ],

and define Bb,µ,g0 : [0, T ]→ R+ as the solution to the integral equation

(69) Bb,µ,g0
(t) = Mb,µ,g0

(t) +

∫ t

0

Bb,µ,g0
(a)Lb,µ(t, t− a)da for every t ∈ [0, T ].

Note that Assumptions 1 and 16 ensure the existence and uniqueness of (69). Define next

(70) g(t, a) =


g0(a− t) exp

(
−
∫ t

0
µ(s, a− t+ s)ds

)
on DU

Bb,µ,g0
(t− a) exp

(
−
∫ t
t−a µ(s, a+ s− t)ds

)
on DL

and set for instance g(t, a) = 0 on {a = t}. One can check that g defined in (70) is a weak solution
to the McKendricks Von Voester equation (2).

Completion of proof of Theorem 18. We follow a classical two-point lower bound argument using
Le Cam’s lemma: if Pi, i = 1, 2 are two probability measures defined on the same probability space
and Ψ(Pi) ∈ R is a functional of Pi, we have

(71) inf
F

max
i=1,2

EPi
[
|F −Ψ(Pi)|

]
≥ 1

2 |Ψ(P1)−Ψ(P2)|(1− ‖P1 − P2‖TV ),

where the infimum is taken over all estimators of Ψ(Pi), see e.g. [27] among many other references.

Step 1) To prove (29), we pick

g0 ∈ Hν
L(a), b0 ∈ H

α,β
L (t, a), µ1 ∈ H

γ,δ
L (t, a) ∩ L∞D,ε

arbitrarily, together with a sequence ΥN such that N〈ZN0 ,1〉 . 1 almost-surely under ΥN and
ΥN (da)→ g0(da) weakly as N →∞. Next, define

µN2 (s, u) = µ1(s, u)
(
1 + ψNt−a(s, u)

)
,

where
ψNt−a(s, u) = cN−1/2τ

1/2
N ψ

(
τN (s− u− (t− a))

)
,

with τN = N1/(2s−death+1) = N1/(2 max(γ,δ)+1) and an infinitely many times differentiable nonnega-
tive function ψ with compact support that satisfies ψ(0) = 1, |ψ|22 = 1. Finally, pick c > 0 small
enough so that the property

µN2 ∈ H
γ,δ
L (t, a) ∩ L∞D,ε

holds, uniformly in N . This is possible since

|ψNt−a(·, t− a)|Hγ(t) = cN−1/2τ
1/2+γ
N |ψ|Hγ(t) ≤ c|ψ|Hγ(t) ≤ c|ψ|Hγ(t,a)

and
|ψNt−a(t, ·)|Hδ(t−a) = cN−1/2τ

1/2+δ
N |ψ|Hδ(t−a) ≤ c|ψ|Hδ(t−a) ≤ c|ψ|Hδ(a).

By Proposition 33, we have

(72) ‖Pb0,µ1,ΥN − Pb0,µN2 ,ΥN ‖TV . N
1/2
∣∣µ−1

1 µN2 − 1
∣∣
2

= N1/2|ψNt−a|2 = c1/2|ψ|22 ≤ 1
2

say, for large enough N and sufficiently small c.
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Step 2) Let (t, a) ∈ DU . We let

Ψ(PNb,µ,Υ) = g(t, a) = g̃(t′, a′) = g0(−a′) exp
(
−
∫ t′

0

µ(s, s− a′)ds
)

by (70) above, with (t′, a′) = (t, t− a) = ϕ(t, a). It follows that∣∣Ψ(PNb0,µN2 ,Υ)−Ψ(PNb0,µ1,Υ)
∣∣

= g0(−a′) exp
(
−
∫ t′

0

µ1(s, s− a′)ds
)∣∣ exp

(
−
∫ t′

0

ψNa′ (s, s− a′)ds
)
− 1
∣∣

≥ g0(−a′) exp
(
− (|µ1|∞ + |ψNa′ |∞)t′

) ∫ t′

0

ψNa′ (s, s− a′)ds

≥ 1
2g0(−a′) exp(−|µ1|∞t′)cN−1/2τ

1/2
N ψ(0)t′

& N−s
−
dens/(2s

−
dens+1)(73)

using |e−x − 1| ≥ xe−x for x ≥ 0 and the fact that e−t
′|ψN

a′ |∞ ≥ 1
2 say, for sufficiently large N .

Step 3) Let (t, a) ∈ DL. We now have

Ψ(PNb,µ,Υ) = g(t, a) = g̃(t′, a′) = Bb,µ,g0
(a′) exp

(
−
∫ t′

a′
µ(s, s− a′)ds

)
,

by (70) and where Bb,µ,g0
is defined in (69). It follows that∣∣Ψ(PNb0,µN2 ,Υ)−Ψ(PNb0,µ1,Υ)

∣∣
=
∣∣Bb0,µN2 ,g0

(a′) exp
(
−
∫ t′

a′
µN2 (s, s− a′)ds

)
−Bb0,µ1,g0(a′) exp

(
−
∫ t′

a′
µ1(s, s− a′)ds

)∣∣
≥
∣∣I∣∣− ∣∣II∣∣,

with

I = Bb0,µ1,g0(a′)
(

exp
(
−
∫ t′

a′
µN2 (s, s− a′)ds

)
− exp

(
−
∫ t′

a′
µ1(s, s− a′)ds

)
and

II =
(
Bb0,µN2 ,g0

(a′)−Bb0,µ1,g0(a′)
)

exp
(
−
∫ t′

a′
µN2 (s, s− a′)ds

)
.

To bound I from below, we proceed as in Step 2). For simplicity, we assume moreover here that

b0(t, a) = b0 is constant. We have Bb0,µ1,g0(a′) ≥ Mb0,µ1,g0(t) ≥ b0|g0|1e−|µ1|∞a′ and in the same
way as for (73) one can check that∣∣ exp

(
−
∫ t′

a′
µN2 (s, s− a′)ds

)
− exp

(
−
∫ t′

a′
µ1(s, s− a′)ds

∣∣
≥ 1

2e
−|µ1|∞(t′−a′)(t′ − a′)N−s

−
dens/(2s

−
dens+1)

for large enough N hence

(74)
∣∣I∣∣ ≥ 1

2b0|g0|1e−|µ1|∞t′(t′ − a′)cN−s
−
dens/(2s

−
dens+1).

In order to bound II from above, we use the following technical facts that are checked in the same
way as before: for every (t, a) ∈ DL, we have
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∣∣Mb0,µN2 ,g0
(a′)−Mb0,µ1,g0

(a′)
∣∣ ≤ b0|µ1|∞T

∫ ∞
0

g0(u)ψN(t,a)(−u)du

≤ b0|µ1|∞T |g0|∞|ψNt−a|1

= b0|µ1|∞T |g0|∞cN−1/2τ
−1/2
N |ψ|1 � N−s

−
dens/(2s

−
dens+1)(75)

and

(76)
∣∣Lb0,µN2 ,g0

(a′, a′ − a)− Lb0,µ1,g0
(a′, a′ − a)

∣∣ ≤ b0|µ1|∞cN−1/2τ
1/2
N ψ

(
τN (u− a′)

)
(a′ − u)

and since Bb0,µ,g0(t) ≤ b0|g0|1 + b0
∫ t

0
Bb,µ,g0(s)ds for every t ∈ [0, T ], we infer

(77) Bb0µ,g0(t) ≤ b0|g0|1eb0T

by Grönwall lemma. It follows that

Bb0,µN2 ,g0
(a′)−Bb0,µ1,g0

(a′) = Mb0,µN2 ,g0
(a′)−Mb0,µ1,g0

(a′)

+

∫ a′

0

Bb0,µ1,g0
(a)
(
Lb0,µN2 ,g0

(a′, a′ − a)− Lb0,µ1,g0
(a′, a′ − a)

)
da

+

∫ a′

0

Lb0,µN2 ,g0
(a′, a′ − a)

(
Bb0,µN2 ,g0

(a)−Bb0,µ1,g0(a)
)
da.

Taking absolute values and using (75), (76) and (77), we derive∣∣Bb0,µN2 ,g0
(a′)−Bb0,µ1,g0(a′)

∣∣ ≤ b0|µ1|∞T |g0|∞cN−1/2τ
−1/2
N |ψ|1

+ b20|g0|1eb0T |µ1|∞cN−1/2τ
1/2
N

∫ a′

0

ψ
(
τN (u− a′)

)
(a′ − u)du

+ b0

∫ a′

0

∣∣Bb0,µN2 ,g0
(s)−Bb0,µ1,g0

(s)
∣∣ds.

Using τ
1/2
N

∫ a′
0
ψ
(
τN (u− a′)

)
(a′ − u)du ≤ τ−1/2

N T |ψ|1, we derive∣∣Bb0,µN2 ,g0
(a′)−Bb0,µ1,g0

(a′)
∣∣ ≤ b0|µ1|∞T |g0|∞cN−1/2τ

−1/2
N |ψ|1(1 + b0e

b0T )eb0a
′

by Grönwall lemma again. We conclude

(78)
∣∣II∣∣� N−s

−
dens/(2s

−
dens+1).

Comparing (74) and (78), we see that

(79)
∣∣Ψ(PNb0,µN2 ,Υ)−Ψ(PNb0,µ1,Υ)

∣∣ & N−s−dens/(2s
−
dens+1).

Step 4). Combining (73) or (79) with (71) and (72), we successively obtain

sup
b,µ,g0

EPN
b,µ,ΥN

[
|F − g(t, a)|

]
≥ 1

2 max
i=1,2

EPN
b0,µi,Υ

N

[
|F −Ψ(PNb0,µi,ΥN )|

≥ 1
4 |Ψ(PNb0,µ1,ΥN

)−Ψ(PNb0,µN2 ,ΥN )|(1− ‖PNb0,µ1,ΥN
− PNb0,µN2 ,ΥN ‖TV )

& N−s
−
death/(2s

−
death+1)

and (29) follows.



BIRTH AND DEATH MODELS IN A LARGE POPULATION LIMIT 43

Step 5) To prove (30), we proceed as in Step 1), considering now the perturbation

µN2 (s, u) = µ1(s, u)
(
1 + ψNt,a(s, u)

)
,

with
ψNt,a(u) = cN−1/2τ

1/2
N ψ

(
τN (s− t)

)
(τ̃N )1/2ψ

(
τ̃N (u− a)

)
and τ δN = (τ̃N )γ = Ns(γ,δ)/(2s(γ,δ)+1) and an infinitely many times differentiable function ψ with
compact support that satisfies ψ(0) = 1, |ψ|22 = 1. Finally, we pick c > 0 small enough so that the
property

µN2 ∈ H
γ,δ
L (t, a) ∩ L∞D,ε

holds, uniformly in N . This is possible since

|ψN(t,a)|Hγ(t) ≤ cN−1/2τ
1/2+γ
N (τ̃N )1/2|ψ|Hγ(t)| . c

and
|ψN(t,a)|Hδ(a) ≤ cN−1/2τ

1/2
N (τ̃N )1/2+δ|ψ|Hδ(a)| . c

likewise. Finally, we note that

(80)
∣∣µN2 (t, a)− µ1(t, a)

∣∣ ≥ |µ1(t, a)ψNt,a(t, a)| ≥ εcN−1/2τ
1/2
N (τ̃N )1/2 & N−s

−
death/(2s

−
death+1)

and

(81) ‖PNb0,µ1,ΥN
− PNb0,µN2 ,ΥN ‖TV . N

1/2
∣∣µ−1

1 µN2 − 1
∣∣
2

= N1/2|ψN(t,a)|2 = c1/2 ≤ 1
2

say, for sufficiently small c > 0, by Proposition 33, which conditions are satisfied since µ1 and µN2
are bounded below. The end of the proof is similar to that of Step 4) with Ψ(PNb,µ,ΥN ) = µ(t, a)

together with the bounds (80) and (81). Therefore (30) is proved and Theorem 18 folllows.

7.4. Proof of Theorem 19. By (i) of Proposition 17 the smoothness assumptions on (b, µ, g)
imply

(82) u 7→ g(t, u) ∈ H
min(α,β,γ+1,δ)
L′ (a) for (t, a) ∈ DL,

and

(83) u 7→ g(t, u) ∈ H
max(γ∧(δ+1),δ)
L′ (a) for (t, a) ∈ DU

for some L′ that depends on L and the smoothness parameters only. For any h ∈ GN1 , by standard
kernel approximation, see e.g. [44] the smoothness properties (82) and (83) together with the
definition (31) of s+

dens imply∣∣ ∫ ∞
0

Kh(u− a)g(t, u)du− g(t, a)
∣∣ . hs+dens∧`0 ,

up to a constant that depends on K, s+
dens and L′ only. It follows that

BNh (g)(t, a)2 . h2s+dens∧`0 .

We also have
VNh . (logN)2N−1h−1

up to a constant that depends on C ′′ of Theorem 6 and K. By Theorem 11, we conclude

E
[(
ĝN? (t, a)− g(t, a)

)2]
. min
h∈GN1

(
h2s+dens∧`0 + (logN)2N−1h−1

)
+ δN

.
( (logN)2

N

)2s+dens∧`0/(2sdens∧`0+1)
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using the definition of GN1 . Moreover, this estimate is uniform in (b, µ, g0). The proof of Theorem
19 is complete.

7.5. Proof of Theorem 20. Define µ̃ via µ = µ̃ ◦ ϕ and set π̃ = µ̃ g̃.

Step 1) Write µ(t, a) = µ̃(t′, a′) = µ(t′, t′ − a′) with (t′, a′) = ϕ(t, a) = (t, t − a). The property

µ ∈ H
γ,δ
L (t, a) for every (t, a) ∈ D implies µ̃ ∈ H

min(γ,δ),δ
L′ (t′, a′) for every (t′, a′) ∈ ϕ(D) = D, for

some other constant L′ that depends on L. By (ii) of Proposition 17 it follows that

π̃ ∈ H
min(γ,δ),min(α,β,γ+1,δ)
L′ (t, a) for (t, a) ∈ D̃L

and

π̃ ∈ H
min(γ,δ),δ
L′ (t, a) for (t, a) ∈ D̃U .

Let (t, a) ∈ DL so that ϕ(t, a) ∈ D̃L. By standard kernel approximation again, we infer∣∣((H ⊗K)h ◦ ϕ
)
? π(t, a)− π(t, a)

∣∣
=
∣∣(H ⊗K)h

)
? π̃
(
ϕ(t, a)

)
− π̃

(
ϕ(t, a)

)∣∣
=
∣∣∣ ∫ T

0

∫ ∞
0

Hh1
(ϕ1(t, a)− s)Kh2

(ϕ2(t, a)− u)π̃(s, u)dsdu− π̃
(
ϕ(t, a)

)∣∣∣
. hmin(γ,δ)∧`0

1 + h
min(α,β,γ+1,δ)∧`0
2

up to a constant that depends on H,K, L′ and the smoothness parameters only and where we
have set ϕ(t, a) =

(
ϕ1(t, a), ϕ2(t, a)

)
. Similarly, if (t, a) ∈ DU , we have∣∣((H ⊗K)h ◦ ϕ
)
? π(t, a)− π(t, a)

∣∣ . hmin(γ,δ)∧`0
1 + hδ∧`02 .

It follows that

(84) BNh (π)(t, a)2 .

{
h

2 min(γ,δ)∧`0
1 + h

2 min(α,β,γ+1,δ)∧`0
2 if (t, a) ∈ DL

h
2 min(γ,δ)∧`0
1 + h2δ∧`0

2 if (t, a) ∈ DU .

We also have

(85) VNh . (logN)2N−1h−1
1 h−1

2

up to a constant that depends on C ′′ of Theorem 6 and H,K.

Step 2) By Theorems 13 and 19, we have

(86) E
[(
µN? (t, a)$−µ(t, a)

)2]
.
( (logN)2

N

)2s+dens∧`0/(2s
+
dens∧`0+1)

+ min
h∈GN2

(
BNh (γ)(t, a)2+VNh

)
+δN .

Moreover, by definition of sL involved in (33), we have

min
h∈GN2

(
h

2 min(γ,δ)∧`0
1 + h

2 min(α,β,γ+1,δ)∧`0
2 + (logN)2N−1h−1

1 h−1
2

)
.
( (logN)2

N

)2sL∧`0/(2sL∧`0+1)

and likewise, by definition of sU involved in (33), we have

min
h∈GN2

(
h

2 min(γ,δ)∧`0
1 + h

2 min(γ,δ)∧`0
2 + (logN)2N−1h−1

1 h−1
2

)
.
( (logN)2

N

)2sU∧`0/(2sU∧`0+1)

.
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Therefore, putting together (84) and (85) and using the definition of sdeath in (33) we obtain

min
h∈GN2

(
BNh (γ)(t, a)2 + VNh

)
.
( (logN)2

N

)s+death(t,a)∧`0/(2s+death(t,a)∧`0+1)

.

Since s+
dens ≥ sdeath, inequality (86) becomes

E
[(
µN? (t, a)$ − µ(t, a)

)2]
.
( (logN)2

N

)sdeath(t,a)∧`0/(2sdeath(t,a)∧`0+1)

+ δN .

Since the estimate is uniform in (b, µ, g0) and δN . N−1, this completes the proof of Theorem 20.

8. Appendix

8.1. Proof of Proposition 25.

Preliminaries. For x ≥ 0 and q ≥ 1, define ψq(x) = exp(xq)− 1. Let also

‖ξ(f)‖ψq = inf
{
c > 0, E

[
ψq(c

−1ξ(f))
]
≤ 1
}

and
D = diamd(F) = sup

f,g∈F
d(f, g).

Proposition 34 (Theorem 11.2, Eq. (11.4) p. 302 in [28]). In the setting of Proposition 25, if

‖ξ(f)− ξ(g)‖ψq ≤ d(f, g) and E =
∫D

0
ψ−1
q

(
N(F, d, ε)

)
dε <∞, then

P
(

sup
f∈F
|ξ(f)| ≥ 8(E + u)

)
≤ ψq(u/D)−1,

provided ξ(f0) = 0 for some f0 ∈ F.

We also recall the following bound based on a classical Chernoff bound argument, proof of which
we omit. For x ≥ 0, let ρ̃(x) = (1 + x) log(1 + x)− x.

Lemma 35. Let X be a non-negative random variable on some probability space equipped with a
probability measure Q. If, for some k1, k2, k3 > 0, we have

EQ
[
eλX

]
≤ k1 exp

(
k2ρ(k3λ)

)
for every λ ≥ 0,

then, for every u ≥ 0,
Q
(
X ≥ u

)
≤ k1 exp

(
− k2ρ̃(u/k2k3)

)
.

Proof of Proposition 25. Thanks to Proposition 34, all we need is an upper bound for ‖ξ(f) −
ξ(g)‖ψ1

. Let κ > 0. We plan to apply Lemma 35 with Q = P
(
· |A(κ)

)
, X = |ξ(f) − ξ(g)|,

k1 = 2P
(
A(κ)

)
, k2 = c1(1 + κ), k3 = c2d(f, g) and using (46). It follows that for every u ≥ 0

(87) P
(
|ξ(f)− ξ(g)| ≥ u

)
≤ 2 exp

(
− c1(1 + κ)ρ̃

(
u/c1(1 + κ)c2d(f, g)

))
+ P(A(κ)c).

Now, let c > 0. We have

E
[
ψ1(c−1|ξ(f)− ξ(g)|)

]
= E

[
exp(c−1|ξ(f)− ξ(g)|)

]
− 1

=

∫ ∞
1

P
(

exp(c−1|ξ(f)− ξ(g)|) ≥ κ
)
dκ

=

∫ ∞
0

P
(
|ξ(f)− ξ(g)| ≥ cκ

)
eκdκ

≤ 2

∫ ∞
0

exp
(
− c1(1 + κ)ρ̃

(
cκ/c1(1 + κ)c2d(f, g)

))
eκdκ+ 1

2 ,
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where we applied (87) with u = cκ and used (45) for bounding the second term. It suffices then
to pick $ = $(c1, c2) > 0 such that

(88) 2

∫ ∞
0

exp
(
− c1(1 + κ)ρ̃

(
$(c1, c2)κ/c1(1 + κ)c2

))
eκdκ ≤ 1

2 .

Using (88) in the previous estimate with c = $d(f, g), we obtain

E
[
ψ1($d(f, g)−1|ξ(f)− ξ(g)|)

]
≤ 1

and therefore

‖ξ(f)− ξ(g)‖ψ1
≤ $d(f, g) = d̃(f, g),

say. We may then apply Proposition 34 with d̃ instead of d and Proposition 25 follows.

Remark 36. In (88), we may choose $(c1, c2) = k
√
c1c2 for some k > 0 that does not depend on

c1 nor c2. Indeed, since ρ̃(x) ≥ 1
4x

2 for x ∈ [0, 1], given the ansatz $(c1, c2) = k
√
c1c2 in (88), it

suffices to show the existence of k satisfying k ≤ √c1 and

(89)

∫ ∞
0

exp
(
− k2

4

κ2

1 + κ
+ κ
)
dκ ≤ 1

4
.

One can check that (89) holds for large enough k. A rough bound is k = 2
√

77, and therefore
c1 ≥ 308 ensures the requirement k ≤ √c1.

8.2. Proof of Proposition 7. We have ZN0 = N−1
∑N
i=1 δAi , where the Ai are independent with

common distribution g0(a)da. Define Fw2
= {f = w2(−·)g, g ∈ F}. We claim that

(90) sup
f∈Fw2

|f |∞ . |w2|∞,

(91) E
[

sup
f∈Fw2

∣∣〈ZN0 , f〉 − E[〈ZN0 , f〉]
∣∣] . N−1/2|w2|2,

and

(92) N−1 sup
f∈Fw2

N∑
i=1

Var
(
f(Ai)

)
. |w2|22.

The estimates (90) and (92) are straightforward. We turn to (91). Write f = w2(−·)g for f ∈ Fw2
,

with g ∈ F. Adding and substracting
∫∞

0
w2(−a)g(Ai)g0(a)da, we have

(93) 〈ZN0 , f〉−E[〈ZN0 , f〉] = N−1
N∑
i=1

(w2(−Ai)−E[w2(−Ai)])g(Ai)+
( ∫ ∞

0

w2(−a)g0(a)da
)
νNw2

(g),

with νNw2
(g) = N−1

∑N
i=1

(
g(Ai) − Ew2 [g(Ai)]

)
and where Ew2 denotes expectation under a bias

sampling proportional to w2(−·). Since F is stable under g 7→ −g and uniformly bounded, we have

sup
g∈F

∣∣N−1
N∑
i=1

(w2(−Ai)− E[w2(−Ai)])g(Ai)
∣∣ . N−1

N∑
i=1

(w2(−Ai)− E[w2(−Ai)]).

By Cauchy-Schwarz inequality, it follows that

E
[

sup
g∈F

∣∣N−1
N∑
i=1

(w2(−Ai)− E[w2(−Ai)])g(Ai)
∣∣] ≤ N−1/2Var

(
w2(−Ai)

)1/2
. N−1/2|w2|2.
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In the same way as in the proof of Proposition 25, with ψ2(x) = ex
2 − 1, we show using the tools

in [28]], p.322, that for g1, g2 ∈ F, we have ‖νNw2
(g1)− νNw2

(g2)‖ψ2 . N
−1/2|g1 − g2|∞ by Hoeffding

inequality. It follows that E[supg∈F ν
N
w2

(g)] . N−1/2. Noticing that the term
∫∞

0
w2(−a)g0(a)da

in front of νNw2
(g) in (93) is of order |w2|2 enables us to conclude the proof of (91). Noting that

Ww2(F)0 = supf∈Fw2
〈ZN0 , f〉, the proof of Proposition 7 is now a consequence of Lemma 6.1. in

Comte et al. [10] on the concentration properties of 〈ZN0 , f〉, based on the bounds (90), (91) and
(92). We omit the details.

8.3. Proof of Proposition 17. The behaviour of the solution ξt(da) = g(t, a)da of the McK-
endricks Von Voester transport equation is studied in numerous textbooks, see e.g. [40]. The proof
goes along a classical representation of g in terms of an auxiliary function solution to a certain
renewal equation that enables one to study the pointwise smoothness of (t, a) 7→ g(t, a).

Preliminaries. We start with the following technical result, which is merely an observation:

Lemma 37. If for some σ, τ > 0 and for every (t, a) ∈ D we have f ∈ Hσ,τ (t, a), then, for every
(t′, a′) ∈ D,

(i) u 7→
∫ u

0
f(s, u)ds ∈ Hmin(σ+1,τ)(a′),

(ii) u 7→
∫ t′

0
f(s, u+ s)ds ∈ Hmax(σ∧(τ+1),τ)(a′).

Proof. Property (i) is straightforward. To obtain (ii), we first write

Gt′(u) =

∫ t′

0

f(s, u+ s)ds =

∫ u+t′

u

f(s− u, s)ds =

∫ u+t′

u

f̃(s, u)ds

with f̃(s, u) = f(s− u, s), so that f̃ ∈ Hmin(σ,τ),σ(t′ + a′, a′) for every (t′, a′) ∈ D. Writing∫ u+t′

u

f̃(s, u)ds =

∫ u+t′

0

f̃(s, u)ds−
∫ u

0

f̃(s, u)ds

an applying (i), we obtain u 7→
∫ u

0
f̃(s, u)ds ∈ Hmin(min(σ,τ)+1,σ)(a′) = Hmin(σ,τ+1)(a′) for every

a′ ∈ R+. Similarly, u 7→
∫ u+t

u
f̃(s, u)ds ∈ Hmin(σ,τ+1)(a′) therefore Gt′ ∈ Hτ (a′) ∈ Hmin(σ,τ+1).

But since Gt′ ∈ Hτ (a′) trivially holds, we have in fact Gt′ ∈ Hτ (a′) ∩ Hmin(σ,τ+1)(a′) =
Hmax(σ∧(τ+1),τ)(a′). �

Completion of proof of Proposition 17. For σ, τ > 0, we write f ∈ Hσ,τ if f ∈ Hσ,τ (t, a) for every
(t, a) ∈ D.

Step 1) For fixed a, we have (s, t) 7→ µ(s, a− t+ s) ∈ Hγ∧δ,δ hence by (i) of Lemma 37 we have

t 7→
∫ t

0
µ(s, a − t + s)ds ∈ Hmin((γ∧δ)+1,δ) = Hmin(γ+1,δ). For fixed t, (s, a) 7→ µ(s, a − t) ∈ Hγ,δ

holds true, hence a 7→
∫ t

0
µ(s, a− t+ s)ds ∈ Hmin(γ,δ+1)∨δ by (ii) of Lemma 37. It follows that

(t, a) 7→ exp
(
−
∫ t

0

µ(s, a− t+ s)ds
)
∈ Hmin(γ+1,δ),max(γ∧(δ+1),δ).

Also (t, a) 7→ g0(a − t) ∈ Hν,ν ⊂ Hmin(γ+1,δ),max(γ∧(δ+1),δ) since ν ≥ max(γ, δ) + 1 hence the

result on DU . In the same way, on DL, we have t 7→
∫ t

0
µ(s, a − t + s)ds ∈ Hmin(γ+1,δ) and

t 7→
∫ t−a

0
µ(s, a− t+ s)ds ∈ Hmin(γ+1,δ) by (i) of Lemma 37 hence

(94) t 7→
∫ t

t−a
µ(s, a− t+ s)ds ∈ Hmin(γ+1,δ).
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Moreover,
∫ t
t−a µ(s, a + s− t)ds = −

∫ a
0
µ(s + t, a + s)ds and (s, a) 7→ µ(s, a + s− t) ∈ Hγ∧δ,δ for

fixed t, therefore

(95) a 7→
∫ t

t−a
µ(s, a− t+ s)ds ∈ Hmin(γ+1,δ)

by (i) of Lemma 37 likewise. Putting together (94) and (95), we conclude

(96) (t, a) 7→ exp
(
−
∫ t

t−a
µ(s, a− t+ s)ds

)
∈ Hmin(γ+1,δ),min(γ+1,δ).

The property b ∈ Hα,β together with (96) entail Lb,µ ∈ Hmin(α,γ+1,δ),min(β,γ+1,δ) hence

(t, a) 7→ Lb,µ(t, t− a) ∈ Hmin(α,γ+1,δ),min(α,β,γ+1,δ)

and

(97) t 7→
∫ t

0

Bb,µ,g0
(a)Lb,µ(t, t− a)da ∈ Hmin(α,β,γ+1,δ),

follows by (i) of Lemma 37. Plainly,

(98) t 7→Mb,µ,g0
(t) ∈ Hmin(α,β,γ+1,δ+1)

and putting together (97) and (98), we conclude

(99) t 7→ Bb,µ,g0
(t) ∈ Hmin(α,β,γ+1,δ).

hence (t, a) 7→ Bb,µ,g0
(t−a) ∈ Hmin(α,β,γ+1,δ),min(α,β,γ+1,δ). The result of Proposition 17 (i) follows.

Step 2) Writing (t′, a′) = ϕ(t, a) = (t, t− a), the representation (70) now becomes

(100) g(t, a) = g̃(t′, a′) =


g0(−a′) exp

(
−
∫ t′

0
µ(s, s− a′)ds

)
on D̃U

Bb,µ,g0(a′) exp
(
−
∫ t′
a′
µ(s, s− a′)ds

)
on D̃L.

On D̃U , we have t′ 7→
∫ t′

0
µ(s, s− a′)ds ∈ Hmin(γ,δ)+1 and a′ 7→

∫ t′
0
µ(s, s− a′)ds ∈ Hmax(γ∧(δ+1),δ)

by (ii) of Lemma 37 for the second case, hence

(t′, a′) 7→ exp
(
−
∫ t′

0

µ(s, s− a′)ds
)
∈ Hmin(γ+1,δ+1),min(γ,δ+1).

Since (t′, a′) 7→ g0(−a′) ∈ H∞,ν hence the result since ν ≥ δ. Similarly, on D̃L, by (99), we have
(t′, a′) 7→ Bb,µ,g0

(a′) ∈ H∞,min(α,β,γ+1,δ) and the same arguments as before yield

(t′, a′) 7→
∫ t

a′
µ(s, s− a′)ds ∈ Hmin(γ+1,δ+1),max(γ∧(δ+1),δ).

Combining these two properties gives the result on D̃L and completes (ii) of Proposition 17.
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8.4. Further estimates on the McKendricks Von Foerster equation. The following result
is a classical estimate of the renewal equation, see for instance [40].

Lemma 38 ([40], Theorem 2.2. in Chapter 2). Work under Assumptions 1. We have

sup
0≤t≤T

∫ ∞
0

g(t, a)da ≤
∫ ∞

0

g0(a)da e|b−µ|∞T

and

|g|∞ ≤ max
(
|g0|∞, |b|∞ sup

0≤t≤T

∫ ∞
0

g(t, a)da
)

Proof of Lemma 32. On DU , by (70) in the proof of Proposition 17, we have

g(t, a) = g0(a− t) exp
(
−
∫ t

0

µ(s, a− t+ s)ds
)
≥ δ(t, a)e−|µ|∞T

by (26) of Assumption 12. On DL, (70) yields the representation

g(t, a) = Bb,µ,g0
(t− a) exp

(
−
∫ a

t−a
µ(s, a+ s− t)ds

)
≥ Bb,µ,g0

(t− a)e−|µ|∞t

and by (69), we further have

Bb,µ,g0
(t− a) ≥Mb,µ,g0

(t− a)

=

∫ ∞
0

b(t− a, t− a+ u)g0(u) exp
(
−
∫ t−a

0

µ(s, u+ s)ds
)
du

≥ δ|U(t,a)|e−|µ|∞(t−a)

by (25) of Assumption 12. The proof of Lemma 32 is complete.
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Paulien Jeunesse, Université Paris-Dauphine & PSL, CNRS, CEREMADE, 75016 Paris, France

E-mail address: jeunesse@ceremade.dauphine.fr


	1. Introduction
	1.1. Setting
	1.2. Motivation
	1.3. Link with literature on death rate inference
	1.4. Results and organisation of the paper

	2. The microscopic model and its large population limit
	2.1. Notation
	2.2. Construction of the model
	2.3. Stability of the model

	3. Nonparametric estimation of g and 
	3.1. Kernel approximation
	3.2. Construction of estimators of g and 
	3.3. Oracle inequalities

	4. Adaptive estimation under anisotropic Hölder smoothness
	4.1. The smoothness of the McKendrick Von Foerster equation
	4.2. Minimax lower bounds
	4.3. Adaptive estimation under anisotropic Hölder smoothness

	5. Numerical illustration
	6. Proof or Theorem 6
	6.1. A first stability result
	6.2. Stability of the stochastic term
	6.3. Proof of Theorem 6
	6.4. Remaining proofs of Section 2

	7. Proofs of Section 3 and 4
	7.1. Proof of Theorem 11
	7.2. Proof of Theorem 13
	7.3. Proof of Theorem 18
	7.4. Proof of Theorem 19
	7.5. Proof of Theorem 20

	8. Appendix
	8.1. Proof of Proposition 25
	8.2. Proof of Proposition 7
	8.3. Proof of Proposition 17
	8.4. Further estimates on the McKendricks Von Foerster equation

	References

