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A fault mode identification methodology based on self-organizing
map

Sébastien Schwartz1,2 • Juan José Montero Jimenez2,3 • Michel Salaün2 • Rob Vingerhoeds2

Abstract
One of the main goals of predictive maintenance is to be able to trigger the right maintenance actions at the right moment

in time building upon the monitoring of the health status of the concerned systems and their components. As such, it allows

identifying incipient faults and forecasting the moment of failure at the earliest stage. Many different data-driven methods

are used in such approaches (Naderi and Khorasani in 2017 IEEE 30th Canadian conference on electrical and computer

engineering (CCECE), Windsor, ON, IEEE, pp 1–6, 2017. https://doi.org/10.1109/ccece.2017.7946715; Sarkar et al. in J

Eng Gas Turbines Power 1338(8):081602, 2011. https://doi.org/10.1115/1.4002877; Svärd et al. in Mech Syst Signal

Process 45(1):170–192, 2014. https://doi.org/10.1016/j.ymssp.2013.11.002; Pourbabaee et al. Mech Syst Signal Process

76–77:136–156, 2016. https://doi.org/10.1016/j.ymssp.2016.02.023). This work uses the self-organizing maps (SOMs) or

Kohonen map, thanks to its ability to emphasize underlying behavior such as fault modes. An automatic fault mode

detection is presented based on a SOM network and the kernel density estimation with as less as possible prior knowledge.

The different SOM development steps are presented and the suitable solutions proposed to structure the approach are

accompanied by mathematical methods. The generated maps are then used with kernel density analysis to isolate fault

modes on them. Finally, a methodology is presented to identify the different fault modes. The work is illustrated with an

aircraft jet engines case study.

Keywords Diagnostic � Fault identification � Predictive maintenance � Self-organizing map

1 Introduction

Maintenance departments are confronted with three types

of maintenance: corrective maintenance (i.e., correcting

systems that break down or have a deteriorated functional

behavior), preventive maintenance (i.e., maintenance

actions at regular intervals, to avoid break down or dete-

rioration) and predictive maintenance (i.e., performing

specific maintenance actions based on indications derived

from fine analysis on data, crew reports, etc.). Predictive

maintenance has seen a huge rise over the last years,

essentially due to the application of neural networks to

identify incipient faults and to forecast the moment of

failure through the diagnostic phase. Depending on the

monitored data, there are different types of classification

for diagnostic system (Fig. 1). Machine fault diagnostic

approaches are grouped into model-based [1–3] and data-

driven [4–7] techniques.

In this paper, a hybrid approach for a ‘‘process history-

based’’ diagnosis with quantitative data through the com-

bination of a neural network (NN) with a probability

density function (PDF) is scoped. In particular, an unsu-

pervised neural network (UNN) type, the self-organizing

map (SOM), or Kohonen map, is used. This NN has

already shown its effectiveness in the past [9] but requires

substantial knowledge on the neural network type itself,

making it complex to comprehend and frequently requiring

‘‘manual’’ rework. Therefore, the presented novel approach
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aims at automating as much as possible for the develop-

ment of the SOM. The first objective is to reduce to the

minimum level of the interaction between the expert

knowledge and the network itself. The complete process is

reviewed, and, for each step in the process, mathematical

methods are proposed. It leads to a more structured and

automatable procedure with an intent to make the method

more accessible and autonomous. The second objective is

to manage automatically the output of the SOM with PDFs

to identify fault modes.

The goal of this paper is to present a fully autonomous

toolchain that identifies the fault modes from input sensors

by reducing as much as possible the prior knowledge and

the expert intervention.

The paper is organized as follows: In the second section,

predictive maintenance is introduced. In the third section,

the self-organizing map is presented, as well as the dif-

ferent possibilities to enhance the approach and a

methodology to identify the fault modes. The fourth section

exposes and applies the methodology on the case study of

aircraft engines. The paper concludes with some general

observations and indications for future work.

2 Predictive maintenance

Keeping a technical system in optimal operational condi-

tions is key for a successful and an efficient use of the

system. Interruptions of operations not only have a nega-

tive impact (e.g., delayed flights, internet connections not

being available, etc.), but may also have worst conse-

quences (e.g., image of the company impacted, people will

tend to privilege other suppliers, loss of income, etc.).

Maintaining a system in optimal state of operation also

means having timely maintenance actions to ensure the

intended functionality and to avoid potential failures to

occur. A good combination of corrective, preventive and

predictive maintenance is required [10]. Whereas correc-

tive maintenance is based on alarm handling, trou-

bleshooting for corrective actions, etc., predictive

maintenance relies on offline diagnostic task analyses such

as recorded data, crew reports, maintenance logs and other

data recordings on the actual health state of the system.

Such information is then used by operation departments to

assess the health state and derive necessary maintenance

actions and their planning if necessary.

Condition monitoring is used to assess the current health

state of the system at hand. It uses pattern recognition in

time series of monitored data and classifies those patterns

as known conditions. While this is used to be done by

human experts [9], requiring great skill and experience

from the expert, software tools have appeared to support

engineers in such activities.

As predictive maintenance aims to define the best pos-

sible moment to trigger maintenance actions [9], it gained

more and more attention over the last few years. One of the

solutions discussed in the literature for early detection and

classification of failures during the diagnostic phase is the

self-organizing map (SOM) originally proposed by Koho-

nen [11]. This approach allows to detect degradation pat-

terns and the nature of the problem and to derive the

remaining useful life [9, 10, 12]. This network has been

widely used on various application fields for its particular

abilities [13–18].

Visualization helps humans to understand diagnostic

tasks. According to [19], the visualization of the data helps

to gain an understanding of an unknown dataset. For lim-

ited amounts of dimensions in data, humans can do it, but

the perception is limited to three dimensions. High-di-

mensional data visualization with more than three features

is therefore unreachable. To address this issue, several

visualization techniques were developed such as principal

component analysis (PCA) [20], self-organized maps

(SOMs) [11] or Sammon mapping [21]. Those techniques

Fig. 1 Classification of

diagnostic methods based on

[8]. QTA qualitative trend

analysis, PDF probability

density function, PCA principal

component analysis



rely on dimension reduction to visualize on 2D or 3D plots.

This dimension reduction therefore generates new knowl-

edge to be labeled for the analysis. Labeling data using

prior knowledge or human reasoning become complicated

on high dimensions [22], which could induce errors.

Approaches relying on unsupervised learning are interest-

ing thanks to their abilities to deal with high-dimensional

data without prior knowledge. Therefore, a SOM network

answers to the requirements: visualize high-dimensional

data on 2D maps and obtain knowledge generated from

these maps.

The successful implementation of SOM for diagnostic

tasks requires an in-depth analysis of data obtained from

the system at hand. It involves the assessment of data

interdependency, the analysis on how many different

faults/failures can be identified in the data, the distinction

of eventual operational modes (if necessary) and, finally,

successful training and subsequent validation of the SOM.

Such analysis requires a good knowledge on the applica-

tion domain itself and the measured data, in addition to

strong knowledge on SOMs. In the next section, the fault

mode diagnosis approach is presented. Each step of the

SOM neural network is revisited and analyzed to see

‘‘whether and how’’ improvements may be obtained to

automatize the use of SOM neural networks and to reduce

the need for prior knowledge. Then, probability density

function on the neural network output is used to identify

faults of the supervised system.

3 Fault mode diagnosis using self-
organizing maps

3.1 Overview

As presented previously, fault diagnosis requires human

intervention and prior knowledge. The proposed method-

ology (Fig. 2) attempts to perform an automatic fault mode

diagnosis with as less as possible prior knowledge. The

self-organizing map neural network is the core of the

methodology as a tool to emphasize the input data through

a map representation. The underlying information such as

faults becomes more accessible. The approach has been

structured into three phases.

The first step is ‘‘input data management’’. Input data

(raw monitored sensors) have to be formatted and used

with the neural network. This sensor management involves

the choice of useful variables to decrease the complexity

and the size the neural network. In addition, the data are

normalized to facilitate the network training.

The second step is ‘‘system map.’’ The formatted input

data are presented to the neural network. For the training

phase, the network generates maps representing the input

data. During the testing phase, the network outputs a

localization on the previously trained map.

The last step is the ‘‘fault mode identification’’. The

localization on the map (output of the previous stage)

enables the identification of the fault mode thanks to a

mathematical procedure based on the probability density

function.

In the following sections, each step (Fig. 2) will be

described more in detail.

3.2 Input data management

As presented previously, a selection among raw monitored

data is performed. This procedure is called feature selec-

tion (see [23–26]). It is used on structured data to select

features that explain most of the system behaviors by

eliminating inappropriate and redundant data [23]. This

paper will only focus on time-series data. Some basic

approaches provide good means to address the feature

selection. For example, the variance is a good way to

eliminate features with little or no evolution. The correla-

tion coefficient is powerful to identify feature that have the

same behavior. Visual analysis highlights features that

have unusual trend.

For better analysis purpose, a normalization of the input

data is performed. It provides a common scale for the

features. Two main methods are used: rescaling and stan-

dardizing. The rescaling method is the simplest one and

consists to scale data on the range 0; 1½ � with the following

formula:

�xij ¼
xij � mini xij

maxi xij � mini xij
ð1Þ

where xij and �xij are, respectively, the original and nor-

malized data values for a sample j of a feature i from the

input dataset, with i ¼ 1. . .p, where p is the number of

network input.

The standardizing method uses the following formula:

�xij ¼
xij � li

ri
ð2Þ

where li and ri are, respectively, the mean and the stan-

dard deviation of a feature i. Even if this method provides a

uniform scale, normalized inputs data do not belong to the

same common scale. That is why the rescaling method will

be used to have all input data on the same range 0; 1½ �.

3.3 System map

3.3.1 Overview

Self-organizing maps are neural networks using unsuper-

vised learning inspired from human brain way [11]. They



are suitable to produce a low-dimensional representation of

the input space of training samples, called a map, to

visualize high-dimensional data [27]. SOMs are therefore

useful for dimensionality reduction and representation in

which the similarity relations between input data are pre-

served [10]. Its competitive learning capability and the use

of the neighborhood function preserve the topological

properties of the inputs. The competitive approach aims to

put output neurons in competition with each other to be

activated, and the winning neuron is the only one that can

be activated. As most artificial neural networks, SOMs are

developed in two subsequent phases: a training phase and a

testing phase. Thanks to the characteristics of this partic-

ular neural network, the testing phase can also be used as a

labeling part, which is the assignment of information to

specific clusters on the map, such as specific faults, or

system operational conditions. The goal of the training

phase is to teach the algorithm with the dataset in such a

way that similar data features are clustered on specific

topological regions on the map [28]. Then, the generated

map provides clusters, and a health index (HI) is estimated

for each node, depicting the degradation status of the

studied system.

The SOM neural network building is divided into three

stages: preprocessing, training and labeling. A lot of

manual work done by experts is needed to perform these

tasks.

3.3.2 Preprocessing

SOM topologies can be in one, two or even three dimen-

sions [29–33]. The neurons are localized at lattice nodes.

The original SOM [11] is a 2D hexagonal map. Then,

successively, 1D lines, 2D rectangular grids or more

complex structures, such a star lattices [34] (Fig. 3), have

been created. For our case study, a 2D square lattice is used

to visualize it as picture.

A square lattice has n� n neurons of m weights. The

number of weights per group (i.e., m) corresponds to the

number of inputs to the network. According to [35], a size

of the map can be determined by calculating the number of

neurons from the number of observations in the dataset

such as:

M ffi 5
ffiffiffiffi

N
p

ð3Þ

where M is the number of neurons, and N is the number of

observations. A square lattice will have n ¼
ffiffiffiffiffi

M
p

. For

example, with about 10,000 observations, Eq. (3) leads to a

size M ffi 500. For a square lattice, the closest dimension

would be a 23 � 23 matrix.

The next step is the map initialization. There are various

ways to set initial weights, such as input vectors randomly

selected [36], principal components of the input space [36],

large hypercube [37] or random values. A uniform distri-

bution in the range 0; 1½ � with a probability density function

of 1 is considered for usefulness to set neuron weight

vectors wij ¼ wij1;wij2; . . .;wijm

� �

with i; j ¼ 1. . .n.

3.3.3 Training phase

After the input data are processed and the map is initial-

ized, the map is trained using preprocessed data. Training

algorithms related to SOMs are various. Stochastic training

as Algorithm 1 is one of the most classical algorithms [38].

Alternatives such as fast batch SOM [39] or growing self-

Fig. 2 Fault mode diagnosis

methodology



organizing map (GSOM) [40] can be faster but are more

complex to use. They all rely on the determination of the

best matching unit (BMU), which is the smallest distance

between the input vector and the weight vector of the map

nodes.

The weight vector is updated at each iteration as

follows:

wij t þ 1ð Þ ¼ wij tð Þ þ hkl;ij tð Þ x tð Þ � wij tð Þ
� �

8nij 2 EBMU

wij t þ 1ð Þ ¼ wij tð Þ 8nij 62 EBMU

�

ð4Þ

where wij is the vector weight, t is the tth iteration, hkl;ij is

the neighborhood function, x tð Þ is the input observed, nij is

the node on the map, ij are the node coordinates on a 2D

lattice, kl are the BMU node coordinates on the same 2D

lattice and EBMU is the space of BMU neighborhood node

and itself. This space is defined by the width of the

neighborhood function, also called the BMU radius. A

smooth Gaussian kernel is mostly used for the neighbor-

hood function [36, 41]:

hkl;ij tð Þ ¼ g tð Þ � e
�wkl tð Þ�wij tð Þ2

2

2r2 tð Þ ð5Þ

where g tð Þ and r tð Þ are, respectively, the learning rate and

the width of the kernel, which are the decreasing functions

of time [36, 38]. This function decreases through the time

to improve the neighborhood identification.

The BMU node nkl is defined by:

nkljx tð Þ � w2
kl2 ¼ arg min

ij

x tð Þ � wij tð Þ2
2

( )

ð6Þ

The learning process is iterative, until a stopping crite-

rion is met. Examples of criteria are an error estimation

such as the quantization error [36] or the so-called ‘‘rule of

thumb’’ where the number of steps must be at least 500

times the number of neurons in the map [38]. This last

criterion will be used in this paper.

The SOM training speed is linked to the map size, the

number of inputs and the number of samplings. The

number of weights could be large, which leads to a slow

convergence due to the amount of weight updates involved

in each iteration. Several mechanisms have been developed

to address this problem, such as optimizing the width of the

neighborhood function or learning rate function. According

to [36, 41], the Gaussian kernel is a good candidate. The

width of the neighborhood function r tð Þ is chosen as:

r tð Þ ¼ r0 � e�t=s1 ð7Þ

where r0 is an initial variance set to the map size divided

by two [38], and s1 is a positive constant. The learning rate

function g tð Þ is chosen as:

g tð Þ ¼ g0 � e�t=s2 ð8Þ

where g0 is an initial learning rate set to 0.9 [38], and s2 is a

positive constant. The function is limited to a minimum set

at 0.01 [38].

For convenience, s1 and s2 are equal and follow the

relation:

si ¼ tmax= lnr0 with i ¼ 1; 2 ð9Þ

where tmax is the maximal number of iterations. Those

constants lead the exponential decay function radius to 1

when t reaches it maximum value, which is the maximal

number of iterations [42].

Fig. 3 Examples of lattice

structures



With this proposed training, the network is able to adapt

automatically to the presented input data. There is no need

for an objective function as in supervised learning. The

main disadvantage is related to the map size. For the

training phase, the computational needs increase expo-

nentially with the map size. The inference phase has lower

computational needs compared to the training phase. The

output is a map that depicts the used dataset as a repre-

sentation in lower dimension.

3.3.4 Labeling phase

The goal of the labeling phase is to attribute additional

information, such as the name, the color or the number of a

cluster. Additional information relies on user’s needs and is

linked to the application. The generated map has observ-

able clusters. Instead of identifying them manually, an

automatic cluster identification phase has been created to

do so.

The cluster identification phase wants to identify nodes

that make up clusters and assign an information to the

cluster to which they belong. The classification of map

nodes is performed with Algorithm 2. It generates auto-

matically clusters surrounded by boundaries, and an iden-

tifier is assigned to them. For example, if the node 43 with

the coordinate (4,3) is localized inside the cluster ‘‘2,’’ then

this value is attributed to the node.

A Node is considered as seen if it has been assigned to a

cluster identifier, called ClusterLabel. NeighborhoodNodes

are nodes that touch it in all four directions: up, down, left

and right.

In the end, a map is generated in which cluster regions

appear and are defined by boundaries surrounding them.

Let us recall that weight vectors are associated with each

node of the map. Then, for each cluster, a health index is

built for nodes i; jð Þ that belong to cluster C by Eq. (10)

Hij ¼
wij2 � min i;jð Þ2C wij2

max i;jð Þ2C wij2 � min i;jð Þ2C wij2

ð10Þ

in which scale node values of each cluster are in the range

0; 1½ �. Those values represent the current state of the

studied system. Each cluster has a degradation trend. For a

node, a high HI value represents a healthy condition,

whereas a low HI indicates a high degradation or a failure.

When a database with more than one fault mode is used

to train the network, several subregions could appear on

some clusters. Those subregions are linked to different

fault modes related to part failures. To identify fault modes

automatically, input data need to be labeled through the

diagnostic phase.

The diagnostic phase aims at creating knowledge for the

fault identification phase. The input data from the training

set are again presented to the map. BMU searching pro-

vides the cluster number to which they belong and the

associated HI. It leads to the input association using

Algorithm 3. The building of the fault mode indication

becomes possible by knowing exactly which sample

appears in which clusters to localize occurring faults.

3.4 Fault modes identification

The identification of the fault modes gives an insight on the

system state, such as the probability that a specific fault

occurs, or its evolution through the time. Without prior

knowledge about datasets, the number of faults is estimated

through the fault quantification phase. Their area on the

map is approximated thanks to a straightforward method-

ology based on probabilistic theory during the fault



subregions identification phase. Then, by presenting itera-

tively datasets with one associated fault to a map, that has

one or more unknown fault, the fault modes association

phase identifies the unknown faults.

3.4.1 Fault quantification

The fault quantification phase attempts to evaluate auto-

matically the number of different system faults from a

dataset (e.g., pressure drop and over-temperature are two

different errors). Within a given time series of data referred

to as cycles of a specific system, it can be assumed that the

last cycle before non-recoverable error corresponds to the

error state and can be used to identify faults [43]. At this

cycle, the system is considered to be in a defect state and is

taken out of service for maintenance actions. Before the

stopping of the system, the advanced degradation of parts

that were about to fail took place. This should be visible in

the dataset. So, the last cycles of the system before

breakdown are presented to the SOM and the labeling

phase provides the best matching unit (BMU) (i.e., the hit

node on the SOM map). The hit BMU can be the same for

several instances of the system (for example, different

aircraft jet engines belonging to the same family). The

quantity of instances hitting this BMU indicates the hit

number.

Two ways to estimate the hit number are now

introduced:

• H1: using the last cycle of the system

• H2: using the last cluster hit of the system

In the first case, H1, there is only one last hit on a

specific cluster for the system. For example, in a dataset

with 249 systems, there are 249 last hits, shared by all map

clusters, representing the final (most likely) faulty condi-

tion in which the system is found to be itself before it was

stopped for maintenance. It represents a ‘‘sure’’ faulty

condition.

In the second case, H2, the last hit for each system in

each cluster is taken into consideration. Then, in the dataset

with 249 systems, there are 249 last hits on each cluster. In

the case of a six clusters map, this leads to 1494 last hits,

representing faulty conditions for those operational

conditions.

In the next section, it is shown that H2 provides more

information and reliability than H1, and it is a decent

approximation. H2 is used for the case study.

The frequency of those hits over each map cluster is

linked to the fault number. Indeed, they tend to gather in

areas that can be distinguished separately. Those hits are

managed with tools from probability theory to build a

representation of those subregions. A good candidate is the

probability density function (PDF). The kernel density

estimator [44] provides the estimation of the PDF such as:

f̂h x~ð Þ ¼ 1

n � h
X

N

i¼1

K
x~� xi

!
h

� 	

ð11Þ

where x~¼ x1; x2; . . .; xpð Þ are real values, xi
! are random

samples from an unknown distribution, N is the number of

observation, K is the kernel smoothing function, which is a

Gaussian kernel, and h is the bandwidth. In this study, the

bandwidth has been selected at 1% of the SOM map size,

leaving out of consideration the boundary nodes between

fault clusters. For a map of 25 9 25 nodes without cluster,

h ¼ 0:25. According to the targeted application, the rule

could evolve. Other kernel parameters are automatically

estimated by the algorithm [45]. The PDF represents the

probability distribution using the data samples where the

kernel distribution sums the smoothing functions for each

data value to produce a smooth, continuous probability

curve. A 3D-PDF generation is used for each subregion, with

node coordinate x; yð Þ and the hit number as a frequency as z

coordinate. The generated function can be estimated at any

x; yð Þ point. The number of peaks of the PDF leads to the

number of faults inside each map cluster. Therefore, if a

dataset has one or two fault modes, the method should lead,

respectively, to one and two peaks for each cluster on the

map. The goal of this approach is to be able to get an over-

view on the number of fault modes that are present in a

dataset, without relying on a priori information.

3.4.2 Fault subregion identification

A cluster is surrounded by boundaries, and several small

subregions can be estimated inside, related to fault modes.

Fault subregions are the extracted regions from a cluster.

They are generated from the separation of PDF peaks for a

cluster and are used to define each fault area. Indeed, PDF

uses Gaussian functions, which can be separated geomet-

rically. However, all cluster nodes are not necessarily

classified in a fault area. This is the case for nodes with

weak PDF value, far away from the peak center. To address

this problem, the PDF of a cluster is estimated at every

cluster node. A custom threshold is applied on each esti-

mated PDF, and fault areas are then generated with their

own self-defined boundaries. The remaining nodes inside

each fault area, after applying the threshold, represent the

failure. So, if the node (4,3) is inside the subregion Failure

1, then this node is attributed to it.

3.4.3 Fault modes association

The association of fault modes (i.e., subregions of cluster)

with a physical part is performed with similar data, which



present a known defect mode. Prior knowledge about fault

modes, which is previously identified, is used. For exam-

ple, a dataset with one fault mode is presented to a gen-

erated map that has been trained with a dataset with two

fault modes. The presented dataset will excite nodes from

one of the two subregions previously determined. This

subregion will correspond to the known fault mode of the

presented dataset.

4 Case study on aircraft jet engines

4.1 Overview

To illustrate the present work, a case study on diagnosing

jet engines is used. Engine condition monitoring (ECM)

allows for regular assessment of the jet engine health state,

based on in-flight measured variables on the engine itself,

as well as its environment (the aircraft) in its flight con-

ditions. Specific parameter trend evolutions have shown to

be early indications for engine degradations, failures and/or

malfunctions [9]. Engine condition monitoring consists of a

wide range of activities assessing the jet engine health,

from the mounting on-wing until its removal. After every

flight, performance engineers evaluate the evolution of

engine critical parameters and derive from those analyses

to anticipate or to avoid incidents, to evaluate the effects of

incidents or to provide a clear ‘‘no problem for the next few

flights’’ indication. Whenever an engine gets into a much

deteriorated health state, no longer allowing operation

within regulatory limits, the performance engineer recom-

mends its removal and a precise planning. Actions of the

performance engineer aim not only to keep the engine in its

optimum operational condition, but also to correct in an

early stage any detected malfunction, allowing for staying

within safe operation and also reducing fuel consumption

and increasing operational punctuality. Therefore, early

fault mode identification provides relevant information for

the maintenance program. The use of the SOM neural

network for this application is particularly interesting for

its ability to map the input data without prior knowledge on

fault modes. In general, the monitored system does not

provide labeled data related to fault modes, whereas in the

case of only one fault mode, the situation is straightfor-

ward. In the case of multiple fault modes, it becomes more

complicated without a proper monitoring to identify them.

4.2 Input data

In this paper, datasets are generated [43] by using the

C-MAPSS software [46]. C-MAPSS is a tool for the sim-

ulation of a realistic large commercial turbofan engine

(Fig. 4) for the 90,000 lb thrust class. Thanks to

editable input parameters, it is possible to specify opera-

tional profile, closed-loop controllers, and environmental

conditions such as altitude. Furthermore, various degrada-

tions can be managed in different sections of the engine

system.

Using this simulation environment, five datasets were

generated by [43]. One of them was used for the prog-

nostics challenge competition at International Conference

on Prognostics and Health Management in 2008 (PHM08).

In those datasets, the simulated engines have one or six

operational conditions (flight phases such as Take-off,

Cruise, etc.) driven by engine control settings (altitude,

Mach number and Throttle Resolver Angle) and one or two

fault modes. In PHM08 (Table 1), there are three datasets

with one fault (i.e., #1, #2, and #5) and two with two faults

(i.e., #3 and #4). The fault, corresponding to a failed sys-

tem part, is, respectively, the HPC and the HPC and the fan

(see Fig. 4). All dataset characteristics are summarized in

Table 1.

Each dataset (i.e., #1 to #5) consists of multivariate time

series and is divided into a training set and a testing set,

generated by [43]. The database provides those sets in

separate files: five training files and five testing files. The

training subset is only used for training of the neural net-

work (the learning), whereas the testing subset, withFig. 4 Simplified diagram of the 90 K engine [46]

Table 1 C-MAPSS dataset

characteristics
Id Name Operational conditions Fault modes Failed system part Number of engines

#1 FD001 1 1 HPC 100

#2 FD002 6 1 HPC 260

#3 FD003 1 2 HPC, Fan 100

#4 FD004 6 2 HPC, Fan 549

#5 FD005 6 1 HPC 218



Table 2 Output variables from C-MAPSS tool

Sensor id Symbol Description Units

1 T2 Total temperature at fan inlet �R
2 T24 Total temperature at LPC outlet �R
3 T30 Total temperature at HPC outlet �R
4 T50 Total temperature at LPT outlet �R
5 P2 Pressure at fan inlet psia

6 P15 Total pressure in bypass duct psia

7 P30 Total pressure at HPC outlet psia

8 Nf Physical fan speed rpm

9 Nc Physical core speed rpm

10 epr Engine pressure ration (P50/P2) –

11 Ps30 Static pressure at HPC outlet psia

12 Phi Ratio of fuel flow to Ps30 pps/psi

13 NRf Corrected fan speed rpm

14 NRc Corrected core speed rpm

15 BPR Bypass ration –

16 farB Burner fuel–air ratio –

17 htBleed Bleed enthalpy –

18 Nf_dmd Demanded fan speed rpm

19 PCNfR_dmd Demanded corrected fan speed rpm

20 W31 HPT coolant bleed lbm/s

21 W32 LPT coolant bleed lbm/s

Table 3 Extract of the dataset #4

Engine Cycle CS1 CS2 CS3 S1 S2 S3 S4 S5 S6 S7 S8 S9

1 1 42.0049 0.84 100 445 549.68 1343.43 1112.93 3.91 5.7 137.36 2211.86 8311.32

1 2 20.002 0.7002 100 491.19 606.07 1477.61 1237.5 9.35 13.61 332.1 2323.66 8713.6

1 3 42.0038 0.8409 100 445 548.95 1343.12 1117.05 3.91 5.69 138.18 2211.92 8306.69

1 4 42 0.84 100 445 548.7 1341.24 1118.03 3.91 5.7 137.98 2211.88 8312.35

1 5 25.0063 0.6207 60 462.54 536.1 1255.23 1033.59 7.05 9 174.82 1915.22 7994.94

1 6 34.9996 0.84 100 449.44 554.77 1352.87 1117.01 5.48 7.97 193.82 2222.77 8340

1 7 0.0019 0.0001 100 518.67 641.83 1583.47 1393.89 14.62 21.58 552.45 2387.92 9050.5

1 8 41.9981 0.84 100 445 549.05 1344.16 1110.77 3.91 5.69 137.13 2211.92 8307.28

1 9 42.0016 0.84 100 445 549.55 1342.85 1101.67 3.91 5.7 138.02 2211.9 8307.81

1 10 25.0019 0.6217 60 462.54 536.35 1251.91 1041.37 7.05 9.01 174.7 1915.23 8005.83

1 11 20.0016 0.7 100 491.19 606.88 1478.02 1233.07 9.35 13.61 333.22 2323.7 8709.62

1 12 34.9993 0.84 100 449.44 554.53 1365.99 1122.73 5.48 7.98 193.67 2222.78 8337.46

1 13 24.9986 0.62 60 462.54 536.32 1257.84 1040.87 7.05 9.01 174.53 1915.28 8000.07

1 14 20.0056 0.7008 100 491.19 607.32 1470.33 1242.41 9.35 13.61 333.71 2323.72 8714.35

Engine Cycle S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

1 1 1.01 41.69 129.78 2387.99 8074.83 9.3335 0.02 330 2212 100 10.62 6.367

1 2 1.07 43.94 312.59 2387.73 8046.13 9.1913 0.02 361 2324 100 24.37 14.6552

1 3 1.01 41.66 129.62 2387.97 8066.62 9.4007 0.02 329 2212 100 10.48 6.4213

1 4 1.02 41.68 129.8 2388.02 8076.05 9.3369 0.02 328 2212 100 10.54 6.4176



different data, is only used for the network validation. In

this case study, a dataset contains three input variables

representing the engine operational settings, that generate

one or six operational conditions and 21 output sensors

(Table 2). Dataset is comparable between themselves

whether they have the same operation settings, generating

the same number of operational conditions. Thus, FD001

and FD003 are comparable as well as FD002 and FD004.

However, the FD005 dataset cannot be compared with

FD002 or FD004 because the values of the operational

settings are not compatible, even if it has six operational

conditions.

Table 3 shows an extract of available data for the

dataset #4. The other datasets follow the same format.

A reduction in the number of sensors could lead to a

drastic reduction in the computational time for the training

of the neural network. Following the work of [10, 22, 47]

for the PHM08 dataset number #5, the only relevant seven

sensors were found to be: 2, 3, 4, 7, 11, 12 and 15.

In fact, among the 21 sensors, constant or binary trend is

observed on several sensors that do not provide degradation

behaviors. Sensors 1, 5, 6, 10, 16, 17, 18 and 19 are con-

cerned and not considered from the selection. Others sen-

sors provide similar information such as sensors 8 and 13

Fig. 5 Trend of sensors in a selected regimes. (Left) Inconsistent end-life trends. (Right) Piecewise trends

Table 4 SOM information for all datasets

Id Number of observations Features Map size Iterationsa

#1 20,631 3 7 24,500

#2 53,759 3 9 40,500

#3 24,720 3 7 24,500

#4 61,249 3 9 40,500

#5 45,918 3 8 32,000

aEstimated following the rule of thumb

Table 3 (continued)

Engine Cycle S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21

1 5 0.93 36.48 164.11 2028.08 7865.8 10.8366 0.02 305 1915 84.93 14.03 8.6754

1 6 1.02 41.44 181.9 2387.87 8054.1 9.3346 0.02 330 2223 100 14.91 8.9057

1 7 1.3 46.94 520.48 2387.89 8127.92 8.396 0.03 391 2388 100 38.93 23.4578

1 8 1.01 41.6 129.65 2387.97 8075.99 9.3679 0.02 329 2212 100 10.55 6.2787

1 9 1.02 41.44 129.65 2388 8071.13 9.3384 0.02 328 2212 100 10.63 6.3055

1 10 0.94 36.24 164.08 2028.13 7869.41 10.9141 0.02 305 1915 84.93 14.34 8.6119

1 11 1.07 43.86 312.96 2387.83 8050.06 9.1667 0.02 363 2324 100 24.63 14.6705

1 12 1.02 41.45 181.71 2387.86 8056.31 9.3041 0.02 332 2223 100 14.68 8.8752

1 13 0.94 36.42 163.67 2028.14 7865.15 10.8388 0.02 305 1915 84.93 14.41 8.6062

1 14 1.07 43.92 313.3 2387.85 8051.34 9.2272 0.02 364 2324 100 24.3 14.7105



with the sensor 11 by looking at the correlation coefficient

with a threshold of 85%. Sensors 9 and 14 show incon-

sistent end-life trends among the engines (Fig. 5, left), and

the sensor 17 is a piecewise constant function (Fig. 5,

right). Finally, the sensors 20 and 21 do not bring a clear

trend throughout the unit’s life according to [22]. Through

those steps, the final seven sensors are determined. The

Fig. 6 SOM maps from datasets

#1 to #5 with three operation

conditions as features



same selected sensors have been taken into account for the

datasets #1, #2, #3 and #4.

4.3 Operational mode labeling

The case study contains five datasets generated by [43] (see

Table 1), where it is known that one or six different

operational conditions are used. According to the com-

plexity of the case study, manual operational mode labeling

may not be possible by hand. To demonstrate the power of

the automated SOM, they are performed following the

system map process introduced in the previous section (see

Fig. 2).

The three operational settings (altitude, Mach number

and Throttle Resolver Angle) in the dataset are used as

inputs to the SOM. Due to the number of inputs, the map

size is determined with Eq. (3) and the result is divided by

four, custom factors established through multiple empirical

experiments. A bigger (or smaller) map leads to an increase

(and decrease) in the cluster numbers and may lead to an

inconsistency in the representation of information. Further

development will be done to address this empirical esti-

mation. The convergence criteria of the ‘‘rule of thumb’’

are used, leading to a number of iterations of 500 times the

number of neurons. Table 4 summarizes SOM information

used.

The training phase generates maps in Fig. 6.

The maps reveal one cluster for the datasets #1 and #3,

whereas the datasets #2, #4 and #5 show six clusters. This

means that there is one operational condition for #1 and #3

and six operational conditions for #2, #4 and #5, which is

in line with Table 4. The diagnostic phase from the system

map process provides exactly the same operational mode

labeling as what was obtained manually.

4.4 System map generation

4.4.1 Preprocessing and training

The SOM will now be trained with the seven sensors

identified in the previous section. The number of neurons is

determined with Eq. (3) and divided by two to reduce the

computational time. Table 5 summarizes SOM information

used.

The training phase generates the maps in Fig. 7.

For each dataset in Fig. 7, the number of clusters is

identical to Fig. 6, corresponding to the number of opera-

tional modes. The cluster identification phase provides the

same cluster information with the seven selected sensors,

compared to the operational mode labeling in Sect. 4.3. It

provides reliability in the unsupervised approach.

It appears that the maps for the datasets #3 and #4 show

two darker colors on each cluster, which means that there

are two fault modes in each cluster. This matches the

information of Table 1. The color degradation corresponds

to the evolution of the HI (i.e., degradation status). Lighter

colors correspond to a healthy system, whereas the darker

colors mean an advanced degradation. Other datasets have

only one dark colors on each cluster; they have one fault

mode. To confirm that, mathematical tools are now

introduced.

4.5 Fault mode identification

4.5.1 Fault quantification

The kernel density estimator Eq. (11) is applied on each

cluster of each map under H2. It generates a PDF to

identify the number of fault modes. Thanks to the SOM

map (Fig. 7), the minimum probability density function

kernel bandwidth without cluster boundaries can be

obtained (see Table 6).

Figure 8 presents the PDF generated for a particular

cluster. On those figures, PDF values of node coordinates

x; yð Þ and hit numbers z are normalized. The number of

fault modes is easily identifiable visually as well as auto-

matically. This procedure is performed for each generated

cluster on each map, and results are compared with the

information provided by the datasets. It results that the

fault number is well identified, with two fault modes for the

database #3, #4 and one for the others.

In Sect. 3.4.1, two ways to evaluate the hit number were

presented. Here, we would like to evaluate whether H1 is

more pertinent than H2. H1 is relevant in terms of inter-

pretation. However, the dataset used provides few engines

(Table 1). Table 7 summarizes the number of samples

according to hypotheses presented in Sect. 3.4.1.

Under hypothesis H1, due to a lack of samples, only one

out of two fault modes is identified. For dataset #4, it has

two fault modes and six operational conditions; the 249

samples of H1 represent around 21 samples per fault per

operational conditions. Following the philosophy of H2,

around 100 samples per fault per operational conditions are

needed for proper identification.

Table 5 Training SOM information for all datasets

Id Number of observations Features Map size Iterationsa

#1 20,631 7 19 180,500

#2 53,759 7 24 288,000

#3 24,720 7 20 200,000

#4 61,249 7 25 312,500

#5 45,918 7 23 264,500

aEstimated following the rule of thumb



For each engine, the last flight cycle spent on each

operational condition (H2) is compared to the last flight

cycle before a fault occurs (H1) to quantify the reliability

of H2. For example, the engine 12 (Table 8) has six

operational conditions. Table 8 summarizes the flight cycle

for both cases and the error of H2 compared to H1. The

Fig. 7 SOM map from datasets

#1 to #5 with 7 physical sensor

data as features

Table 6 PDF kernel bandwidth
Id Map size Bandwidth h

#1 19 0.19

#2 24 0.22

#3 20 0.20

#4 25 0.22

#5 23 0.21



error is above 10% (custom threshold) for the clusters 1

and 5. That means engine 12 belongs to the group of

engines, where H1 is more relevant than H2.

Fig. 8 PDF on a cluster for datasets #1 to #5

Table 7 Number of sample for

datasets #1 to #5
Id H1 H2

#1 100 100

#2 260 1560

#3 100 100

#4 249 1494

#5 218 1308

Table 8 Example of compar-

ison for engine 12
Engine 12

Cluster H1 H2 Error (%)

1 320 260 18.75a

2 320 0.00

3 300 6.25

4 289 9.69

5 277 13.44a

6 310 3.13

aError above 10%



Fig. 9 Failure modes for

datasets #1 to #5



This evaluation is performed for all datasets with a

custom threshold of 10%. It results that there are around

3% of engines where H2 is not relevant. For a dataset of

249 engines, H1 is more relevant than H2 for only eight

engines. H2 is therefore acceptable for this case study.

4.5.2 Fault subregions identification

For the fault subregions identification, only map nodes that

are included in the PDF shape are retained. The user cus-

tomizes the threshold according to the required precision.

This is linked to the probability of training engines of

which their last flight cycle has hit the fault mode area. A

threshold of 0.40 was used, meaning that all nodes with a

probability density lower than 40% are removed. The

results are shown in Fig. 9.

When an engine degrades up to a point a failure mode is

likely to happen, fault mode area is crossed on each

operational mode. Based on this observation, the fault

mode is considered to be the same on each map cluster and

labeled as failure in Fig. 9.

4.5.3 Fault modes association

The fault modes association phase can only be performed

on similar datasets as explained in Sect. 4.2. Thus, the

datasets #1 and #3 are similar (similar operational settings

and operation conditions) as well as the datasets #2 and #4.

The use of datasets with one fault mode (i.e., the datasets

#1 and #2) to identify the same failure on the maps trained

with two failures (i.e., the datasets #3 and #4) results in a

Fig. 9 continued



clear and unambiguous identification. The found fault

mode is associated with the corresponding failure.

As shown in Fig. 9, the datasets #3 and #4 have both

two fault modes, named, respectively, failures 1 and 2. Yet,

the faulty system part is unknown. As mentioned, datasets

#1 and #2 are used to identify one of the two failures on

maps trend with datasets #3 and #4.

Figure 10 shows that all engines from the datasets #1

and #2 are, respectively, in the cluster failure 1 of the

datasets #3 and #4, following the hit number estimation

‘H2’ (see Sect. 3.4.1). Knowing that #1 and #2 have HPC

fault modes (Table 1), failures 1 and 2 are, respectively,

identified as HPC and fan fault mode. With this knowledge,

the fault modes of each engine in the datasets #3 and #4

can be determined.

However, on the map #4 (Fig. 10), some engines are out

of a failure area, such as in modes 3 and 4, or misclassified,

such as in mode 6. With the hit number estimation ‘H2,’ it

represents 0.19% of error, whereas with the hit number

estimation ‘H1,’ all engines are perfectly classified for this

study. The failure identification procedure is then consid-

ered satisfactory.

Fig. 10 Fault modes

identification for maps #3 and

#4



5 Conclusion

This study addresses early detection and classification of

faults through an unsupervised learning approach, without

prior knowledge, based on self-organizing maps (SOMs).

This neural network is at the core of the automatized

approach. A complete process to comprehend the concept

and to use SOM has been presented. The SOM has some

advantage such as unsupervised training and is useful for

dimensionality reduction and representation of complex

and large datasets thanks to the map visualization. A

methodology has been described to build and to config-

ure the SOM according to the case study. The article

highlights the possibility to identify the operational mode

and fault modes inside generated maps with a methodology

relying on the kernel density estimation. The methodology

has been illustrated on a case study for diagnosing jet

engine datasets. Without prior knowledge on the faults, the

proposed algorithm was able to identify the number of

operational modes as well as the fault mode number for the

five datasets. Furthermore, the fault subregions identifica-

tion estimates fault mode areas on the map, leading to

failures identification on each cluster.

The unsupervised classifier used is a SOM neural net-

work. There exist different types of unsupervised clustering

techniques such as hierarchical or Bayesian clustering that

could provide different results according to the case study

[48]. Another candidate for future work could be a network

based on restricted Boltzmann machines (RBM) [49] that

will provide a probability distribution over its set of inputs.

In the current study, the automatic fault mode identifi-

cation was experimented up to two fault modes. For future

work, the study should be extended to more than two

failure modes on the same case study. Two ways to eval-

uate the hit number have been explored. Other hypothesis

could be examined. The used feature for #1 to #4 was

supposed to be same than for #5. A generic approach to get

automatically the best set of feature for different types of

data will be a good solution to consider, as well as for the

custom factor for the map size reduction. A study could be

performed to explore the use of the presented approach

with a different case study.
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