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SEPARATION OF SCALES: A QUANTUM-CLASSICAL

APPROACH FOR COMPLEX SYSTEMS AND A SYSTEM-BATH

ANSATZ

IRENE BURGHARDT, RÉMI CARLES, CLOTILDE FERMANIAN KAMMERER,
BENJAMIN LASORNE, AND CAROLINE LASSER

Abstract. We consider quantum-dynamical systems that consist of two dif-
ferent parts as in system-bath Hamiltonians, and assume that each of these
parts is described by a set of parameters. We investigate régimes of inter-
system couplings that are partially flat because they vary slowly with respect

to one set of variables (those of the bath, for example). We also study the
situation where one of the sets of variables is semiclassically scaled; this case
effectively leads to a quantum-classical formulation, due to the classical pa-
rameter evolution. In both situations, we propose two kinds of schemes of
dimension reduction : one based on the Taylor expansion and the other one
based on partial averaging. We analyze the error estimates in terms of appro-
priate norms of the coupling both for the wave function and for the action of
observables, showing that the choice between an approach by Taylor expansion
or by average is more a question of numerical convenience than a matter of
errors, since both approaches lead to comparable estimates.

1. Introduction

We consider quantum-dynamical systems that consist of two different parts and
investigate various régimes of intersystem couplings as well as effective dynamical
descriptions, that simplify the original, fully quantum-mechanical formulation. The
time-dependent Schrödinger equation

(1.1) i∂tψ = Hψ ; ψ|t=0 = ψ0,

is governed by a Hamiltonian of the form

H = Hx +Hy +W (x, y), where(1.2)

Hx = −1

2
∆x + V1(x), Hy = −1

2
∆y + V2(y),

where the potentials V1(x), V2(y) and the coupling potentialW (x, y) are all smooth
functions, that satisfy subquadratic estimates. Such a set-up guarantees existence
and uniqueness of the solution to the Schrödinger equation (1.1) for a rather general
set of initial data, see Assumption 2.1 for precise statements of our assumptions, as
well as Remark 2.2 for other possible frameworks. The overall set of space variables
is denoted as (x, y) ∈ Rn × Rd such that the total dimension of the configuration
space is n+ d. The wave function depends on time t > 0 and both space variables,
that is, ψ = ψ(t, x, y). We will abbreviate the Lebesgue spaces for the different
variables x, y, and (x, y) by

L2
x = L2(Rn) , L2

y = L2(Rd) , L2 = L2(Rn+d).
1
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We suppose that initially scales are separable, that is, we work with initial data of
product form

(1.3) ψ(0, x, y) = ψ0(x, y) = ϕx0(x)ϕ
y
0(y),

where the functions ϕx0 ∈ L2
x and ϕy0 ∈ L2

y are square-integrable and satisfy addi-
tional growth and regularity assumptions as given in Section 2.1 (typically, Schwartz
class). In the simple case without coupling, that is, W ≡ 0, the solution stays sep-
arated, ψ(t, x, y) = ϕx(t, x)ϕy(t, y) for all time, where

i∂tϕ
x = Hxϕ

x ; ϕx|t=0 = ϕx0 ,

i∂tϕ
y = Hyϕ

y ; ϕy|t=0 = ϕy0 ,

and this is an exact formula. Here, we aim at investigating the case of an actual
coupling with ∂x∂yW 6≡ 0 and look for approximate solutions of the form

ψapp(t, x, y) = ϕx(t, x)ϕy(t, y),

where the individual components satisfy evolution equations that account for the
coupling between the variables. We investigate the size of the difference between
the true and the approximate solution in the L2-norm

‖ψ(t)− ψapp(t)‖L2 ,

and in Sobolev norms. We present error estimates that explicitly depend on deriva-
tives of the coupling potentialW (x, y) and on moments of the approximate solution.
As an additional error measure we also consider the deviation of true and approxi-
mate expectation values

〈ψ(t), Aψ(t)〉 − 〈ψapp(t), Aψapp(t)〉 ,
for self-adjoint linear operators A. Roughly speaking, the estimates we obtain
for observables depend on one more derivative of the coupling potential than the
norm estimates. This means that in many situations expectation values are more
accurately described than the wave function itself.

1.1. Partially flat coupling. In the first part of our paper we will investigate
the accuracy, when the full Hamiltonian H is replaced by an approximate one,
Happ = Hx +Hy +Wapp(x, y), that keeps the factored form of the wave function.
We consider a brute-force approach, where we collocate partially at the origin and
set

Wapp(x, y) =W (x, 0) +W (0, y)−W (0, 0).

A possible criterion for choosing a collocation point different from the origin is
presented in Remark 3.1. In comparison, following the more conventional time-de-
pendent Hartree approach, we perform partial averages of the coupling potential,

〈W 〉y =

∫

Rd

W (x, y) |ϕy(t, y)|2 dy
/∫

Rd

|ϕy(t, y)|2 dy,

〈W 〉x =

∫

Rn

W (x, y) |ϕx(t, x)|2 dx
/∫

Rn

|ϕx(t, x)|2 dx,

and the full average

〈W 〉 =
∫

Rn+d

W (x, y) |ϕx(t, x)ϕy(t, y)|2 dxdy
/∫

Rn+d

|ϕx(t, x)ϕy(t, y)|2 dxdy.
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We then set

Wapp(t, x, y) = 〈W 〉y (t, x) + 〈W 〉x (t, y)− 〈W 〉 (t).

This approach will be referred to as mean-field approximation in the following.

For both approximations, the brute-force and the mean-field approximation, we
derive various types of estimates for the error in L2-norm. Our key finding is that
both methods come with error bounds that are qualitatively the same, since they
draw from either evaluations or averages of the function

δW (x, x′, y, y′) =W (x, y)−W (x, y′)−W (x′, y) +W (x′, y′).

Depending on whether one chooses to control the auxiliary function δW in terms
of ∇xW , ∇yW or ∇x∇yW , the estimate requires a balancing with corresponding
moments of the approximate solution, see Proposition 3.4. The extension of the
L2-results to first order Sobolev norms is given in Proposition 3.8. In addition,
we analyse the deviation of the true and the approximate expectation values in a
similar vein. For the expectation values, we again obtain qualitatively similar error
estimates for both methods. The upper bounds differ from the norm bounds in so
far as they involve one more derivative of the coupling potential W and low order
Sobolev norms of the approximate solution, see Proposition 3.10.

We may therefore summarize that from the perspective of approximation accu-
racy, the brute force and the mean-field approach differ only slightly. Therefore,
other assessment criteria are needed for explaining the prevalence of the Hartree
method in many applications. Specifically, the time-dependent Hartree approxi-
mation (with its partial averages) stems from the time-dependent Dirac–Frenkel
variational principle applied to the manifold of product functions, see for example
[23, §3.2], and thus automatically conserves energy with the same energy as the
original system. We provide a non-variational proof of this crucial conservation
property in Lemma 3.12.

1.2. Dimension reduction via semiclassical analysis. In the second part of the
paper we turn to a specific case of the previous general class of coupled Hamiltonians
Hε = Hx +Hε

y +W (x, y) and consider for one part of the system a semiclassically
scaled Schrödinger operator

Hε
y = −ε

2

2
∆y + V2(y), ε > 0.

The initial data are still a product of the form (1.3), but the y-factor is chosen as

ϕy0(y) = ε−d/4a

(
y − q0√

ε

)
eip0·(y−q0)/ε,

that is, ϕy0 is a semiclassical wave packet with a smooth and rapidly decaying
amplitude function a ∈ S(Rd), and an arbitrary phase space center (q0, p0) ∈ R2d.
We will choose a semiclasical wave packet approximation for ϕy(t, y) exploring two
different choices for the center (q(t), p(t)). As a first option we consider the classical
trajectory

q̇ = p , ṗ = −∇V2(q),
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and as a second option the corresponding trajectory resulting from the averaged
gradient of the potential V2,

〈∇V2〉 (t) =
∫

Rd

∇yV2(y) |ϕy(t, y)|2 dy
/∫

Rd

|ϕy(t, y)|2 dy.

Correspondingly, the approximative factor ϕx(t, x) is evolved by the partial Hamil-
tonian Hx +Weff with

Weff(t, x) =W (x, q(t)) or

Weff(t, x) =

∫

Rd

W (x, y) |ϕy(t, y)|2 dy
/∫

Rd

|ϕy(t, y)|2 dy.

We obtain error estimates in L2-norm, see Proposition 4.4, Sobolev norms, see
Remark 4.6, and expectation values, see Proposition 4.9. These estimates are given
in terms of the semiclassical parameter ε and derivatives of the coupling potential.

1.3. Relation to earlier work. The first motivation for our investigation came
from the variational treatment of mixed quantum-classical molecular dynamics
in [28]. To the best of our knowledge, the rather general mathematical analysis
of scale separation in quantum systems we are developing here is new. Previous
mathematical work we are aware of is concerned with rather specific coupling mod-
els, as for example the coupling of Hartree–Fock and classical equations in [6], or
the time-dependent self-consistent field equations in [18], or with adiabatic approx-
imations which rely on eigenfunctions for one part of the system, see for example
[32, 26]. In the chemical physics literature, related approaches to dimension re-
duction have been proposed in the context of mean-field methods [13, 14], and the
quantum-classical mean-field Ehrenfest approach [12, 2]. Also, quantum-classical
formulations have been derived in a Wigner phase space [25, 19] setting and a quan-
tum hydrodynamic setting [15, 5, 30]. The present formulation circumvents formal
difficulties of these approaches [9, 31, 29], by preserving a quantum wavefunction
description for the entire system.

1.4. Outline of the paper. In the next Section 2, we present the main assump-
tions we will work with (Section 2.1) and the type of arguments we will use (Sec-
tion 2.3). We also develop the example of system-bath Hamiltonians with anhar-
monic couplings that has motivated our study (Section 2.2). Then, in Section 3,
we present the reduction of dimension that can be achieved by taking advantage of
a flat coupling. We discuss both the brute-force (Section 3.1) and the mean-field
approach (Section 3.2), and give error estimates, for the wave function (Section 3.3)
and for observables (Section 3.5), paying special attention to initial data presenting
higher Sobolev regularity (Section 3.4), and to energy conservation (Section 3.6).
Finally, in Section 4, we consider initial data which fit with a semiclassical setting
and present the semiclassical approach that we motivate by a scaling procedure
(Section 4.1). We introduce two types of ansatz (Section 4.2), one obtained by
Taylor expansion (Section 4.3) and the other one by partial averaging (Section 4.4),
the convergence of which we study in both cases for the wave function and for ob-
servables that only act on the semiclassical variable. These results are stated in
Section 4.5 and proved in Sections 4.6 and 4.7, respectively.
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2. Assumptions and technical preliminaries

We describe here the mathematical setting that will be ours, discuss it in the
context of system-bath Hamiltonians [34, 3], and provide the main technical lemma
that we will use for deriving precise error estimates.

2.1. Assumptions on regularity and growth of the potentials. The regu-
larity and the growth of the potential is an important feature of the subject. We
choose a very classical set of assumptions since our focus is more on finding appro-
priate ways to approximate the solution in a standard framework than on treating
specific situations.

Assumption 2.1. All the potentials that we consider are smooth, real-valued, and

at most quadratic in their variables:

V1 ∈ C∞(Rn;R), V2 ∈ C∞(Rd;R), W ∈ C∞(Rn+d;R),

and, for α ∈ Nn, β ∈ Nd,

∂αxV1 ∈ L∞ provided that |α| > 2,

∂βy V2 ∈ L∞ provided that |β| > 2,

∂αx ∂
β
yW ∈ L∞ provided that |α|+ |β| > 2.

All the initial date we consider are smooth and rapidly decaying, that is, Schwartz

class functions:

ϕx0 ∈ S(Rn;C), ϕy0 ∈ S(Rd;C) (hence ψ0 ∈ S(Rn+d;C)).
Under the above assumption, it is well-known that Hx, Hy and H are essentially

self-adjoint on L2(RN ), with N = n, d and n+ d, respectively (as a consequence of
Faris-Lavine Theorem, see e.g. [27, Theorem X.38]).

The assumptions on the growth and smoothness of the potentials and the regu-
larity of the initial data call for comments.

Remark 2.2. (1) Concerning the growth of V1, V2 and W , the assumption that
they are at most quadratic concerns the behavior at infinity and could be
relaxed, up to suitable sign assumptions. Local behavior is rather free, for
example a local double well is allowed, as long as it is not too confining at
infinity. We choose to stick to the at most quadratic case, since bounded
second order derivatives simplify the presentation.

(2) Concerning the smoothness, most of our results still hold assuming only
smoothness of W , as long as the operators Hx and Hy are essentially self-
adjoint on an adequate domain included in L2(RN ), with N = n, d. For
example, V1 and V2 could both present Coulomb singularities, and the
results of Proposition 3.4 would still hold. In the semiclassical régime, we
can also allow a Coulomb singularity for V1 and prove Proposition 4.4 and
Proposition 4.9.

(3) Concerning the smoothness and the decay of the initial data, most of our
results still hold, if the initial data are contained in one of the spaces Σk(RN )
containing functions f whose norms

(2.1) ‖f‖Σk = sup
z∈RN

|α|+|β|6k

‖zα∂βz f‖L2
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are bounded. Note that S(RN ) = ∩k∈NΣ
k. For example, Proposition 3.4

still holds for initial data in Σ1, while Proposition 4.4 requires initial data
in a semiclassically scaled Σ3 space.

2.2. System-bath Hamiltonians. An important class of coupled quantum sys-
tems are described by system-bath Hamiltonians [34, 3].

Hsb = −1

2
∆x −

1

2
∆y + Vs(x) + Vb(y) + Vsb(x, y)

These are naturally given in the format required by (1.2). In the present discussion,
we specify that the bath is described by a harmonic oscillator, Vb(y) =

1
2k

0
2 |y|2 (or

a set of harmonic oscillators in more than one dimension) and the system-bath
coupling Vsb(x, y) = W (x, y) is of cubic form, such that we obtain in the notation
of (1.2),

Hx = −1

2
∆x + Vs(x) , Hy = −1

2
∆y +

1

2
k02 |y|2 , W (x, y) =

1

2
~η · x|y|2.

where k02 > 0 and ~η ∈ Rd. The cubic, anharmonic coupling W (x, y) is a non-trivial
case, which is employed, e.g., in the description of vibrational dephasing [22, 16] and
Fermi resonances [4]. It is natural to assume smoothness and subquadratic growth
for Vs(x). However, the coupling potentialW (x, y) clearly fails to satisfy the growth
condition of Assumption 2.1. In the following, we will therefore also provide slight
extensions of our estimates to accomodate this specific, but interesting type of
coupling.

2.3. Estimation lemma. We shall consider two families of estimates, regarding
the wave function itself on the one hand, and regarding observables on the other
hand. Of course, error estimates on the wave function yield error estimates of
observables, since

|〈ψ(t), Aψ(t)〉 − 〈ψapp(t), Aψapp(t)〉|

6 ‖ψ(t)− ψapp(t)‖L2 (‖Aψ(t)‖L2 + ‖Aψapp(t)‖L2) .

However, it turns out that the averaging process, involved in the action of an
observable on a wave function, allows to prove better estimates than those stemming
from the norm estimates. Our first tool will be the following standard lemma that
will be applied with either h = 1 or h = ε a small parameter.

Lemma 2.3. Let N > 1, A be self-adjoint on L2(RN ), and ψ solution to the

Cauchy problem

ih∂tψ = Aψ +Σ ; ψ|t=0 = ψ0,

where ψ0 ∈ L2(RN ) and Σ ∈ L1
loc(R

+;L2(RN )). Then for all t > 0,

‖ψ(t)‖L2(RN ) 6 ‖ψ0‖L2(RN ) +
1

h

∫ t

0

‖Σ(s)‖L2(RN )ds.

Proof. In view of the self-adjointness of A, we have

‖ψ(t)‖ d

dt
‖ψ(t)‖ =

1

2

d

dt
〈ψ(t), ψ(t)〉 = Re〈ψ(t), 1

ih
(Aψ(t) + Σ(t))〉

=
1

h
Im〈ψ(t),Σ(t)〉,
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and therefore, by the Cauchy–Schwarz inequality,

d

dt
‖ψ(t)‖ 6

1

h
‖Σ(t)‖.

Integrating in time, we obtain

‖ψ(t)‖ = ‖ψ0‖+
∫ t

0

d

ds
‖ψ(s)‖ds 6 ‖ψ0‖+

1

h

∫ t

0

‖Σ(s)‖ds.

�

In the context of observables, refined error estimates will follow from the appli-
cation of the following lemma.

Lemma 2.4. Let N > 1, A1, A2, B be self-adjoint on L2(RN ), and ψ(1), ψ(2),

solutions to the homogeneous Cauchy problems

ih∂tψ
(j) = Ajψ

(j) ; ψ
(j)
|t=0 = ψ0,

where ψ0 ∈ L2(RN ). Then, for all t > 0

∣∣∣
〈
ψ(1)(t), Bψ(1)(t)

〉
−
〈
ψ(2)(t), Bψ(2)(t)

〉∣∣∣ 6 1

h

∫ t

0

|ρ(s, t)| ds,

with

ρ(s, t) =
〈
ψ(1)(s), [exp(iA2(t− s)/h)B exp(−iA2(t− s)/h), A1 −A2]ψ

(1)(s)
〉
.

Proof. We denote the unitary evolution operators by Uj(t) = exp(−iAjt/h) and
calculate

〈
ψ(1)(t), Bψ(1)(t)

〉
−
〈
ψ(2)(t), Bψ(2)(t)

〉

= 〈U1(t)ψ0, BU1(t)ψ0〉 − 〈U2(t)ψ0, BU2(t)ψ0〉

=

∫ t

0

d

ds
〈ψ0, U1(s)

∗U2(t− s)∗BU2(t− s)U1(s)ψ0〉 ds

=
1

ih

∫ t

0

〈ψ0, U1(s)
∗[U2(t− s)∗BU2(t− s), A1 −A2]U1(s)ψ0〉 ds

=
1

ih

∫ t

0

〈
ψ(1)(s), [U2(t− s)∗BU2(t− s), A1 −A2]ψ

(1)(s)
〉
ds.

�

3. Partially flat coupling

In this section, we do not assume special features in the scaling of the equation,
except thatW is flat in, say y. This flatness can be expressed mathematically as the
smallness of ‖∇yW‖L∞ (or of ‖∇x∇yW‖L∞). Depending on the regularity of the
data that is considered, it could be relaxed on the smallness of ‖〈y〉−p∇yW‖L∞ for
some p > 0 (see Remark 3.6). We also emphasize that strictly speaking, ∇yW need
not be bounded under Assumption 2.1. We present the ideas and error estimates
under the assumption that ∇yW and its derivatives are bounded (and small), and
explain in Remark 3.6 how to adapt the results when ∇yW is unbounded.
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If ∇yW is small, we show that the coupling in (x, y) is negligible at leading
order. We present two strategies to approximate the exact solution: brute-force
approach, based on Taylor expansion, and the more standard approach, based on
spatial averages. In each case, we provide an estimate measuring the error generated
by the approximation. Throughout this section, ψ = ψ(t, x, y) denotes the solution
to the initial value problem (1.1)–(1.3).

3.1. Brute-force approach. Set ψ̃app(t, x, y) = ϕx(t, x)ϕy(t, y), where

(3.1)

{
i∂tϕ

x = Hxϕ
x +W (x, 0)ϕx ; ϕx|t=0 = ϕx0 ,

i∂tϕ
y = Hyϕ

y +W (0, y)ϕy ; ϕy|t=0 = ϕy0 .

In view of Assumption 2.1, these equations have unique solutions ϕx ∈ C(R;L2
x),

ϕy ∈ C(R;L2
y), and higher regularity is propagated, ϕx ∈ C(R; Σkx), ϕ

y ∈ C(R; Σky),

for all k ∈ N, where we recall that Σk has been defined in (2.1). The approximate
solution solves

i∂tψ̃app = Hψ̃app + (−W (x, y) +W (x, 0) +W (0, y)) ψ̃app.

This is not the right approximation: if W varies very little in y,

W (x, y)−W (x, 0)−W (0, y) ≈W (x, 0)−W (x, 0)−W (0, y)

= −W (x, 0) ≈ −W (0, 0).

This term is removed by considering instead ψapp = ψ̃appe
itW (0,0). It solves

i∂tψapp = Hψapp − (W (x, y)−W (x, 0)−W (0, y) +W (0, 0))ψapp︸ ︷︷ ︸
=:Σψ

.

The last term controls the error ψ − ψapp, as we will see more precisely below.
Saying that the coupling potential W is flat in y means that ∇yW is small, and we
write

W (x, y)−W (x, 0)−W (0, y)+W (0, 0) =W (x, y)−W (x, 0)︸ ︷︷ ︸
≈y·∇yW (x,0)

− (W (0, y)−W (0, 0))︸ ︷︷ ︸
≈y·∇yW (0,0)

.

In the case where W is flat both in x and in y, it might be useful to write

W (x, y)−W (x, 0)−W (0, y) +W (0, 0)

= y ·
∫ 1

0

(∂yW (x, ηy)− ∂yW (0, ηy)) dη =

∫ 1

0

∫ 1

0

y · ∂x∂yW (θx, ηy)x dηdθ.

Remark 3.1. For choosing another collocation point than the origin, one might use
the matrix

M(x, y) = ∂x∂yW (x, y) =
(
∂xj∂ykW (x, y)

)
16j6n, 16k6d

.

We have for (x, y) ≈ (0, 0),

W (x, y)−W (x, 0)−W (0, y) +W (0, 0) ≈ (x ·M(0, 0)y)

corresponding to the standard normal mode expansion. Adopting polar decompo-
sition, it is possible to write M(0, 0) = OQ with O a n× d matrix of maximal rank
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and Q =
√
M(0, 0) tM(0, 0) a d× d non-negative and symmetric. Then, in a basis

where the matrix Q is diagonal, with diagonal elements λi > 0, we have

W (x, y)−W (x, 0)−W (0, y) +W (0, 0)

≈
∑

j

λj(
tOx)jyj =

∑

j

λj
4

((
( tOx)j + yj

)2 −
(
( tOx)j − yj

)2)
.

One then sees that it can be valuable to choose the collocation point as a point
where the largest singular value of M(x0, y0) is minimal, that is, the quantity

(x0, y0) 7→ max
|z|=1

√
z ·M(x0, y0) tM(x0, y0)z,

attains a minimum.

3.2. Mean-field approach. Instead of pointwise evaluations of the coupling po-
tential, we might also use partial averages for an approximation. We consider

i∂tφ
x = Hxφ

x + 〈W 〉y (t)φx ; φx|t=0 = ϕx0 ,

i∂tφ
y = Hyφ

y + 〈W 〉x (t)φy ; φy|t=0 = ϕy0 ,
(3.2)

where we have denoted

〈W 〉y = 〈W 〉y (t, x) =
∫
W (x, y)|φy(t, y)|2dy∫

|φy(t, y)|2dy =

∫
W (x, y)|φy(t, y)|2dy∫

|ϕy0(y)|2dy
,

〈W 〉x = 〈W 〉x (t, y) =
∫
W (x, y)|φx(t, x)|2dx∫

|φx(t, x)|2dx =

∫
W (x, y)|φx(t, x)|2dx∫

|ϕx0(x)|2dx
,

where we have used the fact that the L2-norms of φx and φy are independent of
time, since W is real-valued. Note that (3.2) is a nonlinear system of equations.
Contrary to the brute-force approach, L2 regularity does not suffice to define partial
averages in general. In view of Assumption 2.1, a fixed point argument (very similar
to the proof of e.g. [7, Lemma 13.10]) shows that this system has a unique solution
(φx, φy) ∈ C(R; Σ1

x × Σ1
y), and higher regularity is propagated, φx ∈ C(R; Σkx),

φy ∈ C(R; Σky), for all k > 2. The approximate solution is then

φapp(t, x, y) = φx(t, x)φy(t, y)ei
∫
t

0
〈W 〉ds,

with the phase given by the full average

〈W 〉 = 〈W 〉(t) =
∫
W (x, y)|φx(t, x)φy(t, y)|2dxdy∫

|ϕx0(x)ϕy0(y)|2dxdy
.

It solves the equation

i∂tφapp = Hφapp − Σφ, Σφ :=
(
W − 〈W 〉x − 〈W 〉y + 〈W 〉

)
φapp.

Remark 3.2. The correcting phase ei
∫
t

0
〈W 〉ds seems to be crucial if we want to

compute the wave function. On the other hand, since it is a purely time dependent
phase factor, it does not affect the usual quadratic observables.

In the case where W (x, y) =W1(x)W2(y), the above formulas become

〈W 〉y (t, x) =W1(x) 〈W2〉y (t), 〈W 〉x (t, y) = 〈W1〉x (t)W2(y),



10I. BURGHARDT, R. CARLES, C. FERMANIAN KAMMERER, B. LASORNE, AND C. LASSER

with

(3.3)

〈W2〉 = 〈W2〉y (t) =
∫
W2(y)|φy(t, y)|2dy∫

|φy(t, y)|2dy =

∫
W2(y)|φy(t, y)|2dy∫

|ϕy0(y)|2dy
,

〈W1〉 = 〈W1〉x (t) =
∫
W1(x)|φx(t, x)|2dx∫

|φx(t, x)|2dx =

∫
W1(x)|φx(t, x)|2dx∫

|ϕx0(x)|2dx
,

and the residual is

Σφ = (W1 − 〈W1〉) (W2 − 〈W2〉)φapp.

3.3. Error estimate and approximation result. Denote by

rψ = ψ − ψapp, rφ = ψ − φapp,

the errors corresponding to each of the previous two approximations. They solve

(3.4) i∂trψ = Hrψ +Σψ ; i∂trφ = Hrφ +Σφ ; rψ|t=0 = rφ|t=0 = 0.

We note that both approximations and their components are norm-conserving for
all times t > 0, that is,

‖φx(t)‖L2
x
= ‖ϕx(t)‖L2

x
= ‖ϕy0‖L2

x
, ‖φy(t)‖L2

y
= ‖ϕy(t)‖L2

y
= ‖ϕy0‖L2

y
.

• In the case of the brute-force approach, according to the Taylor expansion that
we consider:

(3.5) ‖Σψ‖L2 6

{
2‖∇yW‖L∞‖yψapp‖L2 = ‖∇yW‖L∞‖ϕx‖L2

x
‖yϕy‖L2

y
,

‖∇x∇yW‖L∞‖xϕx‖L2
x
‖yϕy‖L2

y
.

• In the mean-field approach, we note that for (t, x, y) ∈ R× Rn+d,
(∫

|ϕx0 (x′)ϕy0(y′)|2dx′dy′
)(

W − 〈W 〉x − 〈W 〉y + 〈W 〉
)
(t, x, y)

=

∫

Rn+d

(W (x, y)−W (x, y′)−W (x′, y) +W (x′, y′))︸ ︷︷ ︸
=:δW (x,x′,y,y′)

|φx(t, x′)φy(t, y′)|2dx′dy′

Like we did in the brute-force approach, we may use either of the estimates

|δW (x, x′, y, y′)| 6
{
2|y − y′| × ‖∇yW‖L∞ ,

|x− x′| × |y − y′| × ‖∇x∇yW‖L∞ .

In the first case, we come up with

‖Σφ‖2L2 6 4‖∇yW‖2L∞‖ϕx0‖2L2
x
×

×
∫

Rd

(∫

Rd

|y − y′||φy(t, y′)|2dy′
)2

|φy(t, y)|2dy/‖ϕy0‖4L2
x
.

Now we have∫

Rd

|y − y′||φy(t, y′)|2dy′ 6
∫

Rd

(|y|+ |y′|) |φy(t, y′)|2dy′

6 |y|‖ϕy0‖2L2
y
+ ‖yφy(t)‖L2

y
‖ϕy0‖L2

y
,

where we have used Cauchy-Schwarz inequality for the last term. We infer
(∫

Rd

|y − y′||φy(t, y′)|2dy′
)2

6 2|y|2‖ϕy0‖4L2
y
+ 2‖yφy(t)‖2L2

y
‖ϕy0‖2L2

y
,
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hence

‖Σφ‖2L2 6 8‖∇yW‖2L∞‖ϕx0‖2L2
x

(∫

Rd

|y|2|φy(t, y)|2dy + ‖yφy(t)‖2L2
y

)
,

and finally

(3.6) ‖Σφ‖L2 6 4‖∇yW‖L∞‖yφy(t)‖L2
y
‖ϕx0‖L2

x
.

In the case of the second type approximation for δW , we find similarly

‖Σφ‖L2 6 4‖∇x∇yW‖L∞‖xφx(t)‖L2
x
‖yφy(t)‖L2

y
.

Remark 3.3. If V1 is confining, V1(x) & |x|2 for |x| > R (for instance, V1(x) = c|x|2k,
c > 0 and k a positive integer, a typical case where V1 may be super-quadratic while
Hx and H remain self-adjoint), then we can estimate ‖xφx‖L2

x
uniformly in time.

If V1 = 0, or more generally if V1(x) → 0 as |x| → ∞, we must expect some linear
growth in time

‖xφx(t)‖L2
x
. 〈t〉 ,

and the order of magnitude in t is sharp, corresponding to a dispersive phenomenon.

Invoking Lemma 2.3, we readily obtain:

Proposition 3.4. Under Assumption 2.1, we have the following error estimates:

• Brute-force approach: for ψapp(t, x, y) = ϕx(t, x)ϕy(t, y)eitW (0,0), where ϕx

and ϕy are given by (3.1)

‖ψ(t)− ψapp(t)‖L2 6





2‖∇yW‖L∞‖ϕx0‖L2
x

∫ t

0

‖yϕy(s)‖L2
y
ds,

‖∇x∇yW‖L∞

∫ t

0

‖xϕx(s)‖L2
x
‖yϕy(s)‖L2

y
ds.

• Mean-field approach: for

φapp(t, x, y) = φx(t, x)φy(t, y)ei
∫
t

0
〈W 〉ds

defined by (3.2)–(3.3),

‖ψ(t)− φapp(t)‖L2 6





4‖∇yW‖L∞‖ϕx0‖L2
x

∫ t

0

‖yφy(s)‖L2
y
ds,

4‖∇x∇yW‖L∞

∫ t

0

‖xφx(s)‖L2
x
‖yφy(s)‖L2

y
ds.

We see that the smallness of ‖∇yW‖L∞ guarantees that the error between the
exact solution ψ and the approximate solution (ψapp or φapp) is small.

Example 3.5. (1) In the case W (x, y) =W1(x)W2(y), we obviously have

‖∇yW‖L∞ = ‖W1‖L∞
x
‖∇yW2‖L∞

y
,

‖∇x∇yW‖L∞ = ‖∇xW1‖L∞
x
‖∇yW2‖L∞

y
,

and Proposition 3.4 yields error estimates provided that the above norms
are finite.

(2) An important class of examples consists of those where W is slowly vary-
ing in y: W (x, y) = w(x, ηy) with η ≪ 1 and w bounded, as well as its
derivatives. In that case

‖∇yW‖L∞ = η‖∇yw‖L∞ .
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Remark 3.6. (1) Suppose we are in case (1) of the preceding examples, and
W2(y) = η|y|2, with η small: ∇W2 is not bounded, but we can adapt the
above lines to get

‖Σφ‖L2 6 8η
√
2‖W1‖L∞

x
‖ϕx0‖L2

x
‖|y|2φy‖L2

y
,

that is, the extra power of y is transferred to the φy term.
(2) In the same spirit, with a flat couplingW (x, y) such that e.g. ‖〈y〉−p∇yW‖L∞

is small for some p > 0, we could get an estimate of the form

‖Σφ‖L2 6 4‖〈y〉−p∇yW‖L∞‖ϕx0‖L2
x
‖〈y〉p+1φy‖L2

y
.

3.4. Error estimates at higher regularity. Proposition 3.4 provides L2-error
estimates. To prove error estimates in H1(Rn+d), we differentiate (3.4) in space,
and two aspects must be considered:

• The operator ∇x,y does not commute with H (in our framework),
• We must estimate ∇x,yΣψ and ∇x,yΣφ.

Indeed, we compute

i∂t∇xrψ = H∇xrψ + [∇x, H ]rψ +∇xΣψ,

and

[∇x, H ] = ∇xH −H∇x = ∇xV1 +∇xW.

In the typical case where V1 is harmonic, ∇xV1 is linear in x, and so xrψ appears as
a source term. Note that in the general setting of Assumption 2.1, |∇xV1(x)| . 〈x〉.
Remark 3.7. If ∇xV1 and ∇xW are bounded, then Lemma 2.3 yields

‖∇xrψ(t)‖L2 6

∫ t

0

(C‖rψ(s)‖L2 + ‖∇xΣψ(s)‖L2) ds.

The term ‖rψ(s)‖L2 is estimated in Proposition 3.4, and ‖∇xΣψ(s)‖L2 is estimated
below.

Multiplying (3.4) by x, we find similarly

i∂t(xrψ) = H(xrψ) + [x,H ]rψ + xΣψ = H(xrψ) +∇xrψ + xΣψ.

Energy estimates provided by Lemma 2.3 applied to the equation for ∇xrψ and
xrψ then yield a closed system of estimates:

‖∇xrψ(t)‖L2 + ‖xrψ(t)‖L2 6

∫ t

0

(‖(∇xV1 +∇xW )rψ(s)‖L2 + ‖∇xrψ(s)‖L2) ds

+

∫ t

0

(‖∇xΣψ(s)‖L2 + ‖xΣψ(s)‖L2) ds

6 C

∫ t

0

(‖xrψ(s)‖L2 + ‖∇xrψ(s)‖L2) ds

+

∫ t

0

(‖∇xΣψ(s)‖L2 + ‖xΣψ(s)‖L2) ds,

where we have used the estimate |∇xV1 +∇xW | 6 C(1 + |x|), and the uncertainty
principle (uncertainty in x, Cauchy-Schwarz in y),

‖f‖2L2 6
2

n
‖∇xf‖L2‖xf‖L2.
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The Gronwall Lemma then yields

‖∇xrψ(t)‖L2 + ‖xrψ(t)‖L2 6

∫ t

0

eCs (‖∇xΣψ(s)‖L2 + ‖xΣψ(s)‖L2) ds,

for some C > 0. We compute

∇xΣψ = (∇xW (x, y)−∇xW (x, 0))ψapp + δW (x, 0, y, 0)∇xψapp.

The first term in controlled by |y|‖∇x∇yW‖L∞|ψapp|. The second term is con-
trolled like in Section 3.3, by replacing ψapp with ∇xψapp. We can of course resume
the same approach when considering∇yrψ, and the analogue of the above first term
is now controlled by |x|‖∇x∇yW‖L∞ |ψapp|. Finally, in the case of rφ, computa-
tions are similar (we do not keep track of the precise dependence of multiplicative
constants here), and we have (using the second family of estimate from Proposi-
tion 3.4):

Proposition 3.8. Under Assumption 2.1, there exists a constant C > 0 such that

we have the following error estimates:

• Brute-force approach: for ψapp(t, x, y) = ϕx(t, x)ϕy(t, y)eitW (0,0), where ϕx

and ϕy are given by (3.1)

‖∇xψ(t)−∇xψapp(t)‖L2 + ‖xψ(t)− xψapp(t)‖L2 6 C‖∇x∇yW‖L∞×

×
∫ t

0

eCs‖yϕy(s)‖L2
y

(
‖xϕx(s)‖L2

x
+ ‖∇xϕ

x(s)‖L2
x
+ ‖|x|∇xϕ

x(s)‖L2
x

)
ds,

‖∇yψ(t)−∇yψapp(t)‖L2 + ‖yψ(t)− yψapp(t)‖L2 6 C‖∇x∇yW‖L∞×

×
∫ t

0

eCs‖xϕx(s)‖L2
x

(
‖yϕy(s)‖L2

y
+ ‖∇yϕ

y(s)‖L2
y
+ ‖|y|∇yϕ

y(s)‖L2
y

)
ds.

• Mean-field approach: for

φapp(t, x, y) = φx(t, x)φy(t, y)ei
∫
t

0
〈W 〉ds

defined by (3.2)–(3.3), then ψ(t)− φapp(t) satisfies similar estimates.

Remark 3.9. The approach presented above can be iterated to infer error estimates
in Sobolev spaces of higher order, Hk(Rn+d) for k > 2, provided that we con-

sider momenta of the same order, that is, provided that we consider 〈x〉k rψ and

〈y〉k rψ, which explains the interest in the functional spaces Σk. Error estimates
in such spaces can also be obtained by first proving that ψ and the approximate
solution(s) remain in Σk, and then interpolating with the L2 error estimate from
Proposition 3.4.

3.5. Error estimates for quadratic observables. For obtaining quadratic esti-
mates, we consider observables such as the energy or the momenta, that is, operators
that are differential operators of order at most 2 with bounded smooth coefficients.
These differential operators have their domain in H2(Rn+d), as the operator H .
More generally, we could consider pseudo-differential operators B = op(b) associ-
ated with a smooth function b = b(Z) with Z = (z, ζ) ∈ R2(n+d), whose action on
functions f ∈ S(Rn+d) is given by

op(b)f(z) = (2π)−(n+d)

∫

R2(n+d)

b

(
z + z′

2
, ζ

)
eiζ·(z−z

′)f(z′)dζdz′.
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We assume that b satisfies the Hörmander condition

(3.7) ∀α, β ∈ N
n+d, ∃Cα,β > 0, |∂βz ∂αζ b(z, ζ)| 6 Cα,β〈ζ〉2−|α|,

that is, b is a symbol of order 2, see e.g. [1, Chapter I.2]. We shall also consider
observables that depend only on the variable x or the variable y. Let B = op(b) be
such an observable satisfying (3.7). We focus on a posteriori estimates and work
first on the difference for the brute force approach

eψ(t) = 〈ψ(t), Bψ(t)〉 − 〈ψapp(t), Bψapp(t)〉 .

We use Lemma 2.4 for the operators H and the approximate Hamiltonian Hbf ,

(3.8) Hbf = Hx +Hy +W (x, 0) +W (0, y)−W (0, 0),

to obtain

|eψ(t)| 6
∫ t

0

|ρψ(t, s)| ds,

where

ρψ(t, s) = 〈ψapp(s), [B(t− s), H −Hbf ]ψapp(s)〉 , B(σ) = eiσHBe−iσH .

By Egorov Theorem, see [35, Theorem 11.1], the operator B(σ) is also a pseudo-
differential operator, that is, B(σ) = op(b(σ)) for some function b(σ) that satisfies
the growth condition (3.7). We have

H −Hbf =W (x, y)−W (x, 0)−W (0, y) +W (0, 0) = δW (x, 0, y, 0) =: δW (x, y),

with the notations of Section 3.3. Then, by the direct estimate of Lemma A.1,

‖[B(σ), δW ]ψapp(s)‖L2 6

Cb(σ)

(
‖∇(δW )ψapp(s)‖H1 + C2(δW )‖ψapp(s)‖L2

)
,

where Cb(σ) > 0 depends on derivative bounds for the function b(σ) and

C2(δW ) =
∑

26|α|6Nn+d

‖∂αδW‖L∞ .

We therefore obtain

|ρψ(t, s)| 6 Cb(t−s)
(
‖∇(δW )ψapp(s)‖H1 + C2(δW ) ‖ψ0‖L2

)
‖ψ0‖L2.

Using the rectangular n×d matrix M(x, y) introduced in Remark 3.1, the gradient
of δW (x, y) can be written as

∇(δW )(x, y) =

(
∇xW (x, y)−∇xW (x, 0)

∇yW (x, y)−∇yW (0, y)

)
=

( ∫ 1

0 M(x, ηy)y dη
∫ 1

0
tM(θx, y)x dθ

)

We estimate the Sobolev norm by

‖∇(δW )ψapp(s)‖H1 6 ‖∇M‖L∞ (‖xψapp(s)‖L2 + ‖yψapp(s)‖L2)

+ ‖M‖L∞ (‖∇(xψapp(s))‖L2 + ‖∇(yψapp(s))‖L2) ,
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so that integration in time provides

|eψ(t)| 6 Cb‖∇M‖L∞‖ψ0‖L2

∫ t

0

(‖xψapp(s)‖L2 + ‖yψapp(s)‖L2) ds

+ Cb‖M‖L∞‖ψ0‖L2

∫ t

0

(‖∇(xψapp(s))‖L2 + ‖∇(yψapp(s))‖L2) ds

+ Cb C2(δW ) t ‖ψ0‖2L2 ,

where the constant Cb = maxσ∈[0,t]Cb(σ) depends on derivatives of b. In the mean-
field case, the approximate Hamiltonian is time-dependent,

(3.9) Hmf(t) = Hx +Hy + 〈W 〉y (t) + 〈W 〉x (t)− 〈W 〉 (t).
The difference of the Hamiltonians is also a function, which is now time-dependent,

H −Hmf(t) =W + 〈W 〉(t)− 〈W 〉x(t)− 〈W 〉y(t).
However, it is easy to check that a similar estimate can be performed, leading to
an analogous conclusion. We sum up these results in a statement.

Proposition 3.10. Under Assumption 2.1, for b ∈ C∞(Rn+d) satisfying (3.7) and
B = op(b), there exists a constant Cb > 0 such that we have the following error

estimates:

• Brute-force approach: for ψapp(t, x, y) = ϕx(t, x)ϕy(t, y)eitW (0,0), where ϕx

and ϕy are given by (3.1), the error

eψ(t) = 〈ψ(t), Bψ(t)〉 − 〈ψapp(t), Bψapp(t)〉
satisfies

|eψ(t)| 6 Cb sup
|β|6Nn+d

‖∇βM‖L∞‖ψ0‖L2 (N (ψapp) + t‖ψ0‖L2) ,

where

N (ψapp) = ‖ϕx0‖L2
x

∫ t

0

‖yϕy(s)‖L2
y
ds+ ‖ϕy0‖L2

y

∫ t

0

‖xϕx(s)‖L2
x
ds

+ ‖ϕx0‖L2
x

∫ t

0

‖∇(yϕy(s))‖L2
y
ds+ ‖ϕy0‖L2

y

∫ t

0

‖∇(xϕx(s))‖L2
x
ds

+

∫ t

0

‖xϕx(s)‖L2
x
‖∇ϕy(s)‖L2

y
ds+

∫ t

0

‖∇ϕx(s)‖L2
x
‖yϕy(s)‖L2

y
ds

and M(x, y) = ∂x∂yW (x, y), while Nn+d > 0 depends on n+ d.
• Mean-field approach: for

φapp(t, x, y) = φx(t, x)φy(t, y)ei
∫
t

0
〈W 〉ds

defined by (3.2)–(3.3), then 〈ψ(t), Bψ(t)〉−〈φapp(t), Bφapp(t)〉 satisfies sim-

ilar estimates.

Remark 3.11. We point out that the error is governed by derivatives of second
order in W , involving a derivative in the y variable that is supposed to be small.
Besides, note that the direct use of an estimate on the wave function itself would
have involved H2 norms of ψapp(s), while this estimate only requires H1 norms.
This first improvement is due to the averaging process present in Egorov Theorem.



16I. BURGHARDT, R. CARLES, C. FERMANIAN KAMMERER, B. LASORNE, AND C. LASSER

3.6. Energy conservation. In comparison with the brute-force approximation,
the mean-field approximation has the advantage to be both norm-preserving and
energy-preserving, even though the mean-field Hamiltonian Hmf(t) depends on time
(see (3.9)). If one derives the mean-field approach from the time-dependent Dirac–
Frenkel variational principle, then energy conservation is immediate, see [24, Chap-
ter II.1.5]. Here we give an elementary ad-hoc proof.

Lemma 3.12. Under Assumption 2.1 and considering the mean-field approach:

φapp(t, x, y) = φx(t, x)φy(t, y)ei
∫
t

0
〈W 〉(s)ds,

defined by (3.2)–(3.3), then

〈φapp(t), Hmf(t)φapp(t)〉 = 〈ψ0, Hψ0〉 for all t > 0.

Proof. A first observation is that

〈φapp(t), Hmf(t)φapp(t)〉 = 〈ψ0, Hmf(0)ψ0〉 for all t > 0.

Indeed,

d

dt
〈φapp(t), Hmf(t)φapp(t)〉

= 〈φapp(t), ∂tHmf(t)φapp(t)〉 = 〈φapp(t), ∂tWapp(t)φapp(t)〉

with Wapp(t) = 〈W 〉y(t) + 〈W 〉x(t)− 〈W 〉 (t). We deduce

d

dt
〈φapp(t), Hmf(t)φapp(t)〉

=

∫
W (x, y)

(
∂t|φx(t, x)|2 |φy(t, y)|2 + |φx(t, x)|2 ∂t|φy(t, y)|2

)
dxdy

−
∫
W (x, y)∂t

(
|φx(t, x)|2 |φy(t, y)|2

)
dxdy = 0,

where we have used the self-adjointness of Hmf(t) and norm-conservation in the
multiplicative components. Secondly, since

〈ψ0,Wapp(0)ψ0〉 =
〈
ψ0,
(
〈W 〉x (0) + 〈W 〉y (0)− 〈W 〉 (0)

)
ψ0

〉

= 2 〈W 〉 (0)− 〈W 〉 (0) = 〈W 〉 (0),

the approximate energy coincides with the actual energy, and we obtain the result
of Lemma 3.12. �

Remark 3.13. In the brute-force case, Hbf , defined by (3.8), is time-independent,
and we have

〈ψapp(t), Hbfψapp(t)〉 = 〈ψ0, Hbfψ0〉 for all t > 0.

However this conserved value does not correspond to the exact energy of (1.1), but
only to an approximation of it.
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4. Dimension reduction via semiclassical analysis

In this section, we consider coupled systems, where one part is governed by a
semiclassically scaled Hamiltonian, that is, Hy = Hε

y with

Hε
y = −ε

2

2
∆y + V2(y).

First we motivate such a partial semiclassical scaling in the context of system-bath
Hamiltonians and introduce wave packets as natural initial data for the semiclassical
part of the system. We explore partial semiclassical wave packet dynamics guided
by classical trajectories and by trajectories with averaged potentials. Thus, the
partially highly-oscillatory evolution of a PDE in dimension n+d is reduced to a less-
oscillatory PDEs in dimensions n, and ODEs in dimension d. The corresponding
error estimates in § 4.5 compare the true and the approximate product solution in
norm and with respect to expectation values.

4.1. Semiclassical scaling. We reconsider the system-bath Hamiltonian with cu-
bic coupling of §2.2, now formulated in physical coordinates (X,Y ), that is,

Hsb = − ~2

2µ1
∆X + Vs(X)− ~2

2µ2
∆Y +

µ2ω
2
2

2
|Y |2 + 1

2
~η ·X |Y |2,

where the coordinates X and Y of the system and the bath part are prescaled,
resulting in the single mass parameters µ1, µ2 for each subsystem and one single
harmonic frequency ω2 for the bath (noting that, alternatively, several harmonic
bath frequencies ω2,j could be introduced, without modifying the conclusions de-
tailed below). The corresponding time-dependent Schrödinger equation reads

i~∂τΨ(τ,X, Y ) = HsbΨ(τ,X, Y ).

We perform a local harmonic expansion of the potential Vs(X) around the origin
X = 0 and assume that it is possible to determine a dominant frequency ω1. We
then define the natural length scale of the system as

a =

√
~

µ1ω1
.

Rescaling coordinates as (x, y) = 1
a (X,Y ), we obtain

Hsb = ~ω1

(
−1

2
∆x + V1(x) −

ε2

2
∆y +

1

2

̟2

ε2
|y|2 + 1

2
~η′ · x|y|2

)
,

where we have introduced the dimensionless parameters

ε =

√
µ1

µ2
, ̟ =

√
ω2

ω1
,

and denoted

V1(x) =
1

~ω1
Vs(ax) , ~η′ =

a

µ1ω2
1

~η.

The rescaling of the system potential Vs(X) and the coupling vector ~η do not alter
their role in the Hamiltonian, whereas the two dimensionless parameters ε and ̟
deserve further attention. We now consider the régime where both the mass ratio ε
between system and bath and the frequency ratio ̟ between bath and system are
small, that is, where the system is viewed as “light” and “fast” when compared to
the “heavy” and “slow” bath.
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Example 4.1. For the hydrogen molecule H2, where the electrons are considered
as the quantum subsystem while the interatomic vibration is considered as the
classical subsystem, we have µ1 = me and µ2 = 918.6me. Further, the characteristic
electronic energy is of the order of ~ω1 = 1Eh while the first vibrational level is
found at ~ω2 = 0.02005Eh. Hence the dimensionsless parameters are both small,
ε = 0.03299 and ̟ = 0.1416.

Example 4.2. As a second example, we consider coupled molecular vibrations, ex-
emplified by the H2 molecule in a “bath” of rare-gas atoms, here chosen as krypton
(Kr) atoms. The H2 vibration is now considered as a quantum system interacting
with weak intermolecular vibrations. The reduced masses are given as µ1(H-H)
= 0.5 u = 911.44 me (where u refers to atomic mass units), µ2 (Kr-Kr) = 41.9
u = 76.379 × 103 me, and µ3 (H2-Kr) = 1.953 u = 3560.10 me. The vibrational
quanta associated with these vibrations are ~ω1(H-H) = 4159.2cm−1 = 0.0189Eh,
~ω2(Kr-Kr) = 21.6cm−1 = 9.82 × 10−5 Eh, and ~ω3(H2-Kr) = 26.8cm−1 =
1.22 × 10−4 Eh (see Refs. [17, 33]). The resulting dimensionless mass ratios are

given as ǫ12 =
√
µ1/µ2 = 0.109 and ǫ13 =

√
µ1/µ3 = 0.51, and the corresponding

frequency ratios are ̟12 =
√
ω2/ω1 = 0.072 and ̟13 =

√
ω3/ω1 = 0.080. In the

case of the H2-Kr relative motion, note that the frequency ratio ̟13 is indeed small
whereas the mass ratio is ǫ13 ∼ 0.5; this shows that the quantum-classical boundary
is less clearly defined than in the first example of coupled electronic-nuclear mo-
tions. In such cases, different choices can be made in defining the quantum-classical
partitioning.

In an idealized setting, where ε is considered as a small positive parameter whose
size can be arbitrarily small, we would say that

̟ = O(ε) as ε→ 0,

and view the system-bath HamiltonianHsb as an instance of a partially semiclassical
operator

Hε = −1

2
∆x + V1(x)−

ε2

2
∆y + V2(y) +W (x, y),

whose potentials V1(x) and V2(y) are independent of the semiclassical parameter ε
and satisfy the growth conditions of Assumption 2.1 (see also Remark 2.2). As
emphasized in §2.2, the cubic coupling potential does not satisfy the subquadratic
estimate, but can be controlled by additional moments of the approximate solution.
A corresponding rescaling of time, t = τ/(εω1), translates the time-dependent
Schrödinger equation to its semiclassical counterpart

(4.1) iε∂tψ
ε(t, x, y) = Hεψε(t, x, y),

where the physical and the rescaled wave functions are related via

ψε(t, x, y) = a(n+d)/2 Ψ(τ/(εω1), aX, aY ).

4.2. Semiclassical initial data and ansatz. As before, the initial data separate
scales,

(4.2) ψε(0, x, y) = ϕx0(x)g
ε(y),

where we now assume that gε is a semiclassically scaled wave packet,

(4.3) g
ε(y) =

1

εd/4
a

(
y − q0√

ε

)
eip0·(y−q0)/ε,
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with (q0, p0) ∈ R2d, a rapidly decreasing, i.e. a ∈ S(Rd;C) = ∩k∈NΣ
k (a is typically

a complex Gaussian but not necessarily).

We now seek an approximate solution of the form

(4.4) ψεapp(t, x, y) = ψε1(t, x)ψ
ε
2(t, y),

where ψε2 is a semiclassically scaled wave packet for all time,

(4.5) ψε2(t, y) =
1

εd/4
u2

(
t,
y − q(t)√

ε

)
eip(t)·(y−q(t))/ε+iS(t)/ε.

Here, (q(t), p(t)) ∈ R2d, the phase S(t) ∈ R, and the amplitude u2(t) ∈ S(Rd,C)
must be determined. Denote by

z =
y − q(t)√

ε

the space variable for u2, or, equivalently, y = q(t) + z
√
ε. Set

(4.6) uεapp(t, x, z) = ψε1(t, x)u2(t, z)

the part of the approximate solution that just contains the amplitude. With this
notation,

ψεapp(t, x, y) =
1

εd/4
uεapp(t, x, z)e

ip(t)·z/√ε+iS(t)/ε
∣∣∣
z=

y−q(t)√
ε

.

The analysis developed in the two next sections allows to derive two different ap-
proximations, based on ordinary differential equations governing the semiclassical
wave packet part, which are justified in Section 4.5 (see Proposition 4.4).

Remark 4.3. We note that our approximation ansatz (4.4) differs from the adiabatic

one, that would write the full Hamiltonian as Hε = − ε2

2 ∆y +Hf(y), where

Hf(y) = −1

2
∆x + V1(x) + V2(y) +W (x, y)

is an operator, that parametrically depends on the “slow” variable y and acts on
the “fast” degrees of freedom x. From the adiabatic point of view, one would then
construct an approximate solution as ψεbo(t, x, y) = Φ(x, y)ψε2(t, y), where Φ(x, y)
is an eigenfunction of the operator Hf(y); here, the subscript “bo” stands for Born-
Oppenheimer. The result of Corollary 4.8 emphasizes the difference between these
two points of view.

4.3. Approximation by partial Taylor expansion. Plugging the expression
of ψεapp(t, x, y) into (4.1), and using Taylor expansions

V2(y) = V2(q(t) + z
√
ε) = V2(q(t)) +

√
εz · ∇V2(q(t)) +

ε

2

〈
z,∇2V2(q(t))z

〉
+O(ε3/2),

W (x, y) =W (x, q(t) + z
√
ε) =W (x, q(t)) +

√
εz · ∇yW (x, q(t)) +O (ε) ,
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we find:

iε∂tψ
ε
app +

1

2
∆xψ

ε
app +

ε2

2
∆yψ

ε
app − V (x, y)ψεapp =

1

εd/4
eip(t)·z/

√
ε+iS(t)/ε×

((
p · q̇ − Ṡ − |p|2

2
− V2(q)− V1(x)−W (x, q)

)
uεapp

+
√
ε
(
−iq̇ · ∇zu

ε
app − ṗ · z uεapp + ip · ∇zu

ε
app − z · ∇V2(q)uεapp − z · ∇yW (x, q)uεapp

)

+ ε

(
i∂tu

ε
app +

1

2ε
∆xu

ε
app +

1

2
∆zu

ε
app −

1

2

〈
z,∇2V2 (q) z

〉
uεapp

)

+O(ε3/2)
)
,

where the argument of uεapp and its derivatives are taken in z = y−q(t)√
ε

. To cancel

the first four terms in the
√
ε line, it is natural to require

(4.7) q̇ = p, q(0) = q0, ṗ = −∇V2(q), p(0) = p0.

Now cancelling the first four terms in the first line of the right hand side yields

(4.8) S(t) =

∫ t

0

( |p(s)|2
2

− V2(q(s))

)
ds.

In other words, (q(t), p(t)) is the classical trajectory in y, and S(t) is the associated
classical action. At this stage, we note that the term z · ∇yW (x, q)uεapp is not
compatible with decoupling the variables x and z (or equivalently, x and y). Using
that ‖∇yW‖L∞ is assumed to be small, the above computation becomes

iε∂tψ
ε
app +

1

2
∆xψ

ε
app +

ε2

2
∆yψ

ε
app − V (x, y)ψεapp =

1

εd/4
eip(t)·z/

√
ε+iS(t)/ε×

(
iε∂tu

ε
app +

1

2
∆xu

ε
app +

ε

2
∆zu

ε
app −

(ε
2

〈
z,∇2V2 (q) z

〉
+ V1(x) +W (x, q)

)
uεapp

+O
(
ε3/2 +

√
ε ‖∇yW‖L∞

))
.

In view of (4.6), we set

(4.9) iε∂tψ
ε
1 +

1

2
∆xψ

ε
1 = (V1(x) +W (x, q))ψε1 ; ψε1|t=0 = ϕx0

and

(4.10) i∂tu2 +
1

2
∆zu2 =

1

2

〈
z,∇2V2 (q) z

〉
u2 ; u2|t=0 = a.

Equation (4.10) is a Schrödinger equation with a time-dependent harmonic poten-
tial: it has a unique solution in L2 as soon as a ∈ L2(Rd). In addition, since a ∈ Σk

for all k ∈ N, u2 ∈ C(R; Σkz) for all k ∈ N. The approximate solution ψεapp solves

iε∂tψ
ε
app +

1

2
∆xψ

ε
app +

ε2

2
∆yψ

ε
app − V ψεapp =

1

εd/4
eip·z/

√
ε+iS/ε (rε1 + rε2) ,

where the remainder rε1 is due to the Taylor expansion in V2, and satisfies the
pointwise estimate

|rε1(t, x, z)| 6
1

6
× ε3/2‖∇3V2‖L∞ |ψε1(t, x)| × |z|3|u2(t, z)|,
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while the remainder rε2 is due to the Taylor expansion in W , and satisfies the
pointwise estimate

|rε2(t, x, z)| 6
√
ε ‖∇yW‖L∞ |ψε1(t, x)| × |z||u2(t, z)|.

To summarize, the approximate solution obtained by Taylor expansion is given by

ψεapp(t, x, y) =
1

εd/4
eip(t)·(y−q(t))/ε+iS(t)/εu2

(
t,
y − q(t)√

ε

)
ψε1(t, x),

with iε∂tψ
ε
1 +

1

2
∆xψ

ε
1 = (V1(x) +W (x, q))ψε1 ; ψε1|t=0 = ϕx0 ,

and i∂tu2 +
1

2
∆zu2 =

1

2

〈
z,∇2V2 (q) z

〉
u2 ; u2|t=0 = a,

q̇ = p, q(0) = q0, ṗ = −∇V2(q), p(0) = p0, S(t) =

∫ t

0

( |p(s)|2
2

− V2(q(s))

)
ds.

The validity of this approximation is stated in Proposition 4.4 below. Note that
if a is a Gaussian state, then u2 too and its (time-dependent) parameters – width
matrix and center point – can be computed by solving ODEs (see e.g. [24, 7, 11, 21]
and references therein).

4.4. Approximation by partial averaging. Following e.g. [10], we write

V2(y) = V2(q(t) + z
√
ε) = 〈V2〉y(t) +

√
εz · 〈∇V2〉y(t) +

ε

2
z · 〈∇2V2〉y(t)z + v1,

W (x, y) =W (x, q(t) + z
√
ε) = 〈W (x, ·)〉y(t) + v2,

where the averages are with respect to |ψε2(t, y)|2. For example,

〈∇2V2〉y(t) =
∫
∇2V2(y)|ψ2(t, y)|2dy∫

|ψ2(t, y)|2dy
=

1

‖a‖2
L2(Rd)

∫

Rd

∇2V2(q(t) +
√
εz)

∣∣u2(t, z)
∣∣2dz,

(4.11)

〈W (x, ·)〉y(t) =
1

‖a‖2
L2(Rd)

∫

Rd

W (x, q(t) +
√
εz)

∣∣u2(t, z)
∣∣2dz,

where we anticipate the fact that the L2
y-norm of ψε2(t) is independent of time. We

almost literally repeat the previous argument and find that

iε∂tψ
ε
app +

1

2
∆xψ

ε
app +

ε2

2
∆yψ

ε
app − V (x, y)ψεapp =

1

εd/4
eip(t)·z/

√
ε+iS(t)/ε×

((
p · q̇ − Ṡ − |p|2

2
− 〈V2〉y − V1(x)− 〈W (x, ·)〉y

)
uεapp

+
√
ε
(
−iq̇ · ∇zu

ε
app − ṗ · zuεapp + ip · ∇zu

ε
app − z · 〈∇V2〉yuεapp

)

+ ε

(
i∂tu

ε
app +

1

2ε
∆xu

ε
app +

1

2
∆zu

ε
app −

1

2
z ·
〈
∇2V2

〉
y
z uεapp

)

+ r̃ε1 + r̃ε2

)
,

with r̃εj = vju
ε
app, j = 1, 2, and z is taken as z = (y − q(t))/

√
ε. To cancel the first

four terms in the
√
ε line, it is natural to require

q̇ = p, q(0) = q0, ṗ = −〈∇V2〉y(t), p(0) = p0.
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Now cancelling the first four terms in the first line of the right hand side yields

Ṡ(t) =
|p(t)|2

2
− 〈V2〉y(t).

With these choices the above equation becomes

iε∂tψ
ε
app +

1

2
∆xψ

ε
app +

ε2

2
∆yψ

ε
app − V (x, y)ψεapp =

1

εd/4
eip(t)·z/

√
ε+iS(t)/ε×

(
iε∂tu

ε
app +

1

2
∆xu

ε
app +

ε

2
∆zu

ε
app −

(ε
2
z ·
〈
∇2V2

〉
y
z + V1(x) + 〈W (x, ·)〉y

)
uεapp

+ r̃ε1 + r̃ε2

)∣∣∣
z= y−q(t)√

ε

.

We see that we can now define the approximate solution by:

(4.12) iε∂tψ
ε
1 +

1

2
∆xψ

ε
1 =

(
V1(x) + 〈W (x, ·)〉y (t)

)
ψε1 ; ψε1|t=0 = ϕx0 ,

i∂tu2 +
1

2
∆zu2 =

1

2
z ·
〈
∇2V2

〉
y
(t) z u2 ; u2|t=0 = a.

Since the matrix
〈
∇2V2

〉
y
(t) is real-valued, we infer that the L2

z-norm of u2(t)

is independent of time, hence ‖ψ2(t)‖L2
y
= ‖u2(t)‖L2

z
= ‖a‖L2. The equation in

u2 is now nonlinear, and can be solved in Σ1, since ∇V2 is at most linear in its
argument: u2 ∈ C(R; Σ1

z), as higher Σk regularity is propagated. To sum up, the
approximation obtained by partial averaging reads:

ψεapp(t, x, y) =
1

εd/4
eip(t)·(y−q(t))/ε+iS(t)/εu2

(
t,
y − q(t)√

ε

)
ψε1(t, x),

with iε∂tψ
ε
1 +

1

2
∆xψ

ε
1 =

(
V1(x) + 〈W (x, ·)〉y (t)

)
ψε1 ; ψε1|t=0 = ϕx0 ,

and i∂tu2 +
1

2
∆zu2 =

1

2
z ·
〈
∇2V2

〉
y
(t)z u2 ; u2|t=0 = a,

q̇ = p, q(0) = q0, ṗ = −〈∇V2〉y(t), p(0) = p0, Ṡ(t) =
|p(t)|2

2
− 〈V2〉y(t).

Here again, if a is a Gaussian, then so is u2 and its width and center can be
computed by solving ODEs (see [24, 7, 11]). Note also that, differently from the
previous setting, u2 is now ε dependent via the quantity

〈
∇2V2

〉
y
(t) (see (4.11)).

However, this dependence is very weak since a Taylor expansion in (4.11) shows
that u2 is close in any Σk norm from the solution of the equation

i∂tu+
1

2
∆zu =

1

2
z · ∇2V2(q(t))z u ; u|t=0 = a.

For this reason, we do not keep memory of this ε-dependence and write u2. By
contrast, the ε-dependence of ψε1 is strong since it implies oscillations features in
time.

4.5. The approximation results. The main outcome of the above approxima-
tions can be stated as follows, and is proved in Section 4.6:
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Proposition 4.4. Let ψε be the solution to (4.1)–(4.2), with g
ε given by (4.3).

Then with ψεapp given either like in Section 4.3 or like in Section 4.4, there exist

constants K0,K1 independent of ε such that for all t > 0,

‖ψε(t)− ψεapp(t)‖L2 6 K0

(√
ε+

‖∇yW‖L∞√
ε

)
eK1t.

Corollary 4.5. Assume η := ‖∇yW‖L∞ ≪ √
ε, then for all T > 0,

sup
t∈[0,T ]

‖ψε(t)− ψεapp(t)‖L2 = O
(√

ε+
η√
ε

)
.

Remark 4.6. Using the same techniques as in Section 3.4, one can prove estimates
on higher regularity norms, using ε-derivatives in y and standard ones in x. For
example, if a ∈ Σ4, then there exists K0, K1 independent of ε such that

‖ε∇yψ
ε(t)− ε∇yψ

ε
app(t)‖L2 + ‖yψε(t)− yψεapp(t)‖L2

6 K0

(√
ε

∫ t

0

eK1s‖u2(s)‖Σ4ds+
‖∇yW‖L∞√

ε

∫ t

0

eK1s‖u2(s)‖Σ2ds

)
.

We refer to [8] (see also [7, Chapter 12]) for more detailed computations.

Note that, in both approximations, the evolution of u2 corresponds to the stan-
dard quadratic approximation. In particular, if a is Gaussian, then u2 is Gaussian
at all time, and solving the equation in u2 amounts to solving ordinary differential
equations. However, the equation (4.9) solved by ψ1(t) is still quantum, however a
reduction of the total space dimension of the quantum system has been made from
n+ d to n.

The latter equations (4.9) and (4.12) can be written as an adiabatic problem:

iε∂tψ
ε
1(t) = h(t)ψε1(t), ψε1(0) = ϕx0 ,

where h(t) is one of the time-dependent self-adjoint operators on L2(Rn)

hte(t) = −1

2
∆ + V1(x) +W (x, q(t)) and hpa(t) = −1

2
∆ + V1(x) + 〈W (x, .)〉y(t).

We assume here that h(t) has a compact resolvent and thus, that its spectrum
consists in a sequence of time-dependent eigenvalues

Λ1(t) 6 Λ2(t) 6 · · · 6 Λk(t) −→
k→+∞

∞.

We also assume that some eigenvalue Λj(t) is separated from the remainder of the
spectrum for all t ∈ R and that the initial datum ϕx0 is in the eigenspace of h(0) for
the eigenvalue Λj(0):

(4.13) h(0)ϕx0 = Λj(0)ϕ
x
0 .

Then adiabatic theory as developed by Kato [20] states that ψ1(t) stays in the
eigenspace of Λj(t) on finite time, up to a phase.

Proposition 4.7 (Kato [20]). Assume we have (4.13) and that Λj(0) is a simple

eigenvalue of h(0) such that there exists δ0 > 0 for which

d ({Λj(t)}, Sp(h(t)) \ {Λj(t)}) ≥ δ0.

Denote by Φxj (t) a family of normalized eigenvectors of h(t) such that

Φxj (0) = ϕx0 ,
〈
Φxj (t), ∂tΦ

x
j (t)

〉
= 0.



24I. BURGHARDT, R. CARLES, C. FERMANIAN KAMMERER, B. LASORNE, AND C. LASSER

Then, for all T > 0, there exists a constant CT > 0 such that
∥∥∥ψε1(t)− e−

i
ε

∫
t

0
Λj(s)dsΦxj (t, x)

∥∥∥
L2
x

6 CT ε.

Corollary 4.8. We then obtain the following approximate solution

ψεapp(t, x, y) = e−
i
ε

∫
t

0
Λj(s)ds+

i
ε
S(t)+ i

ε
p(t)·(y−q(t))Φxj (t, x)u2

(
t,
y − q(t)√

ε

)
.

One then sees the difference with the Born-Oppenheimer approach recalled in
Remark 4.3.

Of course, other methods can prove to be adequate for solving equation (4.12)
depending on the specific context of the studied problem.

Let us now discuss the approximation of observables that we choose as acting
only in the variable y. Due to the presence of the small parameter ε, we choose
semiclassical observables and associate with b ∈ C∞

c (R2d) (b smooth and compactly
supported) the operator opε(b) whose action on functions f ∈ S(Rd) is given by

opε(b)f(y) = (2πε)−d
∫

R2d

b

(
y + y′

2
, εξ

)
eiξ·(y−y

′)f(y′)dy′.

As usual, the error estimate is better when quadratic observables are considered,
instead of wave functions. More specifically, the error estimate from Proposition 4.4
is improved by a factor

√
ε. We apply Lemma 2.4 with now h = ε. Like in

Section 3.5, we note that ψεapp solves an equation of the form

iε∂tψ
ε
app = Hε

appψ
ε
app.

We prove the following result.

Proposition 4.9. Let ψε be the solution to (4.1)–(4.2), with g
ε given by (4.3).

Then with b ∈ C∞(Rd) and ψεapp given either like in Section 4.3 or like in Sec-

tion 4.4, there exist a constant K independent of ε such that for all t > 0,
∣∣〈opε(b)ψε(t), ψε(t)〉 − 〈opε(b)ψεapp(t), ψεapp(t)〉

∣∣ 6 K t (ε+ ‖∇yW‖L∞) .

Remark 4.10. Of course, we could have considered a mixed setting consisting of
pseudodifferential operators as in Section 3.5 in the variable x, and semiclassical
as above in the variable y. One would then obtain estimates mixing those of
Proposition 3.10 and Proposition 4.9. Our interest here was in emphasizing the
unmixed semiclassical aspect.

4.6. Error estimates for the wave function. In this section, we prove Propo-
sition 4.4, and make comments on the constants K0,K1, which may be analyzed
more explicitly in some cases.

4.6.1. Approximation by partial Taylor expansion. As we have seen before,

‖rε1(t)‖L2 6
ε3/2

6
‖∇3V2‖L∞

y
‖ϕx0‖L2

x
‖|z|3u2(t)‖L2

z
,

‖rε2(t)‖L2 6
√
ε ‖∇yW‖L∞‖ϕx0‖L2

x
‖zu2(t)‖L2

z
.
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Lemma 2.3 then yields, with now h = ε,

‖ψε(t)− ψεapp(t)‖L2 6

√
ε

6
‖∇3V2‖L∞

y
‖ϕx0‖L2

x

∫ t

0

‖|z|3u2(s)‖L2
z
ds

+
‖∇yW‖L∞√

ε
‖ϕx0‖L2

x

∫ t

0

‖|z|u2(s)‖L2
z
ds.

According to the signature of∇2V2(q(t)), the quantities ‖|z|3u2(s)‖L2
z
and ‖|z|u2(s)‖L2

z

may be bounded uniformly in s > 0 or not. For instance, they are bounded if ∇2V2
is uniformly positive definite, or at least uniformly positive definite along the tra-
jectory q. On the other hand, we always have an exponential bound, even if it may
not be sharp,

‖|z|3u2(s)‖L2
z
+ ‖|z|u2(s)‖L2

z
6 C0e

C1s,

for some constants C0, C1 > 0. This control is sharp in the case where ∇2V2 is
uniformly negative definite. See e.g. [7, Lemma 10.4] for a proof of the exponential
control, and [7, Section 10.5] for a discussion on its optimality. In particular, for
bounded time intervals, the (relative) error is small if ‖∇yW‖L∞ ≪ √

ε≪ 1.

Remark 4.11. If ∇yW is not bounded, e.g. ∇yW (x, y) = η 〈x〉γ , then we can
replace the previous error estimate with

‖ψε(t)− ψεapp(t)‖L2 6

√
ε

6
‖∇3V2‖L∞

y
‖ϕx0‖L2

x

∫ t

0

‖|z|3u2(s)‖L2
z
ds

+
η√
ε

∫ t

0

‖ 〈x〉γ ψε1(s)‖L2
x
‖|z|u2(s)‖L2

z
ds.

In other words, the cause for the unboundedness of ∇yW is transferred to a weight
for ψε1. Similarly, if ∇yW is unbounded in y, we may change the weight in the
terms ‖|z|ku2‖L2

z
, after substituting y with q + z

√
ε.

4.6.2. Approximation by partial averaging. To estimate the size of r̃1 and r̃2, we
might argue again via Taylor expansion. Indeed, we have

‖a‖2L2 〈V2〉y =

∫
V2(q(t) +

√
εz) |u2(t, z)|2dz

= V2(q(t)) +
√
ε∇V2(q(t)) ·

∫
z|u2(t, z)|2dz + rε3(t),

where

|rε3(t)| 6
ε

2
‖∇2V2‖L∞ ‖|z|u2(t, z)‖2L2

z
.

Hence, we have for all averages f = V2,∇V2,∇2V2,W (x, ·) that
〈f〉y (t) = f (q(t)) +O(

√
ε),

where the error constant depends on moments of |u2|2. In particular, if u2(0) is
Gaussian, the odd moments of |u2(t, z)|2 vanish, and the above estimate improves
to O(ε). Hence, the L2-norm of r̃1 is O(

√
ε) close to the L2-norm of r1, and the

L2-norm of r̃2 is O(η
√
ε), η = ‖∇yW‖L∞ , close to the L2-norm of r2 (with each

time an extra
√
ε gain in the above mentioned Gaussian case). In particular, the

order of magnitude for the difference between exact and approximate solution is
the same as in the previous subsection, only multiplicative constants are affected.
We emphasize that the constants C0 and C1 from the previous subsection are in
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general delicate to assess. On the other hand, in specific cases (typically when u2
is Gaussian and ∇2V2 is known), they can be computed rather explicitly.

4.7. Error estimates for quadratic observables. The proof of Proposition 4.9
is discussed in the next two sections.

4.7.1. Approximation by Taylor expansion. In that case, the time-dependent Hamil-
tonian Hε

app is Hε
app = Hε

te with

Hε
te := −1

2
∆x −

ε2

2
∆y + V1(x) +W (x, q) + V2(q) + (y − q) · ∇V2(q)

+
1

2

〈
y − q,∇2V2(q)(y − q)

〉
,

where q = q(t). In particular, the difference Hε −Hε
te is a function,

Hε −Hε
te =W (x, y)−W (x, q) + V2(y)− V2(q)− (y − q) · ∇V2(q)

− 1

2

〈
y − q,∇2V2(q)(y − q)

〉
=: δW (t, x, y).

In view of Lemma 2.4, if B = opε(b) with b ∈ C∞
c (R2d), it yields (a posteriori

estimate)

∣∣〈ψε(t), Bψε(t)〉 −
〈
ψεapp(t), Bψ

ε
app(t)

〉∣∣ 6 1

ε

∫ t

0

|ρε(t, x)|ds,

where

ρε(t, s) =
〈
ψεapp(s), [B(t− s), δW (s)]ψεapp(s)

〉
, B(σ) = ei

σ
ε HBe−i

σ
ε H .

By Egorov Theorem [35], B(σ) = ε opε(b(σ)) for a function b(σ) ∈ C∞
c (Rd).

Therefore, by semiclassical calculus,

1

iε
[B(t− s), δW (s)] = opε ({b(t− s), δW (s)}) + ε2opε (r

ε(s, t)) ,

where ‖opε(rε(s, t))‖L(L2) is bounded uniformly in ε, whence the estimate of Propo-
sition 4.9.

4.7.2. Approximation by partial averaging. In that case, the time-dependent Hamil-
tonian Hε

app is Hε
app = Hε

pa with

Hε
pa = −1

2
∆x −

ε2

2
∆y + V1(x) + 〈W (x, ·)〉y + 〈V2〉y(t) + (y − q) · 〈∇V2〉y(t)

+
1

2
(y − q) · 〈∇2V2〉y(t)(y − q),

where q = q(t). In particular, as in the preceding case, the difference Hε −Hε
pa is

a time-dependent function

Hε −Hε
pa =W (x, y)− 〈W (x, ·)〉y + V2(y)− 〈V2〉y(t)

− (y − q) · 〈∇V2〉y(t)−
1

2
(y − q) · 〈∇2V2〉y(t)(y − q) =: δ̃W (t, x, y),

and the arguments developed above also apply.
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Appendix A. Commutator estimate

We provide a direct proof of the commutator estimate used for our analysis of
quadratic observables.

Lemma A.1. Let N > 1 and b = b(z, ζ) be a smooth function on R2N satisfying

the Hörmander growth condition (3.7). Let δW be a smooth function on RN with

bounded derivatives. Then, there exist constants Cb > 0 and MN > 0 such that

‖[op(b), δW ]ψ‖L2 6 Cb

(
‖∇(δW )ψ‖H1 +

∑

26|α|6MN

‖∂α(δW )‖∞‖ψ‖L2

)

for all ψ ∈ H1(RN ).

Proof. We explicitly write the commutator as

[op(b), δW ]ψ(z) =

(2π)−N
∫

R2N

b

(
z + z′

2
, ζ

)
eiζ·(z−z

′) (δW (z′)− δW (z))ψ(z′) dζdz′.

We Taylor expand the function δW (z) around the point z′, so that

δW (z)− δW (z′) = ∇(δW )(z′) · (z − z′) + (z − z′) · δR2(z, z
′)(z − z′)

with

δR2(z, z
′) =

∫ 1

0

(1− ϑ)∇2(δW )(z′ + ϑ(z − z′)) dϑ.

Corresponding to the above decomposition, we write

[op(b), δW ]ψ(z) = f1(z) + f2(z)

and estimate the two summands separately. We observe that (z − z′)eiζ·(z−z
′) =

−i∇ζe
iζ·(z−z′) and perform an integration by parts to obtain

∫

R2N

b

(
z + z′

2
, ζ

)
eiζ·(z−z

′)∇(δW )(z′) · (z − z′)ψ(z′) dζdz′

= i

∫

R2N

∇(δW )(z′) · ∇ζb

(
z + z′

2
, ζ

)
eiζ·(z−z

′)ψ(z′) dζdz′

Therefore,

‖f1‖L2 6 Cb ‖∇(δW )ψ‖H1 ,

where the constant Cb > 0 depends on derivative bounds of the function b. For the
remainder term of the above Taylor approximation we write

∫

R2N

b

(
z + z′

2
, ζ

)
eiζ·(z−z

′) (z − z′) · δR2(z, z
′)(z − z′)ψ(z′) dζdz′

=

∫

R2N

tr

(
δR2(z, z

′)∇2
ζb

(
z + z′

2
, ζ

))
eiζ·(z−z

′)ψ(z′) dζdz′,
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and obtain that

‖f2‖L2 6 C′
b

∑

26|α|6MN

‖∂α(δW )‖∞‖ψ‖L2 ,

where C′
b > 0 depends on derivative bounds of b, while MN > 0 depends only on

the dimension N . �
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