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Abstract

We consider the solution of some NP-hard parallel machine scheduling problems in-
volving the minimization of the weighted or unweighted number of tardy jobs. We first
show that these problems cannot be approximated in polynomial time. Then we pro-
pose exponential-time approximation algorithms and fixed parameter tractable exact
algorithms to solve them.

Keywords: Number of tardy jobs, Identical Parallel Machines Scheduling, Exponential
time approximation

1. Introduction

Scheduling theory deals with the allocation of a given set of jobs to resources over
time while minimizing some criteria. Often, scheduling problems turn out to be NP-
hard and exact as well as heuristic algorithms have been proposed in the literature to
solve them (Pinedo (2016)). Such algorithms are classically designed with the purpose
of either being effective in practice or providing theoretical worst-case guarantees.

We mention the existence in the literature of exact exponential time algorithms (EETA)
that are exact algorithms whose worst-case time complexity can be expressed as O∗(cn)
with c a constant and n is a measure of the input size (typically the number of jobs
in the instance). The O∗ notation suppresses polynomial factors in the complexity, i.e.
O∗(cn) = O(p(n)cn) where p(n) is a polynomial on n. The proposal of such algorithms
for NP-hard scheduling problems started recently to be intensively considered in the lit-
erature. The survey by Woeginger (2003) revealed the existence of EETA for some single
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machine scheduling problems. Later on, such algorithms have been proposed for a set of
classic scheduling problems (Cygan et al., 2011; Garraffa et al., 2018; Lente et al., 2013;
Lenté et al., 2014; Shang et al., 2018). Noteworthy, Lente et al. (2013) describe a generic
Sort & Search approach enabling to derive EETA for scheduling problems. Under the
Exponential Time Hypothesis, Jansen et al. (2013) present some results on the existence
of lower bounds on the worst-case time complexities of some scheduling problems.
For some problems, it is possible to identify some parameter ` such that there exists an
EETA to solve it in time f(`)nO(1), with f being a function depending only on `: we say
that the problem is fixed-parameter tractable (FPT, Downey and Fellows (1999)). This
parameter can be problem dependent or related to the objective function value. Fixed
parameter tractability provides highlights on the hardness of problems by exhibiting to
which parameters it can be related. Recent FPT algorithms in scheduling theory were
proposed by Mnich and Wiese (2015); Mnich and van Bevern (2018); Hermelin et al.
(2018); Bessy and Giroudeau (2020). Most of the parameters used in these algorithms
are related to the objective function value.

Approximation algorithms are particular heuristic algorithms that offer theoretical
guarantees: they are proved to compute a solution whose distance to the optimal one is
bounded. Let Alg be the value of the solution computed by an approximation algorithm
and Opt be the optimal solution value. An approximation algorithm admits an approxi-
mation ratio ρ if for any instance of the minimization problem Alg ≤ ρOpt. Additionally,
if its running time is polynomial in the input size n, it is said to be a polynomial-time
approximation algorithm. A polynomial-time approximation scheme (PTAS) is an ap-
proximation algorithm having ρ = (1 + ε), with ε > 0, and that runs in polynomial
time of n when ε is fixed. A fully polynomial-time approximation scheme (FPTAS) is a
particular PTAS whose running time is bounded by a polynomial of n and 1/ε. Both
PTAS and FPTAS have the advantage to be able to arbitrarily approach optimal solu-
tions but at the price of a polynomial time complexity that increases for small values
of ε. Notice that some NP-hard optimization problems do not admit polynomial-time
approximation algorithms (unless P=NP). Approximation algorithms with fixed ratio
ρ, PTAS or FPTAS have been largely considered in the scheduling literature, so that
reporting them is out-of-the-scope of this paper.

Our work is at the intersection of EETA and approximation algorithms. How can
we approach optimal solutions for NP-hard problems that do not admit a polynomial-
time approximation algorithm? Recent works on optimization problems have shown
the opportunity of providing, in such a case, approximation algorithms with a moder-
ately exponential worst-case time complexity (see for instance Paschos (2015)). Marx
(2008) introduces the notion of fpt-approximation scheme (FPT-AS) that is an approx-
imation algorithm computing, for a given ε > 0, a solution with ratio ρ = (1 + ε) in
time f(ε, κ) · nO(1), with some computable function f and κ a parameter of the in-
stance. The latter is usually either a value associated with the instance, or a measure
related to the objective function value. In this paper we focus on some parallel machines
scheduling problems which cannot be approximated in polynomial time, thus leading to
consider approximation in “exponential” time. Few works in the scheduling literature
can be found on this topic, and they are mainly devoted to shop scheduling problems
involving a set of m machines and n jobs to be scheduled. For an openshop problem,
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Sevastianov and Woeginger (1998) propose a FPT-AS running in f(ε,m) + O(n log(n))
time, while for a flowshop problem Hall (1998) proposes one running in f(ε,m)+O(n3.5)
time. Finally, Jansen et al. (2003) propose for a jobshop problem a FPT-AS running in
f(ε,m, nmax) +O(n) time, with nmax the maximum number of operations for a job.

We consider the problem of scheduling n jobs on m identical parallel machines. Each
job j is defined by a processing time pj , a due date dj and it has to be processed non-
preemptively by one of the machines. Each machine can process one job at a time. The
aim is to compute a schedule so that the number of tardy jobs, denoted by

∑
j Uj , is

minimized. For any given schedule s, let Cj(s) be the completion time of job j: whenever
Cj(s) > dj we set Uj = 1 (job is tardy), and Uj = 0 otherwise (job is early). Without
loss of generality, we assume that d1 ≤ d2 ≤ ... ≤ dn. Using the standard three–field
notation due to Graham et al. (1979) this problem is denoted by P ||

∑
j Uj . If a single

machine is available, i.e. m = 1, the problem can be solved in polynomial time Lawler
and Moore (1969); Lin and Wang (2007). However, it turns out to be NP-hard even in
the case of two machines (Garey and Johnson, 1979). Leung and Yu (1994) proposed
for a specific performance ratio and when m = 2, a polynomial-time approximation al-
gorithm. With respect to the exact solution of the m machine problem, Lente et al.
(2013) proposed an EETA based on the Sort & Search technique. This algorithm re-
quires O∗((m + 1)

n
2 ) time and space in the worst case. For instance, when m = 2, this

complexity becomes O∗(3n2 ) = O(1.7321n). Notice that this algorithm was originally
designed for the weighted number of tardy jobs problems, denoted by P ||

∑
j wjUj .

The remainder is organized as follows. Section 2 introduces preliminary results. Sec-
tion 3 introduces a first exponential-time approximation algorithm based on a branching
strategy. Section 4 shows how to improve the previous algorithm by adding a prepro-
cessing step. As a side result, we show in section 5 that minimizing the number of tardy
jobs is fixed-parameter tractable. Some extensions to related problems are discussed in
section 6. Conclusions and future research directions are given in section 7.

2. Preliminary results

We first provide a result that rules out the existence of polynomial-time approximation
schemes for the P ||

∑
j Uj problem.

Theorem 1. The P2||
∑
j Uj problem does not admit a polynomial time approximation

algorithm with a bounded approximation ratio unless P = NP.

Proof. The result is proved by reduction from the P2|Cmax ≤ d|− problem, a well-
known NP-complete decision problem where n jobs j with processing times pj (j =
1, . . . , n), two identical parallel machines and a value d are given. This problem asks
whether there exists a schedule of the jobs such that the makespan Cmax is at most d.
We build an instance of P2||

∑
j Uj by considering n jobs with the processing times

pj and due dates dj = d (j = 1, . . . , n). This implies that an optimal solution of the
P2|dj = d|

∑
j Uj instance attains value 0 only if P2|Cmax ≤ d|− is feasible. Thus, if

there was a polynomial-time approximation algorithm with a bounded approximation
ratio ρ > 1 (even possibly as a function ρ(n)), we could decide P2|Cmax ≤ d|− problem
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just by checking if the approximate solution of P2|dj = d|
∑
j Uj is strictly positive.

Clearly this is not possible under the assumption that P 6= NP.

Leung and Yu (1994) proposed an approximation result for the P2||
∑
j Uj problem. As

Theorem 1 holds, they defined the performance ratio as:

ρE =
n−
∑

j
U∗j

n−
∑

j
UH
j

,

with
∑
j U
∗
j (resp.

∑
j U

H
j ) the number of tardy jobs in the optimal solution (resp. the

solution computed by their heuristic). They showed that the ratio ρE = 4
3 is tight. In

this paper, we consider the problem of approximating in exponential time the P ||
∑
j Uj

problem by considering the classical approximation ratio:

ρ =

∑
j
UHj∑
j
U∗
j

.

The existence of the EETA of Lente et al. (2013) creates the challenge of finding an ex-
ponential time approximation algorithm whose worst-case time complexity is lower than
that of the EETA.

We now present a side result which will be used later on in our approximation algo-
rithms. This result states the complexity of solving the decision variant of the identical
parallel machine scheduling problem. This problem is denoted by P |d̃j |−, with d̃j the
deadline of job j. As it will appear in the remainder, improving the time complexity for
solving this problem immediatly leads to improving the worst-case time complexity of
the proposed exponential-time approximation algorithms.

Theorem 2. Let d̃j be a deadline associated with job j, so that in a feasible schedule job

j must complete before d̃j. The existence of a feasible schedule for the P |d̃j |− problem
can be decided in O∗(mn

2 ) time and space.

Proof. The P |d̃j |− problem is NP-complete and we prove the result by showing the
existence of an EETA based on the Sort & Search technique. Starting from the work of
Lente et al. (2013) we need to reformulate the problem as a multiple constraint problem
(MCP): this will imply the existence of a Sort & Search algorithm to solve the decision
problem. We kindly refer the reader to Lente et al. (2013) for a detailed presentation of
a MCP. Let us define I1 = {1, ..., bn2 c} and I2 = {bn2 c + 1, ..., n}. With each partition

Ek1 = (Ek1,1, ..., E
k
1,m) of I1 (1 ≤ k ≤ m|I1|), we associate a schedule sk1 in which jobs in

Ek1,` are scheduled by increasing order of their index on machine `. We do the same to

create the m
n
2 partitions E i2 of I2 and, correspondingly, to each partition E i2 a schedule

si2 can be derived. A complete schedule for the original problem is then defined by the
concatenation of a schedule sk1 and a schedule si2, and is denoted by sk1//s

i
2.

Let us denote by L`max(s|t) the value of the maximum lateness of sequence s on machine
` when it starts at time t, i.e. L`max(s|t) = L`max(s|0) + t. We also have L`max(s|t) =
maxj∈s(C

`
j (s|t)− d̃j), with C`j (s|t) the completion time of job j in a schedule s starting

at time t on machine `. Then, for any schedule sk1//s
i
2 we have:

Lmax(sk1//s
i
2) = max1≤`≤m(L`max(sk,`1 |0);L`max(si,`2 |C`max(sk,`1 ))),
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with C`max(s) the makespan of schedule s on machine `, and sa,`b the sequence of jobs on
machine ` in schedule sab . Schedule sk1//s

i
2 is feasible with respect to the deadlines if and

only if Lmax(sk1//s
i
2) ≤ 0.

With each of the m
n
2 schedules sk1 (resp. si2) generated from I1 (resp. I2) we associate

a vector ~ak (resp. ~bi). The P |d̃j |− problem can be reformulated as the following MCP:

Minimize f( ~ak, b
0
i )

s.t.
g`( ~ak, b

`
i) ≥ 0, (1 ≤ ` ≤ m)

~ak ∈ A, ~bi ∈ B.

with



A the set of all vectors ~ak associated with the Ek1 ’s

B the set of all vectors ~bi associated with the E i2’s

~ak = (Lmax(sk1), Cmax(sk,11 ), ..., Cmax(sk,m1 ))

~bi = (0, Lmax(si,12 |0), ..., Lmax(si,m2 |0))

f(~ak, b
0
i ) = Lmax(sk1)

g`(~ak, b
`
i) = −Cmax(sk,`1 )− Lmax(si,`2 |0)

Following Lente et al. (2013), there exists an EETA algorithm requiringO∗(mn
2 ) time and

space to solve this problem. The algorithm returns a solution whose objective function
value is not positive if and only if there exists a feasible schedule with respect to the
deadlines.

3. A branching based approximation algorithm

Branching algorithms are known to be usable for deriving approximation algorithms
with a moderate worst-case time complexity (e.g. Escoffier et al. (2016)). In this section,
we show that, by decomposing the problem solution and introducing a parametrized
branching scheme, we can derive an approximation algorithm, referred to as Bapprox,
for the P ||

∑
j Uj problem.

Let k > 0 be an integer parameter and jobs be grouped into dnk e batches. Each batch
B` contains jobs {(` − 1)k + 1, ..., `k}, 1 ≤ ` ≤ bnk c, and there exists a last batch Bdnk e
containing the last (n − kbnk c) jobs if n

k is not integral. Algorithm Bapprox builds a
binary search tree by branching at each level k on batch Bk and scheduling all its jobs
either early or tardy (Figure 1).

Then, for each leaf node we have a set of tardy jobs and a set of early jobs. The
existence of a feasible schedule for the latter is tested in O∗(mn

2 ) time by solving the
corresponding P |d̃j = dj |− problem. If such a schedule exists then all the tardy jobs are
scheduled on any machine after the early jobs. Algorithm Bapprox is given in Figure 2.
We now state its worst-case ratio and complexities in Propositions 1 and 2.

Proposition 1. Algorithm Bapprox admits a worst-case ratio ρ ≤ k.
5



Figure 1: Illustration of the search tree

Algorithm Bapprox

1: Input: An instance I with n jobs and m machines, a parameter k.

2: Output: A schedule sB with objective function value
∑
j U

B
j .

3: Solve the P |d̃j = dj |− problem: if there exists a feasible schedule s, return s and∑
j Uj(s) = 0.

4: sB = ∅,
∑
j U

B
j = +∞.

5: B` = {(`− 1)k + 1, ..., `k}, ∀` = 1...bnk c.
6: if (nk is not integral) then

7: Bdnk e = {kbnk c, ..., n}.
8: end if

9: LN = {(Eu;Tu) : Eu, Tu ⊆ {B1, ..., Bdnk e}, Eu ∪ Tu = I, Eu ∩ Tu = ∅}
10: for ((E;T ) ∈ LN ) do

11: Solve the P |d̃j = dj , j ∈ E|− problem: Let sE be a feasible schedule if it exists.

12: Let sT be a schedule in which jobs in T are in any order on the first machine.

13: s = sE//sT .

14: if (sE is feasible and |T | <
∑
j U

B
j ) then

15: sB = s,
∑
j U

B
j = |T |.

16: end if

17: end for

18: return sB and
∑
j U

B
j .

Figure 2: A branching based approximation algorithm for the P ||
∑

j
Uj problem
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Proof. First notice that if there exists a feasible schedule with no tardy jobs, then this
one is found at step 2 and Bapprox is optimal.
So, let us assume that in the optimal schedule there is at least one tardy job. In the
schedule sB , returned by Bapprox, assume that there are α batches BBj which are sched-

uled tardy. Let EB be the set of early jobs in sB . We claim that, ∀j = 1..α, there is
no optimal solution in which all jobs in EB ∪BBj can be scheduled early together. First

observe that, if there exists an optimal solution in which all jobs EB are early, then
scheduling early all jobs of a batch BBj implies a contradiction with the fact that sB is
the best solution found by algorithm Bapprox. This implies that, at least one job from
BBj is tardy in an optimal solution in which all jobs in EB are early. So in the other case,

at least one job u ∈ EB must be scheduled tardy to obtain an optimal solution. Besides,
scheduling u early in Bapprox disables some batch BBj from being scheduled early. Notice
that, due to the branching scheme, we cannot have one such early job u preventing two
batches BBj and BBj′ from being early: otherwise the branch in which these two batches
are scheduled early and the batch containing u is scheduled tardy would be feasible and
better than sB .
Let `j be the number of jobs that disable jobs in batch BBj from being early: to obtain
an optimal solution, all these `j ’s jobs should be scheduled tardy and all other tardy
jobs in sB should be scheduled early. Following the previous analysis, we can derive that
1 ≤ `j ≤ k. Then,

ρ = αk∑
j
`j

,

with
∑
j `j ≥ α. The ratio is maximum whenever

∑
j `j = α, leading to ρ ≤ k.

Remark 1. The ratio k stated in Proposition 1 is tight. Consider a 2 machines and 4
jobs example with: p1 = 5, p2 = 5, p3 = 4, p4 = 6 and d1 = 7, d2 = 8, d3 = 9, d4 = 10 and
k = 2. An optimal solution has 1 job tardy, e.g. jobs 1 and 3 on machine 1 and jobs 2
and 4 on machine 2. Algorithm Bapprox generates a solution sB with 1 batch of early
jobs (e.g. {1; 2}) and 1 batch of tardy jobs (e.g. {3; 4}). So, the number of tardy jobs in
sB is equal to k = 2.

Proposition 2. Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(mn

2 ) space.

Proof. We first state the worst-case time complexity. Step 2 requires O∗(mn
2 ) time.

Steps 3-7 are processed in polynomial time of n.
At step 8, leaf nodes contained in set LN correspond to all possible selections of ` early

batches over dnk e, and so |LN | =
∑dnk e
`=0

(dnk e
`

)
. For each (E;T ) ∈ LN , step 10 requires

O∗(m
|E|
2 ) time, with |E| = k` and ` the number of early batches in E. It follows that

steps 8-16 have a worst-case running time in:

O∗(
∑dnk e
`=0

(dnk e
`

)
(m

k
2 )`) = O∗((1 +m

k
2 )

n
k ),

by making use of the Newton’s binomial formula.
Concerning the worst-case space requirement of algorithm Bapprox, step 2 requires
O∗(mn

2 ) space. By exploring the search tree following a depth first search strategy,
algorithm Bapprox can be implemented in such a way that each time a leaf node is found
the corresponding P |d̃j = dj , j ∈ E|− problem is directly solved. This implies that steps
8-16 can be implemented in O∗(mn

2 ) space.
7



To illustrate the above propositions, we provide in Table 1 values of ratios and com-
plexities on the two-machine problem. Noteworthy, by comparison to the EETA running
in O(1.7320n) time, algorithm Bapprox is relevant for k ≥ 3.

k ρ time
1 1 O(2.4142n)
2 2 O(1.7320n)
3 3 O(1.5643n)
4 4 O(1.4953n)
5 5 O(1.4610n)

. . .
10 10 O(1.4186n)

Table 1: Some ratios and complexities for the algorithm Bapprox on the P2||
∑

j
Uj problem

4. Branching with preprocessing

In this section we consider a second exponential-time approximation algorithm, re-
ferred to as PBapprox, based on algorithm Bapprox. The idea is to include a preprocessing
step before running Bapprox in order to decrease the approximation ratio. This is in the
spirit of the memoization techniques applied in graph optimization problems (see, e.g.
Robson (1986); Fomin et al. (2009)). Let us introduce a parameter c which is the frac-
tion of the jobset to be considered by the preprocessing. This one generates all possible
subsets of at most n

c tardy jobs and then, for each, solves the P |d̃j = dj |− problem on
the remaining jobs. If at least one of these subsets leads to a feasible schedule, then
the optimal solution of the P ||

∑
j Uj problem is found. Otherwise, algorithm Bapprox

is used. Algorithm PBapprox is given in Figure 3. We state its worst-case ratio and
complexities in Propositions 3 and 4.

Proposition 3. Algorithm PBapprox admits a worst-case ratio ρ ≤ k2+k(c−1)+1
k+c .

Proof. If PBapprox stops in steps 2-13 then it has found the optimal solution. So, the
approximation ratio is obtained when running algorithm Bapprox.
Let sPB = sB//sT be the solution returned by algorithm PBapprox. Following the

analysis done in proof of Proposition 1, we assume that in sB , α ≤ dn(c−1)ck e batches have
been scheduled tardy. Assume that in the optimal solution of the problem restricted to
the jobs in R = {i/i ∈ sB}, we have µ tardy jobs. Then, in the worst case it may happen
that α = µ. So, we derive:

ρ ≤ kmin(µ;dn(c−1)
ck e)+n

c

µ+n
c

.

Two cases can occur. In case 1, µ > dn(c−1)ck e and then:

ρ ≤ k(n(c−1)+ck)+n
n(c−1)+ck+n .

8



Algorithm PBapprox

1: Input: An instance I with n jobs and m machines, parameters k and c.

2: Output: A schedule sB with objective function value
∑
j U

B
j .

3: Solve the P |d̃j = dj |− problem: if there exists a feasible schedule s, return s and∑
j Uj(s) = 0.

4: sPB = ∅,
∑
j U

PB
j = +∞.

// Preprocessing step

5: for (i = 1 to bnc c) do

6: Si = {subsets of i tardy jobs}.
7: for (T ∈ Si) do

8: Solve the P |d̃j = dj , j ∈ I\T |− problem: Let sE be a feasible schedule if it

exists.

9: if (sE is feasible) then

10: Let sT be a schedule in which jobs in T are in any order on the first machine.

11: return sPB = sE//sT and
∑
j U

PB
j = i.

12: end if

13: end for

14: end for

// No solution has been found: using algorithm Bapprox

15: for (T ∈ Sbnc c) do

16: (sB ,
∑
j U

B
j ) =BApprox(I\T , n− bnc c,m,k).

17: Let sT be a schedule in which jobs in T are in any order on the first machine.

18: if ((
∑
j U

B
j + bnc c) <

∑
j U

PB
j ) then

19: sPB = sB//sT ,
∑
j U

PB
j =

∑
j U

B
j + bnc c.

20: end if

21: end for

22: return sB and
∑
j U

B
j .

Figure 3: A branching and preprocessing based approximation algorithm for the P ||
∑

j
Uj problem
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In order to impose the preprocesssing step to be executed we must have n ≥ c. Besides,
when k and c are fixed, the function:

g(n) = k(n(c−1)+ck)+n
n(c−1)+ck+n ,

is a decreasing function. Then, the ratio is maximum when n = c, leading to:

ρ ≤ k2+k(c−1)+1
k+c = ρ1.

In case 2, µ ≤ dn(c−1)ck e and then we have:

ρ ≤ ckµ+n
cµ+n = f(µ).

As f(µ) is a non-decreasing function of µ, it is maximum when µ = n(c−1)
ck , leading to:

ρ ≤ ck
k+c−1 = ρ2.

By analytically comparing ρ1 and ρ2 we can derive that ρ1 ≥ ρ2 whenever k ≥ 1 and
c ≥ 1.

Before, establishing a bound on the worst-case time complexity, let us consider the
partial sum of binomials

∑`
i=0

(
n
i

)
xiyn−i, x, y ∈ R. There is no closed formula to this

partial sum even when x = y = 1 (Boardman (2004)). We provide the following result,
whose proof is given in the appendix.

Lemma 3. Let c be an integer with c ≥ 2. We have the following tight O∗ bounds:(
n

bnc c

)
= O∗

(
2H( 1

c )n
)

and
bnc c∑
i=0

(
n

i

)
= O∗

(
2H( 1

c )n
)

with H(x) = −x log2(x)− (1−x) log2(1−x), 0<x<1, the binary entropy of x.

To the best of our knowledge, the binary entropy in scheduling theory has been only
used by Gawiejnowicz and Kurc (2020). We use it to establish an upper bound on the
worst-case time and space complexities of PBapprox.

Proposition 4. Algorithm PBapprox requires O∗
((

2H( 1
c )(1 +m

k
2 )

(c−1)
ck

)n)
time. The

worst-case space requirement is in O∗
((
m

c−1
2c

)n)
.

Proof. We first prove the worst-case time complexity. Step 2 requires O∗(mn
2 ) time.

The preprocessing phase (steps 4-13) involves the generation of subsets of size at most
bnc c and the solution of feasibility problems. Then, this phase has the following worst-case
running time:

O∗(
∑bnc c
i=0

(
n
i

)
m

n−i
2 ).
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Following Lemma 3, we have the following upper bound:∑bnc c
i=0

(
n
i

)
m

n−i
2 ≤

∑bnc c
i=0

(
n
i

)
×m

n(c−1)
2c = O∗

(
2H( 1

c )nm
n(c−1)

2c

)
Therefore, the preprocessing phase has a worst-case time complexity in

O∗(2H( 1
c )nm

n(c−1)
2c ).

Now, let us consider the branching phase (steps 14-20). For each jobset of size bnc c,

algorithm Bapprox requires O∗((1 +m
k
2 )

n−bn
c
c

k ) time. Thus, the branching phase has a
worst-case running time in:

O∗(
(
n
bnc c
)
(1 +m

k
2 )

n−bn
c
c

k ).

Again, following Lemma 3, and knowing that ∀x, xn+O(1) = O∗(xn), we obtain:(
n

bnc c

)
(1 +m

k
2 )

n−bn
c
c

k = O∗
(

2H( 1
c )n(1 +m

k
2 )

n−bn
c
c

k

)
= O∗

(
2H( 1

c )n(1 +m
k
2 )

n−n
c

k

)
Therefore, the worst-case time complexity is in

O∗
(

max
((

2H( 1
c )(m

1
2 )

(c−1)
c

)n
;
(

2H( 1
c )((1 +m

k
2 )

1
k )

(c−1)
c

)n))
We have: m

k
2 < 1 +m

k
2 , so m

1
2 = (m

k
2 )

1
k < (1 +m

k
2 )

1
k , so the first term (preprocessing

phase) is smaller and negligible, provided that n is large enough.

Finally, the worst-case time complexity is in O∗
((

2H( 1
c )((1 +m

k
2 )

1
k )

(c−1)
c

)n)
Following a similar reasoning than in the proof of Proposition 2, there exists an im-

plementation of algorithm PBapprox in which both the preprocessing and the branching

phases requires O∗(m
n(c−1)

2c ) space.

To illustrate the above propositions, we provide in Table 2 some interesting values of
ratios and complexities on the two-machine problem.

5. Fixed parameter tractability

We revisit the Pm||
∑
j Uj problem, i.e. for a fixed number of machines m, under the

fixed parameter tractability setting. We show that it is FPT if we take as a parameter
the number of early jobs denoted by |E|. Notice that this parameter is related to the
number of jobs in the instance and not to the values of jobs characteristics, which makes
it an interesting parameter.

To this extent, consider the findings of Lin and Wang (2007) where it was shown
that an alternative exact solution of problem 1|dj |

∑
j Uj can be obtained by means of

the algorithm Moore-rev given in Figure 4. Remember that it is assumed that jobs are

11



k c ρ time
1 100000 1 O(2.4145n)

1000 1 O(2.4312n)
100 1 O(2.5309n)

2 100000 1.99 O(1.7323n)
1000 1.99 O(1.7448n)
100 1.99 O(1.8218n)

3 1000 2.99 O(1.5761n)
100 2.98 O(1.6471n)
10 2.84 O(2.0706n)

4 1000 3.99 O(1.5066n)
100 3.97 O(1.5751n)
10 3.78 O(1.9882n)

. . .

Table 2: Some ratios and complexities for the algorithm PBapprox on the P2||
∑

j
Uj problem

indexed such that d1 ≤ d2 ≤ ... ≤ dn. The rationale of this algorithm is that, if the jobs
are selected one at a time according to the non-decreasing order of their processing time,
then, they are immediately determined to be early or tardy: if a job j and the current
set of early jobs can be all scheduled early (following the earliest due date rule), then job
j is early in an optimal solution. Otherwise, it is tardy.

The parameterized exact algorithm we propose, referred to as algorithm FPTE , ex-
tends algorithm Moore-rev to the case of m parallel machines. It explores a search
tree by branching on the jobs in non-decreasing order of their processing time. For a
given node of the search tree, the unscheduled job j with the smallest processing time
is tested on each machine i. If, as in algorithm Moore-rev, all the current early jobs Ei
on machine i and job j can be scheduled early, then a child node is created in which
Ei = Ei∪{j}. If on all machines job j induces at least one tardy job, then it is scheduled
tardy and the next unscheduled job is examined. Algorithm FPTE is described in Figure 5.
Algorithm FPTE is optimal since, at each level of the search tree and for a node
(N,T, [Eu]u=1..m), the smallest unscheduled job j is tested on all machines. If there
is no machine on which it can be scheduled early, due to the result of Lin and Wang
(2007), then it is necessarily tardy in a solution having jobs in the Eu’s early. Besides, if
there is at least one machine i such that Ei ∪ {j} can be scheduled early, then following
Lin and Wang (2007) there is no gain in scheduling j tardy on that machine (or on any
machine).

Proposition 5. Algorithm FPTE requires O∗
(
m|E|

)
time and polynomial space, with

|E| the number of early jobs.

Proof. At each feasible branch a job is scheduled early on a machine. In the worst-case,
for each early job, at most m branches are created. Besides, we know that if the optimal
solution has |E| early jobs, the search tree has at most |E| levels. Correspondingly, the

time complexity is O∗
(
m|E|

)
. For the space complexity, by visiting the search tree in

12



Algorithm Moore-rev

1: Input: An instance I with n jobs and 1 machine.

2: Ouput: The set of early jobs E and the number of tardy jobs
∑
j Uj .

3: NEDD = {1, 2, ..., n} and E = T = ∅.
4: while (NEDD 6= ∅) do

5: Choose a job j ∈ NEDD with the smallest processing time pj .

6: NEDD = NEDD \ {j}.
7: if (E ∪ {j} is on-time) then

8: E = E ∪ {j}.
9: else

10: T = T ∪ {j}.
11: end if

12: end while

13: return E and
∑
j Uj = |T |.

Figure 4: Moore’s algorithm revised for the 1|dj |
∑

j
Uj problem

depth first, at most (|E|+m) branches will be present at the same time inducing a spatial
complexity polynomial in n.

6. Extensions to related problems

In this section, we examine possible extensions of the previous algorithms to related
problems. First, let us consider the problem where machines are unrelated, i.e. the
processing time of job j when processed on machine i is pj,i (j = 1, ..., n, i = 1, ...,m).
Using the standard three-field notation, this problem is denoted by R|dj |

∑
j Uj .

Algorithms Bapprox and PBapprox rely on the solution of decision problems. Then,
to make them solving the R|dj |

∑
j Uj problem we need to consider the solution of the

R|d̃j |− problem. The proof of Theorem 2 reveals that the proposed EETA also solves

the R|d̃j |− problem in O∗(mn
2 ) time and space. Since, in the unrelated parallel machine

problem, when the jobs are assigned to a machine the processing times are fixed, this
algorithm directly applies. Consequently, Propositions 1, 2, 3 and 4 are valid for the
R|dj |

∑
j Uj problem.

Let us now turn to the parameterized algorithm FPT. It is possible to slightly modify it in
order to achieve the same results as those reported in Proposition 5. The corresponding
algorithm FPTR, proceeds as algorithm FPT but manipulates at each step operations (j, i),
1 ≤ j ≤ n, 1 ≤ i ≤ m, instead of jobs j. Each time an operation (j, i) is scheduled,
all other operations of job j are removed from the list of unscheduled operations. The
optimal solution is given by the leaf node having the largest number of early jobs |E|,
with E = ∪i=1,...,mEi.

13



Algorithm FPT

1: Input: An instance I with n jobs and m machines.

2: Ouput: A schedule and its associated number of tardy jobs.

3: Root node:

N = I. // The set of unscheduled jobs

T = ∅. // The set of tardy jobs

Eu = ∅,∀u = 1, ...,m. // The set of early jobs on each machine

4: Branching rule: for a given unexplored node (N,T, [Eu]u=1..m),

CN = ∅. // The list of children nodes

while (CN = ∅ and N 6= ∅)
j = argmin`∈N (p`).

for (i = 1...m) do

if (Ei ∪ {j} is on-time) then

Create a child node:

N ′ = N \ {j}, T ′ = T , and E′u = Eu,∀u = 1, ...,m.

E′i = E′i ∪ {j}.
CN = CN ∪ {(N ′, T ′, [E′u]u=1..m)}

end if

end for

if (CN = ∅) then

N = N \ {j} and T = T ∪ {j}.
end if

end while

Add CN to the list of unexplored nodes.

5: Search strategy: apply depth first strategy.

Figure 5: A FPT exact algorithm for problem Pm|dj |
∑

j
Uj

14



Notice that, to ease the presentations of BApprox, PBApprox and FPT, we have introduced
them in the context of identical parallel machines to avoid heavier notations induced by
manipulating operations instead of jobs.

Now, let us consider the weighted case. Each job j has a weight wj and the objective
turns to minimize the weighted number of jobs

∑
j wjUj . The corresponding problem is

denoted by P ||
∑
j wjUj .

Algorithm Bapprox, as described in Figure 2, does not admit a bounded ratio ρ. However,
let Bapproxw be the variant of Bapprox in which the following modifications are done:

• Jobs are re-indexed such that w1 ≥ w2 ≥ ... ≥ wn.

• At any level of the level of the search three, if j is the unscheduled job with the
smallest index, then two branches are created: one in which job j is scheduled early,
and the other in which the jobs {j, ...j + k − 1} are scheduled tardy (Figure 6).

Figure 6: Illustration of the search tree (weighted case)

We can state the following propositions.

Proposition 6. Algorithm Bapproxw admits a worst-case ratio ρ ≤ k.

Proof. As in the proof of Proposition 1, let us focus in the case where there is at least
one tardy job.
In the schedule sB assume that there are α sets {`u, ..., `u+k} which are scheduled tardy.
In the worst-case scenario it can be assumed that, in the optimal solution, only one job
for each of these sets is tardy. Due to the branching, these ones are necessarily jobs
`1, `2..., `α. Then, as the jobs are indexed by non-increasing value of their weight, we can
write:

ρ ≤ (w`1+...w`1+k)+...+(w`α+...w`α+k)

w`1+...+w`α

≤ k(w`1+w`2+...+w`α )

w`1+...+w`α

≤ k.

Proposition 7. Algorithm Bapproxw requires O∗(γn) time and O∗(mn
2 ) space, with

γ = m
1
2δ and γ−k + γ−1+δ = 1.
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Proof. In the analysis of the running time of the algorithm above, we adopt a measure
and conquer approach (see for instance Fomin et al. (2009)). More precisely, we do not
count in the measure the jobs scheduled to be tardy (they receive weight 0), and we
count with a weight 0 ≤ δ ≤ 1 the jobs scheduled to be early. Finally the unscheduled
jobs receive weight 1. We so get recurrences on the time T (p) required to solve instances
of weight p, where the weight of an instance is the sum of the weights of its jobs. As
in Bapprox, the search tree first decides whether jobs are early or tardy; then, once this
decision has been taken on all jobs, solves the related P |d̃j = dj , j ∈ E|− problem. This
last step, as all the jobs have weight δ has a complexity γn where

γ = m
1
2δ (1)

corresponding to a recursion of the type T (p) ≤ mT (p − 2δ). Besides, at each node of
the search tree, the branching rule creates two children nodes setting either one job early
(whose weight decrease from 1 to 1 − δ) or k jobs tardy. Thus, we have in this case
T (p) ≤ T (p− (1− δ)) + T (p− k). This last recursion corresponds to the equality

γ−k + γ−1+δ = 1. (2)

Hence, for any given m, Algorithm Bapproxw runs with complexity O∗(γn) with γ re-
specting both equations (1) and (2). For the space complexity, the same analysis applied
in Proposition 1 to Algorithm Bapprox holds. Correspondingly, the space complexity is
in O∗(mn

2 ).

To illustrate the above propositions, we provide in Table 3 values of ratios, com-
plexities and δ on the two-machine problem. Noteworthy, by comparison to the EETA
running in O(1.7320n) time, this table shows that algorithm Bapproxw is relevant for
k ≥ 4.

k ρ δ time
1 1 0.3923 O(2.4142n)
2 2 0.5263 O(1.9319n)
3 3 0.6236 O(1.7453n)
4 4 0.7002 O(1.6407n)
5 5 0.7617 O(1.5762n)

. . .
10 10 0.9334 O(1.4496n)

. . .
20 20 0.9972 O(1.4156n)

Table 3: Some ratios and complexities for the algorithm Bapproxw on the P2||
∑

j
wjUj problem

Remark 2. Notice that, if the same measure and conquer approach is applied to the
unweighted case using the branching scheme of Figure 1 (correspondingly, the recursion
T (p) ≤ T (p − k(1 − δ)) + T (p − k) holds), the analysis provides as expected the same
complexity illustrated in Table 1.
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7. Conclusions

In this paper we focused on the solution of some scheduling problems involving the
minimization of the weighted and unweighted number of tardy jobs. We have shown
that these NP-hard problems cannot be approximated in polynomial time leading by the
way to the design of exponential-time approximation algorithms. We also provide fixed
parameter tractable algorithms which solve to optimality some of the tackled problems.

The proposed approximation algorithms relies on the combination of branching algo-
rithms and the solution of decision problems. Some of them also embed a preprocessing
step. Two points are remarkable: first, the approximation nature of these algorithms
comes from the branching phase that does not explore the whole solution space. Second,
it is expected that, to decrease the worst-case time complexity of the approximation
algorithms, one should decrease the time complexity of solving the decision problems to
be solved.

Exponential-time approximation algorithms enable to approximate hard problems
that, under the assumption P 6= NP, cannot be approximated in polynomial time. This
constitutes a very interesting approach in the field of scheduling which is worthy of further
investigation.
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Appendix

We prove the results stated in Lemma 3. They are a direct consequence of the two
lemmas below, applied with α = 1

c , knowing that bnc c = n
c +O(1).

First, we introduce the Θ∗ notation. It is the equivalence associated with the O∗
preorder. Given A(n) and B(n) two complexities, A(n) = O∗(B(n)) stands for A(n) =
O∗(B(n)) and B(n) = O∗(A(n)). Θ∗ implies O∗ with tight bound.

Lemma 4. Given 0 < α < 1, let ` ≤ n be an integer related to n by ` = αn+O(1). We

have
(
n
`

)
= Θ∗

((
1

αα(1−α)1−α

)n)
= Θ∗

(
2H(α)n

)
Proof. For any logarithm, we have A = Θ∗(B) iff logA = logB +O(log n).
Consider Stirling’s formula: n! ∼ (ne )n

√
2πn, with e being Euler’s number. Apply natural

logarithm:
lnn! = n lnn− n+O(lnn)

Thus, for any α:

ln(αn+O(1))! = (αn+O(1)) ln((αn)(1 +O(
1

n
))) +O(ln(αn+O(1)))

After development and simplification:

ln(αn+O(1))! = αn ln(αn)− αn+O(lnn)
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That is:

(αn+O(1))! = Θ∗
((αn

e

)αn)
Now, take the definition of

(
n
`

)
and simplify:

(
n

`

)
=

n!

`!(n− `)!
= Θ∗

 (
n
e

)n(
αn
e

)αn( (1−α)n
e

)(1−α)n
 = Θ∗

(
1

ααn(1− α)(1−α)n

)

And
1

ααn(1− α)(1−α)n
= 2H(α)

Lemma 5. Let ` be a summation limit related to n by ` = αn+O(1), assuming α ≤ 1
2 .

We have
∑`
i=0

(
n
i

)
= Θ∗

(
2H(α)n

)
Proof. If α < 1

2 then, for n large enough, ` ≤ n
2 and

(
n
0

)
≤
(
n
1

)
≤ . . . ≤

(
n
`

)
. So:

(
n

`

)
= Θ∗

(
2H(α)n

)
≤
∑̀
i=0

(
n

i

)
≤ (`+ 1)

(
n

`

)
= Θ∗

(
2H(α)n

)
If α = 1

2 then H(α) = H( 1
2 ) = 1 and

(
n
i

)
≤
(
n
bn2 c
)
, 1 ≤ i ≤ n

2 . So:

(
n

`

)
= Θ∗

(
2H( 1

2 )n
)
≤
∑̀
i=0

(
n

i

)
≤ (`+ 1)

(
n

bn2 c

)
= Θ∗

(
2H( 1

2 )n
)
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