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We consider the solution of some N P-hard parallel machine scheduling problems involving the minimization of the weighted or unweighted number of tardy jobs. We first show that these problems cannot be approximated in polynomial time. Then we propose exponential-time approximation algorithms and fixed parameter tractable exact algorithms to solve them.

Introduction

Scheduling theory deals with the allocation of a given set of jobs to resources over time while minimizing some criteria. Often, scheduling problems turn out to be N Phard and exact as well as heuristic algorithms have been proposed in the literature to solve them [START_REF] Pinedo | Scheduling -Theory, Algorithms, and Systems[END_REF]). Such algorithms are classically designed with the purpose of either being effective in practice or providing theoretical worst-case guarantees.

We mention the existence in the literature of exact exponential time algorithms (EETA) that are exact algorithms whose worst-case time complexity can be expressed as O * (c n ) with c a constant and n is a measure of the input size (typically the number of jobs in the instance). The O * notation suppresses polynomial factors in the complexity, i.e. O * (c n ) = O(p(n)c n ) where p(n) is a polynomial on n. The proposal of such algorithms for N P-hard scheduling problems started recently to be intensively considered in the literature. The survey by [START_REF] Woeginger | Exact algorithms for NP-hard problems: A survey[END_REF] revealed the existence of EETA for some single machine scheduling problems. Later on, such algorithms have been proposed for a set of classic scheduling problems [START_REF] Cygan | Scheduling partially ordered jobs faster than 2 n[END_REF][START_REF] Garraffa | An exact exponential branch-and-merge algorithm for the single machine total tardiness problem[END_REF][START_REF] Lente | On an extension of the sort & search method with application to scheduling theory[END_REF][START_REF] Lenté | Exponential Algorithms for Scheduling Problems[END_REF][START_REF] Shang | Exact exponential algorithms for 3-machine flowshop scheduling problems[END_REF]. Noteworthy, [START_REF] Lente | On an extension of the sort & search method with application to scheduling theory[END_REF] describe a generic Sort & Search approach enabling to derive EETA for scheduling problems. Under the Exponential Time Hypothesis, [START_REF] Jansen | Bounding the Running Time of Algorithms for Scheduling and Packing Problems[END_REF] present some results on the existence of lower bounds on the worst-case time complexities of some scheduling problems. For some problems, it is possible to identify some parameter such that there exists an EETA to solve it in time f ( )n O(1) , with f being a function depending only on : we say that the problem is fixed-parameter tractable (FPT, [START_REF] Downey | Parametrized complexity[END_REF]). This parameter can be problem dependent or related to the objective function value. Fixed parameter tractability provides highlights on the hardness of problems by exhibiting to which parameters it can be related. Recent FPT algorithms in scheduling theory were proposed by [START_REF] Mnich | Scheduling and fixed-parameter tractability[END_REF]; [START_REF] Mnich | Parametrized complexity of machine scheduling: 15 open problems[END_REF]; [START_REF] Hermelin | New algorithms for minimizing the weighted number of tardy jobs on a single machine[END_REF]; [START_REF] Bessy | Parametrized complexity of a coupled-task scheduling problem[END_REF]. Most of the parameters used in these algorithms are related to the objective function value.

Approximation algorithms are particular heuristic algorithms that offer theoretical guarantees: they are proved to compute a solution whose distance to the optimal one is bounded. Let Alg be the value of the solution computed by an approximation algorithm and Opt be the optimal solution value. An approximation algorithm admits an approximation ratio ρ if for any instance of the minimization problem Alg ≤ ρOpt. Additionally, if its running time is polynomial in the input size n, it is said to be a polynomial-time approximation algorithm. A polynomial-time approximation scheme (PTAS) is an approximation algorithm having ρ = (1 + ), with > 0, and that runs in polynomial time of n when is fixed. A fully polynomial-time approximation scheme (FPTAS) is a particular PTAS whose running time is bounded by a polynomial of n and 1/ . Both PTAS and FPTAS have the advantage to be able to arbitrarily approach optimal solutions but at the price of a polynomial time complexity that increases for small values of . Notice that some N P-hard optimization problems do not admit polynomial-time approximation algorithms (unless P=N P). Approximation algorithms with fixed ratio ρ, PTAS or FPTAS have been largely considered in the scheduling literature, so that reporting them is out-of-the-scope of this paper.

Our work is at the intersection of EETA and approximation algorithms. How can we approach optimal solutions for N P-hard problems that do not admit a polynomialtime approximation algorithm? Recent works on optimization problems have shown the opportunity of providing, in such a case, approximation algorithms with a moderately exponential worst-case time complexity (see for instance [START_REF] Paschos | When polynomial approximation meets exact computation[END_REF]). [START_REF] Marx | Parametrized complexity and approximation algorithms[END_REF] introduces the notion of fpt-approximation scheme (FPT-AS) that is an approximation algorithm computing, for a given > 0, a solution with ratio ρ 1) , with some computable function f and κ a parameter of the instance. The latter is usually either a value associated with the instance, or a measure related to the objective function value. In this paper we focus on some parallel machines scheduling problems which cannot be approximated in polynomial time, thus leading to consider approximation in "exponential" time. Few works in the scheduling literature can be found on this topic, and they are mainly devoted to shop scheduling problems involving a set of m machines and n jobs to be scheduled. For an openshop problem, [START_REF] Sevastianov | Makespan minimization in open shops: a polynomial time approximation scheme[END_REF] propose a FPT-AS running in f ( , m) + O(n log(n)) time, while for a flowshop problem [START_REF] Hall | Approximability of flow shop scheduling[END_REF] proposes one running in f ( , m) + O(n 3.5 ) time. Finally, [START_REF] Jansen | Makespan minimization in job shops: a linear time approximation scheme[END_REF] propose for a jobshop problem a FPT-AS running in f ( , m, n max ) + O(n) time, with n max the maximum number of operations for a job.

= (1 + ) in time f ( , κ) • n O(
We consider the problem of scheduling n jobs on m identical parallel machines. Each job j is defined by a processing time p j , a due date d j and it has to be processed nonpreemptively by one of the machines. Each machine can process one job at a time. The aim is to compute a schedule so that the number of tardy jobs, denoted by j U j , is minimized. For any given schedule s, let C j (s) be the completion time of job j: whenever C j (s) > d j we set U j = 1 (job is tardy), and U j = 0 otherwise (job is early). Without loss of generality, we assume that d 1 ≤ d 2 ≤ ... ≤ d n . Using the standard three-field notation due to [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF] this problem is denoted by P || j U j . If a single machine is available, i.e. m = 1, the problem can be solved in polynomial time [START_REF] Lawler | A functional equation and its application to resource allocation and sequencing problems[END_REF]; [START_REF] Lin | Necessary and sufficient conditions of optimality for some classical scheduling problems[END_REF]. However, it turns out to be N P-hard even in the case of two machines [START_REF] Garey | Computers and Intractability: A guide to the theory of NP-completeness[END_REF]. [START_REF] Leung | Heuristic for minimizing the number of late jobs on two processors[END_REF] proposed for a specific performance ratio and when m = 2, a polynomial-time approximation algorithm. With respect to the exact solution of the m machine problem, [START_REF] Lente | On an extension of the sort & search method with application to scheduling theory[END_REF] proposed an EETA based on the Sort & Search technique. This algorithm requires O * ((m + 1) n 2 ) time and space in the worst case. For instance, when m = 2, this complexity becomes O * (3 n 2 ) = O(1.7321 n ). Notice that this algorithm was originally designed for the weighted number of tardy jobs problems, denoted by P || j w j U j .

The remainder is organized as follows. Section 2 introduces preliminary results. Section 3 introduces a first exponential-time approximation algorithm based on a branching strategy. Section 4 shows how to improve the previous algorithm by adding a preprocessing step. As a side result, we show in section 5 that minimizing the number of tardy jobs is fixed-parameter tractable. Some extensions to related problems are discussed in section 6. Conclusions and future research directions are given in section 7.

Preliminary results

We first provide a result that rules out the existence of polynomial-time approximation schemes for the P || j U j problem.

Theorem 1. The P 2|| j U j problem does not admit a polynomial time approximation algorithm with a bounded approximation ratio unless P = N P.

Proof. The result is proved by reduction from the P 2|C max ≤ d|-problem, a wellknown N P-complete decision problem where n jobs j with processing times p j (j = 1, . . . , n), two identical parallel machines and a value d are given. This problem asks whether there exists a schedule of the jobs such that the makespan C max is at most d. We build an instance of P 2|| j U j by considering n jobs with the processing times p j and due dates d j = d (j = 1, . . . , n). This implies that an optimal solution of the P 2|d j = d| j U j instance attains value 0 only if P 2|C max ≤ d|-is feasible. Thus, if there was a polynomial-time approximation algorithm with a bounded approximation ratio ρ > 1 (even possibly as a function ρ(n)), we could decide P 2|C max ≤ d|-problem just by checking if the approximate solution of P 2|d j = d| j U j is strictly positive. Clearly this is not possible under the assumption that P = N P. [START_REF] Leung | Heuristic for minimizing the number of late jobs on two processors[END_REF] proposed an approximation result for the P 2|| j U j problem. As Theorem 1 holds, they defined the performance ratio as:

ρ E = n- j U * j n- j U H j , with j U * j (resp. j U H j )
the number of tardy jobs in the optimal solution (resp. the solution computed by their heuristic). They showed that the ratio ρ E = 4 3 is tight. In this paper, we consider the problem of approximating in exponential time the P || j U j problem by considering the classical approximation ratio:

ρ = j U H j j U * j .
The existence of the EETA of [START_REF] Lente | On an extension of the sort & search method with application to scheduling theory[END_REF] creates the challenge of finding an exponential time approximation algorithm whose worst-case time complexity is lower than that of the EETA.

We now present a side result which will be used later on in our approximation algorithms. This result states the complexity of solving the decision variant of the identical parallel machine scheduling problem. This problem is denoted by P | dj |-, with dj the deadline of job j. As it will appear in the remainder, improving the time complexity for solving this problem immediatly leads to improving the worst-case time complexity of the proposed exponential-time approximation algorithms.

Theorem 2. Let dj be a deadline associated with job j, so that in a feasible schedule job j must complete before dj . The existence of a feasible schedule for the P | dj |-problem can be decided in O * (m n 2 ) time and space.

Proof. The P | dj |-problem is N P-complete and we prove the result by showing the existence of an EETA based on the Sort & Search technique. Starting from the work of [START_REF] Lente | On an extension of the sort & search method with application to scheduling theory[END_REF] we need to reformulate the problem as a multiple constraint problem (MCP): this will imply the existence of a Sort & Search algorithm to solve the decision problem. We kindly refer the reader to [START_REF] Lente | On an extension of the sort & search method with application to scheduling theory[END_REF] for a detailed presentation of a MCP. Let us define

I 1 = {1, ..., n 2 } and I 2 = { n 2 + 1, ..., n}. With each partition E k 1 = (E k 1,1 , ..., E k 1,m ) of I 1 (1 ≤ k ≤ m |I1| ), we associate a schedule s k 1 in which jobs in E k
1, are scheduled by increasing order of their index on machine . We do the same to create the m n 2 partitions E i 2 of I 2 and, correspondingly, to each partition E i 2 a schedule s i 2 can be derived. A complete schedule for the original problem is then defined by the concatenation of a schedule s k 1 and a schedule s i 2 , and is denoted by s k 1 //s i 2 . Let us denote by L max (s|t) the value of the maximum lateness of sequence s on machine when it starts at time t, i.e. L max (s|t) = L max (s|0) + t. We also have L max (s|t) = max j∈s (C j (s|t) -dj ), with C j (s|t) the completion time of job j in a schedule s starting at time t on machine . Then, for any schedule s k 1 //s i 2 we have:

L max (s k 1 //s i 2 ) = max 1≤ ≤m (L max (s k, 1 |0); L max (s i, 2 |C max (s k, 1 ))),
with C max (s) the makespan of schedule s on machine , and s a, b the sequence of jobs on machine in schedule s a b . Schedule s k 1 //s i 2 is feasible with respect to the deadlines if and

only if L max (s k 1 //s i 2 ) ≤ 0.
With each of the m n 2 schedules s k 1 (resp. s i 2 ) generated from I 1 (resp. I 2 ) we associate a vector a k (resp. b i ). The P | dj |-problem can be reformulated as the following MCP:

Minimize f ( a k , b 0 i ) s.t. g ( a k , b i ) ≥ 0, (1 ≤ ≤ m) a k ∈ A, b i ∈ B.
with [START_REF] Lente | On an extension of the sort & search method with application to scheduling theory[END_REF], there exists an EETA algorithm requiring O * (m n 2 ) time and space to solve this problem. The algorithm returns a solution whose objective function value is not positive if and only if there exists a feasible schedule with respect to the deadlines.

                             A the set of all vectors a k associated with the E k 1 's B the set of all vectors b i associated with the E i 2 's a k = (L max (s k 1 ), C max (s k,1 1 ), ..., C max (s k,m 1 )) b i = (0, L max (s i,1 2 |0), ..., L max (s i,m 2 |0)) f ( a k , b 0 i ) = L max (s k 1 ) g ( a k , b i ) = -C max (s k, 1 ) -L max (s i, 2 |0) Following

A branching based approximation algorithm

Branching algorithms are known to be usable for deriving approximation algorithms with a moderate worst-case time complexity (e.g. [START_REF] Escoffier | Super-polynomial approximation branching algorithms[END_REF]). In this section, we show that, by decomposing the problem solution and introducing a parametrized branching scheme, we can derive an approximation algorithm, referred to as Bapprox, for the P || j U j problem.

Let k > 0 be an integer parameter and jobs be grouped into n k batches. Each batch B contains jobs {( -1)k + 1, ..., k}, 1 ≤ ≤ n k , and there exists a last batch B n k containing the last (n -k n k ) jobs if n k is not integral. Algorithm Bapprox builds a binary search tree by branching at each level k on batch B k and scheduling all its jobs either early or tardy (Figure 1).

Then, for each leaf node we have a set of tardy jobs and a set of early jobs. The existence of a feasible schedule for the latter is tested in O * (m n 2 ) time by solving the corresponding P | dj = d j |-problem. If such a schedule exists then all the tardy jobs are scheduled on any machine after the early jobs. Algorithm Bapprox is given in Figure 2. We now state its worst-case ratio and complexities in Propositions 1 and 2.

Proposition 1. Algorithm Bapprox admits a worst-case ratio ρ ≤ k. 

j U j (s) = 0. 4: s B = ∅, j U B j = +∞. 5: B = {( -1)k + 1, ..., k}, ∀ = 1... n k . 6: if ( n k is not integral) then 7: B n k = {k n k , ..., n}. 8: end if 9: LN = {(E u ; T u ) : E u , T u ⊆ {B 1 , ..., B n k }, E u ∪ T u = I, E u ∩ T u = ∅} 10: for ((E; T ) ∈ LN ) do 11:
Solve the P | dj = d j , j ∈ E|-problem: Let s E be a feasible schedule if it exists.

12:

Let s T be a schedule in which jobs in T are in any order on the first machine.

13:

s = s E //s T . 14: if (s E is feasible and |T | < j U B j ) then 15: s B = s, j U B j = |T |. 16:
end if 17: end for 18: return s B and j U B j . Proof. First notice that if there exists a feasible schedule with no tardy jobs, then this one is found at step 2 and Bapprox is optimal. So, let us assume that in the optimal schedule there is at least one tardy job. In the schedule s B , returned by Bapprox, assume that there are α batches B B j which are scheduled tardy. Let E B be the set of early jobs in s B . We claim that, ∀j = 1..α, there is no optimal solution in which all jobs in E B ∪ B B j can be scheduled early together. First observe that, if there exists an optimal solution in which all jobs E B are early, then scheduling early all jobs of a batch B B j implies a contradiction with the fact that s B is the best solution found by algorithm Bapprox. This implies that, at least one job from B B j is tardy in an optimal solution in which all jobs in E B are early. So in the other case, at least one job u ∈ E B must be scheduled tardy to obtain an optimal solution. Besides, scheduling u early in Bapprox disables some batch B B j from being scheduled early. Notice that, due to the branching scheme, we cannot have one such early job u preventing two batches B B j and B B j from being early: otherwise the branch in which these two batches are scheduled early and the batch containing u is scheduled tardy would be feasible and better than s B . Let j be the number of jobs that disable jobs in batch B B j from being early: to obtain an optimal solution, all these j 's jobs should be scheduled tardy and all other tardy jobs in s B should be scheduled early. Following the previous analysis, we can derive that 1 ≤ j ≤ k. Then, ρ = αk 

O * ( n k =0 n k (m k 2 ) ) = O * ((1 + m k 2 ) n k ),
by making use of the Newton's binomial formula. Concerning the worst-case space requirement of algorithm Bapprox, step 2 requires O * (m n 2 ) space. By exploring the search tree following a depth first search strategy, algorithm Bapprox can be implemented in such a way that each time a leaf node is found the corresponding P | dj = d j , j ∈ E|-problem is directly solved. This implies that steps 8-16 can be implemented in O * (m n 2 ) space.

To illustrate the above propositions, we provide in Table 1 values of ratios and complexities on the two-machine problem. Noteworthy, by comparison to the EETA running in O(1.7320 n ) time, algorithm Bapprox is relevant for k ≥ 3.

k ρ time 1 1 O(2.4142 n ) 2 2 O(1.7320 n ) 3 3 O(1.5643 n ) 4 4 O(1.4953 n ) 5 5 O(1.4610 n ) . . . 10 10 O(1.4186 n )
Table 1: Some ratios and complexities for the algorithm Bapprox on the P 2|| j U j problem

Branching with preprocessing

In this section we consider a second exponential-time approximation algorithm, referred to as PBapprox, based on algorithm Bapprox. The idea is to include a preprocessing step before running Bapprox in order to decrease the approximation ratio. This is in the spirit of the memoization techniques applied in graph optimization problems (see, e.g. [START_REF] Robson | Algorithms for maximum independent sets[END_REF]; [START_REF] Fomin | A measure & conquer approach for the analysis of exact algorithms[END_REF]). Let us introduce a parameter c which is the fraction of the jobset to be considered by the preprocessing. This one generates all possible subsets of at most n c tardy jobs and then, for each, solves the P | dj = d j |-problem on the remaining jobs. If at least one of these subsets leads to a feasible schedule, then the optimal solution of the P || j U j problem is found. Otherwise, algorithm Bapprox is used. Algorithm PBapprox is given in Figure 3. We state its worst-case ratio and complexities in Propositions 3 and 4. Proposition 3. Algorithm PBapprox admits a worst-case ratio ρ ≤ k 2 +k(c-1)+1 k+c .

Proof. If PBapprox stops in steps 2-13 then it has found the optimal solution. So, the approximation ratio is obtained when running algorithm Bapprox. Let s P B = s B //s T be the solution returned by algorithm PBapprox. Following the analysis done in proof of Proposition 1, we assume that in s B , α ≤ n(c-1) ck batches have been scheduled tardy. Assume that in the optimal solution of the problem restricted to the jobs in R = {i/i ∈ s B }, we have µ tardy jobs. Then, in the worst case it may happen that α = µ. So, we derive: S i = {subsets of i tardy jobs}.

7:

for (T ∈ S i ) do 8:

Solve the P | dj = d j , j ∈ I\T |-problem: Let s E be a feasible schedule if it exists.

9:

if (s E is feasible) then 10:

Let s T be a schedule in which jobs in T are in any order on the first machine. (s B , j U B j ) =BApprox(I\T , n -n c ,m,k).

17:

Let s T be a schedule in which jobs in T are in any order on the first machine.

18:

if (( j U B j + n c ) < j U P B j ) then 19:

s P B = s B //s T , j U P B j = j U B j + n c . 20:
end if 21: end for 22: return s B and j U B j .

Figure 3: A branching and preprocessing based approximation algorithm for the P || j U j problem

In order to impose the preprocesssing step to be executed we must have n ≥ c. Besides, when k and c are fixed, the function:

g(n) = k(n(c-1)+ck)+n n(c-1)+ck+n ,
is a decreasing function. Then, the ratio is maximum when n = c, leading to:

ρ ≤ k 2 +k(c-1)+1 k+c = ρ 1 .
In case 2, µ ≤ n(c-1) ck and then we have:

ρ ≤ ckµ+n cµ+n = f (µ).
As f (µ) is a non-decreasing function of µ, it is maximum when µ = n(c-1) ck , leading to:

ρ ≤ ck k+c-1 = ρ 2 . By analytically comparing ρ 1 and ρ 2 we can derive that ρ 1 ≥ ρ 2 whenever k ≥ 1 and c ≥ 1.

Before, establishing a bound on the worst-case time complexity, let us consider the partial sum of binomials i=0 n i x i y n-i , x, y ∈ R. There is no closed formula to this partial sum even when x = y = 1 [START_REF] Boardman | The egg-drop numbers[END_REF]). We provide the following result, whose proof is given in the appendix.

Lemma 3. Let c be an integer with c ≥ 2. We have the following tight O * bounds:

n n c = O * 2 H( 1 c )n and n c i=0 n i = O * 2 H( 1 c )n with H(x) = -x log 2 (x) -(1-x) log 2 (1-x), 0 < x < 1, the binary entropy of x.
To the best of our knowledge, the binary entropy in scheduling theory has been only used by [START_REF] Gawiejnowicz | New results for an open time-dependent scheduling problem[END_REF]. We use it to establish an upper bound on the worst-case time and space complexities of PBapprox.

Proposition 4. Algorithm PBapprox requires O * 2 H( 1 c ) (1 + m k 2 ) (c-1) ck n time. The worst-case space requirement is in O * m c-1 2c n .
Proof. We first prove the worst-case time complexity.

Step 2 requires O * (m n 2 ) time. The preprocessing phase (steps 4-13) involves the generation of subsets of size at most n c and the solution of feasibility problems. Then, this phase has the following worst-case running time:

O * ( n c i=0 n i m n-i 2 ).
Following Lemma 3, we have the following upper bound:

n c i=0 n i m n-i 2 ≤ n c i=0 n i × m n(c-1) 2c = O * 2 H( 1 c )n m n(c-1) 2c 
Therefore, the preprocessing phase has a worst-case time complexity in

O * (2 H( 1 c )n m n(c-1) 2c 
). Now, let us consider the branching phase (steps 14-20). For each jobset of size n c , algorithm Bapprox requires

O * ((1 + m k 2 ) n-n c k
) time. Thus, the branching phase has a worst-case running time in:

O * ( n n c (1 + m k 2 ) n-n c k ).
Again, following Lemma 3, and knowing that ∀x, x n+O(1) = O * (x n ), we obtain:

n n c (1 + m k 2 ) n-n c k = O * 2 H( 1 c )n (1 + m k 2 ) n-n c k = O * 2 H( 1 c )n (1 + m k 2 ) n-n c k
Therefore, the worst-case time complexity is in

O * max 2 H( 1 c ) (m 1 2 ) (c-1) c n ; 2 H( 1 c ) ((1 + m k 2 ) 1 k ) (c-1) c n
We have:

m k 2 < 1 + m k 2 , so m 1 2 = (m k 2 ) 1 k < (1 + m k 2 )
1 k , so the first term (preprocessing phase) is smaller and negligible, provided that n is large enough.

Finally, the worst-case time complexity is in

O * 2 H( 1 c ) ((1 + m k 2 ) 1 k ) (c-1) c n
Following a similar reasoning than in the proof of Proposition 2, there exists an implementation of algorithm PBapprox in which both the preprocessing and the branching phases requires O * (m n(c-1) 2c

) space.

To illustrate the above propositions, we provide in Table 2 some interesting values of ratios and complexities on the two-machine problem.

Fixed parameter tractability

We revisit the P m|| j U j problem, i.e. for a fixed number of machines m, under the fixed parameter tractability setting. We show that it is FPT if we take as a parameter the number of early jobs denoted by |E|. Notice that this parameter is related to the number of jobs in the instance and not to the values of jobs characteristics, which makes it an interesting parameter.

To this extent, consider the findings of [START_REF] Lin | Necessary and sufficient conditions of optimality for some classical scheduling problems[END_REF] where it was shown that an alternative exact solution of problem 1|d j | j U j can be obtained by means of the algorithm Moore-rev given in Figure 4. Remember that it is assumed that jobs are 

k c ρ time 1 100000 1 O(2.4145 n ) 1000 1 O(2.4312 n ) 100 1 O(2.
indexed such that d 1 ≤ d 2 ≤ ... ≤ d n .
The rationale of this algorithm is that, if the jobs are selected one at a time according to the non-decreasing order of their processing time, then, they are immediately determined to be early or tardy: if a job j and the current set of early jobs can be all scheduled early (following the earliest due date rule), then job j is early in an optimal solution. Otherwise, it is tardy.

The parameterized exact algorithm we propose, referred to as algorithm FPT E , extends algorithm Moore-rev to the case of m parallel machines. It explores a search tree by branching on the jobs in non-decreasing order of their processing time. For a given node of the search tree, the unscheduled job j with the smallest processing time is tested on each machine i. If, as in algorithm Moore-rev, all the current early jobs E i on machine i and job j can be scheduled early, then a child node is created in which E i = E i ∪ {j}. If on all machines job j induces at least one tardy job, then it is scheduled tardy and the next unscheduled job is examined. Algorithm FPT E is described in Figure 5. Algorithm FPT E is optimal since, at each level of the search tree and for a node (N, T, [E u ] u=1..m ), the smallest unscheduled job j is tested on all machines. If there is no machine on which it can be scheduled early, due to the result of [START_REF] Lin | Necessary and sufficient conditions of optimality for some classical scheduling problems[END_REF], then it is necessarily tardy in a solution having jobs in the E u 's early. Besides, if there is at least one machine i such that E i ∪ {j} can be scheduled early, then following [START_REF] Lin | Necessary and sufficient conditions of optimality for some classical scheduling problems[END_REF] there is no gain in scheduling j tardy on that machine (or on any machine).

Proposition 5. Algorithm FPT E requires O * m |E| time and polynomial space, with |E| the number of early jobs.

Proof. At each feasible branch a job is scheduled early on a machine. In the worst-case, for each early job, at most m branches are created. Besides, we know that if the optimal solution has |E| early jobs, the search tree has at most |E| levels. Correspondingly, the time complexity is O * m |E| . For the space complexity, by visiting the search tree in Algorithm Moore-rev 1: Input: An instance I with n jobs and 1 machine.

2: Ouput: The set of early jobs E and the number of tardy jobs j U j . Choose a job j ∈ N EDD with the smallest processing time p j .

6:

N EDD = N EDD \ {j}.

7:

if (E ∪ {j} is on-time) then

8:

E = E ∪ {j}. depth first, at most (|E|+m) branches will be present at the same time inducing a spatial complexity polynomial in n.

Extensions to related problems

In this section, we examine possible extensions of the previous algorithms to related problems. First, let us consider the problem where machines are unrelated, i.e. the processing time of job j when processed on machine i is p j,i (j = 1, ..., n, i = 1, ..., m). Using the standard three-field notation, this problem is denoted by R|d j | j U j . Algorithms Bapprox and PBapprox rely on the solution of decision problems. Then, to make them solving the R|d j | j U j problem we need to consider the solution of the R| dj |-problem. The proof of Theorem 2 reveals that the proposed EETA also solves the R| dj |-problem in O * (m n 2 ) time and space. Since, in the unrelated parallel machine problem, when the jobs are assigned to a machine the processing times are fixed, this algorithm directly applies. Consequently, Propositions 1, 2, 3 and 4 are valid for the R|d j | j U j problem. Let us now turn to the parameterized algorithm FPT. It is possible to slightly modify it in order to achieve the same results as those reported in Proposition 5. The corresponding algorithm FPT R , proceeds as algorithm FPT but manipulates at each step operations (j, i), 1 ≤ j ≤ n, 1 ≤ i ≤ m, instead of jobs j. Each time an operation (j, i) is scheduled, all other operations of job j are removed from the list of unscheduled operations. The optimal solution is given by the leaf node having the largest number of early jobs |E|, with E = ∪ i=1,...,m E i .
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Algorithm FPT 1: Input: An instance I with n jobs and m machines. Notice that, to ease the presentations of BApprox, PBApprox and FPT, we have introduced them in the context of identical parallel machines to avoid heavier notations induced by manipulating operations instead of jobs. Now, let us consider the weighted case. Each job j has a weight w j and the objective turns to minimize the weighted number of jobs j w j U j . The corresponding problem is denoted by P || j w j U j . Algorithm Bapprox, as described in Figure 2, does not admit a bounded ratio ρ. However, let Bapprox w be the variant of Bapprox in which the following modifications are done:

• Jobs are re-indexed such that w 1 ≥ w 2 ≥ ... ≥ w n .

• At any level of the level of the search three, if j is the unscheduled job with the smallest index, then two branches are created: one in which job j is scheduled early, and the other in which the jobs {j, ...j + k -1} are scheduled tardy (Figure 6). We can state the following propositions.

Proposition 6. Algorithm Bapprox w admits a worst-case ratio ρ ≤ k.

Proof. As in the proof of Proposition 1, let us focus in the case where there is at least one tardy job. In the schedule s B assume that there are α sets { u , ..., u +k} which are scheduled tardy.

In the worst-case scenario it can be assumed that, in the optimal solution, only one job for each of these sets is tardy. Due to the branching, these ones are necessarily jobs ) space, with γ = m 1 2δ and γ -k + γ -1+δ = 1.

Proof. In the analysis of the running time of the algorithm above, we adopt a measure and conquer approach (see for instance [START_REF] Fomin | A measure & conquer approach for the analysis of exact algorithms[END_REF]). More precisely, we do not count in the measure the jobs scheduled to be tardy (they receive weight 0), and we count with a weight 0 ≤ δ ≤ 1 the jobs scheduled to be early. Finally the unscheduled jobs receive weight 1. We so get recurrences on the time T (p) required to solve instances of weight p, where the weight of an instance is the sum of the weights of its jobs. As in Bapprox, the search tree first decides whether jobs are early or tardy; then, once this decision has been taken on all jobs, solves the related P | dj = d j , j ∈ E|-problem. This last step, as all the jobs have weight δ has a complexity γ n where γ = m 1 2δ

(1) corresponding to a recursion of the type T (p) ≤ mT (p -2δ). Besides, at each node of the search tree, the branching rule creates two children nodes setting either one job early (whose weight decrease from 1 to 1 -δ) or k jobs tardy. Thus, we have in this case T (p) ≤ T (p -(1 -δ)) + T (p -k). This last recursion corresponds to the equality γ -k + γ -1+δ = 1.

(2)

Hence, for any given m, Algorithm Bapprox w runs with complexity O * (γ n ) with γ respecting both equations ( 1) and (2). For the space complexity, the same analysis applied in Proposition 1 to Algorithm Bapprox holds. Correspondingly, the space complexity is in O * (m n 2 ).

To illustrate the above propositions, we provide in 3: Some ratios and complexities for the algorithm Bapprox w on the P 2|| j w j U j problem Remark 2. Notice that, if the same measure and conquer approach is applied to the unweighted case using the branching scheme of Figure 1 (correspondingly, the recursion T (p) ≤ T (p -k(1 -δ)) + T (p -k) holds), the analysis provides as expected the same complexity illustrated in Table 1.

Conclusions

In this paper we focused on the solution of some scheduling problems involving the minimization of the weighted and unweighted number of tardy jobs. We have shown that these N P-hard problems cannot be approximated in polynomial time leading by the way to the design of exponential-time approximation algorithms. We also provide fixed parameter tractable algorithms which solve to optimality some of the tackled problems.

The proposed approximation algorithms relies on the combination of branching algorithms and the solution of decision problems. Some of them also embed a preprocessing step. Two points are remarkable: first, the approximation nature of these algorithms comes from the branching phase that does not explore the whole solution space. Second, it is expected that, to decrease the worst-case time complexity of the approximation algorithms, one should decrease the time complexity of solving the decision problems to be solved.

Exponential-time approximation algorithms enable to approximate hard problems that, under the assumption P = N P, cannot be approximated in polynomial time. This constitutes a very interesting approach in the field of scheduling which is worthy of further investigation.

That is: Lemma 5. Let be a summation limit related to n by = αn + O(1), assuming α ≤ 1 2 . We have i=0 n i = Θ * 2 H(α)n

Proof. If α < 1 2 then, for n large enough, ≤ n 2 and n 0 ≤ n 1 ≤ . . . ≤ n . So:

n = Θ * 2 H(α)n ≤ i=0 n i ≤ ( + 1) n = Θ * 2 H(α)n If α = 1 2 then H(α) = H( 1 2 ) = 1 and n i ≤ n n 2
, 1 ≤ i ≤ n 2 . So:

n = Θ * 2 H( 1 2 )n ≤ i=0 n i ≤ ( + 1) n n 2 = Θ * 2 H( 1 2 )n

Figure 1 :

 1 Figure 1: Illustration of the search tree

Figure 2 :

 2 Figure 2: A branching based approximation algorithm for the P || j U j problem

.

  ≥ α. The ratio is maximum whenever j j = α, leading to ρ ≤ k.Remark 1. The ratio k stated in Proposition 1 is tight. Consider a 2 machines and 4 jobs example with: p 1 = 5, p 2 = 5, p 3 = 4, p 4 = 6 and d 1 = 7, d 2 = 8, d 3 = 9, d 4 = 10 and k = 2. An optimal solution has 1 job tardy, e.g. jobs 1 and 3 on machine 1 and jobs 2 and 4 on machine 2. Algorithm Bapprox generates a solution s B with 1 batch of early jobs (e.g. {1; 2}) and 1 batch of tardy jobs (e.g. {3; 4}). So, the number of tardy jobs in s B is equal to k = 2. Proposition 2. Algorithm Bapprox requires O * ((1 + m k 2 ) n k ) time and O * (m n 2 ) space. Proof. We first state the worst-case time complexity. Step 2 requires O * (m n 2 ) time. Steps 3-7 are processed in polynomial time of n. At step 8, leaf nodes contained in set LN correspond to all possible selections of early batches over n k , and so |LN | = For each (E; T ) ∈ LN , step 10 requires O * (m |E| 2 ) time, with |E| = k and the number of early batches in E. It follows that steps 8-16 have a worst-case running time in:

  Input: An instance I with n jobs and m machines, parameters k and c. 2: Output: A schedule s B with objective function value j U B j . 3: Solve the P | dj = d j |-problem: if there exists a feasible schedule s, return s and j U j (s) = 0. 4: s P B = ∅, j U P B j = +∞. // Preprocessing step 5: for (i = 1 to n c ) do 6:

  B = s E //s T and j U P solution has been found: using algorithm Bapprox 15: for (T ∈ S n c ) do 16:

  3: N EDD = {1, 2, ..., n} and E = T = ∅. 4: while (N EDD = ∅) do 5:

  while 13: return E and j U j = |T |.

Figure 4 :

 4 Figure 4: Moore's algorithm revised for the 1|d j | j U j problem

2 :

 2 Ouput: A schedule and its associated number of tardy jobs. 3: Root node: N = I. // The set of unscheduled jobs T = ∅. // The set of tardy jobs E u = ∅, ∀u = 1, ..., m. // The set of early jobs on each machine 4: Branching rule: for a given unexplored node (N, T, [E u ] u=1..m ), CN = ∅. // The list of children nodes while (CN = ∅ and N = ∅) j = argmin ∈N (p ). for (i = 1...m) do if (E i ∪ {j} is on-time) then Create a child node: N = N \ {j}, T = T , and E u = E u , ∀u = 1, ..., m. E i = E i ∪ {j}. CN = CN ∪ {(N , T , [E u ] u=1..m )} end if end for if (CN = ∅) then N = N \ {j} and T = T ∪ {j}. end if end while Add CN to the list of unexplored nodes. 5: Search strategy: apply depth first strategy.

Figure 5 :

 5 Figure 5: A FPT exact algorithm for problem P m|d j | j U j

Figure 6 :

 6 Figure 6: Illustration of the search tree (weighted case)

(

  (1 -α) (1-α)n = 2 H(α)

Table 2 :

 2 Some ratios and complexities for the algorithm PBapprox on the P 2|| j U j problem

  , 2 ..., α . Then, as the jobs are indexed by non-increasing value of their weight, we can write: Algorithm Bapprox w requires O * (γ n ) time and O

	ρ ≤ ≤	(w 1 +...w 1 +k )+...+(w α +...w α+k ) w 1 +...+w α k(w 1 +w 2 +...+w α ) w 1 +...+w α
	≤ k.
	Proposition 7.	

1 * (m n 2

Table

  Table 3 values of ratios, complexities and δ on the two-machine problem. Noteworthy, by comparison to the EETA running in O(1.7320 n ) time, this table shows that algorithm Bapprox w is relevant for k ≥ 4.

	k	ρ	δ	time
	1	1 0.3923 O(2.4142 n )
	2	2 0.5263 O(1.9319 n )
	3	3 0.6236 O(1.7453 n )
	4	4 0.7002 O(1.6407 n )
	5	5 0.7617 O(1.5762 n )
			. . .	
	10 10 0.9334 O(1.4496 n )
			. . .	
	20 20 0.9972 O(1.4156 n )
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Appendix

We prove the results stated in Lemma 3. They are a direct consequence of the two lemmas below, applied with α = 1 c , knowing that n c = n c + O(1). First, we introduce the Θ * notation. It is the equivalence associated with the O * preorder. Given A(n) and B(n

Lemma 4. Given 0 < α < 1, let ≤ n be an integer related to n by = αn + O(1). We

Proof. For any logarithm, we have