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Abstract: 
 
Background: Systems Medicine is a novel approach to medicine, i.e. an 
interdisciplinary field that considers the human body as a system, composed of 
multiple parts and of complex relationships at multiple levels, and further integrated 
into an environment. Exploring Systems Medicine implies understanding and 
combining concepts coming from diametral different fields, including medicine, 
biology, statistics, modelling and simulation, and data science. Such heterogeneity 
leads to semantic issues, which may slow down implementation and fruitful 
interaction between these highly diverse fields. 
 
Methods: In this review we collect and explain over one hundred terms related to 
Systems Medicine. These include both modelling and data science terms and basic 
systems medicine terms, along with some synthetic definitions, examples of 
applications, and lists of relevant references.  
 
Results: This glossary aims at being a first aid kit for the Systems Medicine 
researcher facing an unfamiliar term, where he/she can get a first understanding of 
them, and, more importantly, examples and references for keep digging into the 
topic. 
 
  



Introduction 
 
While death has always been the end of every man’s life, mankind has been trying 
to delay that as much as possible. It is thus not surprising that one of the most 
ancient forms of science, if not the first, has been medicine, starting with documents 
going back to ancient Egypt and Greece [1]. In the last century, technical advances 
(from vaccines to genome sequencing) have supposed a revolution in medicine, and 
have allowed a substantial reduction in mortality rates. Yet, this trend is now 
experiencing diminishing returns: new drugs are nowadays developed less 
frequently and at a higher cost, they are beneficial to smaller subsets of the 
population, and consequently have less impact in life expectancy. In parallel, 
mankind has recently witnessed an IT revolution, in which data are gathered and 
processed at unprecedented rates, given birth to applications that would have 
appeared as science fiction as recently as twenty years ago. Following the theory 
of Kondratiev waves [2], postulating the existence of waves of forty to sixty years 
with high sectoral growth, could it be that the next wave will have medicine at its 
focus, and specifically through the merging of both revolutions? 
 
Such merging is actually taking the form of the so-called Systems Medicine, an 
interdisciplinary field of study that looks at the human body as a system, composed 
of interacting parts, and further integrated into an environment [3, 4]. It considers 
that these complex relationships exist on multiple levels, and that they have to be 
understood in light of a patient’s genomics, behaviour and environment. The 
analysis of a disease then starts with real data, coming from a large number of 
patients (thus to ensure that the natural variability is taken into account) and covering 
all aspect of them, from genetics to the environment. Machine learning and 
mathematical models are then developed, aimed at finding the most efficient way 
of disrupting the disease in a specific patient. 
 
Even after this oversimplified description, it is clear that systems medicine requires 
skills and knowledge not considered in standard medical curricula, or alternatively 
the collaboration between researchers of different backgrounds. The revolutionary 
idea behind systems medicine is thus responsible for its main drawback: the need 
for understanding and combining concepts coming from diametral different fields, 
including statistics, modelling and simulation, and data science [5]. The researcher 
wanting to enter this world will face an additional problem: while a large number of 
books and papers can be found on, e.g., data mining concepts, these are usually 
not written with a medical practitioner in mind. Not just the required background, 
but even the basic terminology can become a major barrier. 
 
This review addresses the semantic issues this implies, which may slow down 
implementation and fruitful interaction between these highly diverse fields, by 
providing the first version of the Systems Medicine Dictionary1. Specifically, the 
practitioner coming from medicine will in it find a large number of modelling and 
data science terms, along with some synthetic (albeit comprehensive) definitions 

 
1 We plan this glossary to be updated in the future; we will therefore welcome any suggestion 
coming from readers. 



and a list of relevant references. Similarly, a researcher with a background in 
modelling and data will here find an explanation of the basic systems medicine 
terms. It is worth noting that these definitions are not exhaustive, as both their 
selection and the corresponding content has been guided by the personal view of 
the authors. Additionally, some terms here described represent fields of research 
on their own, whose characterisation can hardly be contained in a monographic 
book. This work thus represent the first aid kit for the systems medicine researchers 
facing an unfamiliar term. They will here get a first understanding of it; and, more 
importantly, examples and references for keep digging into the topic. 
 
Science in general, and medicine in particular, can benefit from approaches different 
from what was done before, as these can have multiplicative effects on knowledge 
and understanding in general; this may lead to new insights and ideas for new 
hypotheses, and eventually to breakthroughs unattainable via the old and tested 
ways of thinking and acting. In turn, this requires crossing discipline boundaries and 
provide new angles to old information. We expect this glossary to be especially 
useful to the younger readership, e.g. PhD students and early-career researchers, 
as they are at a better position to break away from old conventionalisms while 
significantly boosting their careers. 
 
 
 
Concepts from Systems Medicine, Modelling and Data Science 
 
All terms are here included in alphabetical order, and are further listed in Table 1. 
Table 2 also reports a list of the acronyms that appear in the text, and the 
corresponding meaning. Finally, underlines words, e.g. Agent-based modelling, 
refers to terms that are here defined. 
 
 
Agent-based modelling Artificial Neural Networks Bayesian filtering 
Bayesian networks Bayesian smoothing Bayesian statistics 
Biofluid mechanics Bioheat transfer Biological networks 
Biomaterials Biomechanics Cellular automata 
Clinical decision support 
systems 

Clustering Complex networks 

Complex systems Computational Drug 
Repurposing 

Constraints 

Context awareness 
systems 

Correlation networks CRISP-DM 

Cross-validation Data analysis software Data fusion and data 
integration 

Data mining Decision Tree Decision Support 
Systems 

Deep Learning Digital Health Digital Twin 
Dissipative particle 
dynamics 

Erdős–Rényi model Exposome 
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Gene Set Enrichment 
Analysis 

Granger causality Graph embedding 

Hidden Conditional 
Random Fields 

Imputation In silico modelling 

Integrative analysis Interactome Internet of Things 
Lattice Boltzmann 
method 

Machine Learning Mediation analysis 

Medical Informatics metaboAnalyst Metabolomics 
Model robustness Model Verification and 

Validation 
Morphometric similarity 
networks 

Multiphysics systems Multi-layer networks Multiscale Biomolecular 
Simulations 

Multiscale modelling Network Analysis 
Software 

networkAnalyst 

Network medicine Null models Nvidia Clara 
Object oriented modelling Ontologies Parameter estimation 
Parameter identifiability Parameter Sensitivity 

Analysis and Uncertainty 
Quantification 

Permutation test 

Phase transition Physiome Precision medicine 
Probabilistic Risk 
Analysis 

Quantitative systems 
pharmacology 

Random Forest 

Random graphs Scale-free networks Simulated annealing 
Small-world network Smoothed-particle 

hydrodynamics 
Solid-fluid interaction 

Statistical bioinformatics Statistical Networks Support Vector Machine 
Surrogate model Systems biology Systems bioinformatics 
Systems dynamics Systems Engineering Systems medicine 
System of Systems Standards Structural covariance 

networks 
Time-evolving networks Time scale separation Variation partitioning 
Virtual physiological 
human 

  

Table 1. List of the terms here described. 

 
 
2SSP Two-Stage Stochastic Programming 
AAL Ambient Assisted Living 
ABM Agent-based modelling 
AI Artificial Intelligence 
ANN Artificial neural networks 
BI Business Intelligence 
BIC Bayes Information Criteria 
BPPV Benign paroxysmal positional vertigo 



CA Cellular automata 
CDSS Clinical decision support system 
CFD Computational Fluid Dynamics 
DDA Drug-disease association 
DDI Drug–drug interaction 
DPD Dissipative particle dynamics 
DSS Decision Support System 
DT Decision Tree 
EEG Electro-encephalography 
FBA Flux balance analysis 
FEA Finite element analysis 
FEM Finite element method 
fMRI Functional magnetic resonance imaging 
FVM Finite Volume Method 
GCN Gene co-expression network 
GRN Gene regulatory network 
GSEA Gene Set Enrichment Analysis 
HCRF Hidden Conditional Random Fields 
HMS Healthcare Monitoring System 
HSH Health Smart Homes 
ICT Information and communication technologies 
IoMT Internet of Medical Things 
IoT Internet of Things 
IT Information Technology 
LB Lattice Boltzmann 
LDL Low density lipoprotein 
MEG Magneto-encephalography 
MFA Metabolic flux analysis 
MICE Multiple Imputation by Chained Equations 
MMS Multiscale Modelling and Simulation 
MSC Multiscale Computing  
NLP Natural Language Processing 
PaaS Platform as a Service 
PCA Principal-component analysis 
PIN protein interaction network  
PK/PD Pharmacokinetic/pharmacodynamic 
PPI Protein-protein interaction 
PRA Probabilistic risk analysis  
QM/MM Quantum mechanical and molecular mechanical 
QSP Quantitative systems pharmacology 
RF Random Forest 
RFE Recursive Feature Elimination 
RSM Response surface models 
SA Simulated annealing 
SDK Software Development Kit 
SPH Smoothed-particle hydrodynamics 



TF Transcription factor 
t-SNE t-distributed stochastic neighbour embedding 
UPR Unfolded protein response 

Table 2. List and explanation of the acronyms used throughout the review. 

 
Agent-based modelling. Agent-based modelling (ABM) (also known as Individual 
based modelling, Multi-agent Systems and Multi-agent autonomous Systems) is a 
modelling/simulation paradigm especially suited for studying complex systems, i.e. 
systems composed of a large number of heterogeneous interacting entities, each 
having many degrees of freedom. A very open definition of this mathematical 
discrete modelling paradigm is to represent a physical or biological system on the 
basis of entities (called agents) with defined properties and behavioural rules, and 
then to simulate them in a computer to reproduce the real phenomena and to 
perform what-if analysis [6]. Agents have thus to be understood as autonomous 
entities, each one with an internal state representing its knowledge about the 
environment, and rules (or algorithms) to interact with other agents. This broad 
definition can then encompass from simple particles to autonomous software with 
learning capabilities. To illustrate, these can be from “helper” agents for web retrieval 
[7, 8], robotic agents to explore inhospitable environments [9], up to lymphocytes in 
an immune system reaction simulation [10, 11, 12]. Roughly speaking, an entity is 
an “agent” if it is distinguishable from its environment by some kind of spatial, 
temporal, or functional attribute: an agent must be identifiable. Additionally, agents 
can be identified on the basis of four basic properties: autonomy, i.e. the behaviour 
of each agent is not guided by rules defined at a higher tier; social ability, that is, 
their capacity of interacting with other agents; reactivity, in that they react to 
perceived changes in the environment; and pro-activeness, i.e. the ability to take 
the initiative. Moreover, it is also conceptually important to define what the agent 
“environment” in an ABM is. This can be implicitly embedded in the behavioural 
rules or be explicitly represented as a different “modelled object” with a well-defined 
set of characteristics which influence the agent’s behaviour. 
 
An ABM simulation may start from simple agents, locally interacting with simple 
rules of behaviour, responding to perceived environmental cues and trying to 
achieve a local goal. Yet, the simplicity of the composing elements does not derive 
in the simplicity of the overall dynamics. From this simple configuration, a synergy 
may emerge, which leads to a higher-level whole with much more intricate 
behaviour than the component agents (holism, meaning all, entire, total).  
 
If the first examples of agent-based models were developed in the late 1940s, only 
computers could really show their modelling power. These include the Von 
Neumann machine, a theoretical machine capable of reproduction [13], i.e. of 
producing an identical copy of itself by following a set of instructions. This idea was 
then improved by Stanislaw Ulam [14], by suggesting machines to be built on paper, 
as collections of cells on a grid. This idea inspired von Neumann to create the first 
of the models later termed cellular automata (CA). Building on top of these, John 
Conway constructed the well-known “Game of Life”, a simple set of rules that allow 
evolving a virtual world in the form of a two-dimensional checkerboard, and which 



has become a paradigmatic example of the emergence of order in nature. How do 
systems self-organize themselves and spontaneously achieve a higher-ordered 
state? These and other questions have been deeply addressed in the first workshop 
on Artificial Life (ALife) held in the late 1980s in Santa Fe. This workshop shaped the 
ALife field of research [15], in which ABM models are the main form of modelling 
and simulation.  
 
ABM proved very successful in theoretical biology. In this specific research domain, 
ABM is emerging as the best modelling paradigm able to accommodate the need 
to represent more than one level of space-time description thus fitting the multi-
scale specification. Beyond the aforementioned works on the immune system, 
examples include cancer modelling [16, 17], or epidemics predictions [18, 19]. For 
further discussions and examples, the reader may refer to [20]. 
 
 
Artificial Neural Networks. Artificial neural networks (ANN) are inspired by the neural 
networks that exist in mammal brains [21]. They represent a programming paradigm 
that helps a computer to process complex information in order to learn from the 
observational data. The network itself consists of connected units or nodes called 
artificial neurons (based on neurons in a biological brain) that are organised in layers. 
The first layer is called the input layer and is connected to the input signals. The 
input layer is followed by one or more hidden layers, all the way to the output layer 
connected to the output signals. Analogous to the synapses in a biological brain, 
signals are transmitted from one neuron to another. The output of one artificial 
neuron is computed when a non-linear function is applied on the sum of its inputs. 
Usually, the weights and biases are added to adjust the learning process. Weights 
increase or decrease the strength of the signal at a connection, and biases 
represent the threshold to delay the triggering of the activation function. 
Mathematically, this can be represented as: 
 

!"#$"# = & '()*+,ℎ# ∗ +/$"# + 1+234. 
 

 
Figure 1. Graphical representation of Artificial neural network (ANN). 

 
In order for ANN to learn from the provided data, they need to have a huge amount 
of information used as a training set. During the training period, the ANN’s output is 



compared to the human-provided description of what should be observed (called 
target). If they are the same, weights are validated, and in case of incorrect 
classification, its learning will be adjusted [22]. In the end, an unknown signal (not 
used in the training set) will be used as the input, and we expect the network to 
correctly predict the output (this process is called generalisation). As an example, in 
the process of classification of images as images with a dog or cat, the training set 
would be thousands of images already classified as dog or cat image. After the 
training, the ANN should be able to classify future images based on the trained 
model.  
 
Although ANNs were originally aimed at solving specific biology problems, over time 
their application extended to a wide spectrum of tasks, including systems medicine 
through genomics, drug repurposing, or personalized medicine. Not surprisingly, 
many reviews are available. For instance, Awwalu et al. investigated the adequacy 
of using ANN, among other artificial intelligence algorithms, in solving personalized 
medicine and precision medicine problems [23]. Ching et al. have developed ANN 
framework called Cox-nnet to predict patient prognosis from high throughput 
transcriptomics data [24]. Bica et al. have introduced a novel neural network 
architecture for exploring and integrating modalities in omics datasets, especially in 
cases where a limited number of training examples was available [25]. Also, some 
examples of application of deep neural networks could be found in using neural 
networks to learn an embedding that substantially denoises expression data, 
making replicates of the same compound more similar [26]. Donner et al. used 
ANNs to identify drugs with shared therapeutic and biological targets, even for 
compounds with structural dissimilarity, revealing functional relationships between 
compounds and making a step forward towards the drug repurposing based on 
expression data [26]. 
 
 
 
Bayesian filtering. A class of methods that allows estimating the current state, i.e. 
the value of the observed variable(s), based on noisy measurements of the current 
and previous states. For instance, the spread of infectious diseases could be 
modelled with the help of Bayesian filters, where the time-varying variables are e.g. 
estimations of the number of susceptible, infected, healed, and dead 
individuals taken in the current and some previous time moments [27]. For more 
information, see [28]. 
 
 
 
Bayesian networks. Bayesian networks (also known as Bayes networks, belief 
networks, Bayes/Bayesian models and probabilistic directed acyclic graphical 
models) are a type of directed graphical model (i.e. a graph expressing the 
conditional dependencies between variables) that combine graph theory and 
probability theory (see also Bayesian statistics). They present a formalism designed 
to address problems involving uncertainty and complexity. The Bayesian network 
approach can be seen as both a statistical as well as an AI-like knowledge-
representation formalism. It is a useful tool for describing mechanisms involving 



stochasticity, cohort heterogeneity and knowledge gaps, which are common 
features of medical problems, and has been utilised for diagnosis, treatment 
selection, and prognosis [29] as well as for analysing probabilistic cause-effect 
relationships (i.e. estimating the likelihood of a set of factors to be contributing to an 
observation, for example the relationship between symptoms and potential 
underlying mechanisms). Bayesian networks are constructed as directed acyclic 
graphs, where nodes represent unique variables that have a finite set of mutually 
exclusive states, whereas edges represent conditional dependence and the 
absence of edges conditional independence [30]. For each variable 6 with parents 
7!, 7", … , 7#, there is a conditional probability table : given as :(6|7!, 7", … , 7#) 
[30]. Importantly, Bayesian networks satisfy the local Markov property, meaning that 
nodes are conditionally independent of its non-descendants given its respective 
parents. This characteristic permits a simplification of joint distributions within the 
model, allowing for efficient computation. In the most simple approach a Bayesian 
network is specified using expert knowledge, in the case of complex interactions 
the network structure and parameters need to be learned from data. 
 
Inference and learning in Bayesian networks. Given probability tables of the variables 
in a Bayesian network and conditional independencies, joint probability distributions 
can be calculated and utilised to infer information within the network and for 
structural learning. This approach can be used for different probabilistic inference 
methods, e.g. for estimating the distribution of subsets of unobserved variables 
given observed variables (so-called evidence variables). Furthermore, Bayesian 
networks can be utilised to express causal relationships and combine domain 
knowledge with data, and, importantly, can thus be used for probabilistic parameter 
estimation.  
 
Examples of the use of Bayesian networks in medicine include the diagnosis and 
prediction of disease trajectory [31, 32, 33], healthcare planning [34, 35], and 
molecular data analysis [36]. While this is a popular and successful option for 
modelling in the medical domain, they should be used with caution in complex 
problems with multiple feedback loos and closed-loop conditions. 
 
Most relevant limitations. Bayesian networks commonly rely on prior 
knowledge/belief for construction and inference, thus the quality and usefulness of 
a respective network is directly dependent on the usefulness and reliability of this 
prior knowledge. In the case of expert-constructed networks it may furthermore be 
challenging to translate this knowledge into probability distributions. Bayesian 
networks are constructed as acyclic graphs and thus do not support the 
implementation of feedback-loops [37], although this may be addressed using 
dynamic Bayesian networks [38]. Bayesian networks have limited ability to deal with 
continuous variables, a limitation most commonly addressed by discretizing these 
variables, which in turn has tradeoffs [39]. Lastly, Bayesian learning and inference 
can become very computationally expensive, to the point that a network becomes 
impossible to compute and the search space needs to be reduced using different 
heuristics (for example, see [40, 41]). 
 
 



 
Bayesian smoothing. A class of methods for reconstructing previous state(s), having 
noisy measurements of the current and the previous states. Brain imaging is an 
example of an area that can take advantage of the Bayesian filters and smoothers 
relying on sensor measurements of different values. For examples, see [28]. 
 
 
 
 
 
Bayesian statistics. Bayesian statistics is a Bayesian interpretation of probability in 
which probability expresses a degree of belief in an event, as opposed to a fixed 
value based upon frequency - see frequentist statistics. 
 
The basic framework of Bayesian analysis is quite straightforward. Prior distributions 
are associated with parameters of interest to represent our initial beliefs about them, 
e.g. based on objective evidence, subjective judgment, or a combination of both. 
Evidence provided by further data is summarized by a likelihood function, and the 
normalized product of prior and the likelihood forms a posterior distribution. This 
posterior distribution contains all the currently available information about the model 
parameters. Note that this is different from the standard frequentist approach, and 
that both methods do not always give the same answers; and this is fuelling an 
ongoing debate between proponents of both approaches [42, 43, 44]. At the same 
time, the use of a Bayesian approach yields results that go beyond what obtainable 
through a frequentist perspective [45, 46, 47]. In what follows, the most important 
points of Bayesian and frequentists disagreements and differences are discussed: 
prior distributions, sequential analysis and confidence intervals. 
 
The (subjective) choice of prior distribution. The specification of prior distribution is 
a matter of ongoing concern for those contemplating the use of Bayesian methods 
in medical research [48]. It is not without a reason that frequentists object to this 
concept. Any conclusions drawn from the posterior distribution will be impacted by 
this choice. If the prior distribution is informative, i.e. already carries strong evidence 
for certain values of unknown parameters, then new data might have no significant 
impact at all (which is not a bad thing if our prior distribution reflects the truth). Many 
authors devoted their thoughts to the formalization of the prior distribution selection. 
[49, 50, 51, 52] have all made suggestions regarding the elicitation and 
quantification of prior opinions of clinicians. However, it is still a very difficult task. 
Even minor mistakes in the prior elicitation can propagate to significant errors in the 
posterior inferences. The subjectivity in the elicitation of expert opinions is the main 
critique of Bayesian approach. Actually, in very complex problems such elicitation 
might even be impossible to many parameters. However, uninformative priors, the 
kind that also have a claim to objectivity, are the Bayesian response [53]. In fact, 
there is a strong movement toward objective uninformative priors in Bayesian 
community. 
 
This struggle to develop the objective Bayesian framework produced quite many 
different approaches on how to devise objective prior distribution. The most famous 



of these is the Jeffreys-rule prior [54]. Reference priors [55, 56] are a refinement of 
the Jeffreys-rule priors for higher dimensional problems and have proven to be 
remarkably successful from both Bayesian and non-Bayesian perspectives. 
Maximum entropy priors [57] are another well-known type of noninformative prior, 
although they often also reflect certain informative features of the system being 
analysed. Invariance priors, as mentioned above, matching priors [58] and 
admissible priors [59] are other approaches being extensively studied today. 
Methods on how to select a prior distribution from this vast universe of possible 
distributions are discussed in [60]. Caution is advised when considering a 
noninformative distribution. Sensitivity analysis should always be performed, 
because in small sample cases, noninformative prior distribution can still influence 
the posterior results [61]. On the other hand, arbitrariness is not so unfamiliar to 
frequentists practices as well. 
  
Sequential analysis. The Bayesian approach includes a generally accepted stopping 
rule principle: once the data have been observed, the reasons for stopping the 
experiment should have no effect on the evidence reported about unknown model 
parameters. Frequentists practice, on the other hand, is different. If there are to be 
interim analysis during the clinical trial, with the option for stopping the trial early 
should the data look convincing, frequentists feel that it is mandatory to adjust 
allowed error probability (down) to account for the multiple analysis [42]. 
 
Stopping rules are especially important in clinical trials, and Bayesians pick up on 
this theme as early as 1992, with four seminal papers on colorectal cancer clinical 
trials [62, 63, 64, 65, 66]. Currently, Bayesian stopping rules are being used in all 
phases of trials - see [46] for a complete review. In fact, the increasing use of 
Bayesian statistical methods in clinical research is supported by their capacity to 
adapt to information that is gathered during a trial, potentially allowing for smaller, 
but yet more informative trials, and for patients to receive better treatment [67]. 
  
Confidence intervals. The concept of confidence intervals is purely frequentists. 
However, the way it is (wrongly) interpreted is Bayesian. Confidence interval 
represents the precision of a parameter estimate as the size of an interval of values 
that necessarily include estimate itself. A true understanding of the concept would 
look like this: if new data were to be repeatedly sampled, the same analysis carried 
out and a series of 95% confidence intervals calculated, 19 out of 20 of such 
intervals would, in the long run, include the true value of the quantity being estimated 
[68]. However, many researchers (mistakenly and fundamentally incorrect) interpret 
this interval as a 0.95 probability that the true parameter is in the interval. If one 
would be truly Bayesian from the beginning of the analysis, Bayesian credible 
intervals [69] would be considered as exactly the probability that the unknown 
parameter is contained in it. In fact, in certain prior distribution cases, Bayesian 
credible intervals are exactly the confidence intervals, only the interpretation is 
different. 
  
The interplay of Bayesian and Frequentist analysis. Currently, there is a trend of 
using notions from one type of approach to support analysis of another approach. 
Of many topics, several should be mentioned in this brief note: empirical Bayesian 



analysis, where prior distribution is estimated from the data [70]; approximate model 
selection methods, like BIC (Bayes Information Criteria [71]), similar to the usage of 
Akaike Information criteria; robust Bayesian analysis [72] which recognize the 
impossibility of complete subjective specification of the model and prior distribution, 
etc. From the frequentist theory viewpoint, the most convincing argument in favour 
of the Bayesian approach is that it intersects widely with the three notions of 
classical optimality, namely, minimaxity, admissibility and equivariance [73]. 
 
 
 
Biofluid mechanics. Biofluid mechanics is the application of principles of fluid 
mechanics on the dynamics of motion of biofluids inside and around of living 
organisms and cells [74]. The main applications of biofluid dynamics are the study 
of the circulatory system with the blood-flow inside vessels of various sizes, the 
study of the respiratory system with the air-flow inside the lungs, but also the 
lubrication of synovial joints [75]. The study of biofluid dynamics has allowed many 
therapeutic applications as artificial heart valves [76], stents and in the future artificial 
lungs [77]. Biofluid dynamics can be studied with simulations and experiments. 
Computational Fluid Dynamics (CFD) simulations can be used to better understand 
the flow phenomena of the biofluids inside the complex geometry of vessels. Biofluid 
dynamics can also be studied with in vivo experiments, with the use of non-invasive 
medical imaging methods as doppler ultrasound and magnetic resonance imaging, 
invasive methods as angiography but also with more straightforward methods as 
the pressure cuff used to measure blood pressure [78]. 
 
 
 
Bioheat transfer. Bioheat transfer concerns the rate of heat transfer between a 
biological system and its environment.  Main difference concerning heat transfer of 
biological systems to non-biological ones is the blood perfusion through the 
extended network of vasculature in biological systems that directly affects the local 
temperature of the living tissue [79]. Main research subjects of bioheat transfer are 
the thermal interaction between the vasculature and tissue, tissue thermal 
parameter estimation [80], human thermal comfort, thermoregulation, safety of heat 
transfer to living tissue due to microwave, ultrasound or laser exposure due to 
environmental exposure or for therapeutic applications [81]. Because biochemical 
processes are governed by local temperature, bioheat transfer also plays a major 
role in the rate of these processes. 
 
 
 
 
 
Biological networks. The concept of complex networks represents a powerful tool 
for the representation and the analysis of complex systems, and especially to 
describe their internal interaction structure. Recently, the so-called network biology 
approach [82] has been fruitfully applied in many different biological areas, from 
gene regulation, to protein-protein interactions, to neural signals [83], to finally hit 



clinical applications: network medicine is today at the forefront of modern 
quantitative approaches in medical sciences [84]. Here, with no claim of 
exhaustiveness, we list the main types of biological networks. 
 
Protein-protein interaction networks. Protein-protein interactions (PPIs) are physical 
contacts, stable or transitory, between two or more proteins created by electrostatic 
forces between the so-called protein surfaces, i.e. the “exposed” regions of the 
three-dimensional structures of folded proteins. These contacts are at the base of 
most biological functions, as for instance of signal transduction, cell metabolism, 
membrane transport, or muscle contraction. It is thus clear that the analysis of how 
proteins interact between them is essential to understand cellular processes in 
healthy and in pathological conditions. Sets of proteins and their interactions are 
generally referred to as protein interaction networks (PINs), mathematically 
represented by undirected graphs. The specific analyses performed on PINs 
depends on the overall goal of the study; to illustrate, one may try to identify the 
most prominent element for a given function (e.g. gene target prioritization) [85], or 
the set of lethal proteins in a cell [86]. Methods for the detection of protein interaction 
encompass experimental (e.g. yeast-two-hybrids, mass spectrometry) or in silico 
(ortholog-based) approaches [87, 88].  
 
Gene Regulatory Networks. Gene regulatory networks (GRNs) are networks of 
causative and regulative interactions (biochemical processes such as reactions, 
transformations, interactions, activations, inhibitions: the links) between 
transcription factors and downstream genes (the nodes), represented with directed 
graphs and inferred by gene expression data. 
 
Methods to extrapolate GRNs are based on information-theoretic criteria, co-
expression metrics, or regression approaches, among others. For example, the 
mutual information (MI) approach is often used, i.e. a dimensionless metric that 
states how much the knowledge of a random variable tells about another one. A 
value of MI of zero indicates that the two variables are completely independent; on 
the other hand, MI > 0 implies that they are connected, as knowing one of them is 
equivalent to (partially) knowing the other. Thus, if MI > 0 for the expression of two 
genes, we can infer that one of them is (partially, at least) driving the other [89]. 
 
While created in an indirect way, inferred GRNs aim at representing real physical, 
directed, and quantitatively determined interaction events, both between genes 
and, and between them and their products. The final aim is the discovery of key 
functional relationships between RNA expression and chemotherapeutic 
susceptibility [90]. Recently, data from single-cell gene expression have become 
mature and have been approached using partial information decomposition to 
detect putative functional associations and to formulate systematic hypotheses [91, 
92]. 
 
Validation of GRNs has traditionally been performed in two ways. On the one hand, 
one can resort to “gold standards”, i.e. sets of interactions that have been validated; 
on the other hand, one can observe the biological system under study in vitro, by 



inducing a perturbation and by observing whether the real and predicted effects 
coincide [93, 94]. 
 
Gene Co-Expression Networks. Gene co-expression networks (GCNs) are basically 
RNA transcript–RNA transcript association networks: nodes of the network 
correspond to genes, which are pairwise connected when an appreciable transcript 
co-expression association between them exists. Networks are then calculated by 
estimating some kind of similarity score from expression data and by applying a 
significance threshold; the result is usually a undirected graph. In reconstructing 
GCNs, normalization methods, co-expression correlation (e.g. Pearson’s or 
Spearman’s correlation measures), significance and relevance estimation are 
calculated. Graphical Gaussian Models (e.g. “concentration graph” or “covariance 
selection” models) are also used, along with edge removal based on gene triplets 
analysis (e.g., the ARACNE tool), regression methods and Bayesian networks [95]. 
 
Signalling Networks. Signalling pathways are cascades of molecular/chemical 
interactions and modifications to carry signals from cell membrane receptors to the 
nucleus to arrange proper biological responses to stimuli, on human or microbial 
levels. The process of reconstructing signalling networks has typically been based 
on gene knockout techniques, which are effective in describing cascades in a linear 
or branched manner. Nevertheless, recent screens suggest a switch from such 
cascades to networks with complex interdependencies and feedbacks [96], which 
require methods able to infer aspects and features of signalling processes from 
high-throughput -omic data in a faster and systemic way. In general, such inference 
problem can be reduced to the definition of suitable optimal connected subgraphs 
of a network originally defined by the available data; examples include the Steiner 
tree approaches (based on the shortest total lengths of paths of interacting 
proteins), linear programming, and maximum-likelihood (e.g. tagging proteins as 
activators or repressors to explain the maximum number of observed gene 
knockout). Alternatives include the use of probabilistic network, e.g. network flow 
optimization (Bayesian weighting schemes for underlying protein-protein interaction 
networks coupled with other -omics data), network propagation (gene prioritization 
function that scores the strength-of-association of proteins with a given disease), or 
information flow analysis (based on the identification of proteins dominant in the 
communication of biological information across the network) [97, 98]. 
 
Metabolic Networks. Metabolic network reconstruction is generally referred to as 
the annotation process of genes and metabolites for the determination of the 
metabolic network’s elements, relationships, structure and dynamics [83]. It can be 
identified on human, microbial and their joint co-metabolic levels. It is usually 
possible to infer the enzymatic function of individual proteins, or to reconstruct larger 
(or even whole) metabolic networks. Techniques such as metabolic flux analysis 
(MFA) and its improvements (for example, isotopically nonstationary metabolic flux 
analysis), and flux balance analysis (FBA) have become largely utilized for the 
predictions of concurrent fluxes of multiple reactions. Recently, computational 
approaches coupling metabolic flux analysis with mass spectrometry have been 
also implemented. Single enzyme function prediction can be carried out by resorting 
to machine learning, especially when the enzyme does not show significant similarity 



to existing proteins; or to “annotation transfer” approaches, based on the use of  
reference databases or orthologs to tag specific DNA sequences. Comparative 
pathway prediction methods use established functional annotations to check for the 
existence of new reactions, while explorative pathway prediction techniques (not 
using existing annotations), can be graph-theoretic (e.g., by weighting paths of 
metabolite connectivity) or constraint-based (e.g., elementary mode analysis), or 
both [99, 100]. 
 
Transcription factor networks. When talking about disease and transformation from 
health to disease, we cannot avoid the transcription factor (TF) networks that were 
enabled by technological advances, such as genome-wide large-scale analyses, 
genome editing, single-cell analyses, live-cell imaging, etc. Enhancer locations and 
target genes are keys to TF network models [101]. The original definition of 
enhancers is that they represent functional DNA sequences that can  activate 
(enhance) the rate of transcription from a heterologous promoter, independent of 
their location and orientation [102]. Determining the function of enhancers and 
whether TFs bind to them was accelerated by the CRISPR/Cas9 and other genome 
editing  technologies, as well as by the data collected within the large-scale efforts, 
such as the Human Epigenome, ENCODE, etc. If we combine the experimental 
evidence of  TFs binding to specific promoter or enhancer DNA elements, at specific 
genomic loci, we can  construct TF network models and maps, to predict biological 
behaviour in silico and further guide experimental research. In principle, the TF 
network models are simple, consisting of sub-networks with nodes (genes and 
proteins) and edges that link the TFs to their  functional targets. More complex 
models can nevertheless be used, for instance integrating Boolean and Bayesian  
approaches – see [101] for a review.  
 
Transcription factors work predominantly in a tissue specific manner to define the 
cell phenotypes. For a maximal output, different TFs usually cooperate and 
synergise, to modulate changes in gene expression [103]. A TF network map is a 
graph where we can see  which TFs directly regulate a gene by binding to one of 
its promoter or enhancer elements. A TF network map includes  the basic 
biochemical knowledge, similarly as the metabolic network map. It links the TFs with  
target genes, taking into account the proper physiological or patophysiological 
conditions and signals (endogenous and external), as well as the context of the time 
(development, aging, circadian, etc.). Several approaches have been developed to 
model and/or graphically represent the TF networks, such as the PetriNets [104] 
and the ARACNE algorithm that has been recently upgraded to suit also the single-
cell gene expression data [105]. The NetProphet 2.0 [106] is another algorithm for 
TF network mapping that can as accurately as possible identify  TF targets. Another 
representation of TF networks are the maps that are built directly from transcriptome 
data by applying the enrichment procedures. These maps show if the expression 
of individual TFs is related. For example, the KEGG pathways [107] and TRANSFAC 
database were used for functional enrichment studies [108].  Gene sets containing 
over five elements were constructed and tested for enrichment using the PGSEA 
package and the TFs were merged based on their ID irrespective of their binding 
sites.  In this manner the TF enrichment analyses confirmed an increased unfolded 



protein response (UPR) and metabolic decline after depleting one of the genes from 
cholesterol synthesis in the liver [109]. 
 
 
 
 
Biomaterials. Biomaterial is a synthetic material that is used to replace part of a living 
system or to function in intimate contact with living tissue [110, 111]. Although there 
are different definitions of a biomaterial, the Clemson University Advisory Board for 
Biomaterials has officially defined a biomaterial as “a systemically and 
pharmacologically inert substance designed for implantation within or incorporation 
with living systems”. One must differ biomaterial from biological material (i.e. bone 
matrix or tooth enamel), which is produced by a biological system. Other materials 
that should be differentiated are artificial materials that are simply in contact with the 
skin (i.e. hearing aids and wearable artificial limbs), which are not biomaterials since 
the skin acts as a barrier with the external world. The main applications of 
biomaterials include assistance in healing, to improve function and correct 
abnormalities or replacement of a body part that has lost function due to disease or 
trauma. Advances in many fields, including surgery, have permitted materials to be 
used in many cases and wider scope [112, 113]. 
 
 
 
Biomechanics. Biomechanics is the application of classical mechanics to the study 
of biological systems. Laws of physics for statics, kinematics, dynamics, continuum 
mechanics and tribology are applied for the study of biological systems from a single 
cell to whole human bodies [114]. Biomechanics studies are employing both 
experiments and numerical simulations. Experiments in biomechanics are 
performed in vitro and in vivo.  Common experiments include measurements of 
kinematics and dynamics of human motion (gait analysis) [115], [116], soft tissue 
deformation and impact studies (tension-compression tests, impact tests, three-
point bending tests) [117], electromyography for neuromuscular control [118], but 
also experiments at microscopic level with dynamic loading of cells with 
microscopic cantilevers setups [119]. Simulation of biomechanics systems has 
allowed the testing of conditions that would be dangerous to test with human 
participants or biological tissue, with applications ranging from vehicle safety with 
simulated crash tests using active human body models, study of biological systems 
with complex geometries that is not possible to measure their deformation response 
with experiments, as brain deformation during head impacts and faster and easier 
to perform parametric studies. However, it is important when using a simulation 
model to consider the range of parameters for which the model is valid.  
 
 
 
 
Cellular automata. Cellular automata (CA) are defined as abstract and discrete 
(spatially and temporally) computational systems that showed its application as 
general models of complexity and as more specific representations of non-linear 



dynamics in a variety of scientific fields. CA are composed of a finite (countable) set 
of homogeneous and simple units, called atoms or cells. These cells have an internal 
status that can take a finite set of values, and that is updated at each time step 
through functions or dynamical transition rules – generally as a function of the states 
of cells in the local neighbourhood. It should be mentioned that CA are abstract, 
meaning they can be specified in purely mathematical terms and physical structures 
can implement them. Since CA are computational systems - they can compute 
functions and solve algorithmic problems, therefore displaying complex emergent 
behaviour. Because of that, they are attracting a growing number of researchers 
from the cognitive and natural sciences interested in pattern formation and 
complexity in abstract setting [120]. CA have also been applied to some medical 
problems, as for instance image segmentation [121, 122] or infection modelling 
[123, 124, 125]. 
 
 
 
Clinical decision support systems. Clinical decision making involves clinicians 
making decisions about patient diagnosis and treatment [126]. Clinical decision 
making has traditionally largely been determined by human expertise. As of now, 
clinicians still make the final decisions upon weighing across evidence, for example 
from clinical data records. 
 
Various statistical and mathematical methods [127], and knowledge-based 
approaches using dictionary-defined knowledge (e.g. with “if-then” rules) [128] have 
now been used to aid clinical decision making, resulting in more quantitative, 
standardized, accurate and objective decisions. This has led to the development of 
medical or clinical decision support systems (CDSSs), often in the form of computer 
software or health technology, aiding human experts with interpretation, diagnosis 
and treatment [129].  
 
The rise of artificial intelligence, particularly machine learning, has led to another 
form of CDSSs that is “non-knowledge-based”. Some of these approaches, e.g. 
deep learning algorithms, have been claimed to outperform human experts in 
diagnosis of specific illness [130]. However, interpretability or explainability of the 
results of such approaches hinder their use in practice [131]. It should be noted that 
CDSSs still remain not as highly adopted by users, perhaps partially due to general 
lack of engagement from clinicians, physicians or health specialists [132]. 
 
 
 
Clustering. In data mining, any problem involving the division of data into groups 
(clusters), such that each one of them contains similar records (according to some 
similarity measures), and that dissimilar records are organised into different clusters. 
It is also called  unsupervised learning, as no a priori information about the structure 
of the groups is used. An alternative definition of clustering is proposed in Ref. [133]: 
“partition a given data set in groups, called clusters, so that the points belonging to 
a cluster are more similar to each other than the rest of the items belonging to other 
clusters.”  



 
While consensus on a unique classification of clustering algorithms has not been 
achieved, it is customary to divide such algorithms according to their underlying 
hypothesis [134]: 
 

• Hierarchical-based. Hierarchical clustering combines instances of the data 
set to form successive clusters, resulting in a tree form called dendrogram. 
Clusters are equal to individual instances in the lowest level of the tree, and 
upper levels of the tree are aggregations of the nodes below. Agglomerative 
and divisive clustering can be distinguished, depending on whether each 
observation starts in its own cluster, or in the complete set. 

• Partitions-based. As opposed to the previous group, partitions-based 
methods start from the complete data set and divide it into different disjoint 
subsets. Given a desired number of clusters, the process is based on 
assigning instances to different clusters  and iteratively improving the 
division, until an acceptable solution is reached. Note that partitions-based 
methods are different from divisive hierarchical methods because, firstly, they 
require predefining the number of clusters; and secondly, because of their 
iterative nature. The well-known K-means algorithm [135], possibly the most 
commonly used clustering algorithm [136, 137], belongs to this class. 

• Density-based. If the previously described algorithms assess the similarity of 
instances through a distance measure, density-based algorithms rely on 
density measures; clusters are thus formed by groups of instances that form 
a high-density region within the feature space. This presents the advantage 
of a lower sensitivity to noise and outliers. Among the most used algorithms 
belonging to this family, the DBSCAN [138] is worth mentioning. 

• Probability-based. Probability-based clustering combines characteristics of 
both partitions-based and density-based approaches. The most important 
of these clustering approaches are mixture models [139], which are 
probabilistic models used to model heterogeneity and represent the 
presence of  subpopulations (latent subgroups) in an overall population. The 
probabilistic component makes them a useful approach for complex 
(especially multimodal) data and can be used to obtain statistical inferences 
about the property of latent subgroups without any a priory information about 
these subgroups. In practice this is achieved using Expectation-
Maximization algorithms [140]. Important advantages are the flexibility with 
regards to  choosing subgroup distributions and the possibility of obtaining 
“soft” stratification.  

   
   
 
 
Complex networks. Born at the intersection of physics, mathematics and statistics, 
the theory of complex networks has proven to be a powerful tool for the analysis of 
complex systems. Networks are mathematical objects composed of nodes, 
pairwise connected by links [141, 142, 143]. Their flexibility, and indeed their 
success, resides in the fact that the identity of those elements is not defined a priori; 
for instance, networks can be used to represent from people and their social 



connections [144], market stocks and their correlations or co-ownership [145], to 
genes and their co-regulation [146]. In all cases, networks allow reducing such 
complex systems into simple structures of interactions, which can easily be studied 
by means of mathematical (algebraic) tools, while removing all unnecessary details. 
 
The simplest way of reconstructing networks, and indeed the first one from a 
historical perspective, is to directly map each element composing a system to a 
node, and map explicit relationships between elements as links. Consider the 
example of a gene co-regulation network: nodes would represent genes, with pairs 
of them being connected when it is known (e.g. from direct biological experiments) 
that one of the two genes is regulating the second. Once the full network is 
reconstructed, its structure can be studied through a broad set of existing 
topological metrics [147], designed to numerically quantifying specific structural 
features; and by using these metrics as input to data mining models [148]. 
 
In spite of the interesting results that could be obtained through this simple 
understanding of networks, it was soon apparent that many real-world systems 
needed more detailed descriptions. Specifically, it is worth noting that a simple 
network reconstruction implies three hidden assumptions: that links are constant 
through time; that nodes are connected by just one type of relationship; and that 
relationships are explicit. Breaking these three hypotheses gave birth respectively 
to time-evolving, multi-layer and functional networks. 
 
 
 
Complex systems. Systems composed of a large number of elements, interacting 
in a non-linear way between them. As opposed to more simple systems, these 
interactions are essential to understand the behaviour of the complete system, and 
in some cases, they can even be more relevant than the individual elements [149, 
150, 151]. Due to this, the study of complex systems goes beyond the reductionism 
paradigm, where understanding is based on splitting to smaller subsystems that are 
simpler to understand. In other words, while the reductionistic approach works 
bottom-up, the systems view required to understand complex systems is a top-
down one. Complex systems displays two important properties. On one hand, a 
nonlinear behaviour, and thus tools originating in nonlinear analysis have been used 
in this domain – to illustrate, the analysis of time series describing the dynamics of 
complex systems often resort to the use of metrics of complexity [152], fractal 
dimension [153], sample entropy [154] and other types of entropies [155] to quantify 
the irregularity, or detrended fluctuation analysis to quantify long-range correlations 
[156]. On the other hand, emergence refers to the behaviours that may 
unexpectedly emerge, leading to order or disorder, and that cannot be explained 
by the dynamics of the system’s units. Adaptation is considered as one of the 
qualities of complex systems, and this is a property that can be observed in the 
biomedical domain [157]. 
 
 
 
 



Computational Drug Repurposing. Drug repurposing or repositioning is the 
detection of novel indications for existing drugs, in order to treat new diseases [158]. 
A major advantage of the drug repurposing strategy is that it involves approved 
compounds that have passed the toxicological safety screening process and have 
a known pharmacokinetic profile: repositioned drugs can hence enter directly to 
clinical Phase II, making the clinical phase process much faster than that newly 
developed drugs, and thus more cost-effective. Computational drug repurposing 
approaches aim to optimise and accelerate the drug repurposing procedures 
providing also means for candidate drug prioritization. Computational drug 
repurposing methods include the following: Structure-based virtual screening 
(molecular docking), Ligand-based methods (Pharmacophore model, Quantitative 
structure-activity relationship and Reverse docking methods) [159], Transcriptomic-
based methods [160], GWAS-based methods [161], Literature-based discovery 
methods [162], and Network-based, Multi-source data integration and Machine-
Learning approaches [163]. 
 
 
Constraints. In mathematics, constrains are conditions that must be fulfilled by 
some parameters (or solutions) of a model, in order to make the latter realistic. In 
the case of mathematical modelling of complex biological systems, different 
constraints can be implemented for parameters like value range of variables, 
limitations of sum of parameters, transition speed and other type of information. To 
illustrate, the angle of joints in the human arm cannot take any value, but must 
comply with some physical limitations [164]. There are 1) general constraints that 
are true for any system (mass conservation, energy balance), 2) organism level 
constraints - consistent limitations for all experimental and environmental conditions 
for a particular organism (range of viable metabolite concentrations, homeostatic 
constraint) and 3) experiment level constraints - environmental condition dependent 
constraints for particular organism (biomass composition, cellular resources) [165]. 
 
 
 
Context awareness systems. Context awareness systems address complex 
environments in terms of location, identity, components and relations. Context 
refers to information that describes an entity (person, location, object) [166]. The 
study of such complex environments has been made possible by the availability of 
Wireless Sensor Networks technologies, which allow heterogeneous sensors, 
distributed in a physical environment, to share their measurements. Still, these 
technologies do not protect from problems like cross-domain sensing and coupling 
of sensors; in order to preserve performance and reliability, the data fusion has to 
be performed with caution [167]. Context awareness systems have an important 
role in the design of Healthcare Monitoring Systems (HMS), Health Smart Homes 
(HSH) and Ambient Assisted Living (AAL), which facilitate the acquisition of both 
ambient and medical data from sensors. Such systems also may include reasoning 
capabilities consisting of data processing and analysis as well as knowledge 
extraction [168].  
 
 



 
Correlation networks. Functional complex networks created by considering the 
correlation between the dynamics of pairs of nodes. 
 
 
 
CRISP-DM. CRISP-DM stands for Cross-Industry Standard Process for Data 
Mining, an industrial group that proposed a methodology for organising the data 
analysis process in six standard steps [169, 170]. Since that, the term CRISP-DM 
has been used to indicate both the group itself and the methodology. The six steps 
are: 
 

• Business (or Problem) understanding: initial understanding of the objectives 
and requirements of the analysis to be performed; these are expressed as a 
data mining problem, and should include a preliminary roadmap or execution 
plan. 

• Data understanding: in this second phase, data are collected and a first 
analysis is executed, in order to familiarise with them; identify quality 
problems; discover initial insights, and formulate initial hypotheses; and 
identify relevant data subsets. 

• Data preparation: data received by the researchers are seldom ready to be 
processed; on the contrary, they usually require an initial preparation. This 
covers all of the activities required to construct the final data set, from 
selecting those data that are really relevant, to data cleaning and pre-
processing. This is one of the most important steps of the whole process, 
as the success of the final analysis strongly depends on it; and is responsible 
for most of the time and resources consumed in a data analysis project, as 
data preparation is usually performed iteratively and without a fixed recipe. 
See [171, 172, 173] for a review of techniques and the motivations for data 
preparation. 

• Modelling: phase in which data mining algorithms are applied and 
parameters are calibrated to optimal values. Some algorithms covered in this 
review are Artificial Neural Networks, Decision Trees, Random Forests and 
Support Vector Machines. While each one of these models have specific 
requirements on the format of input data, and are built on top of hypotheses 
on the patterns to be detected, in practice multiple algorithms are suitable in 
any given problem. In these situations, multiple models are optimised and 
compared; the models reaching a higher performance are passed to the next 
phase for a final evaluation. 

• Evaluation: model evaluation cannot be understood only from a data mining 
perspective, e.g. in terms of the achieved classification score; a business 
perspective should also be taken into account. Only when all relevant 
questions have been addressed, can one then move to the deployment of 
the extracted knowledge. 

• Deployment: when all of the information about the business problems has 
been gathered, the information and knowledge then has to be organised and 
presented. 

 



 
 
Cross-validation. In data analysis, cross-validation (also known as rotation 
estimation and out-of-sample testing) refers to any technique used to validate a 
data mining model, i.e. to quantify how it will generalise to an independent data set, 
re-using a single data set. The initial data set is divided into multiple subsets, which 
are used to train or validate the model; this guarantees that the same data are never 
used in both tasks [174].  
 
 
Data analysis software. With the widespread adoption of data-based solutions in 
many real-world scenarios, it is not surprising to find a large number of analytic 
solutions, spanning from cloud pipelines to commercial and freeware software, and 
both stemming from research activities or having a commercial nature. The most 
important are here listed, classified according to their underlying structure in cloud, 
non-cloud and hybrid tools. 
 
Non-cloud (or local) solutions. Commercial and freeware software tools for data 
analysis, which are designed to work on a local (or at least, non-cloud) environment. 
In this category, one can find:  
 

• KNIME [175] (www.knime.com); 
• SPSS Modeller [176] (www.ibm.com/products/spss-modeler); 
• RapidMiner [177] (rapidminer.com); 
• Alteryx (www.alteryx.com). 

 
These software platforms usually have a broad focus, allowing to process any (or 
most) kind of data; and they allow to construct models by connecting modules in a 
graphical interface. 
 
Cloud-based solutions. Also known as Platform as a Service (PaaS), are solutions 
based on full cloud environments, and on the creation of web-based pipelines in 
which data are fed, processed, and returned to the user in a completely automatic 
way. The most notable solutions include: 
 

• Google’s ML Engine (cloud.google.com/ml-engine); 
• Amazon’s SageMaker (aws.amazon.com/sagemaker); 
• Microsoft’s Azure (studio.azureml.net). 

 
This approach presents two advantages: a complete scalability, and a simplified 
user experience. At the same time, they usually provide a limited spectrum of 
possible analysis - for instance, Google ML Engine completely relies on Tensor Flow 
algorithms [178]. 
 
Hybrid solutions. These solutions position themselves in between the two families 
previously described. While they are designed for cloud deployment, they can easily 
be installed in a local infrastructure; and they shift the focus towards an intuitive 



representation of the results and simplified user experience. Among others, these 
include: 
 

• Sisense (www.sisense.com); 
• Looker (looker.com); 
• Zoho Analytics (www.zoho.com/analytics); 
• Tableau (www.tableau.com). 

 
They usually allow to summarise data on high-level dashboards, with specific 
applications including business analytics [179] or website usage tracking. They 
nevertheless do not provide the analytical flexibility required by systems medicine 
applications. 
 
 
 
Data fusion and data integration. Data fusion is the process of integrating multiple 
data sources to produce more consistent, accurate, or useful information than that 
provided by a single data source, whereas data integration refers to heterogeneous 
data obtained from different methods or sources, that are merged to produce 
meaningful and valuable information. In the field of system/personalized medicine, 
progress has been made regarding data integration, with large sets of 
comprehensive tools and methods (e.g. Bayesian or network-based methods), 
especially for multi-omics processing [180]. 
 
 
 
 
Data mining. General term describing the process of discovering patterns in data 
sets through the use of statistical and mathematical algorithms. Its definition 
overlaps with that of machine learning; and the term is also used to denote the 
modelling step of the CRISP-DM process. 
 
 
 
Decision Tree. In data mining, Decision Trees (DT) denote classification algorithms 
that rely on comprehensive tree structures, and that classify records by sorting them 
based on attribute values. Each node in a decision tree represents an attribute in 
an instance to be classified, while each branch represents a value that the attribute 
can take - see Fig. 2 for a simple graphical representation. Decision trees can be 
generalised to target continuous values, in which case they are usually referred as 
regression trees.  
 
Let us denote by D the set of training instances that reach a node. The general 
procedure to build the tree is: 
 

• If all the instances of D belong to the same class, then the node is a leaf 
node. 



• Otherwise, use an attribute to split the set D into smaller subsets. These 
subset will then feed subsequent nodes, by applying this procedure 
recursively until a stop condition is met. 

 
The main differences between the many implementations of DTs available in the 
literature reside in the criteria used to decide the splitting point. Among others, Gini 
index is used in CART [181], SLIQ [182], SPRINT [183]; information gain is used in 
ID3 [184] and in the well-known C.45 [185]. 
 
The main advantage of DTs is their simplicity, both in the software implementation 
and in the interpretation of results; and their capacity of handling both numerical 
and categorical variables, thus implying little data preparation. This has fostered 
their use in medical applications, as reviewed, for instance, in [186, 187]. They 
nevertheless suffer from a less-than-perfect performance. The concept of DT further 
underpins the Random Forest classification algorithm. 
 

 
Figure 2. Example of a simple Decision Tree model, trained to choose between two treatments as a function of the age 
and sex of the patient. 

 
 
Decision Support Systems. Decision Support Systems (DSSs) are information 
systems, i.e. systems designed to collect, process and make available information, 
focused on supporting different types of decisions [188]. DSSs typically deal with 
business and management challenges; can be completely customized by including 
multiple user interfaces and flexible architectures; and implement 
Optimization/Mathematical Programming tools for solution strategy and report. DSS 
are able to provide a complete view of the activities and flows within large and 
complex real production systems, integrating the supply of raw materials, the 
production phases, the products distribution, and the recovery within the 
sustainable and closed-loop supply chains. DSS in the form of standardized, 
enterprise-wide information systems were widely implemented in multiple sectors, 
including industry supply chains (e.g., pharmaceutical, manufacturing, agri-food 
[189]) and healthcare services (e.g., Clinical decision support systems [126, 127, 
128, 129, 130]). 
 
 
 



 
Deep Learning. Artificial neural networks, which form the basis of deep learning, 
were developed in the 1940s as a model for the human brain [190]. While this model 
has attracted the interest of researchers in previous periods, it made a significant 
leap in learning and classification with the development of deep learning systems 
based on the layered learning structure of the human brain. One of the main reasons 
for this is that computational infrastructure needed to satisfactorily operate these 
complex structures that contain hundreds of layers and thousands of neurons have 
only appeared in the last decade. 
 
Deep learning systems are mainly defined by the fact that each important feature of 
the phenomenon to be learned is automatically recognized by the algorithm and 
each group of features is learned by a separate artificial neural layer [191]. For 
example, in an image recognition system developed for human face recognition, 
different facets of the face, such as lines, eyes and mouths, and the general lines of 
the face are learned by different layers. Deep learning-based methods have greatly 
improved performance in Computer Vision and Natural Language Processing (NLP), 
and are integrated into many of the technologies currently used. 
 
 

 
Figure 3. Deep Learning system developed for human face recognition. Source: https://www.quora.com/What-do-
you-think-of-Deep-Learning-2 

 
 
 
Digital Health. The term Digital Health (or d-Health) is used for denoting the massive 
and ubiquitous use of information and communication technologies (ICT) in health, 
healthcare, and medicine fields [192]. Digital Health covers the range of 
technologies used in health and medicine from genome sequencing of the microbes 
in the human organs, such as the gut and the skin, through genome sequencing, 



to the use of smartphone for supporting online telemonitoring (exposome level). The 
main goals of digital health are to improve healthcare customer follow-up and 
engagement, in parallel of resources and cost optimization from the health 
organizations and providers. As a part of the fourth digital revolution, “Digital Health” 
is using Internet of Things (IoT) and Business Intelligence (BI) for delivering 
personalized healthcare and medicine services. However, Digital Health is taking 
healthcare from a paternalistic medicine wherein physicians are defining and 
deciding how to treat the patient to being patient-centred. Patient-centred in the 
Digital Health context means that the electronic tools, hardware and software, are 
enhancing the healthcare customers experience and engagement by providing 
them with the decision support tools for getting better health outcomes and by 
considering their way of life and constraints [193, 194]. Nevertheless, Digital Health 
reduces direct human-human interactions and thus may induce a dehumanization 
of healthcare. Within Digital Health, a sub-subject has to be highlighted: the 
development of methods allowing improving healthcare customers’, practitioners’ 
and other caregivers’ (like patient’s family members) experience, engagement and 
interactions, by considering the digital environment as another kind of point-of-care 
similarly to clinics, pharmacies, and hospitals. One limitation of a dynamic and fast 
development of Digital Health lies in local regulations which have the objective of 
keeping health-related data and information confidential and safe, and allowing their 
use in ways ensuring data availability and integrity only for relevant individuals 
(patients and their related one when relevant, professional, and specific 
organizations). Digital Health is a full component of the Systems Medicine paradigm 
by allowing a dynamic view of individuals from the nano-level (e.g. gene expression 
as a response to an environmental change) to the mega-level (e.g. population 
interactions/reactions -discussions- on social networks as a response to an 
epidemic announcement). 
 
 
 
Digital Twin. The concept of Digital Twin is a bridge between the physical world, 
which can consist of a living system (i.e. an animal or a vegetal, an individual or a 
population) or a cyber-physical system (e.g. a biological process, a drug production 
line, a health monitoring service). A Digital Twin is a virtual or more accurately a 
computational representation of a real-world object [195]. This kind of “duplicate” is 
allowing designing, implementing, and testing models in a virtual environment 
before or instead of performing these operations in a real-world context. From a 
Systems Medicine perspective, the digital twin is allowing building models of living 
systems (from the cell components level to the world population level for building 
and evaluating from biological to epidemiological models) by using socio-
demographics, biological, clinical, communicational data collected by healthcare 
customers and caregivers (see Medical Informatics) and/or generated by Internet of 
Things objects (see Digital Health) [196, 197].  
 
 
 
 



Dissipative particle dynamics. Dissipative particle dynamics (DPD) is a stochastic 
simulation technique used to study dynamical and rheological properties of fluids, 
both simple and complex. It involves a set of particles, representing clustered 
molecules or fluid regions, moving in a continuous space and at discrete time steps. 
This meso-scale approach disregards all atomistic details that are not considered 
relevant to the processes addressed. Internal degrees of freedom of particles are 
replaced by simplified pairwise dissipative and random forces, in order to conserve 
momentum locally and ensure a correct hydrodynamic behaviour. 
 
This technique facilitates the simulation of the statics and dynamics of complex 
fluids and soft matter systems. The main drawback is high computing power, but 
this has improved due to the high performance computing, which is now combined 
with this technique [198]. 
 
Among others, DPD can be used for modelling the transport of low density 
lipoproteins (LDLs) through arterial wall and analysing plaque formation, where the 
force of attraction of oxidase LDL molecules to the wall is modelled in the DPD 
solution as spring force with experimentally determined coefficient [199]; for creating 
semicircular canal models with simplified geometry, showing the behaviour of the 
fluid inside the canal, cupula deformation and movement of otoconia particles in 
order to analyse benign paroxysmal positional vertigo (BPPV) [200]; or for modelling 
self-healing materials used for corrosion analysis and protection [201]. 
 

 
Figure 4. Schematic representation of a dissipative particle dynamics (DPD) model. 

 
 
 
Erdős–Rényi model. The Erdős–Rényi model is a model to construct random graphs 
in which all edges, or links, have the same probability of existing, i.e. they are 
independent. The model is usually denoted as >(/, $), / being the number of nodes 
and $ the probability for any link to be present. Therefore, the model starts with / 
nodes, and each possible edge is included with probability $ independent from 
every other edge. 



 
The simplicity of this random network model makes it an ideal candidate for act as 
null model in the normalization of network properties, although special care is 
required when the underlying real network is connected by construction, or has any 
other fixed characteristic [202]. 
 
This simplicity also made possible the calculation of the expected characteristics of 
the graph, as a function of / and $, in an analytical way. Note that all these results 
are of a statistical nature, and hence that the error probability tends to zero; yet, 
counterexamples can always be found. Among others, the most well-known ones 
include [203]: 
 

• If /$ < 1, then the graph will almost surely have no connected components 
of size larger than !(log /). 

• If /$ = 1, then the graph will almost surely have a largest component of size 
≈ /"/%. 

• If $ < (!'() *+ #
# , then the graph will be disconnected, i.e. it will contain isolated 

nodes. 
• Conversely, if $ > (!'() *+ #

# , then the graph will likely be connected. 
 
 
 
Exposome. Exposome is the systems approach for disease study that takes into 
account the interaction of internal biological mechanisms with the environment, in 
other words, the interplay of genetic, epigenetic and environmental factors. The 
concept was first introduced by Wild in 2005, and encompasses for exogenous and 
endogenous components [204]. A series of technological advances can be 
regarded as enabling technologies in this highly ambitious paradigm, including 
sensor networks monitor the air quality and make available the data, big data 
research, progress in microbiome analysis and metabolomics.   
 
The study of endocrine disruptors and their role in pregnancy is one of the examples 
of this approach [205, 206]. Other work relates to cancer, and chronic diseases at 
large, involving pollutants, metabolism, inflammation, and diet. There are large 
initiatives worldwide aiming to create synergies and build knowledge on this new 
field of research, as for instance: https://www.projecthelix.eu/, 
https://humanexposomeproject.com/, http://metasub.org/. 
 
 
 
FAIR principles. In an open-science approach, making scientific research, data and 
dissemination accessible, four principles for scientific data management and 
stewardship, were defined as Findability, Accessibility, Interoperability, and 
Reusability (FAIR), by the Force11 working group (https://www.force11.org/, [207]). 
The principles do apply not only to data but also to algorithms, tools, and workflows. 
These objectives are now becoming expectations from funding agencies and 



publishers, concerning the use of contemporary data resources, tools, vocabularies 
and infrastructures to assist research discovery and reuse by third-parties. 
 
 
 
 
Feature selection. In data analysis, the process of feature selection consists in 
applying algorithms designed to select a subset of features, from the original data 
set, for subsequent analysis. All other features are ideally irrelevant for the problem 
at hand, and are thus disregarded.  
 
Feature selection yields two main benefits. On one hand, even when the studied 
data set is not of large size, it can help in data understanding, reducing training 
times and improving prediction performance. On the other hand, feature selection 
is essential when the features outnumber the instances. To illustrate, domains such 
as gene and protein expression, chemistry or text classification are characterised 
by the limited availability of instances to train models – e.g. few patients and control 
subjects, few complete textual records, etc. Refs. [208, 209] extensively review 
methods for feature selection. 
 
Feature selection methods are usually classified in three different families: 
 

• Filters select subsets of variables, according to some rules, as a pre-
processing step; in other words, this selection is not made taking into 
account the subsequent classification. One of the most relevant examples is 
the Recursive Feature Elimination (RFE), based on iteratively constructing a 
classification model and removing features with low weights (i.e. of low 
relevance) – note that the classification model here used is independent from 
any subsequent classification. When features are added, instead of being 
eliminated, the result is a forward strategy. 

• Wrappers assess subsets of features according to their usefulness to the 
subsequent classification problem. When the number of variables is 
reduced, this is done by evaluating all possible variable combinations; on the 
other hand, when this is not computationally feasible, a search heuristic is 
implemented. Note that here the machine-learning algorithm is taken as a 
black box, i.e. it is only used to evaluate the features’ predictive power. 
Wrappers can be computationally expensive and have a risk of overfitting in 
the model [210], in which case coarse search strategies may be applied. 

• Embedded techniques are similar to wrappers, but integrate the search of 
the best subset of features within the classification model [211]. The 
classification is then formalised as an optimization of a two-part objective 
function, with a goodness-of-fit term and a penalty for a large number of 
variables. Embedded methods that incorporate variable selection as part of 
the training process may be more efficient in several aspects, as they make 
better use of the available data and are more computationally efficient. On 
the negative side, they are specific to a single learning algorithm, and are 
thus not generalisable. 

 



 
 
Finite Element Method. Finite element method (FEM) is a numerical method that is 
used for solving problems in different fields of engineering and mathematical 
physics. They can be widely categorized into structural analysis, heat transfer, fluid 
flow, mass transport, and electromagnetic potential. The finite element method 
formulation of the problem requires solving a system of algebraic equations. 
Analytical solutions of these problems generally require the solution to boundary 
value problems for partial differential equations. The domain of interest is divided 
into a finite number of simpler parts called elements and the method calculates 
values of the unknowns at discrete number of points over the mentioned domain. 
The simple equations at each point of the model are then assembled into a larger 
system of equations that describe the entire problem. Analysis that is associated 
with solving a problem using FEM is called finite element analysis (FEA) [212] [213]. 
 
Examples of the application of FEM in medicine include the analysis of bone – hip 
implant interactions, to obtain the information about shear stress distribution [214]; 
the development of several inner and middle ear models, especially cochlea models 
and their analysis [215]; the computational model of arteries [216, 217, 218]; the 
detection and localization of ischemic cardiac diseases [219]; or the examination of 
electrospinning jet trajectories [220]. 
 

 
Figure 5. Schematic representation of a finite element method (FEM) model. 

 
 
 
Finite Volume Method. Finite Volume Method (FVM) is a method that uses an 
approach to represent and solve partial differential equations in the form of algebraic 
equations. The term “finite volume” marks a small volume that surrounds each point 
(called node) in a mesh. By dividing the domain of interest in the form of mesh 
(structured or unstructured mesh), this method leads to robust schemes. Different 
conservation laws are used - elliptic, parabolic, hyperbolic etc. Finite volume method 
is often chosen when flux is of interest, since local conservativity of the numerical 
fluxes (conserved from one discretization cell to its neighbour) is a characteristic of 
this method. This is especially present in the field of fluid mechanics, semi-
conductor device simulation, heat and mass transfer etc. By local conservativity it 
is meant that an integral formulation of the fluxes over the boundary of the control 
volume is obtained. A local balance is written on each discretization cell, which is 
called “control volume”. The fluxes on the boundary are discretized with respect to 



the discrete unknowns [221]. FVM can, for instance, be used in pharmacokinetic 
models [222]. 
 

 
Figure 6. Schematic representation of a finite volume method (FVM) model. 

 
 
 
Frequentist statistics. Frequentist statistics is an interpretation of statistics that 
considers the probability of a random event as being the long-run (in the sense of 
Neyman, Pearson and Wald tradition) proportion of occasions on which it occurs, 
conditional on some specified hypothesis [68]. For a different interpretation, see 
Bayesian statistics. 
 
 
 
Functional networks. In all original studies focusing on complex networks, one 
inherent hypothesis was the fact that the structure of the network was easily 
observable: for instance, neural connections in the C. elegans can be obtained by 
physically looking at the organism. Yet, many real-world systems do not comply 
with this requirement: their structure is not observable, and we can only measure 
some aspects of the dynamics of the constituting elements. If one makes the 
hypothesis that the dynamics of each element is partly the result (or “the function”) 
of the dynamics of its peers, then the structure of interactions can, in principle, be 
inferred from the individual dynamics: the result is called a functional network. The 
introduction of this latter representation has resulted in an important step forward 
in network science, allowing a broader focus including both structural and 
dynamical (functional) relations, and shifting the focus from the underlying physical 
structures to the flow of information developing on top of them [223, 224]. While a 
detailed description of the functional network theory is beyond the scope of this 
review, it is worth reporting a sketch of the standard way of reconstructing them. 
Let us suppose that a set of time series is available, each one describing the 
dynamics of one element (node) of the system; to illustrate, in neuroscience these 
typically correspond to measurements of electric (EEG) or magnetic (MEG) fields 
generated by the brain, or the consumption of oxygen by neurons (fMRI). The 
synchronicity between the dynamics of pairs of nodes is then estimated, using 
metrics like linear correlations or causalities. Finally, the resulting functional networks 
can be analysed alone, i.e. as standard networks [148]; or the relationships between 
the physical substrate and the functional connectivities can be explored. 



 
 
 
Gene Set Enrichment Analysis (GSEA). Method to identify sets of functionally related 
genes that are enriched or depleted when comparing two biological states [225]. It 
does not require that individual genes are statistically scored as significantly altered, 
as it ranks all genes and compares this rank list with predefined sets of genes, 
usually designated as molecular signatures. Since it does not require any definition 
of a threshold for up- or downregulation, it can identify even weaker changes of 
gene expression, which are significant for a gene set, but not for a single gene. The 
gene sets or molecular signatures used for the comparison with the rank list, are 
accessible through a public repository, and are based on known biological 
functions, pathways or cell types [226, 227]. Computation of the gene set 
enrichment can be performed with open software or a web platform of the Broad 
Institute (http://software.broadinstitute.org/gsea/index.jsp) [226]; on other web sites 
such as Enrichr (http://amp.pharm.mssm.edu/Enrichr/), or with packages of the 
Bioconductor R environment (https://www.bioconductor.org/). Other tools can also 
be used within the GSEA software: 

• Leading Edge Analysis: examine the genes that are in the leading-edge 
subsets of the enriched gene sets. A gene present in many leading-edge 
subsets is likely to be of interest. 

• Enrichment Map Visualization:  Cytoscape plugin for functional enrichment 
visualization (http://www.baderlab.org/Software/EnrichmentMap) 

• Chip2Chip: Converts the genes in a gene set from HUGO gene symbols to 
the probe identifiers for a selected target chip. 

• GSEAPreranked: Runs the gene set enrichment analysis against a ranked list 
of genes, which you supply (e.g. mRNAseq). 

• CollapseDataset: Creates a new dataset by collapsing each probe set into a 
single vector for the gene, which is identified by its HUGO gene symbol. 

 
GSEA can also be improved by integrating external information, e.g. pathway or 
ontology information; some of the previously described software packages, 
including Enrichr and the Bioconductor R environment, include functions to perform 
this analysis. 
 
 
 
Granger causality. Granger causality is a statistical method allowing to infer cause-
effect relationship between events, or corresponding variables, through exploitation 
of the concepts of explained variance and prediction. According to Granger [228], 
a signal X “Granger causes” Y if current and future values of Y can be better 
predicted using current and past observed values of X. Although formally known as 
Granger causality, this statistical method can be seen as a practical application of 
the earlier research in causality [229]. Since its formulation in the late 1960, Granger 
causality has been widely used in economics. As a result, Prof. C. W. Granger 
received the Nobel Prize in Economics in 2003. 
 



The Granger causality has extensively been used in neuroscience, and specifically 
for the reconstruction of functional networks representing brain dynamics [230, 231] 
and of physiological networks in general [232]. More in general, this metric allows 
describing the causal relationship between pair of time series; it has thus been used 
to assess aspects from cardio-respiratory instability events [233], to the relationship 
between health care expenditure and its output [234]. 
 
 
 
Graph embedding. Graph embedding (also known as network embedding) is a 
representation of a graph in a vector space, where relevant graph features are 
preserved. Their advantage resides in the fact that vectors are easier to handle than 
full graphs in several domains of machine learning [148]. A lot of graph embeddings 
methods have been proposed for graph analysis in the following areas: nodes 
classification, edges (link) prediction, clustering and visualization. Graph embedding 
methods are categorized into three broad categories: (1) matrix factorization based, 
(2) random walk based, and (3) neural networks (or deep learning) based [235]. 
 
There are several challenges that need to be considered for using graph 
embeddings. The biggest challenge in learning a graph embedding is the choice of 
metrics, node and edges properties and features to be preserved in the vector 
representation. The learnt embeddings should represent the rich graph information 
including topological structure and auxiliary information. Moreover, the graph has to 
be constructed in a way to represent nodes relations as well as to maintain the node 
proximity matrix in embedded space [236]. Next, different application domains have 
different prerequisites for a using a suitable graph embedding algorithm. Therefore, 
the embedding dimensionality decision based on graph size should meet 
application requirements. Unfortunately, it has been argued that in several real-
world complex network applications, graph embeddings cannot represent the 
network’s most important features [237]. 
 
In the biomedical domain, graph embeddings methods can be used to represent 
graphs for protein-protein interactions (PPI) [238], brain regions connections [239], 
infectious diseases modelling [240], chemical reactions between metabolism 
enzymes [241] or regulatory genes interactions [242]. [243] gives an overview and 
comparison of the use of graph embeddings methods in three important biomedical 
link prediction tasks: drug-disease association (DDA) prediction, drug–drug 
interaction (DDI) prediction, protein–protein interaction prediction; and two node 
classification tasks: medical term semantic type classification; and protein function 
prediction. [244] identifies relevant gene functions for a biological context using 
network representation learning with neural networks based graph embeddings 
method. In a neuroscience context, a random walk based graph embedding 
method is used for embedded vector representations of connectomes to map 
higher-order relations between brain structure and function [245]. 
 
 
 
 



Hidden Conditional Random Fields. Hidden Conditional Random Fields (HCRFs) are 
discriminative latent variable models, used for the classification of sequences of 
events; in other words, these models are useful to process inputs that are graphs 
of local observations [246]. Given one sequence, the HCRF tries to assign a single 
label to it, by introducing a set of latent variables corresponding to each element of 
the sequence, and by conditioning the label to those variables. Beyond providing 
rules to discriminate one label from all the others, HCRFs also yield the structure 
that is shared among labels. This classification model has been proved to be 
efficient, provided enough instances are available to validate the hidden structure. 
While still not widespread in the medical domain, some applications of HCRFs 
include the analysis of brain dynamics [247] or the recognition of protein folding 
structures [248]. The main limitation of HCRFs is that no rules are presently known 
to define the optimal number of hidden states for a given problem; the solution, i.e.  
a trial-and-error process with cross-validation, can be computationally expensive. 
 
 
 
Imputation. In statistics and data analysis, imputation refers to the set of techniques 
and algorithms used to handle missing data in the raw data set. These can be 
divided in three categories: 

• Listwise deletion, i.e. the strategy of deleting any instance containing missing 
data. This approach, while extremely simple and easy to implement, an only 
be used when data are missing at random (as otherwise the deletion would 
introduce a bias), and when a large number of instances is initially available. 

• Single imputation. Missing values are substituted by new values, according 
to some rules, and a new data set is therefore created. Techniques include 
hot-decking (when instances with missing values are substituted by other 
instances, chosen at random) and mean or median substitution (the missing 
value is filled with the mean or median of that feature). 

• Multiple imputation. Missing values are replaced by values generated 
according to a statistical rule, e.g. Multiple Imputation by Chained Equations 
(MICE) [249] or Latent Class Analysis [250]. Multiple imputed data sets are 
generated and are analysed in parallel, for then extracting a single 
consolidated result. 

Imputation is never perfect nor without impact. The choice of optimal missing value 
treatment depends on multiple factors, including the nature of data and their 
correlations, the amount and randomness of missing values. 
 
 
 
In silico modelling. In silico modelling involves the development of computer models 
to simulate a pharmacological or physiologic process [251, 252, 253, 254]. It is an 
extension of controlled in vitro experimentation. While mathematical 
electrophysiological models exist for decades (e.g. in electrophysiology of the heart), 
the increase in computing power available for research purposes with lower price 
has enabled larger scale models, for example including the cell nodes for a whole 
heart and incorporating personalised organ geometry based on medical imaging. 
Specialised platforms allow for executing the simulations and solving the numerical 



problems, nowadays typically in high-performance computing infrastructures. In 
silico modelling combines both the advantages of in vivo and in vitro 
experimentation, with the main advantage of not being subjected to the ethical 
considerations and lack of control that is the case with in vivo experiments. In silico 
models theoretically allow unlimited array of parameters to be included, contrary to 
the in vitro experiments that exist in isolation. This means that the results would be 
more realistic and applicable to the organism. Pharmacokinetic experimentation is 
often connected to the in silico modelling. In addition, complex in silico models have 
been applied to pathophysiological problems to provide information which cannot 
be obtained practically or ethically by traditional clinical research methods. These 
models have enabled to obtain valuable information in many fields - pure physiology, 
congenital heart surgery, obstetric anaesthesia airway management, mechanical 
ventilation and cardiopulmonary bypass/ventricular support devices. In spite of 
many advantages, the interested researcher should also be aware of one main 
drawback of in silico modelling, i.e. that not all strategies have been validated in vivo 
[255]. 
 
 
 
Integrative analysis. “Integration” may have different connotations, depending on 
the context [256]. In its most general sense, it refers to combining things, such as 
two viewpoints, or multiple systems, or multiple data sets. For life science data and 
in particular functional genomics, Lu et al. [257] defined data integration as the 
“process of statistically combining data from different sources to provide a unified 
view and make large-scale statistical inference”.  For multi-omics data integration, 
clearly this definition is too limited, in that it only refers to statistics as a means and 
underappreciates the opportunities that lie in creatively combining analytic 
methodologies (for instance, statistics and machine learning). A more challenging 
definition for data integration in complex disease analysis involves the process of 
combining data within a generic framework that encompasses organizing principles 
for the interaction of different types of systems. This definition does not explicitly 
refer to statistical, bioinformatics or computational tools but to any approach that 
fits within a transdisciplinary viewpoint. It includes data fusion as well as more fancy 
and more elaborate forms of combining evidence from different data sets or sources 
[258]. Furthermore, it agrees with the definition of Oxley and Thorsen [259] as the 
process of connecting systems (which may have fusion in them) into a larger 
system. Apart from data integrative analysis, integrative analysis sometimes also 
refers to the integration of analytic tools or methods, to combine different analytic 
viewpoints to the same data.   
 
 
 
 
Interactome. Map representing the whole set of molecular interactions in a particular 
cell. While usually interactome specifically refers to physical interactions, it can also 
be used to describe sets of indirect interactions among genes. As molecular 
interactions can occur between any pairs of molecules composing the cells 
(including proteins, nucleic acids, lipids, carbohydrates, and so forth), a great 



number of interactome maps can be defined; nevertheless, the most common and 
well-known include: 
 

• The protein–protein interaction (PPI) network (PIN); 
• The protein–DNA interactome, also called a gene-regulatory network, a 

network formed by transcription factors, chromatin regulatory proteins, and 
their target genes; 

• Metabolic networks, representing metabolites and how they are converted 
into each other by enzymes. 

 
For the corresponding mathematical representations of such maps, see biological 
networks. 
 
 
 
Internet of Things. Internet of Things (IoT) is related to the evolution of the internet 
towards integrating real, everyday life devices called things.  
 
A comprehensive description is provided in [260]: IoT “is a concept and a paradigm 
that considers pervasive presence in the environment of a variety of things/objects 
that are able to interact with each other and cooperate with other things/objects to 
create new applications/services and reach common goals”. Thus IoT aims at 
achieving a virtual representation of a set of physical devices through the 
deployment of technologies and architectures involving large-scale, loosely coupled 
systems. 
  
Generally speaking, basic IoT systems components include: IoT Standards and 
Ecosystems, Event Stream Processing, IoT Device Management, IoT Platforms, IoT 
Analytics, and IoT Security [261]. An important aspect is the IoT Reference Model, 
the model that defines all architectural aspects of the system, and which is 
composed of the following sub-models: IoT Domain Model, IoT Information Model, 
IoT Functional Model, IoT Communication Model, and IoT Security Model [260]. 
Moving from a theoretical to a physical representation of IoT, this is usually 
composed of: Smart devices, Network, Data processing, Data storage, Data 
aggregation, data analytics, and process integration.  
 
Communication between IoT elements can be addressed through multiple 
paradigms: device to device communication, device to IoT platform communication, 
device to gateway and data aggregation. The relation between IoT and Multiscale 
Computing (MSC) and Multiscale Modelling and Simulation (MMS) can be related to 
the following components: IoT as data provider for Multiscale Modelling and 
Multiscale Modelling as a way to experiment and validate complex processes with 
the aid of IoT. 
 
Many synergies have been found between IoT systems and Multiscale Modelling. 
First of all, IoT can facilitate data provision to the modelling phase, by handling 
access, routing and recording of data acquired from sensors attached to smart 
objects. Secondly, IoT devices naturally measure the physical space at different 



resolution and conceptual levels, thus providing a multiscale view of the space. In 
addition, IoT can simplify the understanding of the raw data through technologies 
related to Big Data, semantic representations, ontologies and machine-interpretable 
representations of domain knowledge, and context awareness.  
 
Multiscale IoT Systems for Experimental Multiscale Models can be used to acquire 
data at multiple scales corresponding to the scales selected in the Multiscale Model. 
Such IoT systems design use multiscale principles. The complex processes include 
Machine to Machine and Human to Machine Interaction. Relevant enabling 
technologies are related to Heterogenous objects, Heterogenous distributed 
systems (P2P, Wireless Sensor Networks, Cloud Computing), Complex Systems of 
Systems. IoT as a complex systems is not a simple set of subsystems and involves 
data and energy transformation, interaction, interoperability, feed-back and feed-
forward structures, self-organization and self-management [262]. 
 
An important development of Internet of Things with applications in medicine is 
referred as Internet of Medical Things. The Internet of Medical Things (IoMT) can be 
described as an internet based environment connecting medical devices and 
services. Applications of IoT technologies in medicine are increasingly common 
[263, 264, 265]. In cancer treatment studies blood pressure monitoring bracelets 
and tracking apps have been used to gather relevant information. Continuous 
Glucose Monitor (CGM) can be connected in an IoT environment to transmit data 
to mobile devices thus facilitating the analysis of blood glucose levels. A Bluetooth-
enabled coagulation system has been used in connection to IoT environment in 
order to help patients become aware of potential blood clots and transmit results 
to healthcare providers. A wearable smart asthma monitor can detect symptoms 
related to asthma attacks and connected to an IoT environment can track and 
detect the inhaler. 
 
 
 
Lattice Boltzmann method. Lattice Boltzmann (LB) method is a discrete numerical 
method used mainly for simulations of fluid flow [266, 267, 268, 269, 270]. The main 
advantage of this method is that it is not necessary to solve differential equations, 
which makes the implementation relatively simple and it is possible to parallelize the 
software. In LB method, fluid is observed as a set of fictional particles. These 
particles can move along the predefined directions, and the dynamics of their 
motion is modelled through their mutual collisions and further propagation in the 
observed domain. A special distribution function is defined, and this function 
depends on the state of neighbouring particles and has an identical form for all the 
particles, i.e. for all the nodes in the lattice mesh. Macroscopic quantities, such as 
density, pressure, velocity, are calculated using the components of the distribution 
function [271, 272]. 
 
Examples of the use of the Lattice Boltzmann method in medicine include the 
modelling of the motion of endolymph through the semicircular canals of the inner 
ear [273, 274]; and the analysis of the numerical and experimental transport of low-
density lipoproteins (LDLs) through arterial walls [275]. Open-source software 



implementing LB methods are also available, see for instance 
https://www.openlb.net and https://palabos.unige.ch. 
 

 
Figure 7. Graphical representation of the Lattice Boltzmann (LB) method. 

 
 
Machine Learning. Machine learning is the science of using computers to discover 
new information from observations [276, 277]. There are several families of machine 
learning methods: supervised learning, unsupervised learning and semi-supervised 
learning. The choice of the strategy depends on the nature of the used data. A large 
and complex database is commonly required to develop a machine learning model. 
In system medicine field, bio-marker extraction or human genome classification is 
typical example of machine learning model. For further details, see also data mining, 
CRISP-DM, deep learning. 
 
 
 
Mediation analysis. If two variables (an independent F and a dependent G) show a 
statistically significant correlation, it does not necessarily mean a direct causative 
link, as the correlation might be caused by a third variable (the mediator), which is 
often non-observable – and which is influenced by the independent variable and by 
itself influencing the dependent variable. A mediation analysis can elucidate such 
interactions and dependencies and helps to differentiate between direct and indirect 
effects [278, 279]. This type of analysis can be performed with specific packages of 
the Bioconductor R environment or with add-ins of commercial software such as 
SPSS. It is important to note that a mediation effect can be full or partial – and that 
it can be moderated by additional parameters. Additionally, it has to be stated 



though that mediation analysis cannot be used to detect or analyse multiple 
interdepencies. 
 
 
 
Medical Informatics. Medical informatics (also known as Health Informatics or 
Biomedical Informatics) is a science at the crossroad of information science, 
computer science, social sciences, and health and medical sciences. This research 
area deals with all the components of information systems (data acquisition, 
information and knowledge resources, devices and networks, regulation and ethics, 
and more) used for supporting and improving healthcare management (e.g. clinical 
knowledge management), delivery (e.g. patient-related data follow-up over time) 
and research (e.g. developing standards encoding diagnostic for epidemiological 
purposes) [280, 281, 282, 283]. Medical Informatics is an umbrella and the core for 
different sub-specialities such as clinical informatics, nursing informatics, public 
health informatics, consumer health informatics, and veterinary informatics. As a 
multidisciplinary field, the Medical Informatics playground consists of developing 
and investigating theories, models, methods, processes and systems, used for 
generating, storing, retrieving, using and sharing health and medical data, 
information, knowledge, and decision support. From an application perspective, 
medical informatics is actively and dynamically investigating and supporting health 
and medical reasoning by experimenting models and simulations  across a wide 
spectrum: from molecules to populations, from a biological system point-of-view to 
a global population and One Health perspective. Moreover, end-users are a crucial 
component of the overall system in Medical Informatics. For efficiency reasons, 
researchers in the field of Medical Informatics have to continuously monitor the 
changes in different spheres such as the social, economic, ethical and educational, 
and update their models in accordance to these changes. In recent years there has 
been an important and growing trend of applying algorithms and know-how from 
the fields of Business intelligence and automation in Medical Informatics, e.g. data 
and text mining, analysis, and information and knowledge management – see 
clinical decision support systems. From the integrative perspective of systems 
medicine, Medical Informatics investigates and delivers end-to-end frameworks 
supporting complex medical decisions, driven by evidence-based medicine for 
continuously improving health and disease management at the individual and 
populations levels [284]. One of the most critical parts of research done in Medical 
Informatics considers ethical and legal regulations and constraints in the 
technological side of medical field [285]. As new means of measuring, 
communicating and managing patients emerge, there is a need to continuously 
monitor and update the requirements for ensuring security, i.e. keeping 
confidentiality, integrity, and availability of health and medical data sensitive data. 
 
 
 
metaboAnalyst. Part of the same family of websites including networkAnalyst and 
microbiomeAnalyst, this web site provides a visual analytics platform for meta-
analysis of metabolomics data (www.metaboanalyst.ca) [286]. 
 



 
 
 
Metabolomics. Metabolomics is the scientific study of a set of metabolites present 
within an organism, cell, or tissue. It was also defined as a global measurement of 
small molecules (metabolites), which are produced or modified in an organism. 
Metabolites can also result from a stimuli (nutritional intervention, drugs, genetic 
perturbations, etc.), are present in a system (blood, urine, saliva, etc.) and 
accessible to analysis [287, 288]. Metabolomics is one of the functional level tools 
being employed to investigate the complex interactions between metabolites but 
also their regulatory roles through their interactions with genes, transcripts and 
proteins. It is actually considered as a powerful phenotyping tool to better 
understand the biological mechanisms involved in the pathophysiological processes 
and identify biomarkers of metabolic deviations [289]. Indeed, it provides, at a 
molecular-level, multivariate information of multi-compartmental biological systems 
that reflect changes in biological processes [290]. 
 
 
 
microbiomeAnalyst. Part of the same family of websites including networkAnalyst 
and metaboAnalyst, this web site provides a visual analytics platform for meta-
analysis of microbiome data (www.microbiomeanalyst.ca) [291]. 
 
 
 
Model robustness. Model robustness is a widely used concept in modelling under 
uncertainty, namely with Robust Optimization approaches. For that, the objective 
function of a Stochastic Linear/Quadratic Programming is modified by introducing 
penalization parameters related with non-desired attributes (e.g., high variability on 
solutions, non-satisfaction of products demands, over-designing of production 
capacities, non-utilization of expensive equipment), or probabilistic restrictions are 
modified by enlarging/narrowing “soft” bounds (e.g., “worst case” analysis) [292]. 
 
For instance, the Two-Stage Stochastic Programming (2SSP) [293] approach for 
the capacity expansion of a pharmaceutical supply chain allows both the promotion 
of solution robustness (by penalizing the deviations on the solutions, e.g., minimizing 
the solutions variance) and the model robustness (e.g., minimizing the expectances 
for the non-desired attributes). Namely: i) at the first stage, the capital and 
investment decisions must be taken (that is, the project variables are calculated 
“here-and-now”); ii) in the second stage, the uncertainty is introduced through a set 
of scenarios and the related probabilities (in this “recourse phase”, it occurs the 
probabilistic calculation of the control variables).  
 
Then, model robustness is obtained when the optimal solution does not present 
high values for the probabilistic measures of the attributes to avoid (namely: for the 
expectance of excess/unused production capacities that would imply larger 
investment costs; and for the expectance of unsatisfied products demands that 
would impact negatively the patient’s health). Model robustness is also strongly 



connected with other concepts of interest, such as Model Verification and 
Validation, Parameter Sensitivity Analysis and Uncertainty Quantification, 
Probabilistic Risk Analysis. Several drawbacks can occur on model robustness 
developments, e.g., due to resource consuming, standard accuracy, or uncertainty 
see [294, 295] for details. 
 
 
 
Model Verification and Validation. Model verification is a process to verify if a given 
model has been directly coded or mathematically represented; on the other hand, 
model validation aims at verifying if the implemented model is the right one for the 
biological system of interest. Model verification is a straightforward task, thanks to 
many direct techniques to check and debug computer programs. Model validation, 
on the other hand, is more complex, and is commonly performed using theoretical 
outcomes or experimental measurements. It is important to note that model 
validation of biological systems is extremely complex and difficult due to the lack of 
in vivo data and measurement protocols [296, 297]. 
 
 
 
Morphometric similarity networks. Morphometric similarity networks are graph-
based representations of the structure of the brain [298]. The study of structural 
differences in the brain by topological analysis based on graph theory has the 
disadvantage of generating a connectivity matrix at the group level and, therefore, 
the connectivity parameters are calculated at the group level. Recently, a new 
technique has been developed that allows to generate a connectivity matrix at 
subject level based on the interregional similarity of multiple morphometric 
parameters measured by multimodal MRI [298]. Typical morphometric 
measurements taken from multimodal image data for each brain region are: 
fractional anisotropy (FA), mean diffusivity (MD), magnetization transfer (MT), grey 
matter volume (GM), surface area (SA), cortical thickness (CT), intrinsic (Gaussian) 
curvature (IC), mean curvature (MC), curved index (CI) and folding index (FI). For 
each subject, these values will form a vector of morphometric measurements for 
each region. Then, the morphometric similarity matrix (MSM) of the subject will be 
obtained by calculating the Pearson’s correlation between the vectors of the 
morphometric characteristics of each pair of regions. Finally, the morphometric 
similarity network (MSN) will be obtained by thresholding this MSM. Therefore, we 
end up with one network (MSN) per subject, which will allow us to calculate the 
(structural) connectivity parameters at the subject level. Recently some papers have 
been published that demonstrate the validity of this technique [299, 300]. 
 
 
 
 
Multiphysics systems. Multiphysics systems are systems consisting of more than 
one component, each governed by its own principle(s) for evolution or equilibrium 
(conservation or constitutive laws) [301]. Two possibilities for classification are 
related to the coupling: 



 
• bulk couplings, i.e. through relations that are active in the overlapping 

domains of the individual components; 
• couplings happening on idealized interfaces of lower dimension, e.g. through 

boundary conditions that transmit fluxes, pressures, or displacements. 
 
Some examples of bulk-coupled multiphysics systems include radiation with 
hydrodynamics in astrophysics, electricity and magnetism with hydrodynamics in 
plasma physics (magnetohydrodynamics), and chemical reaction with transport in 
combustion or subsurface flows (reactive transport). Since forward models are 
simulated successfully, inverse problems, sensitivity analysis, uncertainty 
quantification, model-constrained optimization, and reduced-order modelling are 
gaining more attention. The physical model is, in these advances, augmented by 
variables other than the primitive quantities in which the governing equations are 
defined. These variables may be sensitivity gradients, probability density functions, 
Lagrange multipliers, or coefficients of system-adaptive bases. Equations that 
govern the evolution of these auxiliary-dependent variables are often derived and 
solved together with other physical variables [302]. For an example of applications 
of multi-physics systems to medicine, see [220]. 
 
 
 
Multi-layer networks. Complex networks whose interactions are defined on more 
than one layer. In the standard complex network approach, links between nodes 
are usually of a single type, the only difference between them being a (generally, 
real) number, quantifying the weight of the connection. Nevertheless, considering 
all links as homogeneous can be an important constraint, as connections in real-
world systems may be of different types. A biological example can help clarify this. 
One of the most interesting success in recent neuroscience has been the creation 
of a full map of the C. elegans’ neural network, consisting of 281 neurons and 
around two thousand connections [303]. Yet, connections are not homogeneous: 
neurons can communicate through chemical and electrical (ionic) links, with 
completely different dynamics and time scales. Therefore, a correct representation 
should include two independent layers of connections. This resulted in the creation 
of the multi-layer network concept, i.e. graphs whose connections are organized in 
separate layers [304]. Multi-layer networks explicitly incorporate such heterogeneity, 
such that each link type (relationship, activity, category) is represented by a different 
layer, with the same node having different neighbours in each layer. 

 
Figure 8. Example of a graphical representation of a multi-layer network composed of three layers. 



 
 
 
Multiscale Biomolecular Simulations. Biomolecular simulations are computer 
simulations of molecular dynamics of biological systems, such as proteins, nucleic 
acids, saccharides, membranes and their complexes. Multiscale biomolecular 
simulations are simulations of molecular dynamics of biological systems at different 
levels of granularity, differing in spatial resolution and other aspects. 
 
First attempts to simulate molecular systems started in 1950s. The first biomolecular 
simulation was published in 1977 by J. Andrew McCammon, Bruce R. Gelin and 
Martin Karplus (2013 chemistry Nobel Prize winner) [305]. The authors simulated 
several picoseconds of bovine pancreatic trypsin inhibitor in vacuum. An important 
milestone of biomolecular simulations was the development and refinement of 
biomolecular force fields (formulas and their parameters for calculation of potential 
energy from atomic coordinates) and simulation software. Packages CHARMM, 
AMBER, Gromos, Gromacs, NAMD, ACEMD and BOSS have been tuned for high 
performance on a wide range of machines and operation systems. 
 
There are several types of granularity in multiscale biomolecular simulations. The 
main reason for interest in multiscale versions of biomolecular simulations is in the 
fact that these simulations are extremely computationally expensive. Each atom in 
a typical solvated biomolecular system interacts (covalently or non-covalently) with 
another approximately 5.000 atoms. These interactions must be evaluated in every 
simulation step. The integration step of most biomolecular simulations is in a 
femtosecond scale. It is therefore necessary to carry out millions of steps (and 
evaluate interactions of millions of atomic pairs in each step) to simulate 
nanosecond time scales. 
 
The first type of granularity is in modelling of interaction between atoms. There are 
two major models that make it possible to calculate energy and forces in a molecular 
system - quantum mechanics and molecular mechanics. Quantum mechanics 
models the system by solving Schrödinger equation for electrons. On the other 
hand, molecular mechanics represents atoms as particles connected by simple 
mechanical “springs” and interacting via interatomic potentials with simple 
mathematical descriptions. Electrons are not explicitly modelled. Quantum 
mechanics calculations are significantly more complex and, therefore, more 
computationally expensive. The advantage of quantum mechanics is that it does 
not require ad hoc sets of parameters for each class of molecules. Furthermore, 
most molecular mechanics models do not take into account the reactivity of the 
molecular systems. Molecular mechanics (with few exceptions) keeps the chemical 
structure fixed during the whole simulation, i.e. it disallows breakage and formation 
of covalent bonds in chemical reactions. For this reason quantum mechanics is 
used to study the mechanism of chemical reactions. 
 
Enormous computational costs of quantum mechanics led to a mixed (multiscale) 
model of quantum mechanical and molecular mechanical (QM/MM) calculations. 
For example an enzymatic reaction can be studied on a model of enzyme with the 



substrates and active-site residues modelled by quantum mechanics and the rest 
of the system modelled by molecular mechanics. 
 
This second type of granularity addresses the number of particles in the molecular 
system. These models differ in the number of atoms represented by a single particle. 
In a standard fine-grained (“all-atom model”) model there is one particle 
representing one atom. All quantum mechanical models are all-atom models. 
Simplified versions called “united-atom models” represent certain groups of atoms, 
such as CH, CH2 and CH3, as a single particle. Such particle represents the bulk 
properties of the whole group. This reduces the overall number of particles in the 
system and accelerates the simulation without significant loss of resolution. 
 
Further coarse-graining in so-called “coarse-grained models” replaces multiple 
atoms, typically four non-hydrogen atoms, by a single particle. Coarse-grained 
simulations make it possible to study several orders of magnitude longer time-scales 
than all-atom simulations. The prize paid for this is loss of resolution. Coarse-grained 
simulations have been extremely successful in simulations of membranes, interfaces 
and related systems. They are less frequently used in studies requiring precise 
atomic resolution, such as in drug discovery. Models mixing all-atom and coarse-
grained simulations (similarly to mixed QM/MM models) have been developed to 
address this problem. 
 
There are examples of studies with further coarse-graining. For example, elastic 
network models of proteins represent individual amino acids as particles connected 
by harmonic springs. This representation of a protein resembles models used in civil 
engineering to test mechanical stability of constructions. They are used in 
biomolecular simulations, but more frequently, they are studied by static 
approaches such as normal mode analysis. Surprisingly, bulk mechanical properties 
of biomolecules can relatively accurately predicted using such simplified models. 
 
The major aim of biomolecular simulations is to predict certain property of the 
biomolecular system. The third type of granularity is in depiction of such molecular 
properties. Biomolecular simulations produce trajectories - thousands of snapshots 
of thousands of atoms. These pieces of big data can be analysed to extract relevant 
low-dimensional properties of the systems. Such properties can be than used to 
build thermodynamic and kinetical models of the simulated system. 
 
The last granularity is the computational granularity. As already mentioned 
biomolecular simulations are computationally expensive. Most software used in 
biomolecular simulations has been developed to run in parallel on multiple cores of 
a CPU (multithreading) and multiple CPUs and node connected by Message 
Passing Interface. Recently Fast Multipole Method [306] is being introduced into 
biomolecular simulations in order to enable multiple levels of parallelism. Alternative 
hardware such as graphical processing units and special purpose hardware have 
been successfully used. The multiscale nature can be further extended by 
application of special multiple ensemble or multiple time scale methods. 
 
 



 
 
Multiscale modelling. Multiscale modelling is a numerical approach to study the 
biological systems of interest at multiple time and length scales, i.e. in which multiple 
models at different scales of time and/or space are used simultaneously to describe 
one complex system [307]. To illustrate, a multi-cellular organism can be modelled 
at different levels, e.g. DNA, cells, fibres, and tissues; with each model getting input 
from the lower-level one [308]. 
 
Those models are commonly developed using a combination of several numerical 
methods. Finite element method could be used to model system behaviour at organ 
and tissue scales. Agent-based simulation could be used to model single cell or cell 
population behaviours. Molecular dynamics could be used to describe the 
movements of atoms and molecules. To make the link between scales, 
homogenization theory could be used. This theory allows constitutive behaviours at 
the macroscopic level to be described using the information from interactions 
between macroscopic and microscopic levels. There are two main multiscale 
modelling strategies. The first one is the hierarchical simulation in which the system 
behaviour is separately described and simulated for each scale and then the 
interaction is performed. The second one is the concurrent simulation in which all 
system behaviours and their interaction are simultaneously described and 
simulated. There is no time delay by using the second strategy but the strategy is 
complex for model development and implementation. 
 
The importance of multiscale modelling lies, on one hand, in the fact that available 
macroscale models are usually not accurate enough, and on the other hand, in the 
fact that microscale models are not efficient enough and/or offer too much 
information. By integrating both approaches, the idea is to find a compromise 
between accuracy and efficiency [309]. 
 

 
Figure 9. Graphical representation of the typical scales in a multiscale modelling. 

 
 
 
 
 
Network Analysis Software.  

• NetworkX [310]. Python library used for the creation, manipulation, and study 
of the structure, dynamics, and functions of complex networks. This allows 
the creation of networks with different algorithms, evaluation of a large set of 



standard metrics, and finally display the results in an easily understood way. 
Freeware. Available at networkx.github.io. 

• Cytoscape [311, 312]. Software specialized on the representation of 
networks, with some additional tools for the integration of biological data. It 
also provides some basic network analysis capabilities. Freeware. Available 
at www.cytoscape.org. 

• Gephi [313]. Interactive visualisation and exploration platform. Freeware. 
Available at gephi.github.io. 

• Pajek [314]. Software for representing complex networks, with some basic 
analysis capabilities. Freeware. Available at mrvar.fdv.uni-lj.si/pajek/. 

• VisANT [315]. Software for the visual study of metabolic networks and 
pathways. Freeware. Available at visant.bu.edu. 

• IBM ® i2 Analyst's Notebook. Software for the integration of social data and 
network analysis. Commercial. Information at www-
03.ibm.com/software/products/en/analysts-notebook. 

• SAS ® Social Network Analysis. Software for the analysis of social networks. 
Commercial. Information at 
support.sas.com/software/products/sna/index.html. 

 
 
 
 
networkAnalyst. Part of the same family of websites including metaboAnalyst and 
microbiomeAnalyst, this web site provides a visual analytics platform for meta-
analysis of differentially expressed genes or proteins (www.networkanalyst.ca) [316, 
317]. It allows input of raw RNA-sequencing data, single or multiple gene expression 
tables or pre-calculated lists of differentially regulated genes with expression values. 
The input is then compared with known interaction networks covering not only 
various protein-protein interactomes, but also relations between genes and 
miRNAs; transcription factors, drugs or chemicals. By default, a first order network 
is computed, which can also be switched to a second order network to increase 
the number of interactors, or the zero-order network to decrease the number of 
nodes. If the complexity is too high, it can be reduced with filters on betweenness 
or degree. Another option is to calculate a minimum network, which comprises the 
least number of nodes that are required to link the input genes. The network can be 
downloaded in a Cytoscape-compatible SIF-format, but the standard routine is to 
visualize it within the web platform in an adjustable manner including up- or 
downregulation of expression levels and different layouts, which can be saved in 
SVG-format. Moreover, and most importantly, the network can then be statistically 
compared with different databases such as KEGG, Reactome, gene ontologies or 
transcription factor motifs to obtain functional enrichment values. A module explorer 
can be applied to extract subnetworks with statistically elevated links and these can 
be further analysed for functional gene enrichments.   
 
In case that the differential expression is computed on the NetworkAnalyst platform, 
gene clustering can be performed comprising heatmaps, principal-component 
analysis (PCA) or t-distributed stochastic neighbour embedding (t-SNE). Moreover, 



Gene Set Enrichment Analysis can be done and  Venn- or Chord diagrams can be 
created for multiple comparisons.  
 
 
 
 
 
Network medicine. General term to design applications of complex networks theory 
to medicine, and hence to the identification, prevention and treatment of diseases 
[84, 318]. It is buttressed by the idea that elements constituting our bodies at all 
scales (e.g. from genes, to cells and organs) do not exist in an independent fashion, 
but are rather connected by a dense set of interdependencies. Understanding one 
disease thus goes beyond the simple analysis of one element. For further examples, 
see biological networks. 
 
 
 
Null models. In complex networks theory, a null model consists of a set of networks 
with some characteristics equal to the graph under study, while being random in all 
other aspects [319]. The simplest case is therefore a set of completely random 
networks, i.e. Erdős–Rényi graphs, which share the same number of nodes and 
links, but are otherwise completely random. 
 
The main advantage provided by null models is that they allow breaking the coupling 
existing between different topological properties, and thus allow comparing 
networks with heterogeneous characteristics. To illustrate, the value of a given 
topological metric can be normalized with what expected in the null model, thus 
helping to assess whether the observed value is special or, on the contrary, is the 
result of the other restrictions imposed in the model. The simplest solution involves 
the calculation of a Z-Score, which indicates how many standard deviations the 
observed metric is from the (null model’s) expected value [202]. 
 
 
 
Nvidia Clara. Nvidia Clara is a computational platform that gathers CUDA 
accelerated tools for medical imaging and genomics. The Software Development 
Kit (SDK) provides libraries for computing, visualization and AI. The SDK allows the 
users to deploy their applications in any GPU platform they have access to. Within 
this platform, Nvidia Clara Medical Imaging provides tools for data annotation, 
training of AI models, and deployment in the case of medical imaging applications 
(e.g. computerized tomography (CT), magnetic resonance images (MRI), 
ultrasound, X-ray, and mammography). Adapting one of the included in the SDK 
pre-trained AI models with transfer learning accelerates the AI modelling as less 
time and training data are used. On the other hand, the Nvidia Clara Genomics 
platform gathers CUDA accelerated tools for genomics sequencing and analysis. 
Biomedical examples of the use of Nvidia Clara include the segmentation of images 
of brain tumours [320], and gene sequencing [321]. 
 



 
 
Object oriented modelling. For effective diagnosis and treatment of diseases we 
need to understand the dynamics of metabolism, including the metabolism of 
drugs. Here, the large scale computational models that describe dynamics from the 
metabolic, gene regulatory and signal transduction perspectives are of crucial value 
[322]. Different modelling approaches are in use, including the  object oriented 
modelling. This technique  is originally derived from machinery. Dymola (Dynamic 
Modeling Laboratory) has been developed by Dassault Systems, a branch of the 
Dassault group that produces also airplanes. Dymola sets the basics of object 
oriented modelling of the biological systems even if its initial  intention has been  for 
use within automotive, aerospace and robotics process. In Dymola we can describe 
the entire multi-component systems and in this manner represent the real world as 
good as possible.  
 
The basics of object oriented modelling is represented by a library of objects. An 
object is an element corresponding to components of mechanical, electrical, vehicle 
dynamics, etc., and also biological systems. In building the model, the objects from 
the library are moved by drag-and-drop and interactions between the model  
components are described by graphical connections that model the physical 
coupling of the components. The unique feature of object oriented modelling is that 
the models are intuitively organized to mimic the real physical or biological systems. 
In systems medicine  we can imagine that large macromolecules (genes, mRNAs, 
proteins including enzymes and  transcription factors, etc.) are objects.  The 
signalling pathways represent links or information that is  transferred  through 
connections  between these objects.   
 
Nowadays, Modelica is used as the most popular programming language for 
object-orienting modelling. The benefit of Modelica is that the users can  create their 
own libraries. BioChem has been designed  as a library for metabolic pathways 
[323] that describes enzymatic reactions in different  biochemical pathways. SysBio 
library [324] was initially used to construct the SteatoNet model with multi-layered 
regulation, including the transformation of genes to proteins and the transcriptional 
regulation [325]. Additionally, SteatoNet describes multiple tissues i.e. the liver and 
adipose tissue and their connections through the blood.   
 
The beauty of object oriented modelling is that the number of parameters that need 
to be incorporated into the model is small. We can thus avoid problems with 
parameter estimation or model overfitting. This is possible due to observation of the 
normalised steady-state of the system’s response, allowing modelling in the 
absence of parameters that describe the dynamics of the observed system. Another 
benefit of this type of modelling is the ability to incorporate specific data towards 
i.e. personalisation. In this manner, the LiverSex has been produced as the first 
model describing the distinct liver metabolism of females and males [326]. 
 
 
 



Ontologies. Ontologies (also known as controlled vocabularies and semantic 
representation) can be defined as formal representations of knowledge in a certain 
domain, in an understandable way for people and computers [327]. They are made 
of defined classes of entities, structured in hierarchy where concepts are connected 
with standardized relationships [328]. In biomedical research, a great variety of 
ontologies have been developed to describe domain knowledge, for example, the 
Gene Ontology (GO) or the Disease ontology. BioPortal is a repository of biomedical 
ontologies, many of which can be openly reused. In addition, the Open biomedical 
Ontologies (OBO) is an established platform developed for interoperability and 
shared principles between ontologies [329]. The question of ontology relevance in 
the context of systems medicine has been particularly discussed. In fact, because 
of its intrinsic paradigm change, such ontologies must switch from a biological 
structure to a biological function architecture [330]. Beyond the existing ontologies, 
the US National Research Council proposed a new taxonomy for biology and 
medicine taking into account the multiple aspects of basic science and clinical 
characteristics to define disease endotype [331]. The development of phenotype-
driven ontologies is also of great interest for the field [332]. However, with the 
explosion of heterogeneous clinical data and scientific information, harmonization 
between scientific communities as well as their participation to computational 
resources are essential for the future of ontologies in translational research and 
precision medicine [333]. 
 
 
 
Parameter estimation. Mathematical models in systems biology and systems 
medicine have a structure that characterizes interactions between elements of the 
system. Next level of detail are the parameters of interactions to quantify the 
intensity of interaction. Some of model parameters can be measured or found in the 
literature while information about others is missing. Parameter estimation [334] can 
be used to estimate the unknown parameters by fitting of the model to the available 
experimental data. Usually it is solved as a numerical optimization problem where 
the difference between measured data and model calculations have to be minimized 
searching the best combination of unknown parameter values. Parameter 
estimation can have several results:  
 

• The model behaviour fits the experimental data. It is not expected that model 
behaviour would match each and every measurement as they contain 
measurement errors and mathematical models are always simplifications of 
reality. Even in case of success, parameter identifiability should be checked 
(see Parameter identifiability). 

• The model behaviour does not fit well to the experimental data. There can 
be several reasons: model definition and range limitation of estimated 
parameters have to be checked. Another problem can be the selection of 
inappropriate optimization method that leads to local minimum or stagnates 
[335]. 

• The model cannot reproduce the expected type of behaviour. This may be 
an indication that the structure of the model does not correspond to the 
system of interest; and that, without suitable changes in the model structure, 



a satisfactory behaviour as well as an identification of parameters cannot be 
reached. 

 
 
 
Parameter identifiability. In case of successful parameter estimation, model 
parameters cannot be always trusted [334]. It can happen that a value of a particular 
parameter is not important for particular experimental set-up and any value can 
produce acceptable fit of model with experimental data. Another parameter 
unidentifiability reason can be structural unidentifiability [336] where the structure of 
model in combination with experimental results does not allow identification of 
particular parameters. For instance, if just summary flux of two parallel metabolic 
pathway branches is measured, parameters defining each particular flux cannot be 
identified. 
 
 
 
Parameter Sensitivity Analysis and Uncertainty Quantification. Parameter sensitivity 
analysis and uncertainty quantification are two important best practices when 
developing and simulating biological systems of interest. Parameter sensitivity 
analysis allows to determine which parameters are sensitive to the input variations 
with the used constitutive laws [337, 338]. This analysis is commonly time-
consuming due to the repetitive nature of the procedure. Moreover, the 
determination of a plausible perturbation value range is also a difficult issue. A 
relative percentage (e.g. ±10%) is usually used. Uncertainty quantification aims to 
model the uncertainties related to the system input values or variables and their 
propagation on the model outcomes through the used constitutive laws. A lot of 
data is commonly needed for uncertainty quantification. Data assumption could be 
performed with limited data samples but the accuracy level is questionable. Precise 
and imprecise probabilities could be used to model uncertainties. Monte Carlo is a 
classic example of uncertainty propagation method [339]. 
 
 
 
Permutation test. When we have to test between-group differences, for one or more 
values per subject, we can use a (non-parametric) permutation test to infer whether 
the difference between the two values is statistically significant or not. To do so, we 
need to generate random groups by shuffling the labels of the groups. The metric 
differences between the two resulting random groups are then used to create a 
reference distribution for each metric in order to reject or retain the null hypothesis 
that there are no differences between the groups. To ensure that the reference 
distribution is appropriate we need to generate thousands of random groups. With 
1.000 random groups the smallest possible p-value is 10-3, while with 100.000 
random groups the smallest possible p-value decreases up to 10-5. A practical way 
is to start with a not too large number of random groups, for instance 1.000, and 
increase this number to a larger one if the p-value is small enough to be interesting. 
Because this calculation can be computationally demanding, sometimes parallel 
computing is needed. One way to avoid it is to use other techniques based on tail 



approximation, which obtain accurate p-value with a drastically reduced number of 
permutations [340]. A typical case in which we will need to use the permutation test 
is when we are willing to test between-group differences in structural covariance 
analysis. In this case, we have the connectivity matrix at the group level and 
therefore the global connectivity measures are also at the group level. Testing 
differences between group level measures will require a permutation test. 
 
 
 
 
Phase transition. The original meaning of the term phase transition is to be found in 
statistical physics, and especially in thermodynamics. When one defines the phase 
of matter as a state in which it has uniformly physical properties, a phase transition 
occurs when that matter undergoes a transformation between two states. To 
illustrate, water and ice are two phases (respectively liquid and solid), and the 
transition between both of them (i.e. the freezing process) is a phase transition. The 
term is nevertheless also used in a more general sense, to indicate any transition 
between two homogeneous and easy identifiable conditions of a system. For 
instance, when deleting nodes from a complex networks to simulate an attack to 
the system, the initial connected status and the final disconnected one are two 
phases, with a transition in between them [341]. 
 
Suppose one analyses the evolution of some metric describing the system as a 
function of an external parameter; in the previous example, the former can be the 
connectedness of the network, which is studied as a function of the number of 
removed links. Two types of transitions can then occur: 
 

• First-order phase transitions, which exhibit a discontinuity in the first 
derivative of the metric (solid red line of Fig. 10). This implies that the system 
has an abrupt reaction to the change in the external parameter. 

• Second-order phase transitions are continuous in the first derivative, but 
usually exhibit discontinuity in a second derivative (dashed blue line of Fig. 
10). The response of the system is therefore smoother than in the previous 
case. 

 

 
Figure 10. Example of two phase transitions, a first-order (red solid line) and a second-order one (dashed blue line). 



 
 
 
Physiome is a multi-scale approach aiming to functionally synthesize models at 
different levels, and understand human physiology based on computational models 
[342]. Standardisation of models has been part of this effort, and an important 
number of models is now available in the physiome repository 
(https://models.physiomeproject.org/welcome).   
 
A flagship project has been the cardiovascular physiome, which aimed to use 
integrative multi-scale modelling and link the whole heart function with small scale 
systems and phenomena (e.g. ion channel mutations, ischaemic tissue,  drug 
toxicity, biochemical pathways), always with an eye towards providing tools for the 
clinician to investigate hypotheses and interpret experimental data. Within the 
physiome paradigm, the virtual physiological human (https://www.vph-
institute.org/), has been a long term initiative to embrace systems medicine at 
organism level, towards integrating all information available for each patient, and 
generating computer models to predict patient’s health evolution. 
 
 
 
Precision medicine. According to the HORIZON2020 Advisory Group (EU Health 
Ministers – December 2015), precision medicine is “a medical model using 
characterization of individual’s phenotypes and genotypes (e.g., molecular profiling, 
medical imaging, lifestyle data) for tailoring the right therapeutic strategy for the right 
person at the right time, and/or to determine the predisposition to disease and/or 
to deliver timely and targeted prevention.” Precision medicine is then an approach 
to patient care that promotes the idea of doctors selecting most adequate 
treatments for patients based on a genetic understanding of their disease. This idea 
does not literally mean to create the drugs or medical devices that are specific for a 
patient, but divide the individuals into clusters (subpopulations) that differ in their 
susceptibility to a particular disease, biology or prognosis of those diseases or 
response to specific treatments and select treatment based on that knowledge 
[343]. Preventive or therapeutic interventions can then be concentrated on those 
who will actually benefit and save expenses on unnecessary treatments and side 
effects in patients that do not. Older synonym for precision medicine was 
“personalized medicine”, which was often misinterpreted as implying that unique 
treatments can be designed for each individual. As a result, the term “precision 
medicine” was created [344]. 
 
 
 
Probabilistic Risk Analysis. Probabilistic risk analysis (PRA) is aiming at quantitative 
measures for evaluation the risk of system failures (e.g., supply of essential 
medicines within a healthcare system, availability of innovative drugs and active 
ingredients in the pharmaceutical sector, disruption of agri-food supply chains in 
natural disasters, security issues in the nuclear power industry), in which the 
common statistical analysis is very difficult or even impossible due to multiple and 



disparate issues (e.g., non-existence of pertinent data, the system complexity, the 
uncertainty about consequences) [345]. 
 
The probabilistic risk is related with the probability distributions for the losses in a 
given time horizon, while PRA methods also includes event trees, fault trees, and 
Bayesian networks. The PRA approach typically considers: i) identification of failure 
scenarios; ii) computation of scenarios probabilities, by combination of events 
probabilities and the associated random variables distributions; iii) the evaluation of 
consequences, the extension and impacts of those scenarios. The data obtained in 
this way can then be used to feed a robust model with multiple goals, namely, by 
minimizing the expectance of system failure for a given budget (and/or for a given 
schedule), while verifying if the probabilistic measures for risk failure are satisfactory.  
 
Probabilistic risk analysis is also strongly connected with other concepts of interest, 
such as Model robustness, Model Verification and Validation, Parameter Sensitivity 
Analysis and Uncertainty Quantification. Difficulties are usually associated with the 
scenarios definition, the selection of random variables distributions and events 
probabilities, as well as sparsity and high-dimensionality. 
 
 
 
Quantitative systems pharmacology. Quantitative systems pharmacology (QSP) or 
systems pharmacology modelling is a computational and mathematical modelling 
approach that simulates the mechanistic effects of drug effectiveness [346]. QSP 
combines pharmacokinetic/pharmacodynamic (PK/PD) modelling with systems 
biology and systems engineering [347, 348]. It integrates drug pharmacology, 
physiology, mathematics and biochemistry, and accounts for drug liberation, 
absorption, disposition, metabolism and excretion. QSP, which is a type of in silico 
modelling, typically makes use of differential equations to model the dynamics of 
the drug interacting with the biological system. More recently, QSP involves 
genomic, transcriptomic, metabolomic and proteomic levels, as well as regulatory 
and epigenomic levels. QSP is increasingly being used in pharmaceutical research 
and development to help guide the discovery and development of new treatments 
and therapies, and to extrapolate animal data to humans [349, 350, 351]. This is in 
line with recent directions in stratified medicine or precision medicine, by which 
model parameters can be tuned to simulate specific biomedical type. The 
advancement in big data and data science is gradually forming an integral part of 
QSP, complementing its traditional mechanistic modelling. 
 
 
 
Random Forest. In data mining, Random Forests (RFs) are classification algorithms 
based on combining multiple Decision Trees (DTs) models. The underlying concept 
is that an ensemble of models, each one independently trained on a subset of the 
data and each one casting a vote about a particular instance, could yield a better 
result than a single model, especially in problems are characterized by a large 
number of variables, each one of them encoding very little information. Following 
this idea, Random Forests are created by merging multiple DT predictors, each one 



trained using a different subset of the initial data [352]. Each tree in random forest 
is grown as follows: i) sample with replacement a given number of cases from the 
training set at random. This sample will be the training set for growing the tree; ii) 
given K input variables, randomly select L ≪ K of them at each node, and choose 
the best one to split the node; iii) grow the tree with no pruning. Given one new 
instance, the final classification corresponds to the class voted by the majority of 
the trees. While there is no strict rule about the optimal number of trees to be grown, 
studies suggest that little is gained by going over 1.000 trees [353]. 
 
Random forests have three significant advantages: first, they do not suffer from 
overfitting, and can thus be use in small data sets. Second, their computational cost 
is reduced, and are very prone to parallelization (as each tree can be created in an 
independent process). Finally, they have been shown to outperform most known 
algorithms, in terms of accuracy [354]. On the negative side, it is worth noting that 
the number of trees in the model must be selected by the researcher, and that not 
clear rules are available to guide this process. 
 
 
 
Random graphs. Random graphs are graphs, or networks, that are artificially 
constructed by creating links between nodes according to a given probability 
distribution [355, 356]. As such, they do not correspond to any real-world system; 
but they instead provide a tool for answering specific questions about how some 
properties may appear. Due to the lack of any pre-defined structure, except for 
those naturally arising from the defined probability distribution, random graphs are 
well suited to be used as null models. 
 
 
 
Scale-free networks. A scale-free network is any complex network whose degree 
distribution approximatively follows a power law; in other words, the fraction of 
nodes with degree N goes as :(N) ≈ N',, with O being a parameter usually in the 
range (2, 3). Many real-world networks, including biological ones [357, 358], have 
been found to be scale-free to some degree [359, 360], although no consensus still 
exists on the best way of statistically test such property [361]. 
 
Scale-free networks are of relevance for different reasons. 
 
First of all, the degree distribution implies that most nodes have very few 
connections, while a (statistically significant) high number of them concentrate the 
majority of the links; these latter ones are thus more important for the functioning of 
the network, or more central, and are usually called “hub”. 
 
Secondly, the structure induced by scale-freeness implies a great resilience against 
random disruptions; note that, if a node is deleted at random, there is a high 
probability for that node to be secondary and weakly connected. On the other hand, 
a targeted attack can do much damage, as it can target a node of very high 
centrality [362, 363]. 



 
Finally, several models have been proposed to explain the appearance of scale-free 
networks [364, 365, 366, 367]; and, more generally, the presence of such structure 
can point towards the existence of some generative processes. 
 
 
 
Simulated annealing. Simulated annealing (SA) is a form of optimization that is used 
to approximate global optimization in a large search space. This method is used in 
discrete space, where finding an approximate global optimum is more important 
than finding a precise local optimum in a fixed amount of time. In these situations, 
simulated annealing is often preferable to methods such as gradient descent. It is 
especially useful in finding global optima when large numbers of local optima are 
present.  Simulated annealing uses the objective function of an optimization problem 
instead of the energy of material. Implementation of SA consists of hill-climbing and 
picking a random move, instead of the best move. If the selected move improves 
the solution, it is accepted, and when not, it moves with probability less than 1. The 
value of probability decreases exponentially with the amount of how much the 
solution is worsened [368, 369]. Beyond general optimisation problems (see for 
instance [370, 371, 372]), SA has extensively been used for segmenting medical 
images [373, 374]. 
 
 
 
Small-world network. The theory of small-world networks [375] is based on the 
observation of biologic or complex systems that can be represented using graphical 
models. The specific graph shows especial characteristics, such as having a high 
clustering of its elements, and a very fast association between any two different 
nodes that can be inferred by following the shortest path between the nodes 
through the graph connections. 
 
The formulation of small-world networks was inspired by the idea that the “degree 
of separation” or distance between two different (unfamiliar) persons on the Earth is 
about five [376]. Not only social networks have been observed to follow this pattern, 
network of collaborators, complex systems and brain networks also follow this 
interesting rule. 
 
A small-world network can be also explained as the transition from random or 
chaotic systems to highly regular or structured ones. For example, in a regular lattice 
network, where the nodes only have connections to the closest or adjacent nodes, 
it can be observed that by disconnecting and randomly reconnecting the nodes, 
the average distance between any two nodes in the network rapidly decays while 
maintaining the local network of closest nodes only decay slightly in density 
(clustering coefficient). In neural networks this property of small-worldness can be 
seen as critical to maintain a fast integration among distant neural population in 
order to process information efficiently, while the different tokens of information are 
locally processed in highly dense local networks. 
 



 
Figure 11. Example of the creation of a small-world network. 

 
 
Smoothed-particle hydrodynamics. Smoothed-particle hydrodynamics (SPH) is a 
computational method that is used for simulating the mechanics of continuum 
media, such as solid mechanics and fluid flows [377].  Many fields of research have 
employed SPH method, such as engineering, astrophysics, ballistics, volcanology, 
and oceanography [378, 379, 380]. It is a meshfree Lagrangian method, meaning 
there is no division of domain of interest in the form of mesh (see Finite Element 
Method and Finite Volume Method), but rather the coordinates move with the fluid. 
In such way, the resolution of the method can easily be adjusted with respect to 
variables such as density. Here, the computational domain is discretized by a finite 
set of interpolating points (particles) with invariant coordinates in the material frame. 
Each SPH particle represents a finite mass of the discretized continuum and carries 
the information about all physical variables which are evaluated at their positions. 
Interpolating (smoothing) function and its derivatives at surrounding particles are 
used to evaluate the function values and their derivatives at a specific particle [381]. 
SPH has been used, for instance, to model therapeutic solutions aimed at helping 
heart muscle to regenerate after an injury [382]. 
 
 
 
Solid-fluid interaction. Solid-fluid interaction is a numerical approach that is used to 
model phenomena that involve both the surrounding fluid and immersed solid 
objects. Using this approach, both domains are simulated concurrently, and they 
form a coupled mechanical system. The fluid is acting on the solid object via external 
forces and causes the motion and deformation of the deformable solid and vice 
versa – the solid is opposing the deformation and influence of fluid and this way 
alters the fluid flow. Solid-fluid interaction techniques have been applied, for 
instance, in modelling the deployment of stent within stenotic artery with deformable 
arterial wall [383]; in simulating the behaviour of deformable cells within a fluid flow 
[384, 385]; and in providing insight into the benefits of different treatment 
alternatives in a case of type B aortic dissection [386]. 
 
 
 
Statistical bioinformatics. Application of statistical techniques to large sets of 
biomedical data – mainly genomics data, but recently this has evolved to include 
any type of -omics data. For more information, refer to [387, 388, 389, 390]. 
 



 
Statistical Networks. One of the properties of a system is that it consists of 
interacting components at different levels. Creating a corresponding network may 
be based on biology (see Biological Networks) or may be based on analytical 
arguments, or both. Statistical epistasis networks belong among the simplest 
examples of such networks, in which nodes refer to units of analysis and edges are 
formed via a notion of statistical significance. They have become popular tools in 
genome-wide association interaction studies to highlight higher-order interactions 
in typically underpowered studies [391]. In general, the major challenge with 
statistical networks is to assess and minimize statistical artefacts that may hamper 
network-derived biological conclusion-drawing [392]. 
 
 
 
Support Vector Machine. Binary linear classifiers based on the identification of 
hyperplanes in the feature space, dividing the training instances in two groups 
according to the training label. The model is trained by firstly constructing a feature 
space, i.e. a hyper-space defined by the features available in the data set, which 
must always be numerical. Records are mapped into this space, and the best linear 
separation between them is then calculated. The best separation is achieved by the 
hyperplane that has the largest distance to the nearest training-data point of any 
class, as this minimises the error. Modified version of SVMs have been developed 
to tackle different problems, including regression problems [393], or the use of 
different kernels (i.e. distance functions) to obtain non-linear models [394]. Among 
SVM’s disadvantages are a high computational cost, and the complexity of dealing 
with classifications with multiple labels. For more details, refer to [395, 396]. 
 
 
 
Surrogate model. Surrogate model is an engineering method that is used when an 
outcome of interest cannot be easily directly measured, and instead, a model of the 
outcome is used. In many real-world problems, one simulation can take from 
minutes, to hours and even days to finish the calculation. Therefore, sometimes 
design optimization, sensitivity analysis and what-if analysis are impossible to 
investigate, since that would mean running thousands or even millions of 
simulations. Surrogate models, also known as metamodels, are compact, scalable 
analytic models that approximate the multivariate input/output behaviour of 
complex systems, based on only a limited set of computationally expensive 
simulations. In such way, surrogate models actually mimic the complex behaviour 
of the simulation model, and are applied in design automation, parametric studies, 
design space exploration, optimization and sensitivity analysis. Other synonyms for 
surrogate models are response surface models (RSM), emulators, auxiliary models, 
repro-models, metamodels, etc. [397]. 
 
 
 
Systems biology. Systems biology is the field devoted to the computational and 
mathematical modelling of complex biological systems [398, 399, 400]. It focuses 



on the relationships between the components of a biological system, and how these 
relationships give rise to its global function and behaviour. This is opposed to a 
reductionist paradigm. 
 
 
 
Systems bioinformatics. A new approach to the analysis of biomedical data that is 
based on the application of a systems biology perspective. This includes, on one 
hand, a top-down view, with bioinformatics methods being used to extract and 
analyse information from “omics” data generated through high-throughput 
techniques [401], eventually integrating omics data coming from different sources 
[402, 403, 404]. On the other hand, this is complemented with a bottom-up 
approach, where information from molecular cells and tissues, alongside 
mathematical models, are used to elucidate the function and dynamic behaviour of 
cells, organs and organisms. 
 
 
 
Systems dynamics. Systems dynamics or dynamical systems is a mathematical 
method or modelling approach for understanding the behaviour of complex systems 
with their states evolving over time. This is used in in silico modelling of biomedical 
systems. For instance, biochemical reactions (using mass action law), intracellular 
signalling pathways, activity of excitable/nerve cells and their networks, biological 
rhythms, cancer development, and population dynamics can be described by 
dynamical systems [405, 406, 407, 408, 409].  
 
A system often consists of a set of interacting elements or components that forms 
a larger component or entity. Understanding the latter’s behaviour is often not 
immediately clear just based on the elements or building blocks, but through the 
analysis of the interactions leading to “emergent” dynamical behaviour. The analysis 
could be performed analytically (especially for simpler systems) or computationally 
using various numerical methods. Often, the stability of the system is also evaluated 
analytically or computationally either locally e.g. around some steady state, or 
globally. Software are often used for numerical computation. The popular ones 
include XPPAUT (C programming based) [410] and MATCONT (MATLAB 
programming based) [411].  
 
The elements or interactions can be linear or nonlinear. The interactions can be 
instantaneous or time-delayed. The system can be deterministic or stochastic (i.e. 
in the presence of noise). Supposed a system's state variable is described by a 
vector F, and the environment of system is described by parameters 2, the evolution 
mechanism of dynamical systems can be continuous (behaving continuously over 
time) and described by a group of differential equations,  
 

PF

P#
= &(F, 2, #), 

 



or discrete (behaving over discrete time points) and described by difference 
equations,  
 

F(# + 1) = &[F(#), 2], 
 
or described by symbolic dynamics i.e. mathematical function mappings [409] 
 

&: F(#) → F(# + 1). 
 
Often but not necessary, nonlinearity in the system can lead to highly non-trivial 
emergent dynamics. For instance, varying some parameter  around its critical value 
can dramatically change the behaviour of the system. This is termed bifurcation 
[412] or phase transition, and is linked to Catastrophe Theory [413]. Some other 
topics related to systems dynamics or dynamical systems theory include Chaos 
Theory [409].   
 
 
 
Systems Engineering. Systems Engineering is a multi/transdisciplinary field devoted 
to the engineering and engineering management of very large and complex socio-
technical systems. It addresses all the elements within a system, their individual 
properties and inter-relations are considered and integrated in a holistic approach, 
through a combination of relationships to jointly perform a useful function as a 
whole. Systems Engineering combines Engineering with Management, Finance, 
Economics, Pure/Exact and Social Sciences, in a way to adequately design, 
develop, and implement the large and complex systems that are so important 
nowadays. It is typically used to manage the inherent complexity of societal 
problems, e.g., either in spacecraft design or in combination with 
pharmacokinetic/pharmacodynamic (PK/PD) modelling and Systems Biology [347, 
348]. In this way, the Systems Engineering approaches are delimited within the 
Systems Theory framework [414]. 
 
 
 
 
Systems medicine. Systems medicine is an interdisciplinary field of study that looks 
at the human body as a system, composed of interacting parts, and further 
integrated into an environment. It considers that these complex relationships exist 
on multiple levels, and that they have to be understood in light of a patient’s 
genomics, behaviour and environment. As such, it integrates contributions from 
multiple research fields, including medicine, systems biology, statistics, modelling 
and simulation, and data science. The earliest uses of the term systems medicine 
appeared in 1992, in two articles independently published by B. J. Zeng [3] and T. 
Kamada [4]. 
 
As the name suggests, systems medicine represents the convergence of two main 
fields: 
 



• Systems biology, the field of study that focuses on complex interactions 
within biological systems, using a holistic approach. 

• Medicine, as it presents a clear focus towards medical research and medical 
practice. As such, systems medicine aims at having tangible benefits for the 
patients, with the identification of those elements that are critical for 
influencing the course of the system (i.e. medical conditions). 

 
Among its objectives, it is worth highlighting: 
 

• Systems medicine is not systems biology just in one species, but similar to 
the distinction between “medicine” and “biology” systems medicine needs 
to have to objective to achieve patient benefit, by either better or earlier 
diagnosis and therapy. 

• Systems medicine questions and replaces the current concept of medicine, 
which is largely built on organ-based subfields and symptom-based disease 
definitions, towards a holistic-defining diseases at a mechanistic level. 

• Systems medicine defines (diagnostic and therapeutic) targets not any 
longer as single molecules but rather perturbed networks, which form 
subgraphs of the interactome. 

• At the application side, systems medicine will lead to precision diagnostics 
and therapeutics. 

• Some therapeutics/drugs will not need to be developed de novo but 
repurposed/repositioned. 

• Use multilayer diagnostic tools. 
• Thereby systems medicine will enable predictive, personalized, preventative, 

participatory medicine. 
• By increasing medical precision and efficacy, systems medicine ideally 

addresses the financial pressures on all health care providers and enables 
the ultimate move from an input medicine to an output medicine (see recent 
World Economic Forum Davos). 

 
 
 
System of Systems. Systems of Systems can be represented as large scale, 
complex, distributed systems. System of Systems concept is described in terms of 
“Maier’s criteria” [415]: operational and managerial independence, distribution, 
emergent behaviour as a result of component behaviour and evolutionary 
development. System of Systems principles can be applied in integrating health 
management, medical diagnosis and medical support systems [416]. 
 
 
Standards. The word “standard” has several different definitions. Whereas in 
general metrology, a standard is a reference that is used to calibrate measurements, 
in the systems biology field, standards have been developed through 
standardization initiatives (e.g. ISO, COMBINE [417]) to format and describe data 
and models, for exchange and understanding between scientific communities. 
Three types of standards have been considered [418]:  standard formats for 



representing data and models; standard metadata for describing types of data and 
models; controlled vocabularies and ontologies to provide a common vocabulary. 
 
 
 
Structural covariance networks. A technique used to reconstruct complex networks 
representations of brain cortical regions. The network is defined such that nodes 
represent brain regions, and links the Pearson’s correlation of cortical thickness or 
volume between pairs of regions, as yielded by magnetic resonance data (MRI) 
[419, 420]. Structural covariance between regions can be used to construct the so-
called structural covariance networks. Several studies have been conducted in 
which structural covariance networks have been analysed in healthy subjects [421, 
422], and in groups of patients with disorders such as autism, attention deficit 
hyperactivity disorder, schizophrenia, or Alzheimer's disease [423, 424, 425, 426], 
or to assess the differences between gifted children and controls [427]. Since the 
SCN is at the group level, (structural) connectivity parameters are also at the group 
level and a permutation test will be needed to infer differences between measures. 
See also morphometric similarity networks. 
 
 
 
Time-evolving networks. One major problem that was found while studying time-
evolving systems through complex networks was that edges may not continuously 
be active. To illustrate, let us consider the network of contacts between inpatients 
of an hospital, which may be used to model the propagation of infectious diseases. 
Firstly, two people may be connected by a link even if they have been in the same 
room for a short time window, thus the probability of contagious should not be 
binarized. Secondly, the sequence of contacts is also important: if a person met 
patient A and later patient B, a disease cannot spread from B to A. The solution 
was the development of the concept of time-evolving, or temporal, networks, in 
which a collection of networks represent the status of the system as it evolves 
through time [428, 429]. 
 
 
 
Time scale separation. Dynamic mathematical models can be simplified using time 
scale separation approach: if part of a system operates sufficiently fast compared 
to the rest of the system, it may be assumed to have reached a steady-state [430]. 
This allows the elimination of fastest components from the model, lumping them 
with slower components as they determine the speed of systems reaction. This 
approach can be very efficient in multiscale modelling where dynamics of very 
different processes are merged. Time scale separation is applied for modelling of 
vector-borne diseases taking where human host epidemiology is much slower than 
the transmission of vector from human to human by mosquitos: only human time 
scale is investigated assuming that human-human transmission happens instantly 
[431]. Time scale separation can be used to simplify modelling of biochemical 
processes at cellular physiology level [432]. 
 



 
Variation partitioning. Also called “commonality analysis”, a technique aimed at 
quantifying the part of the observed variation that is the shared consequence of two 
(or more) explanatory variables. It was initially introduced in 1992 by D. P. Borcard 
and co-authors in ecology [433], and has since seen some limited applications in 
medicine [434, 435]. 
 
 
 
Virtual physiological human. See physiome. 
 
 
 
 
 
Acknowledgments 
 
This article is based upon work from COST Action OpenMultiMed (CA15120), 
supported by COST (European Cooperation in Science and Technology). COST is 
funded by the Horizon 2020 Framework Programme of the European Union. 
 
J. L. M. thanks Instituto Politécnico de Portalegre,  CERENA-Centro de Recursos 
Naturais e Ambiente, and the support of FCT- Fundação para a Ciência e a 
Tecnologia under the strategic project UID/ECI/04028/2020. 
  
J.A.S. and J.B. obtained financial support from the Austrian Science Fund FWF 
(projects SFB-F54 and TCS-46). 
 
Participation of V.S. in the project was supported by Czech Ministry 
of Education, Youth and Sports (LTC18074). 
 
J. S.-C. thanks the support of the UVic-UCC (grant R0947) and the Ministry of 
Economic Affairs and Competitiveness of Spain (grant TEC2016-77791-C4-2-R). 
 
D.R. thanks the support of Slovenian Research Agency (P1-0390 and MRIC-
ELIXIR).  
 
Part of the research is supported by the SILICOFCM project that has received 
funding from the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 777204. This article reflects only the 
author's view. The Commission is not responsible for any use that may be made of 
the information it contains. 
 
 
 
References 



 
 

[1]  A. Castiglioni, A History of Medicine, London: Routledge, 2019.  

[2]  B. J. L. Berry and H. Kim, “Long waves 1790-1990: intermittency, chaos, and 

control,” in Chaos theory in the social sciences: Foundations and Applications, 

University of Michigan Press, 1996, pp. 215-236. 

[3]  B. Z. Zeng, “On the holographic model of human body,” in 1st National 
Conference of Comparative Studies Traditional Chinese Medicine and West 
Medicine (Medicine and Philosophy), 1992.  

[4]  T. Kamada, “System biomedicine: a new paradigm in biomedical engineering,” 

Frontiers of medical and biological engineering: the international journal of the 
Japan Society of Medical Electronics and Biological Engineering, vol. 4, no. 1, p. 

1, 1992.  

[5]  M. Zanin, I. Chorbev, B. Stres, E. Stalidzans, J. Vera, P. Tieri, F. Castiglione, D. 

Groen, H. Zheng, J. Baumbach and J. Schmid, “Community effort endorsing 

multiscale modelling, multiscale data science and multiscale computing for 

systems medicine,” Briefings in bioinformatics, vol. 20, no. 3, pp. 1057-1062, 

2019.  

[6]  E. Bonaneau, “Agent-based modeling: Methods and techniques for simulating 

human systems,” Proceedings of the National Academy of Sciences USA, vol. 99, 

no. 3, pp. 7280-7287, 2002.  

[7]  B. Punam and S. Chawla, “Agent Based Information Retrieval System Using 

Information Scent,” Journal of Artificial Intelligence, vol. 3, no. 4, 2010.  

[8]  S. Ugurlu and N. Erdogan, “An Agent-Based Information Retrieval System,” in 

Proceedings of the First International Conference on Advances in Information 
Systems (ADVIS '00), London, 2000.  

[9]  J. L. Posadas, J. L. Poza, J. E. Simo, G. Benet and F. Blanes, “Agent-based 

distributed architecture for mobile robot control,” Engineering Applications of 
Artificial Intelligence, vol. 21, no. 6, pp. 805-823, 2008.  

[10]  S. Pennisi, F. Pappalardo and S. Motta, “Agent Based Modeling of Lung 

Metastasis-Immune System Competition,” Lecture Notes in Computer Science, 
vol. 5666, pp. 1-3, 2009.  

[11]  C. M. Glen, M. L. Kemp and E. O. Voit, “Agent-based modeling of morphogenetic 

systems: Advantages and challenges,” PLOS Computational Biology, vol. 15, no. 

3, p. e1006577, 2019.  

[12]  F. Castiglione and F. Celada, Immune System Modeling and Simulation, Boca 

Raton: CRC Press, 2015.  

[13]  J. von Neumann, The theory of self-reproducing automata, Urbana, IL: 

University of Illinois Press, 1966.  

[14]  S. Ulam, “Random processes and transformations,” in Proceedings of the 
International Congress of Mathematics, 1952.  

[15]  C. Langton, Artificial Life: An Overview, MIT Press, 1995.  

[16]  L. Zhang, Z. Wang, J. A. Sagotsky and T. S. Deisboeck, “Multiscale agent-based 

cancer modeling,” J Math Biol, vol. 58, no. 4-5, pp. 545-559, 2009.  



[17]  C. Gong, O. Milberg, B. Wang, P. Vicini, R. Narwal, L. Roskos and A. S. Popel, “A 

computational multiscale agent-based model for simulating spatio-temporal 

tumour immune response to PD1 and PDL1 inhibition,” J. R. Soc. Interface, vol. 

14, p. 20170320, 2017.  

[18]  J. M. Epstein, “Modelling to contain pandemics,” Nature, vol. 460, no. 7259, p. 

687, 2009.  

[19]  L. Perez and S. Dragicevic, “An agent-based approach for modeling dynamics of 

contagious disease spread,” International journal of health geographics, vol. 8, 

no. 1, p. 50, 2009.  

[20]  G. An, Q. Mi, J. Dutta-Moscato and Y. Vodovotz, “Agent-based models in 

translational systems biology,” Wiley Interdisciplinary Reviews: Systems Biology 
and Medicine, vol. 1, no. 2, pp. 159-171, 2009.  

[21]  M. van Gerven and S. Bohte, Artificial neural networks as models of neural 

information processing, 2018.  

[22]  I. Goodfellow, Y. Bengio and A. Courville, Deep learning, MIT Press, 2016.  

[23]  J. Awwalu, A. G. Garba, A. Ghazvini and R. Atuah, “Artificial Intelligence in 

Personalized Medicine - Application of AI Algorithms in Solving Personalized 

Medicine Problems,” International Journal of Computer Theory and Engineering, 
vol. 7, no. 6, pp. 439-443, 2015.  

[24]  T. Ching, X. Zhu and L. X. Garmire, “Cox-nnet: An artificial neural network 

method for prognosis prediction of high-throughput omics data,” PLoS 
Computational Biology, vol. 14, no. 4, p. e1006076, 2018.  

[25]  I. Bica, P. Velickovic, H. Xiao and P. Li, “Multi-omics data integration using cross-

modal neural networks,” in Proceedings of the 26th European Symposium on 
Artificial Neural Networks, Computational Intelligence and Machine Learning 
(ESANN 2018), 2018.  

[26]  Y. Donner, S. Kazmierczak and K. Fortney, “Drug repurposing using deep 

embeddings of gene expression profiles,” Molecular pharmaceutics, vol. 15, no. 

10, pp. 4314-4325, 2018.  

[27]  M. J. Keeling and P. Rohani, Modeling infectious diseases in humans and 

animals, Princeton University Press, 2011.  

[28]  S. Särkkä, Bayesian filtering and smoothing, Cambridge University Press, 2013.  

[29]  P. Lucas, “Bayesian networks in medicine: a model-based approach to medical 

decision making,” 2001. 

[30]  F. V. Jensen, An introduction to Bayesian networks, London: UCL Press, 1996.  

[31]  S. Andreassen, C. Riekehr, B. Kristensen, H. C. Schønheyder and L. Leibovici, 

“Using probabilistic and decision–theoretic methods in treatment and prognosis 

modeling,” Artificial Intelligence in Medicine, vol. 15, no. 2, pp. 121-134, 1999.  

[32]  F. L. Seixas, B. Zadrozny, J. Laks, A. Conci and D. C. M. Saade, “A Bayesian 

network decision model for supporting the diagnosis of dementia, Alzheimer׳ s 

disease and mild cognitive impairment,” Computers in biology and medicine, 
vol. 51, pp. 140-158, 2014.  



[33]  M. L. P. Bueno, A. Hommersom, P. J. Lucas, M. Lappenschaar and J. G. Janzing, 

“Understanding disease processes by partitioned dynamic Bayesian networks,” 

Journal of biomedical informatics, vol. 61, pp. 283-297, 2016.  

[34]  S. E. de Rooij, A. Abu-Hanna, M. Levi and E. de Jonge, “Identification of high-risk 

subgroups in very elderly intensive care unit patients,” Critical Care, vol. 11, no. 

2, p. R33, 2007.  

[35]  A. M. Kalet, J. H. Gennari, E. C. Ford and M. H. Phillips, “Bayesian network 

models for error detection in radiotherapy plans,” Physics in Medicine & 
Biology, vol. 60, no. 7, p. 2735, 2015.  

[36]  L. Xing, M. Guo, X. Liu, C. Wang, L. Wang and Y. Zhang, “An improved Bayesian 

network method for reconstructing gene regulatory network based on 

candidate auto selection,” BMC genomics, vol. 18, no. 9, p. 844, 2017.  

[37]  T. Nielsen and F. Jensen, Bayesian networks and decision graphs, Springer 

Science & Business Media, 2009.  

[38]  P. Dagum, A. Galper and E. Horvitz, “Dynamic network models for forecasting,” 

in Uncertainty in artificial intelligence, Morgan Kaufmann, 1992, pp. 41-48. 

[39]  N. Friedman and M. Goldszmidt, “Discretizing continuous attributes while 

learning Bayesian networks,” in 13th International Conference on Machine 
Learning, 1996.  

[40]  H. Li, L. Lu, K. Manly, E. Chesler, L. Bao, J. Wang, M. Zhou, R. Williams and Y. Cui, 

“Inferring gene transcriptional modulatory relations: a genetical genomics 

approach,” Human molecular genetics, vol. 14, no. 9, pp. 1119-1125, 2005.  

[41]  J. Zhu, P. Lum, J. Lamb, D. GuhaThakurta, S. Edwards, R. Thieringer, J. Berger, M. 

Wu, J. Thompson, A. Sachs and E. Schadt, “An integrative genomics approach to 

the reconstruction of gene networks in segregating populations,” Cytogenetic 
and genome research, vol. 105, no. 2-4, pp. 363-374, 2004.  

[42]  M. J. Bayarri and J. O. Berger, “The interplay of Bayesian and frequentist 

analysis,” Statistical Science, pp. 58-80, 2004.  

[43]  E.-J. Wagenmakers, M. Lee, T. Lodewyckx and G. J. Iverson, “Bayesian versus 

frequentist inference,” in Bayesian evaluation of informative hypotheses, 

Springer, 2008, pp. 181-207. 

[44]  G. Casella and R. L. Berger, “Reconciling Bayesian and frequentist evidence in 

the one-sided testing problem,” Journal of the American Statistical Association, 
vol. 82, no. 397, pp. 106-111, 1987.  

[45]  T. Sustersic, V. Rankovic, M. Peulic and A. S. Peulic, “An Early Disc Herniation 

Identification System for Advancement in the Standard Medical Screening 

Procedure based on Bayes Theorem,” IEEE journal of biomedical and health 
informatics, vol. 24, no. 1, pp. 151-159, 2019.  

[46]  D. Ashby, “Bayesian statistics in medicine: a 25 year review,” Statistics in 
medicin, vol. 25, no. 21, pp. 3589-3631, 2006.  

[47]  M. Zanin, S. Belkoura, J. Gomez, C. Alfaro and J. Cano, “Topological structures 

are consistently overestimated in functional complex networks,” Scientific 
reports, vol. 8, no. 1, p. 11980, 2018.  



[48]  L. C. Gurrin, J. J. Kurinczuk and P. R. Burton, “Bayesian statistics in medical 

research: an intuitive alternative to conventional data analysis,” Journal of 
Evaluation in Clinical Practice, vol. 6, no. 2, pp. 193-204, 2000.  

[49]  L. S. Freedman and D. J. Spiegelhalter, “The assessment of the subjective 

opinion and its use in relation to stopping rules for clinical trials,” Journal of the 
Royal Statistical Society: Series D, vol. 32, no. 1-2, pp. 153-160, 1983.  

[50]  D. J. Spiegelhalter and L. S. Freedman, “A predictive approach to selecting the 

size of a clinical trial, based on subjective clinical opinion,” Statistics in medicine, 
vol. 5, no. 1, pp. 1-13, 1986.  

[51]  K. Chaloner, T. Church, T. A. Louis and J. P. Matts, “Graphical elicitation of a 

prior distribution for a clinical trial,” Journal of the Royal Statistical Society: 
Series D, vol. 42, no. 4, pp. 341-353, 1993.  

[52]  J. B. Kadane, J. M. Dickey, R. L. Winkler, W. S. Smith and S. C. Peters, “Interactive 

elicitation of opinion for a normal linear model,” Journal of the American 
Statistical Association, vol. 75, no. 372, pp. 845-854, 1980.  

[53]  B. Efron, “Bayesians, frequentists, and scientists,” Journal of the American 
Statistical Association, vol. 100, no. 469, pp. 1-5, 2005.  

[54]  H. Jeffreys, The theory of probability, OUP Oxford, 1998.  

[55]  J. M. Bernardo, “Reference posterior distributions for Bayesian inference,” 

Journal of the Royal Statistical Society: Series B (Methodological), vol. 41, no. 2, 

pp. 113-128, 1979.  

[56]  J. O. Berger and J. M. Bernardo, “On the development of the reference prior 

method,” Bayesian statistics, vol. 4, pp. 35-60, 1992.  

[57]  E. T. Jaynes, Probability theory: The logic of science, 2003: Cambridge university 

press.  

[58]  G. S. Datta and R. Mukerjee, Probability matching priors: higher order 

asymptotics, Springer Science & Business Media, 2012.  

[59]  J. O. Berger, W. Strawderman and D. Tang, “Posterior propriety and 

admissibility of hyperpriors in normal hierarchical models,” The Annals of 
Statistics, vol. 33, no. 2, pp. 606-646, 2005.  

[60]  R. E. Kass and L. Wasserman, “The selection of prior distributions by formal 

rules,” Journal of the American Statistical Association, vol. 91, no. 435, pp. 1343-

1370, 1996.  

[61]  P. C. Lambert, A. J. Sutton, P. R. Burton, K. R. Abrams and D. R. Jones, “How 

vague is vague? A simulation study of the impact of the use of vague prior 

distributions in MCMC using WinBUGS,” Statistics in medicine, vol. 24, no. 15, 

pp. 2401-2428, 2005.  

[62]  J. Herson, “Bayesian analysis of cancer clinical trials: An introduction to four 

papers,” Statistics in medicine, vol. 22, no. 1, pp. 1-3, 1992.  

[63]  S. Wieand and S. Cha, “Description of the statistical aspects of a study for 

advanced colorectal cancer patients,” Statistics in medicine, vol. 11, no. 1, pp. 5-

11, 1992.  



[64]  L. S. Freedman and D. J. Spiegelhalter, “Application of Bayesian statistics to 

decision making during a clinical trial,” Statistics in medicine, vol. 11, no. 1, pp. 

23-35, 1992.  

[65]  J. B. Greenhouse, “On some applications of Bayesian methods in cancer clinical 

trials,” Statistics in medicine, vol. 11, no. 1, pp. 37-53, 1992.  

[66]  D. O. Dixon and R. Simon, “Bayesian subset analysis in a colorectal cancer 

clinical trial,” Statistics in medicine, vol. 11, no. 1, pp. 13-22, 1992.  

[67]  D. A. Berry, “Bayesian clinical trials,” Nature reviews Drug discovery, vol. 5, no. 

1, p. 27, 2006.  

[68]  P. Armitage, G. Berry and J. N. S. Matthews, Statistical methods in medical 

research, John Wiley & Sons, 2008.  

[69]  R. L. Winkler, An introduction to Bayesian inference and decision, Holt, Rinehart 

and Winston, 1972.  

[70]  G. Casella, “An introduction to empirical Bayes data analysis,” The American 
Statistician, vol. 39, no. 2, pp. 83-87, 1985.  

[71]  R. E. Kass and L. Wasserman, “A reference Bayesian test for nested hypotheses 

and its relationship to the Schwarz criterion,” Journal of the american statistical 
association, vol. 90, no. 431, pp. 928-934, 1995.  

[72]  J. O. Berger, “An overview of robust Bayesian analysis [with discussion],” Test, 
vol. 3, pp. 5-124, 1994.  

[73]  C. Robert, The Bayesian choice: from decision-theoretic foundations to 

computational implementation, Springer Science & Business Media, 2007.  

[74]  P. S. Ayyaswamy, “Introduction to biofluid mechanics.,” In Fluid Mechanics, pp. 

779- 852, 2012.  

[75]  Y. C. Fung, Biomechanics: circulation., Springer Science & Business Media, 2013.  

[76]  C. S. Peskin, “ Flow patterns around heart valves: a numerical method. Journal 

of computational physics,” vol. 10, no. 2, pp. 252 -271, 1972.  

[77]  J. E. N. J. R. M. V. G. S. T. M. L. &. O. M. Nichols, “ Production and assessment of 

decellularized pig and human lung scaffolds.,” Tissue Engineering Part A, vol. 19, 

no. 17-18, pp. 2045-2062, 2013.  

[78]  D. Liepsch, “An introduction to biofluid mechanics—basic models and 

applications. Journal of biomechanics,” vol. 35, no. 4, pp. 415- 435, 2002.  

[79]  J. W. .. Valvano, Encyclopedia of Medical Devices and Instrumentation. Bioheat 

transfer., John Wiley & Sons, Inc., 2006.  

[80]  Z. S. &. L. J. Deng, “Analytical study on bioheat transfer problems with spatial or 

transient heating on skin surface or inside biological bodies.,” Journal of 
Biomechanical Engineering, vol. 124, no. 6, pp. 638-649, 2002.  

[81]  J. C. Chato, “Fundamentals of bioheat transfer.,” Thermal dosimetry and 
treatment planning, pp. 1-56, 1990.  

[82]  A.-L. Barabasi and Z. N. Oltvai, “Network biology: Understanding the cell's 

functional organization,” Nature Reviews Genetics, vol. 5, no. 2, pp. 101-113, 

2004.  



[83]  P. Tieri, L. Farina, M. Petti, L. Astolfi, P. Paci and F. Castiglione, “Network 

Inference and Reconstruction in Bioinformatics,” in Encyclopedia of 
Bioinformatics and Computational Biology, Oxford Academic Press, 2019, pp. 

805-813. 

[84]  A.-L. Barabasi, N. Gulbahce and J. Loscalzo, “Network medicine: A network-

based approach to human disease,” Nature Reviews Genetics, vol. 12, no. 1, pp. 

56-68, 2011.  

[85]  N. Przulj, “Protein-protein interactions: making sense of networks via graph-

theoretic modeling,” Bioessays, vol. 33, no. 2, pp. 115-123, 2011.  

[86]  H. Jeong, S. P. Mason, A. L. Barabási and Z. N. Oltvai, “Lethality and centrality in 

protein networks,” Nature, vol. 411, no. 6833, p. 41, 2001.  

[87]  V. S. Rao, K. Srinivas, G. N. Sujini and G. N. Kumar, “Protein-protein interaction 

detection: methods and analysis,” Int J Proteomics, vol. 2014, p. 147648, 2014.  

[88]  T. M. Cafarelli, A. Desbuleux, Y. Wang, S. G. Choi, D. De Ridder and M. Vidal, 

“Mapping, modeling, and characterization of protein–protein interactions on a 

proteomic scale,” Current Opinion in Structural Biology, vol. 44, pp. 201-210, 

2017.  

[89]  V. Huynh-Thu and G. Sanguinetti, “Gene Regulatory Network Inference: An 

Introductory Survey,” Gene Regulatory Networks, pp. 1-23, 2018.  

[90]  A. J. Butte, P. Tamayo, D. Slonim, T. R. Golub and I. S. Kohane, “Discovering 

functional relationships between RNA expression and chemotherapeutic 

susceptibility using relevance networks,” Proc Natl Acad Sci USA, vol. 97, no. 22, 

pp. 12182-12186, 2000.  

[91]  S. Aibar, C. B. Gonzalez-Blas, T. Moerman, V. A. Huynh-Thu, H. Imrichova, G. 

Hulselmans, F. Rambow, J. C. Marine, P. Geurts, J. Aerts, J. van den Oord, Z. K. 

Atak, J. Wouters and S. Aerts, “SCENIC: single-cell regulatory network inference 

and clustering,” Nat Methods, vol. 14, no. 11, pp. 1083-1086, 2017.  

[92]  T. E. Chan, M. P. H. Stumpf and A. C. Babtie, “Gene Regulatory Network 

Inference from Single-Cell Data Using Multivariate Information Measures,” Cell 
Syst, vol. 5, no. 3, pp. 251-267, 2017.  

[93]  L. E. Chai, S. K. Loh, S. T. Low, M. S. Mohamad, S. Deris and Z. Zakaria, “A review 

on the computational approaches for gene regulatory network construction,” 

Comput Biol Med, vol. 48, pp. 55-65, 2014.  

[94]  F. Emmert-Streib, M. Dehmer and B. Haibe-Kains, “Gene regulatory networks 

and their applications: understanding biological and medical problems in terms 

of networks,” Front Cell Dev Biol, vol. 2, no. 38, 2014.  

[95]  E. A. Serin, H. Nijveen, H. W. Hilhorst and W. Ligterink, “Learning from Co-

expression Networks: Possibilities and Challenges,” Front Plant Sci, vol. 7, p. 

444, 2016.  

[96]  P. Tieri, A. Termanini, E. Bellavista, S. Salvioli, M. Capri and C. Franceschi, 

“Charting the NF-κB pathway interactome map,” PLoS ONE, vol. 7, no. 3, p. 

e32678, 2012.  

[97]  E. J. Molinelli, A. Korkut, W. Wang, M. L. Miller, N. P. Gauthier, X. Jing, P. 

Kaushik, Q. He, G. Mills, D. B. Solit, C. A. Pratilas, M. Weigt, A. Braunstein, A. 



Pagnani, R. Zecchina and C. Sander, “Perturbation biology: inferring signaling 

networks in cellular systems,” PLoS Comput Biol, vol. 9, no. 12, p. e1003290, 

2013.  

[98]  J. A. Papin, T. Hunter, B. O. Palsson and S. Subramaniam, “Reconstruction of 

cellular signalling networks and analysis of their properties,” Nat Rev Mol Cell 
Biol, vol. 6, no. 2, pp. 99-111, 2005.  

[99]  E. Pitkanen, J. Rousu and E. Ukkonen, “Computational methods for metabolic 

reconstruction,” Curr Opin Biotechnol, vol. 21, no. 1, pp. 70-77, 2015.  

[100]  Z. Nikoloski, R. Perez-Storey and L. J. Sweetlove, “Inference and Prediction of 

Metabolic Network Fluxes,” Plant Physiol, vol. 169, no. 3, pp. 1443-1455, 2015.  

[101]  M. R. Brent, “Past roadblocks and new opportunities in transcription factor 

network mapping,” Trends in Genetics, vol. 32, no. 11, pp. 736-750, 2016.  

[102]  T. Maniatis, S. Goodbourn and J. A. Fischer, “Regulation of inducible and tissue-

specific gene expression,” Science, vol. 236, no. 4806, pp. 1237-1245, 1987.  

[103]  H. Niwa, “The principles that govern transcription factor network functions in 

stem cells,” Development, vol. 145, no. 6, p. dev157420, 2018.  

[104]  N. Bonzanni, A. Garg, K. A. Feenstra, J. Schütte, S. Kinston, D. Miranda-Saavedra, 

J. Heringa, I. Xenarios and B. Göttgens, “Hard-wired heterogeneity in blood 

stem cells revealed using a dynamic regulatory network model,” Bioinformatics, 
vol. 29, no. 13, pp. i80-i88, 2013.  

[105]  V. Moignard, S. Woodhouse, L. Haghverdi, A. J. Lilly, Y. Tanaka, A. C. Wilkinson, 

F. Buettner, I. C. Macaulay, W. Jawaid, E. Diamanti and S. I. Nishikawa, 

“Decoding the regulatory network of early blood development from single-cell 

gene expression measurements,” Nature biotechnology, vol. 33, no. 3, p. 269, 

2015.  

[106]  Y. Kang, H. H. Liow, E. J. Maier and M. R. Brent, “NetProphet 2.0: Mapping 

Transcription Factor Networks by Exploiting Scalable Data Resources,” 

Bioinformatics, vol. 34, no. 2, pp. 249-257, 2017.  

[107]  G. K. Smyth, “Linear models and empirical bayes methods for assessing 

differential expression in microarray experiments,” Stat. Appl. Genet. Mol. Biol., 
vol. 1, p. 3, 2004.  

[108]  V. Matys, O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, I. 

Reuter, D. Chekmenev, M. Krull, K. Hornischer and N. Voss, “TRANSFAC and its 

module TRANSCompel: transcriptional gene regulation in eukaryotes,” Nucleic 
acids research, vol. 34, no. 1, pp. D108-D110, 2006.  

[109]  Ž. Urlep, G. Lorbek, M. Perše, J. Jeruc, P. Juvan, M. Matz-Soja, R. Gebhardt, I. 

Björkhem, J. A. Hall, R. Bonneau and D. R. Littman, “Disrupting Hepatocyte 

Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the 

Developing Mouse and Decreases RORC Signalling,” Scientific reports, vol. 7, p. 

40775, 2017.  

[110]  B. D. Ratner, A. S. Hoffman, F. J. Schoen and J. E. Lemons, Biomaterials science: 

an introduction to materials in medicine, Elsevier, 2004.  

[111]  J. Park and S. L. Roderic, Biomaterials: an introduction, Springer Science & 

Business Media, 2007.  



[112]  J. D. Bronzino, Biomedical engineering handbook, CRC Press, 1999.  

[113]  J. D. Bronzino, J. Y. Wong and D. R. Peterson, Biomaterials: principles and 

Practices, CRC Press, 2012.  

[114]  J. &. D. S. L. Humphrey, Introduction to Biomechanics, New York: Springer- 

Verlag, 2016.  

[115]  V. M. &. Z. V. M. Zatsiorsky, Kinetics of human motion., Human Kinetics, 2002.  

[116]  D. A. Winter, Biomechanics and motor control of human gait: normal, elderly 

and pathological., 1991.  

[117]  Y. C. Fung, Biomechanics: mechanical properties of living tissues., Springer 

Science & Business Media, 2013.  

[118]  C. J. De Luca, “The use of surface electromyography in biomechanics.,” Journal 
of applied biomechanics, vol. 13, no. 2, pp. 135-163, 1997.  

[119]  N. H. &. M. J. P. Reynolds, “Single cell active force generation under dynamic 

loading–Part II: Active modelling insights.,” Acta biomaterialia, vol. 27, pp. 251-

263, 2015.  

[120]  B. Chopard and M. Droz, Cellular automata, Springer, 1998.  

[121]  V. Vezhnevets and V. Konouchine, “GrowCut: Interactive multi-label ND image 

segmentation by cellular automata,” in Graphicon, 2005.  

[122]  S. Wongthanavasu and V. Tangvoraphonkchai, “Cellular Automata-based 

Algorithm and its Application in Medical image processing,” in 2007 IEEE 
International Conference on Image Processing, IEEE, 2007, pp. 1-41. 

[123]  A. Prieto-Langarica, H. Kojouharov, B. Chen-Charpentier and L. Tang, “A cellular 

automata model of infection control on medical implants,” Applications and 
applied mathematics: an international journal, vol. 6, no. 1, p. 1, 2011.  

[124]  R. M. Z. dos Santos and S. Coutinho, “Dynamics of HIV infection: A cellular 

automata approach,” Physical review letters, vol. 87, no. 16, p. 168102, 2001.  

[125]  A. R. Mikler, S. Venkatachalam and K. Abbas, “Modeling infectious diseases 

using global stochastic cellular automata,” Journal of Biological Systems, vol. 13, 

no. 4, pp. 421-439, 2005.  

[126]  M. A. Banning, “A review of clinical decision making: Models and current 

research,” J. Clin. Nurs., vol. 17, pp. 187-195, 2008.  

[127]  M. G. M. Hunink, C. M. Weinstein, E. Wittenberg, M. F. Drummond, J. S. Pliskin, 

J. B. Wong and P. P. Glasziu, Decision making in health and medicine: 

Integrating evidence and values, Cambridge University Press, 2014.  

[128]  G. Kong, D. L. Xu and J. B. Yang, “Clinical decision support systems: a review on 

knowledge representation and inference under uncertainties,” International 
Journal of Computational Intelligence Systems, vol. 1, no. 2, pp. 159-167, 2008.  

[129]  I. Sim, P. Gorman, R. A. Greenes, R. B. Haynes, B. Kaplan, H. Lehmann and P. C. 

Tang, “Clinical decision support systems for the practice of evidence-based 

medicine,” J. Am. Med. Inform. Assoc., vol. 8, no. 6, pp. 527-534, 2008.  

[130]  H. A. Haenssle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. 

Kalloo, A. B. H. Hassen, L. Thomas, A. Enk and L. Uhlmann, “Man against 

machine: diagnostic performance of a deep learning convolutional neural 



network for dermoscopic melanoma recognition in comparison to 58 

dermatologists,” Annals of Oncology, vol. 29, no. 8, pp. 1836-1842, 2018.  

[131]  S. Belkoura, M. Zanin and A. LaTorre, “Fostering interpretability of data mining 

models through data perturbation,” Expert Systems with Applications, vol. 137, 

pp. 191-201, 2019.  

[132]  S. Khairat, D. Marc, W. Crosby and A. A. S. Sanousi, “Reasons for physicians not 

adopting clinical decision support systems: Critical analysis,” JMIR Med. Inform., 
vol. 6, no. 2, p. e24, 2018.  

[133]  L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to 

cluster analysis, John Wiley & Sons, 2009.  

[134]  P. Berkhin, “A survey of clustering data mining techniques,” in Grouping 
multidimensional data, Springer, 2006, pp. 25-71. 

[135]  J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering 

algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics), 
vol. 28, no. 1, pp. 100-108, 1979.  

[136]  D. Steinley, “K-means clustering: a half-century synthesis,” British Journal of 
Mathematical and Statistical Psychology, vol. 59, no. 1, pp. 1-34, 2006.  

[137]  A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern recognition 
letters, vol. 31, no. 8, pp. 651-666, 2010.  

[138]  M. Ester, H.-P. Kriegel, J. Sander and X. Xu, “A density-based algorithm for 

discovering clusters in large spatial databases with noise,” KDD, vol. 96, no. 34, 

pp. 226-231, 1996.  

[139]  G. J. McLachlan and E. B. Kaye, Mixture models: Inference and applications to 

clustering, New York: M. Dekker, 1988.  

[140]  A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum likelihood from 

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society: 
Series B (Methodological), vol. 39, no. 1, pp. 1-22, 1977.  

[141]  R. Albert and A.-L. Barabasi, “Statistical mechanics of complex networks,” 

Reviews of modern physics, vol. 74, no. 1, p. 47, 2002.  

[142]  S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, “Complex 

networks: Structure and dynamics,” Physics reports, vol. 424, no. 4-5, pp. 175-

308, 2006.  

[143]  S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, p. 268, 

2001.  

[144]  G. Kossinets and D. J. Watts, “Empirical analysis of an evolving social network,” 

Science, vol. 311, no. 5757, pp. 88-90, 2006.  

[145]  G. Bonanno, G. Caldarelli, F. Lillo and R. N. Mantegna, “Topology of correlation-

based minimal spanning trees in real and model markets,” Physical Review E, 
vol. 68, no. 4, p. 046130, 2003.  

[146]  A. H. Y. Tong, G. Lesage, G. D. Bader, H. Ding, H. Xu, X. Xin, J. Young, G. F. Berriz, 

R. L. Brost and M. Chang, “Global mapping of the yeast genetic interaction 

network,” Science, vol. 303, no. 5659, pp. 808-813, 2004.  



[147]  L. D. F. Costa, F. A. Rodrigues, G. Travieso and P. R. Villas Boas, “Characterization 

of complex networks: A survey of measurements,” Advances in physics, vol. 56, 

no. 1, pp. 167-242, 2007.  

[148]  M. Zanin, D. Papo, P. A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik and S. 

Boccaletti, “Combining complex networks and data mining: why and how,” 

Physics Reports, vol. 635, pp. 1-44, 2016.  

[149]  P. W. Anderson, “More is different,” Science, vol. 177, no. 4047, pp. 393-396, 

1972.  

[150]  H. A. Simon, The organization of complex systems, Springer, 1977.  

[151]  Y. Bar-Yam, Dynamics of complex systems, CRC Press, 2019.  

[152]  D. T. Kaplan, M. I. Furman, S. M. Pincus, S. M. Ryan, L. A. Lipsitz and A. L. 

Goldberger, “Aging and the complexity of cardiovascular dynamics,” Biophysical 
journal, vol. 59, no. 4, pp. 945-949, 1991.  

[153]  A. L. Goldberger and B. J. West, “Fractals in physiology and medicine,” The Yale 
journal of biology and medicine, vol. 60, no. 5, p. 421, 1987.  

[154]  J. S. Richman and J. R. Moorman, “Physiological time-series analysis using 

approximate entropy and sample entropy,” American Journal of Physiology-
Heart and Circulatory Physiology, vol. 278, no. 6, pp. 2039-2049, 2000.  

[155]  M. Zanin, L. Zunino, O. A. Rosso and D. Papo, “Permutation entropy and its main 

biomedical and econophysics applications: a review,” Entropy, vol. 14, no. 8, pp. 

1553-1577, 2012.  

[156]  C. K. Peng, S. Havlin, H. E. Stanley and A. L. Goldberger, “Quantification of 

scaling exponents and crossover phenomena in nonstationary heartbeat time 

series.,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, 

pp. 82-87, 1995.  

[157]  S. A. Kauffman, “Antichaos and adaptation,” Scientific American, vol. 265, no. 2, 

pp. 78-85, 1991.  

[158]  J. Langedijk, A. K. Mantel-Teeuwisse, D. S. Slijkerman and M. H. D. B. Schutjens, 

“Drug repositioning and repurposing: terminology and definitions in literature,” 

Drug Discovery Today, vol. 20, no. 8, p. 1027–1034, 2015.  

[159]  J. Meslamani, J. Li, J. Sutter, A. Stevens, H. O. Bertrand and D. Rognan, “Protein–

ligand-based pharmacophores: generation and utility assessment in 

computational ligand profiling,” Journal of chemical information and modeling, 
vol. 52, no. 4, pp. 943-955, 2012.  

[160]  A. Aliper, S. Plis, A. Artemov, A. Ulloa, P. Mamoshina and A. Zhavoronkov, “Deep 

learning applications for predicting pharmacological properties of drugs and 

drug repurposing using transcriptomic data,” Molecular pharmaceutics, vol. 13, 

no. 7, pp. 2524-2530, 2016.  

[161]  Y. A. Lussier and J. L. Chen, “The emergence of genome-based drug 

repositioning,” Science translational medicine, vol. 3, no. 96, 2011.  

[162]  C. Andronis, A. Sharma, V. Virvilis, S. Deftereos and A. Persidis, “Literature 

mining, ontologies and information visualization for drug repurposing,” 

Briefings in bioinformatics, vol. 12, no. 4, pp. 357-368, 2011.  



[163]  K. Savva, M. Zachariou, A. Oulas, G. Minadakis, K. Sokratous, N. Dietis and G. M. 

Spyrou, “Computational Drug Repurposing for Neurodegenerative Diseases,” in 

In Silico Drug Desig, Academic Press, 2019.  

[164]  H. Cruse, “Constraints for joint angle control of the human arm,” Biological 
Cybernetics, vol. 54, no. 2, pp. 125-132, 1986.  

[165]  E. Stalidzans, A. Seiman, K. Peebo, V. Komasilovs and A. Pentjuss, “Model-based 

metabolism design: constraints for kinetic and stoichiometric models,” 

Biochemical Society Transactions, vol. 46, no. 2, pp. 261-267, 2018.  

[166]  A. K. Dey, “Understanding and using context,” Personal and ubiquitous 
computing, vol. 5, no. 1, pp. 4-7, 2001.  

[167]  A. Padovitz, S. W. Loke, A. Zaslavsky, B. Burg and C. Bartolini, “An approach to 

data fusion for context awareness,” in International and Interdisciplinary 
Conference on Modeling and Using Context , Springer, 2005, pp. 353-367. 

[168]  J. H. Jahnke, Y. Bychkov, D. Dahlem and L. Kawasme, “Context-aware 

information services for health care,” in Proceedings of the KI-04 Workshop on 
Modeling and Retrieval of Context, 2004.  

[169]  R. Wirth and J. Hipp, “CRISP-DM: Towards a standard process model for data 

mining,” in Proceedings of the 4th international conference on the practical 
applications of knowledge discovery and data mining, 2000, pp. 29-39. 

[170]  C. Shearer, “The CRISP-DM model: the new blueprint for data mining,” Journal 
of data warehousing, vol. 5, no. 4, pp. 13-22, 2000.  

[171]  D. Pyle, Data preparation for data mining, Morgan Kaufmann, 1999.  

[172]  R. Cooley, B. Mobasher and J. Srivastava, “Data preparation for mining world 

wide web browsing patterns,” Knowledge and information systems, vol. 1, no. 1, 

pp. 5-32, 1999.  

[173]  S. Zhang, C. Zhang and Q. Yang, “Data preparation for data mining,” Applied 
artificial intelligence, vol. 17, no. 5-6, pp. 375-381, 2003.  

[174]  M. W. Browne, “Cross-validation methods,” Journal of mathematical 
psychology, vol. 44, no. 1, pp. 108-32, 2000.  

[175]  M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, K. 

Thiel and B. Wiswedel, “KNIME-the Konstanz information miner: version 2.0 and 

beyond,” AcM SIGKDD explorations Newsletter, vol. 11, no. 1, pp. 26-31, 2009.  

[176]  T. Wendler and S. Gröttrup, Data mining with SPSS modeler: theory, exercises 

and solutions, Springer, 2016.  

[177]  M. Hofmann and R. Klinkenberg, RapidMiner: Data mining use cases and 

business analytics applications, CRC Press, 2013.  

[178]  M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, 

G. Irving and M. Isard, “Tensorflow: a system for large-scale machine learning,” 

in OSDI, 2016, pp. 265-283. 

[179]  H. Chen, R. H. L. Chiang and V. C. Storey, “Business intelligence and analytics: 

from big data to big impact,” MIS quarterly, pp. 1165-1188, 2012.  

[180]  S. Huang, K. Chaudhary and L. Garmire, “More Is Better: Recent Progress in 

Multi-Omics Data Integration Methods,” Frontiers in genetics, vol. 8, p. 84, 

2017.  



[181]  L. Breiman, Classification and regression trees, Routledge, 2017.  

[182]  M. Mehta, R. Agrawal and J. Rissanen, “SLIQ: A fast scalable classifier for data 

mining,” in International Conference on Extending Database Technology, 1996, 

pp. 18-32. 

[183]  J. Shafer, R. Agrawal and M. Mehta, “SPRINT: A scalable parallel classi er for 

data mining,” in Proc. 1996 Int. Conf. Very Large Data Bases, 1996, pp. 544-555. 

[184]  J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 

81-106, 1986.  

[185]  J. R. Quinlan, C4.5: programs for machine learning, Elsevier, 2014.  

[186]  V. Podgorelec, P. Kokol, B. Stiglic and I. Rozman, “Decision trees: an overview 

and their use in medicine,” Journal of medical systems, vol. 26, no. 5, pp. 445-

463, 2002.  

[187]  A. T. Azar and S. M. El-Metwally, “Decision tree classifiers for automated 

medical diagnosis,” Neural Computing and Applications, vol. 23, no. 7-8, pp. 

2387-2403, 2013.  

[188]  E. Turban, Decision support and expert systems: management support systems, 

Prentice Hall, 1993.  

[189]  A. Barbosa-Póvoa, A. C. Subias and De Miranda, J. L., Optimization and decision 

support systems for supply chains, Zurich: Springer, 2017.  

[190]  K. Gurney, An introduction to neural networks, CRC Press, 2014.  

[191]  Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, 

p. 436, 2015.  

[192]  D. Lupton, “Critical perspectives on digital health technologies,” Sociology 
compass, vol. 8, no. 12, pp. 1344-1359, 2014.  

[193]  D. Lupton, “The digitally engaged patient: Self-monitoring and self-care in the 

digital health era,” Social Theory & Health, vol. 11, no. 3, pp. 256-270, 2013.  

[194]  F. Birnbaum, D. M. Lewis, R. Rosen and M. L. Ranney, “Patient engagement and 

the design of digital health,” Academic emergency medicine: official journal of 
the Society for Academic Emergency Medicine, vol. 22, no. 6, p. 754, 2015.  

[195]  F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang and F. Sui, “Digital twin-driven 

product design, manufacturing and service with big data,” The International 
Journal of Advanced Manufacturing Technology, vol. 94, no. 9-12, pp. 3563-

3576, 2018.  

[196]  K. Bruynseels, F. Santoni de Sio and J. van den Hoven, “Digital twins in health 

care: ethical implications of an emerging engineering paradigm,” Frontiers in 
genetics, vol. 9, p. 31, 2018.  

[197]  J. Sabater-Mir, “Towards a Healthcare Digital Twin,” in Artificial Intelligence 
Research and Development: Proceedings of the 22nd International Conference 
of the Catalan Association for Artificial Intelligence, IOS Press, 2019, p. 312. 

[198]  E. Moeendarbary, T. Y. Ng and M. Zangeneh, “Dissipative particle dynamics: 

introduction, methodology and complex fluid applications - a review,” 

International Journal of Applied Mechanics, vol. 1, no. 4, pp. 737-763, 2009.  



[199]  N. Filipovic, M. Zivic, M. Obradovic, T. Djukic, Z. Markovic and M. Rosic, 

“Numerical and experimental LDL transport through arterial wall,” Microfluidics 
and nanofluidics, vol. 16, no. 3, pp. 455-464, 2014.  

[200]  R. Vulović, M. Nikolić and N. Filipović, “Smart platform for the analysis of cupula 

deformation caused by otoconia presence within SCCs,” Computer methods in 
biomechanics and biomedical engineering, vol. 22, no. 2, pp. 130-138, 2019.  

[201]  N. Filipovic, A. Jovanovic, D. Petrovic, M. Obradovic, S. Jovanovic, D. Balos and 

M. Kojic, “Modelling of self-healing materials using discrete and continuum 

methods,” Surface Coatings International, vol. 95, no. 2, pp. 74-79, 2012.  

[202]  S. Wandelt, X. Sun, E. Menasalvas, A. Rodríguez-González and M. Zanin, “On the 

use of random graphs as null model of large connected networks,” Chaos, 
Solitons & Fractals, vol. 119, pp. 318-325, 2019.  

[203]  P. Erdős and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst. 
Hung. Acad. Sci, vol. 5, no. 1, pp. 17-60, 1960.  

[204]  C. P. Wild, “Complementing the genome with an “exposome”: The outstanding 

challenge of environmental exposure measurement in molecular 

epidemiology,” Cancer epidemiology, biomarkers & prevention, vol. 14, no. 8, p. 

1847, 2005.  

[205]  G. M. B. Louis, M. M. Smarr and C. J. Patel, “The Exposome Research Paradigm: 

an Opportunity to Understand the Environmental Basis for Human Health and 

Disease,” Current environmental health reports, vol. 4, no. 1, pp. 89-98, 2017.  

[206]  G. M. B. Louis, E. Yeung, K. Kannan, J. Maisog, C. Zhang, K. L. Grantz and R. 

Sundaram, “Patterns and Variability of Endocrine-disrupting Chemicals During 

Pregnancy: Implications for Understanding the Exposome of Normal 

Pregnancy,” Epidemiology, vol. 30, pp. S65-S75, 2019.  

[207]  M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. 

Baak, N. Blomberg, J. W. Boiten, L. B. da Silva Santos, P. E. Bourne and J. 

Bouwman, “The FAIR Guiding Principles for scientific data management and 

stewardship,” Scientific data, vol. 3, 2016.  

[208]  A. L. Blum and P. Langley, “Selection of relevant features and examples in 

machine learning,” Artificial intelligence, vol. 97, no. 1-2, pp. 245-271, 1997.  

[209]  I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” 

Journal of machine learning research, vol. 3, pp. 1157-1182, 2003.  

[210]  J. Reunanen, “Overfitting in making comparisons between variable selection 

methods,” Journal of Machine Learning Research, vol. 3, pp. 1371-1382, 2003.  

[211]  T. N. Lal, O. Chapelle, J. Weston and A. Elisseeff, “Embedded methods,” in 

Feature extraction, Springer, 2006, pp. 137-165. 

[212]  D. L. Logan, A first course in the finite element method, Cengage Learning, 2011.  

[213]  J. N. Reddy, Introduction to the Finite Element Method, McGraw-Hill, 2017.  

[214]  A. Vulović and N. Filipović, “Computational Analysis of Hip Implant Surfaces,” 

Journal of the Serbian Society for Computational Mechanics, vol. 13, no. 1, pp. 

109-119, 2019.  



[215]  M. Nikolic, P. D. Teal, V. Isailovic and N. Filipović, “Finite element cochlea box 

model – Mechanical and electrical analysis of the cochlea,” AIP Conference 
Proceedings, vol. 1703, no. 1, p. 070012, 2015.  

[216]  F. Auricchio, M. Conti, A. Ferrara, S. Morganti and A. Reali, “Patient-specific 

finite element analysis of carotid artery stenting: a focus on vessel modeling,” 

International Journal for Numerical Methods in Biomedical Engineering, vol. 29, 

no. 6, pp. 645-664, 2013.  

[217]  S. Djorovic, I. Saveljic and N. Filipovic, “Computational Simulation of Carotid 

Artery: From Patient-Specific Images to Finite Element Analysis,” Journal of the 
Serbian Society for Computational Mechanics, vol. 13, no. 1, pp. 120-129, 2019.  

[218]  A. Redaelli, F. Boschetti and F. Inzoli, “The assignment of velocity profiles in 

finite element simulations of pulsatile flow in arteries,” Computers in biology 
and medicine, vol. 27, no. 3, pp. 233-247, 1997.  

[219]  M. Robnik-Šikonja, M. Radović, S. Đorović, B. Anđelković-Ćirković and N. 

Filipović, “Modeling ischemia with finite elements and automated machine 

learning,” Journal of computational science, vol. 29, pp. 99-106, 2018.  

[220]  T. Šušteršič, L. Liverani, A. R. Boccaccini, S. Savić, A. Janićijević and N. Filipović, 

“Numerical simulation of electrospinning process in commercial and in-house 

software PAK,” Materials Research Express, vol. 6, no. 2, p. 025305, 2018.  

[221]  R. Eymard, T. Gallouët and R. Herbin, “Finite volume methods,” in Handbook of 
numerical analysis, Elsevier, 2000, pp. 713-1018. 

[222]  A. Vulović, T. Šušteršič, S. Cvijić, S. Ibrić and N. Filipović, “Coupled in silico 

platform: Computational fluid dynamics (CFD) and physiologically-based 

pharmacokinetic (PBPK) modelling,” European Journal of Pharmaceutical 
Sciences, vol. 113, pp. 171-184, 2018.  

[223]  E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis 

of structural and functional systems,” Nature reviews neuroscience, vol. 10, no. 

3, p. 186, 2009.  

[224]  K. J. Friston, “Functional and effective connectivity: a review,” Brain 
connectivity, vol. 1, no. 1, pp. 13-36, 2011.  

[225]  J. H. Hung, T. H. Yang, Z. Hu, Z. Weng and C. DeLisi, “Gene set enrichment 

analysis: performance evaluation and usage guidelines,” Briefings in 
bioinformatics, vol. 13, no. 3, pp. 281-291, 2011.  

[226]  A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. 

Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander and J. P. Mesirov, 

“Gene set enrichment analysis: a knowledge-based approach for interpreting 

genome-wide expression profiles,” Proceedings of the National Academy of 
Sciences, vol. 102, no. 43, pp. 15545-15550, 2005.  

[227]  A. Liberzon, A. Subramanian, R. Pinchback and H. Thorvaldsdóttir, “Molecular 

signatures database (MSigDB) 3.0,” Bioinformatics, vol. 27, no. 12, pp. 1739-

1740, 2011.  

[228]  C. Granger, “Investigating causal relations by econometric models and cross-

spectral methods.,” Econometrica: Journal of the Econometric Society, pp. 424-

438, 1969.  



[229]  N. Wiener, “The theory of prediction,” in Modern Mathematics for Engineers, 

New York, McGraw-Hill, 1956, pp. 165-190. 

[230]  S. L. Bressler and A. K. Seth, “Wiener–Granger causality: a well established 

methodology,” Neuroimage, vol. 58, no. 2, pp. 323-329, 2011.  

[231]  M. Zanin and D. Papo, “Detecting switching and intermittent causalities in time 

series,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 4, p. 

047403, 2017.  

[232]  L. Schiatti, G. Nollo, G. Rossato and L. Faes, “Extended Granger causality: a new 

tool to identify the structure of physiological networks,” Physiological 
measurement, vol. 36, no. 4, p. 827, 2015.  

[233]  E. Bose, M. Hravnak and S. M. Sereika, “Vector autoregressive (VAR) models and 

granger causality in time series analysis in nursing research: dynamic changes 

among vital signs prior to cardiorespiratory instability events as an example,” 

Nursing research, vol. 66, no. 1, p. 12, 2017.  

[234]  E. Erdil and I. H. Yetkiner, “The Granger-causality between health care 

expenditure and output: a panel data approach,” Applied Economics, vol. 41, 

no. 4, pp. 511-518, 2009.  

[235]  P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and 

performance: A survey,” Knowledge-Based Systems, vol. 151, pp. 78-94, 2018.  

[236]  H. Cai, V. Zheng and K. Chang, “A Comprehensive Survey of Graph Embedding: 

Problems, Techniques, and Applications,” IEEE Transactions on Knowledge and 
Data Engineering, vol. 30, no. 9, pp. 1616-1637, 2018.  

[237]  C. Seshadhri, A. Sharma, A. Stolman and A. Goel, “The impossibility of low-rank 

representations for triangle-rich complex networks,” Proceedings of the 
National Academy of Sciences, vol. 117, no. 11, pp. 5631-5637, 2020.  

[238]  M. Pellegrini, D. Haynor and J. M. Johnson, “Protein interaction networks,” 

Expert review of proteomics, vol. 1, no. 2, pp. 239-249, 2004.  

[239]  E. T. Bullmore and D. S. Bassett, “Brain graphs: graphical models of the human 

brain connectome,” Annual review of clinical psychology, vol. 7, pp. 113-140, 

2011.  

[240]  M. J. Keeling and K. T. Eames, “Networks and epidemic models,” Journal of the 
Royal Society Interface, vol. 2, no. 4, pp. 295-307, 2005.  

[241]  H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai and A. L. Barabási, “The large-scale 

organization of metabolic networks,” Nature, vol. 407, no. 6804, p. 651, 2000.  

[242]  A. D. Perkins and M. A. Langston, “Threshold selection in gene co-expression 

networks using spectral graph theory techniques,” BMC bioinformatics, vol. 10, 

no. 11, p. S4, 2009.  

[243]  X. Yue, Z. Wang, J. Huang, S. Parthasarathy, S. Moosavinasab, Y. Huang, S. M. 

Lin, W. Zhang, P. Zhang and H. Sun, “Graph Embedding on Biomedical Networks: 

Methods, Applications, and Evaluations,” arXiv, p. arXiv:1906.05017, 2019.  

[244]  R. Ietswaart, B. M. Gyori, J. A. Bachman, P. K. Sorger and L. S. Churchman , 

“GeneWalk identifies relevant gene functions for a biological context using 

network representation learning,” bioRxiv, p. 755579, 2019.  



[245]  G. Rosenthal, F. Váša, A. Griffa, P. Hagmann, E. Amico, J. Goñi, G. Avidan and O. 

Sporns, “Mapping higher-order relations between brain structure and function 

with embedded vector representations of connectomes,” Nature 
communications, vol. 9, no. 1, p. 2178, 2018.  

[246]  A. Quattoni, S. Wang, L.-P. Morency, M. Collins and T. Darrell, “Hidden 

conditional random fields,” IEEE Transactions on Pattern Analysis \& Machine 
Intelligence, vol. 10, pp. 1848-1852, 2007.  

[247]  J. F. D. Saa and M. Cetin, “Hidden conditional random fields for classification of 

imaginary motor tasks from eeg data,” in 2011 19th European Signal Processing 
Conference, IEEE, 2011, pp. 171-175. 

[248]  Y. Liu, J. Carbonell, P. Weigele and V. Gopalakrishnan, “Protein fold recognition 

using segmentation conditional random fields (SCRFs),” Journal of 
Computational Biology, vol. 13, no. 2, pp. 394-406, 2006.  

[249]  I. R. White, P. Royston and A. M. Wood, “Multiple imputation using chained 

equations: issues and guidance for practice,” Statistics in medicine, vol. 30, no. 

4, pp. 377-399, 2011.  

[250]  A. L. McCutcheon, Latent class analysis, Sage, 1987.  

[251]  M. P. Gleeson, S. Modi, A. Bender, R. L. Marchese Robinson, J. Kirchmair, M. 

Promkatkaew, S. Hannongbua and R. C. Glen, “The challenges involved in 

modeling toxicity data in silico: a review,” Current pharmaceutical design, vol. 

18, no. 9, pp. 1266-1291, 2012.  

[252]  L. B. Edelman, J. A. Eddy and N. D. Price, “In silico models of cancer,” Wiley 
Interdisciplinary Reviews: Systems Biology and Medicine, vol. 2, no. 4, pp. 438-

459, 2010.  

[253]  T. Martonen, J. Fleming, J. Schroeter, J. Conway and D. Hwang, “In silico 

modeling of asthma,” Advanced drug delivery reviews, vol. 55, no. 7, pp. 829-

849, 2003.  

[254]  Y. Vodovotz and T. R. Billiar, “ In Silico Modeling: Methods and Applications to 

Trauma and Sepsis,” Critical care medicine, vol. 41, no. 8, p. 2008, 2013.  

[255]  R. B. Colquitt, D. A. Colquhoun and R. H. Thiele, “In silico modelling of 

physiologic systems,” Best practice & research Clinical anaesthesiology, vol. 25, 

no. 4, pp. 499-510, 2011.  

[256]  J. S. Hamid, P. Hu, N. M. Roslin, V. Ling, C. M. Greenwood and J. Beyene, “Data 

integration in genetics and genomics: methods and challenges,” Human 
genomics and proteomics, vol. 2009, p. 869093, 2009.  

[257]  L. J. Lu, Y. Xia, A. Paccanaro, H. Yu and M. Gerstein, “Assessing the limits of 

genomic data integration for predicting protein networks,” Genome research, 
vol. 15, no. 7, pp. 945-953, 2005.  

[258]  K. Van Steen and N. Malats, “Perspectives on Data Integration in Human 

Complex Disease Analysis,” in Big Data Analytics in Bioinformatics and 
Healthcare, IGI Global, 2015, pp. 284-322. 

[259]  S. N. Thorsen and M. E. Oxley, “Fusion or Integration: What’s the difference?,” 

in Fusion 2004: Seventh International Conference on Information Fusion, 2004.  



[260]  O. Vermesan, P. Friess, P. Guillemin, H. Sundmaeker, M. Eisenhauer, K. 

Moessner, F. Le Gall and P. Cousin, “Internet of things strategic research and 

innovation agenda,” in Internet of things: converging technologies for smart 
environments and integrated ecosystems, River Publishers, 2013, pp. 7-152. 

[261]  D. Repta, M. A. Moisescu, I. S. Sacala, I. Dumitrache and A. M. Stanescu, 

“Towards the development of semantically enabled flexible process monitoring 

systems,” International Journal of Computer Integrated Manufacturing, vol. 30, 

no. 1, pp. 96-108, 2017.  

[262]  H. Zheng, J. T. Wassan, M. A. Moisescu, L. Stoicu-Tivadar, J. Miranda, M. Crisan-

Vida, I. S. Sacala, A. Badnjevic, I. Chorbev and B. Jakimovski, “Multiscale 

Computing in Systems Medicine: a Brief Reflection,” in 2018 IEEE International 
Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2018, pp. 2190-

2195. 

[263]  G. Manogaran, N. Chilamkurti and C. H. Hsu, “Emerging trends, issues, and 

challenges in Internet of Medical Things and wireless networks,” Personal and 
Ubiquitous Computing, vol. 22, no. 5-6, pp. 879-882, 2018.  

[264]  S. R. Islam, D. Kwak, M. H. Kabir, M. Hossain and K. S. Kwak, “The internet of 

things for health care: a comprehensive survey,” IEEE Access, vol. 3, pp. 678-

708, 2015.  

[265]  Y. I. N. Yuehong, Y. Zeng, X. Chen and Y. Fan, “The internet of things in 

healthcare: An overview,” Journal of Industrial Information Integration, vol. 1, 

pp. 3-13, 2016.  

[266]  D. A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models: 

an introduction, Berlin: Springer, 2000.  

[267]  S. Succi, The Lattice Boltzmann Equation for uid dynamics and beyond, Oxford 

University Press, 2001.  

[268]  M. Sukop and D. T. Thorne, Lattice Boltzmann Modeling, Heidelberg: Springer, 

2006.  

[269]  A. A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering 

Applications with Computer Codes, London: Springer, 2011.  

[270]  K. Timm, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva and E. Viggen, The 

lattice Boltzmann method: principles and practice, Springer, 2017.  

[271]  Y. T. Feng, K. Han and D. R. J. Owen, “Coupled lattice Boltzmann method and 

discrete element modelling of particle transport in turbulent fluid flows: 

Computational issues,” International Journal for Numerical Methods in 
Engineering, vol. 72, no. 9, pp. 1111-1134, 2007.  

[272]  O. Malaspinas, N. Fietier and M. Deville, “Lattice Boltzmann method for the 

simulation of viscoelastic fluid flows,” Journal of Non-Newtonian Fluid 
Mechanics, vol. 165, no. 23-24, pp. 1637-1653, 2010.  

[273]  T. Djukic and N. Filipovic, “Numerical modeling of the cupular displacement and 

motion of otoconia particles in a semicircular canal,” Biomechanics and 
modeling in mechanobiology, vol. 16, no. 5, pp. 1669-1680, 2017.  



[274]  T. Djukic, I. Saveljic and N. Filipovic, “Numerical modeling of the motion of 

otoconia particles in the patient-specific semicircular canal,” Computational 
Particle Mechanics, vol. 6, no. 4, pp. 767-780, 2019.  

[275]  N. Filipovic, M. Zivic, M. Obradovic, T. Djukic, Z. Markovic and M. Rosic, 

“Numerical and experimental LDL transport through arterial wall,” Microfluidics 
and nanofluidics, vol. 16, no. 3, pp. 455-464, 2014.  

[276]  C. M. Bishop, Pattern recognition and machine learning, Springer Science & 

Business Media, 2006.  

[277]  E. Alpaydin, Introduction to machine learning, MIT Press, 2009.  

[278]  L. Richiardi, R. Bellocco and D. Zugna, “Mediation analysis in epidemiology: 

methods, interpretation and bias,” International journal of epidemiology, vol. 

42, no. 5, pp. 1511-1519, 2013.  

[279]  K. J. Preacher, “Advances in mediation analysis: a survey and synthesis of new 

developments,” Annual review of psychology, vol. 66, pp. 825-852, 2015.  

[280]  M. A. Musen and J. H. van Bemmel, Handbook of medical informatics, 1997.  

[281]  W. R. Hersh, “Medical informatics: improving health care through information,” 

JAMA, vol. 288, no. 16, pp. 1955-1958, 2002.  

[282]  H. U. Prokosch and T. Ganslandt, “Perspectives for medical informatics,” 

Methods of information in medicine, vol. 48, no. 1, pp. 38-44, 2009.  

[283]  R. Haux, “Medical informatics: past, present, future,” International journal of 
medical informatics, vol. 79, no. 9, pp. 599-610, 2010.  

[284]  A. Benis, R. Barak Barkan and T. Sela, “Communication Behavior Changes 

Between Patients With Diabetes And Healthcare Providers Over 9 Years,” J Med 
Internet Res, p. Epub ahead of print, 2020.  

[285]  K. W. Goodman and R. A. Miller, “Ethics and health informatics: Users, 

standards, and outcomes,” in Medical Informatics, Springer, 2001, pp. 257-281. 

[286]  J. Chong, M. Yamamoto and J. Xia, “MetaboAnalystR 2.0: From Raw Spectra to 

Biological Insights,” Metabolites, vol. 9, no. 3, p. 57, 2019.  

[287]  J. K. Nicholson, J. C. Lindon and E. Holmes, “'Metabonomics': understanding the 

metabolic responses of living systems to pathophysiological stimuli via 

multivariate statistical analysis of biological NMR spectroscopic data.,” 

Xenobiotica, vol. 29, no. 11, pp. 1181-1189, 1999.  

[288]  O. Fiehn, J. Kopka, P. Dörmann, T. Altmann, R. N. Trethewey and L. Willmitzer, 

“Metabolite profiling for plant functional genomics,” Nature biotechnology, vol. 

18, no. 11, pp. 1157-1161, 2000.  

[289]  R. Ramautar, R. Berger, J. van der Greef and T. Hankemeier, “Human 

metabolomics: strategies to understand biology,” Current opinion in chemical 
biology, vol. 17, no. 5, pp. 841-846, 2013.  

[290]  J. C. Lindon, E. Holmes and J. K. Nicholson, “Metabonomics techniques and 

applications to pharmaceutical research & development,” Pharmaceutical 
research, vol. 23, no. 6, pp. 1075-1088, 2006.  

[291]  A. Dhariwal, J. Chong, S. Habib, I. King, L. B. Agellon and J. Xia, 

“MicrobiomeAnalyst - a web-based tool for comprehensive statistical, visual and 



meta-analysis of microbiome data,” Nucleic Acids Research, vol. 45, pp. 180-

188, 2017.  

[292]  D. Bertsimas and M. Sim, “The Price of Robustness,” Operations Research, vol. 

52, no. 1, pp. 35-53, 2004.  

[293]  R. Schultz, L. Stougie and M. H. Van Der Vlerk, “Two-stage stochastic integer 

programming: a survey,” Statistica Neerlandica, vol. 50, no. 3, pp. 404-416, 

1996.  

[294]  D. Hendrycks, K. Lee and M. Mazeika, “Using Pre-Training Can Improve Model 

Robustness and Uncertainty,” arXiv preprint, p. arXiv:1901.09960, 2019.  

[295]  D. Tsipras, S. Santurkar, L. Engstrom, A. Turner and A. Madry, “Robustness May 

Be at Odds with Accuracy,” arXiv preprint, p. arXiv:1805.12152, 2018.  

[296]  C. Cobelli, E. R. Carson, L. Finkelstein and M. S. Leaning, “Validation of simple 

and complex models in physiology and medicine,” American Journal of 
Physiology-Regulatory, Integrative and Comparative Physiology, vol. 246, no. 2, 

pp. 259-266, 1984.  

[297]  G. Antonelli, A. Padoan, A. Aita, L. Sciacovelli and M. Plebani, “Verification or 

validation, that is the question,” Journal of Laboratory and Precision Medicine, 
vol. 2, no. 8, 2017.  

[298]  J. Seidlitz, F. Váša, M. Shinn, R. Romero-Garcia, K. J. Whitaker, P. E. Vértes, K. 

Wagstyl, P. K. Reardon, L. Clasen, S. Liu and A. Messinger, “Morphometric 

similarity networks detect microscale cortical organization and predict inter-

individual cognitive variation,” Neuron, vol. 97, no. 1, pp. 231-247, 2018.  

[299]  S. E. Morgan, J. Seidlitz, K. J. Whitaker, R. Romero-Garcia, N. E. Clifton, C. 

Scarpazza, T. van Amelsvoort, M. Marcelis, J. van Os, G. Donohoe and D. 

Mothersill, “Cortical patterning of abnormal morphometric similarity in 

psychosis is associated with brain expression of schizophrenia-related genes.,” 

Proceedings of the National Academy of Sciences, vol. 116, no. 19, pp. 9604-

9609, 2019.  

[300]  G. E. Doucet, D. A. Moser, A. Rodrigue, D. S. Bassett, D. C. Glahn and S. Frangou, 

“Person-Based Brain Morphometric Similarity is Heritable and Correlates With 

Biological Features,” Cerebral Cortex, vol. 29, no. 2, pp. 852-862, 2018.  

[301]  J. G. Michopoulos, C. Farhat and J. Fish, “Modeling and simulation of 

multiphysics systems,” Journal of Computing and Information Science in 
Engineering, vol. 5, no. 3, pp. 198-213, 2005.  

[302]  D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, J. Bell, 

J. Brown, A. Clo and J. Connors, “Multiphysics simulations: Challenges and 

opportunities,” The International Journal of High Performance Computing 
Applications, vol. 27, no. 1, pp. 4-83, 2013.  

[303]  J. G. White, E. Southgate, J. N. Thomson and S. Brenner, “The structure of the 

nervous system of the nematode Caenorhabditis elegans,” Philos Trans R Soc 
Lond B Biol Sci, vol. 314, no. 1165, pp. 1-340, 1986.  

[304]  S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, J. Gomez-Gardenes, M. 

Romance, I. Sendina-Nadal, Z. Wang and M. Zanin, “The structure and dynamics 

of multilayer networks,” Physics Reports, vol. 544, no. 1, pp. 1-122, 2014.  



[305]  J. A. McCammon, B. R. Gelin and M. Karplus, “Dynamics of folded proteins,” 

Nature, vol. 267, pp. 585-590, 1977.  

[306]  V. Rokhlin, “Rapid solution of integral equations of classical potential theory,” 

Journal of Computational Physics, vol. 60, no. 2, pp. 187-207, 1985.  

[307]  S. Karabasov, D. Nerukh, A. Hoekstra, B. Chopard and P. V. Coveney, Multiscale 

modelling: approaches and challenges, The Royal Society, 2014.  

[308]  B. Stres and L. Kronegger, “Shift in the paradigm towards next-generation 

microbiology,” FEMS Microbiology Letters, vol. 366, no. 15, 2019.  

[309]  E. Weinan, Principles of multiscale modeling, Cambridge University Press, 2011.  

[310]  A. Hagberg, P. Swart and D. Chult, “Exploring network structure, dynamics, and 

function using NetworkX,” 2008. 

[311]  P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. 

Schwikowski and T. Ideker, “Cytoscape: a software environment for integrated 

models of biomolecular interaction networks,” Genome research, vol. 13, no. 

11, pp. 2498-2504, 2003.  

[312]  M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang and T. Ideker, “Cytoscape 2.8: 

new features for data integration and network visualization,” Bioinformatics, 
vol. 27, no. 3, pp. 431-432, 2010.  

[313]  M. Bastian, S. Heymann and M. Jacomy, “Gephi: an open source software for 

exploring and manipulating networks,” Icwsm, vol. 8, pp. 361-362, 2009.  

[314]  V. Batagelj and A. Mrvar, “Pajek-program for large network analysis,” 

Connections, vol. 21, no. 2, pp. 47-57, 1998.  

[315]  Z. Hu, J. Mellor, J. Wu and C. DeLisi, “VisANT: an online visualization and analysis 

tool for biological interaction data,” BMC bioinformatics, vol. 5, no. 1, p. 17, 

2004.  

[316]  G. Zhou, O. Soufan, J. Ewald, R. E. Hancock, N. Basu and J. Xia, “NetworkAnalyst 

3.0: a visual analytics platform for comprehensive gene expression profiling and 

meta-analysis.,” Nucleic acids research, vol. 47, no. 1, pp. 234-241, 2019.  

[317]  J. Xia, M. J. Benner and R. E. Hancock, “NetworkAnalyst - integrative approaches 

for protein-protein interaction network analysis and visual exploration,” Nucleic 
Acids Research, vol. 42, no. 1, pp. 167-174, 2014.  

[318]  A.-L. Barabasi, “Network Medicine - From Obesity to the "Diseasome",” The 
New England Journal of Medicine, vol. 357, no. 4, pp. 404-407, 2007.  

[319]  S. Maslov and K. Sneppen, “Specificity and stability in topology of protein 

networks,” Science, vol. 296, no. 5569, pp. 910-913, 2002.  

[320]  W. Zhu, M. Baust, Y. Cheng, S. Ourselin, M. J. Cardoso and A. Feng, “Privacy-

Preserving Federated Brain Tumour Segmentation,” in Machine Learning in 
Medical Imaging: 10th International Workshop, MLMI 2019, Springer Nature, 

2019, p. 133. 

[321]  G. Kovalenko, A. L. Ducluzeau, L. Ishchenko, M. Sushko, M. Sapachova, N. 

Rudova, O. Solodiankin, A. Gerilovych, R. Dagdag, M. Redlinger and M. 

Bezymennyi, “Complete Genome Sequence of a Virulent African Swine Fever 

Virus from a Domestic Pig in Ukraine,” Microbiology Resource Announcements, 
vol. 8, no. 42, pp. e00883-19, 2019.  



[322]  T. Cvitanović, M. C. Reichert, M. Moškon, M. Mraz, F. Lammert and D. Rozman, 

“Large-scale computational models of liver metabolism: How far from the 

clinics?,” Hepatology, vol. 66, no. 4, pp. 1323-1334, 2017.  

[323]  E. Larsdotter Nilsson and P. Fritzson, “BioChem - A Biological and Chemical 

Library for Modelica,” in 3rd International Modelica Conference, Linköping, 

2003.  

[324]  A. Belič, J. Ačimovič, A. Naik and M. Goličnik, “Analysis of the Steady-State 

Relations and Control-Algorithm Characterisation in a Mathematical Model of 

Cholesterol Biosynthesis,” Simulation Modelling Practice and Theory, vol. 33, pp. 

18-27, 2013.  

[325]  A. Naik, D. Rozman and A. Belič, “SteatoNet: the first integrated human 

metabolic model with multi-layered regulation to investigate liver-associated 

pathologies,” PLoS computational biology, vol. 10, no. 12, p. e1003993, 2014.  

[326]  T. Cvitanović Tomaš, Ž. Urlep, M. Moškon, M. Mraz and D. Rozman, “LiverSex 

Computational Model: Sexual Aspects in Hepatic Metabolism and 

Abnormalities,” Frontiers in physiology, vol. 9, p. 360, 2018.  

[327]  D. L. Rubin, N. H. Shah and N. F. Noy, “Biomedical ontologies: a functional 

perspective,” Briefings in bioinformatics, vol. 9, no. 1, pp. 75-90, 2007.  

[328]  A. Groß, C. Pruski and E. Rahm, “Evolution of biomedical ontologies and 

mappings: overview of recent approaches,” Computational and structural 
biotechnology journal, vol. 14, pp. 333-340, 2016.  

[329]  B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. J. Goldberg, K. 

Eilbeck, A. Ireland, C. J. Mungall and N. Leontis, “The OBO Foundry: coordinated 

evolution of ontologies to support biomedical data integration,” Nature 
biotechnology, vol. 25, no. 11, p. 1251, 2007.  

[330]  G. Clermont, C. Auffray, Y. Moreau, D. Rocke, D. Dalevi, D. Dubhashi, D. 

Marshall, P. Raasch, F. Dehne, P. Provero and J. Tegner, “Bridging the gap 

between systems biology and medicine,” Genome medicine, vol. 1, no. 9, p. 88, 

2009.  

[331]  N. R. Council, Toward precision medicine: building a knowledge network for 

biomedical research and a new taxonomy of disease, National Academies Press, 

2011.  

[332]  S. Köhler, N. Vasilevsky, M. Engelstad, E. Foster, J. McMurry, S. Aymé, G. 

Baynam, S. Bello, C. Boerkoel, K. Boycott and M. Brudno, “The Human 

Phenotype Ontology in 2017,” Nucleic acids research, vol. 45, no. D1, pp. D865-

D876, 2017.  

[333]  M. Haendel, C. Chute and P. Robinson, “Classification, Ontology, and Precision 

Medicine,” New England Journal of Medicine, vol. 379, no. 15, pp. 1452-1462, 

2018.  

[334]  M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp and J. G. Blom, “Systems 

biology: parameter estimation for biochemical models,” The FEBS journal, vol. 

276, no. 4, pp. 886-902, 2009.  



[335]  E. Stalidzans, K. Landmane, J. Sulins and S. Sahle, “Misinterpretation risks of 

global stochastic optimisation of kinetic models revealed by multiple 

optimisation runs,” Mathematical biosciences, vol. 307, pp. 25-32, 2019.  

[336]  O.-T. Chis, J. R. Banga and E. Balsa-Canto, “Structural identifiability of systems 

biology models: a critical comparison of methods,” PloS one, vol. 6, no. 11, p. 

e27755, 2011.  

[337]  Z. Zi, “Sensitivity analysis approaches applied to systems biology models,” IET 
systems biology, vol. 5, no. 6, pp. 336-346, 2011.  

[338]  A. Kiparissides, S. S. Kucherenko, A. Mantalaris and E. N. Pistikopoulos, “Global 

sensitivity analysis challenges in biological systems modeling,” Industrial & 
Engineering Chemistry Research, vol. 48, no. 15, pp. 7168-7180, 2009.  

[339]  K. H. Cho, S. Y. Shin, W. Kolch and O. Wolkenhauer, “Experimental design in 

systems biology, based on parameter sensitivity analysis using a monte carlo 

method: A case study for the tnfα-mediated nf-κ b signal transduction 

pathway,” Simulation, vol. 79, no. 12, pp. 726-739, 2003.  

[340]  T. A. Knijnenburg, L. F. Wessels, M. J. Reinders and I. Shmulevich, “Fewer 

permutations, more accurate P-values,” Bioinformatics, vol. 25, no. 12, pp. 161-

168, 2009.  

[341]  R.-R. Liu, W.-X. Wang, Y.-C. Lai and B.-H. Wang, “Cascading dynamics on random 

networks: Crossover in phase transition,” Physical Review E, vol. 85, no. 2, p. 

026110, 2012.  

[342]  S. W. Omholt and P. J. Hunter, “The Human Physiome: a necessary key for the 

creative destruction of medicine,” Interface Focus, vol. 6, no. 2, 2016.  

[343]  G. S. Ginsburg and H. F. Willard, Genomic and Precision Medicine: Foundations, 

Translation, and Implementation, Academic Press, 2016.  

[344]  A. Katsnelson, Momentum grows to make 'personalized' medicine more 

'precise', Nature Publishing Group, 2013.  

[345]  T. Bedford and R. Cooke, Probabilistic risk analysis: foundations and methods, 

Cambridge University Press, 2001.  

[346]  M. Danhof, “Systems pharmacology - Towards the modeling of network 

interactions,” Eur. J. Pharm. Sci., vol. 94, pp. 4-14, 2016.  

[347]  H. Geerts, A. Spiros, P. Roberts and R. Carr, “Quantitative systems 

pharmacology as an extension of PK/PD modeling in CNS research and 

development,” J. Pharmacokinetics and Pharmacodynamics, vol. 40, no. 3, pp. 

257-265, 2013.  

[348]  P. H. van der Graaf and N. Benson, “Systems pharmacology: bridging systems 

biology and pharmacokinetics-pharmacodynamics (PKPD) in drug discovery and 

development,” Pharm. Res., vol. 28, no. 7, pp. 1460-1464, 2011.  

[349]  T. Leil and R. Bertz, “Quantitative Systems Pharmacology can reduce attrition 

and improve productivity in pharmaceutical research and development,” Front. 
Pharmacol., vol. 5, no. 247, 2014.  

[350]  T. Hart and L. Xie, “Providing data science support for systems pharmacology 

and its implications to drug discovery,” Expert. Opin. Drug Discov., vol. 11, no. 3, 

pp. 241-256, 2016.  



[351]  M. C. Peterson and M. M. Riggs, “FDA advisory meeting clinical pharmacology 

review utilizes a quantitative systems pharmacology (QSP) model: A watershed 

moment,” CPT: Pharmacometrics Syst. Pharmacol., vol. 4, no. 3, pp. 189-192, 

2015.  

[352]  L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5-32, 2001.  

[353]  T. M. Oshiro, P. S. Perez and J. A. Baranauskas, “How many trees in a random 

forest?,” in International Workshop on Machine Learning and Data Mining in 
Pattern Recognition, Springer, 2012, pp. 154-168. 

[354]  A. Verikas, A. Gelzinis and M. Bacauskiene, “Mining data with random forests: A 

survey and results of new tests,” Pattern recognition, vol. 44, no. 2, pp. 330-349, 

2011.  

[355]  B. Bollobás, “Random graphs,” in Modern graph theory, Springer, 1998, pp. 215-

252. 

[356]  S. Janson, T. Luczak and A. Rucinski, Random graphs, John Wiley & Sons, 2011.  

[357]  R. Albert, “Scale-free networks in cell biology,” Journal of cell science, vol. 118, 

no. 21, pp. 4947-4957, 2005.  

[358]  E. Fox Keller, “Revisiting “scale-free” networks,” BioEssays, vol. 27, no. 10, pp. 

1060-1068, 2005.  

[359]  G. Caldarelli, Scale-free networks: complex webs in nature and technology, 

Oxford University Press, 2007.  

[360]  A.-L. Barabási, “Scale-free networks: a decade and beyond,” Science, vol. 325, 

no. 5939, pp. 412-413, 2009.  

[361]  R. Khanin and E. Wit, “How scale-free are biological networks,” Journal of 
computational biology, vol. 13, no. 3, pp. 810-818, 2006.  

[362]  P. Crucitti, V. Latora, M. Marchiori and A. Rapisarda, “Efficiency of scale-free 

networks: error and attack tolerance,” Physica A: Statistical Mechanics and its 
Applications, vol. 320, pp. 622-642, 2003.  

[363]  L. K. Gallos, R. Cohen, P. Argyrakis, A. Bunde and S. Havlin, “Stability and 

topology of scale-free networks under attack and defense strategies,” Physical 
review letters, vol. 94, no. 18, p. 188701, 2005.  

[364]  A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” 

Science, vol. 286, no. 5439, pp. 509-512, 1999.  

[365]  A.-L. Barabási, E. Ravasz and T. Vicsek, “Deterministic scale-free networks,” 

Physica A: Statistical Mechanics and its Applications, vol. 299, no. 3-4, pp. 559-

564, 2001.  

[366]  G. Caldarelli, A. Capocci, P. De Los Rios and M. A. Munoz, “Scale-free networks 

from varying vertex intrinsic fitness,” Physical review letters, vol. 89, no. 25, p. 

258702, 2002.  

[367]  J. Saramäki and K. Kaski, “Scale-free networks generated by random walkers,” 

Physica A: Statistical Mechanics and its Applications, vol. 341, pp. 80-86, 2004.  

[368]  W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical 

Recipes in C - 2nd Edition, Cambridge University Press, 1992.  



[369]  V. Granville, M. Krivánek and J.-P. Rasson, “Simulated annealing: A proof of 

convergence,” IEEE transactions on pattern analysis and machine intelligence, 
vol. 16, no. 6, pp. 652-656, 1994.  

[370]  S. Webb, “Optimisation of conformal radiotherapy dose distribution by 

simulated annealing,” Physics in Medicine & Biology, vol. 34, no. 10, p. 1349, 

1989.  

[371]  E. Lessard and J. Pouliot, “Inverse planning anatomy-based dose optimization 

for HDR-brachytherapy of the prostate using fast simulated annealing algorithm 

and dedicated objective function,” Medical physics, vol. 28, no. 5, pp. 773-779, 

2001.  

[372]  M. Langer, S. Morrill, R. Brown, O. Lee and R. Lane, “A comparison of mixed 

integer programming and fast simulated annealing for optimizing beam weights 

in radiation therapy,” Medical Physics, vol. 23, no. 6, pp. 957-964, 1996.  

[373]  N. Friedland and D. Adam, “Automatic ventricular cavity boundary detection 

from sequential ultrasound images using simulated annealing,” IEEE 
transactions on medical imaging, vol. 8, no. 4, pp. 344-353, 1989.  

[374]  A. Alexandridis and E. Chondrodima, “A medical diagnostic tool based on radial 

basis function classifiers and evolutionary simulated annealing,” Journal of 
biomedical informatics, vol. 49, pp. 61-72, 2014.  

[375]  D. J. Watts and S. H. Strogatz, “Collective Dynamics of Small-World Networks,” 

Nature, vol. 393, no. 6684, p. 440, 1998.  

[376]  F. Karinthy, Chains. Everything is different., Budapest: Atheneum Press, 1929.  

[377]  G. R. Liu and M. B. Liu, Smoothed particle hydrodynamics: a meshfree particle 

method, World Scientific, 2003.  

[378]  J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual review of 
astronomy and astrophysics, vol. 30, no. 1, pp. 543-574, 1992.  

[379]  P. W. Cleary and M. Prakash, “Discrete–element modelling and smoothed 

particle hydrodynamics: potential in the environmental sciences,” Philosophical 
Transactions of the Royal Society of London. Series A: Mathematical, Physical 
and Engineering Sciences, vol. 362, no. 1822, pp. 2003-2030, 2004.  

[380]  Z. Zhang, H. Qiang and W. Gao, “Coupling of smoothed particle hydrodynamics 

and finite element method for impact dynamics simulation,” Engineering 
Structures, vol. 33, no. 1, pp. 255-264, 2011.  

[381]  L. Lobovský and J. Křen, “Smoothed particle hydrodynamics modelling of fluids 

and solids,” Applied and Computational Mechanics, vol. 1, pp. 512-530, 2007.  

[382]  A. Sofla, B. Cirkovic, A. Hsieh, J. W. Miklas, N. Filipovic and M. Radisic, 

“Enrichment of live unlabelled cardiomyocytes from heterogeneous cell 

populations using manipulation of cell settling velocity by magnetic field,” 

Biomicrofluidics, vol. 7, no. 1, p. 014110, 2013.  

[383]  T. Djukic, I. Saveljic, G. Pelosi, O. Parodi and N. Filipovic, “Numerical simulation 

of stent deployment within patient-specific artery and its validation against 

clinical data,” Computer methods and programs in biomedicine, vol. 175, pp. 

121-127, 2019.  



[384]  T. Djukic, M. Topalovic and N. Filipovic, “Numerical simulation of isolation of 

cancer cells in a microfluidic chip,” Journal of Micromechanics and 
Microengineering, vol. 25, no. 8, p. 084012, 2015.  

[385]  T. R. Djukic, S. Karthik, I. Saveljic, V. Djonov and N. Filipovic, “Modeling the 

behavior of red blood cells within the caudal vein plexus of zebrafish,” Frontiers 
in physiology, vol. 7, p. 455, 2016.  

[386]  N. Filipovic, D. Nikolic, I. Saveljic, T. Djukic, O. Adjic, P. Kovacevic, N. Cemerlic-

Adjic and L. Velicki, “Computer simulation of thromboexclusion of the complete 

aorta in the treatment of chronic type B aneurysm,” Computer Aided Surgery, 
vol. 18, no. 1-2, pp. 1-9, 2013.  

[387]  W. J. Ewens and G. R. Grant, Statistical methods in bioinformatics: an 

introduction, Springer Science & Business Media, 2006.  

[388]  S. K. Mathur, Statistical bioinformatics with R, Academic Press, 2009.  

[389]  J. K. Lee, Statistical bioinformatics: for biomedical and life science researchers, 

John Wiley & Sons, 2011.  

[390]  H. H. Lu, B. Schölkopf and H. Zhao, Handbook of statistical bioinformatics, 

Springer Science & Business Media, 2011.  

[391]  T. Hu, N. A. Sinnott-Armstrong, J. W. Kiralis, A. S. Andrew, M. R. Karagas and J. 

H. Moore, “Characterizing genetic interactions in human disease association 

studies using statistical epistasis networks,” BMC bioinformatics, vol. 12, no. 1, 

p. 364, 2011.  

[392]  K. Van Steen and J. H. Moore, “How to increase our belief in discovered 

statistical interactions via large-scale association studies?,” Human genetics, vol. 

138, no. 4, pp. 293-305, 2019.  

[393]  D. Basak, S. Pal and D. C. Patranabis, “Support vector regression,” Neural 
Information Processing-Letters and Reviews, vol. 11, no. 10, pp. 203-224, 2007.  

[394]  X. F. Yan, H. W. Ge and Q. S. Yan, “SVM with RBF kernel and its application 

research,” Computer Engineering and Design, vol. 27, no. 11, pp. 1996-1997, 

2006.  

[395]  N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines 

and other kernel-based learning methods, Cambridge university press, 2000.  

[396]  I. Steinwart and A. Christmann, Support vector machines, Springer Science & 

Business Media, 2008.  

[397]  D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene and K. Crombecq, “A 

surrogate modeling and adaptive sampling toolbox for computer based design,” 

Journal of Machine Learning Research, vol. 11, pp. 2051-2055, 2010.  

[398]  H. Kitano, Foundations of systems biology, The MIT Press, 2001.  

[399]  H. Kitano, “Systems biology: a brief overview,” Science, vol. 295, no. 5560, pp. 

1662-1664, 2002.  

[400]  F. Boogerd, F. J. Bruggeman, J. H. S. Hofmeyr and H. V. Westerhoff, Systems 

biology: philosophical foundations, Elsevier, 2007.  

[401]  A. Oulas, G. Minadakis, K. Sokratous, M. Zachariou, M. M. Bourdakou and G. M. 

Spyrou, “Systems Bioinformatics: increasing precision of computational 



diagnostics and therapeutics through network-based approaches,” Briefings in 
Bioinformatics, vol. 20, no. 3, pp. 806-824, 2017.  

[402]  A. Singh, C. P. Shannon, B. Gautier, F. Rohart, M. Vacher, S. J. Tebbutt and K. A. 

Lê Cao, “DIABLO: an integrative approach for identifying key molecular drivers 

from multi-omic assays,” Bioinformatics, 2019.  

[403]  A. Conesa and S. Beck, “Making multi-omics data accessible to researchers,” 

Scientific data, vol. 6, no. 1, pp. 1-4, 2019.  

[404]  C. Wu, F. Zhou, J. Ren, X. Li, Y. Jiang and S. Ma, “A selective review of multi-level 

omics data integration using variable selection,” High-throughput, vol. 8, no. 1, 

p. 4, 2019.  

[405]  C. P. Fall, E. S. Marland, J. M. Wagner and J. J. Tyson, Computational cell biology, 

Interdisciplinary Applied Mathematics, 2002.  

[406]  E. M. Izhikevich, Dynamical systems in neuroscience, MIT press, 2007.  

[407]  A. Goldbeter, Biochemical oscillations and cellular rhythms: the molecular bases 

of periodic and chaotic behaviour, Cambridge university press, 1997.  

[408]  L. Preziosi, Cancer modelling and simulation, CRC Press, 2003.  

[409]  S. H. Strogatz, Nonlinear Dynamics and Chaos, Westview Press, 2014.  

[410]  B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A 

Guide to XPPAUT for Researchers and Students, SIAM, 2002.  

[411]  A. Dhooge, W. Govaerts and Y. A. Kuznetsov, MatCont: A MATLAB package for 

numerical bifurcation analysis of ODEs, ACM TOMS, 2003.  

[412]  Y. A. Kunznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, 

1998.  

[413]  V. I. Arnold, Elements of Applied Bifurcation Theory, Springer-Verlag, 1992.  

[414]  B. Thomé, Systems engineering: principles and practice of computer-based 

systems engineering, John Wiley and Sons Ltd., 1993.  

[415]  M. W. Maier, “Architecting principles for systems-of-systems,” Systems 
Engineering: The Journal of the International Council on Systems Engineering, 
vol. 1, no. 4, pp. 267-284, 1998.  

[416]  Y. Hata, S. Kobashi and H. Nakajima, “Human health care system of systems,” 

IEEE Systems Journal, vol. 3, no. 2, pp. 231-238, 2009.  

[417]  M. Hucka, D. P. Nickerson, G. D. Bader, F. T. Bergmann, J. Cooper, E. Demir, A. 

Garny, M. Golebiewski, C. J. Myers, F. Schreiber and D. Waltemath, “Promoting 

coordinated development of community-based information standards for 

modeling in biology: the COMBINE initiative,” Frontiers in bioengineering and 
biotechnology, vol. 3, p. 19, 2015.  

[418]  N. J. Stanford, K. Wolstencroft, M. Golebiewski, R. Kania, N. Juty, C. Tomlinson, 

S. Owen, S. Butcher, H. Hermjakob, N. Le Novère and W. Mueller, “The 

evolution of standards and data management practices in systems biology,” 

Molecular systems biology, vol. 11, no. 12, 2015.  

[419]  A. Alexander-Bloch, J. N. Giedd and E. Bullmore, “Imaging structural co-variance 

between human brain regions,” Nat Rev Neurosci., vol. 14, no. 5, pp. 322-336, 

2013.  



[420]  A. C. Evans, “Networks of anatomical covariance,” NeuroImage, vol. 80, p. 489–

504, 2013.  

[421]  B. S. Khundrakpam, A. Reid, J. Brauer, F. Carbonell, J. Lewis, S. Ameis, S. Karama, 

J. Lee, Z. Chen, S. Das, A. C. Evans and The Brain Development Cooperative 

Group, “Developmental changes in organization of structural brain networks,” 

Cerebral Cortex, vol. 23, no. 9, p. 2072–2085, 2013.  

[422]  B. A. Zielinski, E. D. Gennatas, J. Zhou and W. W. Seeley, “Network-level 

structural covariance in the developing brain,” PNAS, vol. 107, no. 42, p. 18191–

18196, 2010.  

[423]  D. S. Bassett, E. Bullmore, B. A. Verchinski, V. S. Mattay, D. R. Weinberger and A. 

Meyer-Lindenberg, “Hierarchical organization of human cortical networks in 

health and schizophrenia,” Journal of Neuroscience, vol. 28, no. 37, p. 9239–

9248, 2008.  

[424]  R. A. I. Bethlehem, R. Romero-Garcia, E. Mak, E. T. Bullmore and S. Baron-

Cohen, “Structural covariance networks in children with autism or ADHD,” 

Cerebral Cortex, vol. 27, no. 8, p. 4267–4276, 2017.  

[425]  Y. He, Z. Chen, G. Gong and A. Evans, “Neuronal networks in Alzheimer’s 

disease,” The Neuroscientist, vol. 15, no. 4, p. 33–350, 2009.  

[426]  M. Sharda, B. S. Khundrakpam, A. C. Evans and N. C. Singh, “Disruption of 

structural covariance networks for language in autism is modulated by verbal 

ability,” Brain Structure and Function, vol. 221, no. 2, p. 1017–1032, 2016.  

[427]  J. Solé-Casals, J. M. Serra-Grabulosa, R. Romero-Garcia, G. Vilaseca, A. Adan, N. 

Vilaró, N. Bargalló and E. T. Bullmore, “Structural brain network of gifted 

children has more integrated and versatile topology,” Brain Structure and 
Function, vol. 224, no. 7, p. 2373–2383, 2019.  

[428]  P. Holme and J. Saramäki, “Temporal networks,” Physics reports, vol. 519, no. 3, 

pp. 97-125, 2012.  

[429]  P. Holme and J. Saramäki, Temporal networks, Springer, 2013.  

[430]  J. Gunawardena, “Time-scale separation - Michaelis and Menten's old idea, still 

bearing fruit,” The FEBS journal, vol. 281, no. 2, pp. 473-488, 2014.  

[431]  F. Rocha, M. Aguiar, M. Souza and N. Stollenwerk, “Time-scale separation and 

centre manifold analysis describing vector-borne disease dynamics,” 

International Journal of Computer Mathematics, vol. 90, no. 10, pp. 2105-2125, 

2013.  

[432]  J. Gunawardena, “A linear framework for time-scale separation in nonlinear 

biochemical systems,” PLoS one, vol. 7, no. 5, p. e36321, 2012.  

[433]  D. P. Borcard, P. Legendre and P. Drapeau, “Partialling out the spatial 

component of ecological variation,” Ecology, vol. 73, no. 3, pp. 1045-1055, 

1992.  

[434]  A. Duchene, R. E. Graves and P. Brugger, “Schizotypal thinking and associative 

processing: a response commonality analysis of verbal fluency,” Journal of 
Psychiatry and Neuroscience, vol. 23, no. 1, p. 56, 1998.  

[435]  M. Stellefson, J. F. Yannessa and G. F. Martel, “Using canonical commonality 

analysis to examine the predictive quality of aging and falls efficacy on balance 



functioning in older adults,” Evaluation & the health professions, vol. 35, no. 2, 

pp. 239-255, 2012.  

 
 
 
 
 

View publication statsView publication stats

https://www.researchgate.net/publication/345903596

