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The transport properties of MAPbI3 are analyzed within a tight-binding model. We find a strong
Fröhlich interaction of electron and holes with the electrostatic potential induced by the longitudinal optical
phonon modes. This potential induces a strong scattering and limits the electronic mobilities at room
temperature to about 200 cm2=Vs. With additional extrinsic disorder, a large fraction of the electrons and
holes are localized, but they can diffuse by following nearly adiabatically the evolution of the electrostatic
potential. This process of diffusion, at a rate which is given by the lattice dynamics, contributes to the
unique electronic properties of this material.
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Metal halide perovskites have recently emerged as great
materials for photovoltaic and optoelectronic devices [1,2].
The rapid progresses obtained in these applications require
also to gain a better fundamental understanding of their
electronic properties. In particular, there is so far no
consensus on the mechanism of charge transport in these
materials [3,4]. For good crystals below the Debye temper-
ature, one expects the formation of a large polaron due to
the coupling to longitudinal optical (LO) modes. Although
the mass renormalization, estimated to about 40%, is
moderate, this polaronic effect is often considered in the
literature [5–7]. However, owing to the very low phonons
frequency and to anharmonicity, a strong dynamic disorder
develops above the Debye temperature (175 K in MAPbI3)
[8–11] and it is not clear whether the large polaron state
survives at room temperature. Theoretical investigations
point toward the importance of the scattering of charge
carriers by LO phonon modes [12,13]. The dipolar moment
of the methylammonium (MA) has also been considered as
a possible source of scattering, even though recent calcu-
lations suggest that the scattering by the associated dipolar
field has a limited effect on transport [14]. Other sources of
scattering have also been considered related to the anhar-
monic behavior of these crystals at room temperature [15].
Extrinsic disorder is of course present in real systems, but
its effect is difficult to model.
In this Letter, we investigate the transport properties

of electrons and holes in MAPbI3 (MAPI) within a tight-
binding model, which allows us to perform calculations
of quantum diffusion in real space [16–19]. We take
into account the effect of intrinsic thermal disorder of
the PbI3 matrix, as well as the dipolar electric field created
by the MA cation. The Drude-Anderson model [20] allows
us to rationalize the numerical results and to extract the
fundamental parameters of electronic transport. At room

temperature, the results show that the broadening of the
electronic states due to the sources of disorder is much
larger than the formation energy of the polaronic state.
Therefore, the polaronic effect should play a minor role at
room temperature, and the mobilities are determined
mainly by the Fröhlich scattering and by quantum locali-
zation effects. This quantum localization has experimental
signatures that can be close to those of a polaronic state, for
example, with terahertz optical conductivity. The dynamic
thermal disorder tends to break the quantum localization
by dephasing, which allows charge carrier diffusion. This
process of diffusion is neither a bandlike process, nor a
thermally activated hopping and contributes to the unique
properties of this material.
We use a tight-binding model with parameters fitted [21]

to be consistent with MAPI’s ab initio band structure
calculations [22,23]. The thermal disorder induces off-
diagonal and diagonal disorders.
The off-diagonal disorder is related to the variation of the

distance and overlapping between orbitals. We describe
atomic displacements using independent Einstein oscilla-
tors, where all atomic displacements are statistically inde-
pendent, with harmonic and isotropic potentials. Such
single particle potentials have been computed from exper-
imental data by Tyson et al. [24]. We generate an atomic
configuration and recompute the orbital couplings from the
Slater-Koster relations [25] for changes in direction and via
a power law in ðd0=dÞ2 for changes in distance.
The diagonal disorder of the on-site energies is determined

by the electrical potential inside thematerial. Thevariation of
this electrical potential with respect to the periodic structure
is caused by the displacement of the charged ions and the
orientation of the MA molecules. However, the contribution
of the MA molecules is found to be small [14], as shown in
the Supplemental Material [26–31], and with negligible
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effects on mobilities. Therefore, we present results only with
diagonal disorder due to the displacement of the lead and
iodine ions. The displacement of an atom creates a dipole
moment equal to the product of the displacement by theBorn
charge in the considered direction. We use the Born charges
computed by Pérez-Osorio et al. [10]. Themain contribution
to the electrostatic potential is expected to come from the LO
phonon modes, for which the energies are in the 10–13 meV
range [12]. Here we also represent the statistics of the
displacements by using an Einstein model with an effective
phonon pulsation ωE ≃ 10 meV.
From the relation between the dipolar moments d⃗i, kbT,

and ωE, we find (see Supplemental Material [26]) that the
variable W ¼ kbT=ðεrωEÞ2 is the only parameter deter-
mining the statistics of the electrostatic potential. In the
rest of the Letter, unless otherwise specified, we fix the
temperature to T ¼ 300 K and the relative dielectric con-
stant to εr ¼ 5 [32]. The value of ωE that best reproduces
the gap at room temperature is close to 10 meV (see
Supplemental Material [26]) and we discuss only the effect
of varyingωE around 10meV.Disorder thus increases when
ωE decreases. The central idea of this study is that the
transport properties are mainly determined by a single
parameter (ωE or W), representing the strength of disorder
and the scattering rate.
We first present results for ωE ¼ 10 meV showing

energy resolved analysis for the properties of electrons
and holes. Figure 1 shows the density of states (DOS) nðEÞ,
the occupied density of states nðEÞ expð−βEÞ, the mobility
μðEÞ at energy E, and the differential conductivity
dσ=dE ¼ μðEÞnðEÞ expð−βEÞ. We find that the occupied
DOS is important within a range of about 0.2 eV and that
states contributing the most to the transport of current are
also within a range of about 0.2 eV, but slightly shifted
away from the band edges. The very small mobility close to
the band edge is related to Urbach’s tail, which cannot be
analyzed with the present energy resolution of 10–20 meV
(see Supplemental Material [26]). The typical values of
mobility for the states that contribute most are in the

100–300 cm2=Vs range, which corresponds indeed to the
best experimental mobilities. Finally, we note that the
density of states of both electrons and holes are very
different from the parabolic shape typical of free particles
with an effective mass. This indicates that the disorder is
strong and that the energy broadening of a state due to the
disorder is comparable to its energy, counted from the band
edge.According to the Ioffe-Regel criterion [33], one expects
important quantum localization effects that we consider now.
We start our analysis of the quantum localization effects

by considering an extension of the Drude-Anderson model
[20]. Two fundamental quantities for the quantum transport
are the mean squared displacement X2ðtÞ and the velocity
correlation function CðtÞ that are defined for each type of
carrier (electrons and holes). They are related by

1

2

dX2ðtÞ
dt

¼
Z

t

0

Cðt0Þdt0: ð1Þ

Using the Kubo formalism, one can derive the optical
terahertz conductivity σðωÞ from CðtÞ or X2ðtÞ [20,34,35],

σðωÞ ¼ e2n
tanhðβℏω=2Þ

ℏω=2
Re

Z
∞

0

eiωtCðtÞdt; ð2Þ

where e and n are the charge and concentration for each
carrier type. Thus, σðωÞ contains information about the
charge carrier dynamics and the temporal behavior of the
spreading of electronic states X2ðtÞ.
The Drude-Anderson model assumes a phenomenologi-

cal expression for the velocity correlation CðtÞ,

CðtÞ ≃ CCe−t=τC − CBe−t=τBe−t=τΦ : ð3Þ

The first term corresponds to the standard classical picture
of electronic transport, where scattering events lead to a
loss of the memory of the initial velocity on a characteristic
time τC. The second term represents a negative contribution
to the velocity correlation function. This corresponds to
the backscattering phenomena that is at the heart of the
Anderson localization phenomenon. Physically, one must
have τB > τC because the backscattering phenomena
occurs after several scattering events. The term e−t=τΦ
describes an exponential damping of the backscattering
terms, which is a standard treatment of dephasing processes
[36]. In the present case, the dephasing of the backscatter-
ing terms is due to the dynamics of the lattice, and τΦ is of
the order of the period of the LO modes, which are the main
source of scattering, i.e., τΦ ≃ 1=ωE. In the following, we
shall discuss the results by considering mainly the time-
and frequency-dependent mobilities defined by

μ̃ðtÞ ¼ e
kbT

X2ðtÞ
2t

; μ̃ðωÞ ¼ σðωÞ
ne

; ð4Þ

(a) (b)

FIG. 1. Variations of carrier mobilities (black), density of states
(blue), occupied DOS (red), and differential conductivity (green)
as a function of energy, near band edges, for (a) holes and
(b) electrons. Except for mobility, the quantities are normalized
such that their integral is one on the energy interval (weight axis).
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where e > 0 is the electron charge and the mobility μ is
given by μ ¼ μ̃ðt → ∞Þ ¼ μ̃ðω → 0Þ. We define also the
static mobility μS and the classical mobility μC by

μS ¼
e

kbT
ðCCτC − CBτBÞ; μC ¼ e

kbT
ðCCτCÞ: ð5Þ

In the absence of dephasing, i.e., by considering the lattice
as static (τΦ → ∞), one has μ ¼ μS, and the ratio R ¼
μS=μC is an indicator of the importance of localization
effects. In Fig. 2 we consider typical regimes of diffusion:
one that is classical and presents no localization effect
(R ≃ 1), one that is strongly localized with (R ≃ 0), and two
intermediate cases. At short time there is always a ballistic
regime during which the charge carrier moves through the
material without interacting with disorder, i.e., μ̃ðtÞ ∝ t.
The end of this regime marks the elastic diffusion mean free
time. It can be followed by a quantum diffusion regime if
disorder is strong enough for charge carriers to become
localized, inducing a drop in diffusivity and mobility.
Finally, at sufficiently large time, the diffusive regime is
reached, for which X2ðtÞ ∝ t, and the diffusivity and the
time-dependent mobility μ̃ðtÞ are constant. For a com-
pletely localized system, μ̃ðtÞ tends exactly to zero at large
times. Finally, we emphasize that, when the quantum
localization increases, the Drude peak is progressively
replaced by a dip in the frequency-dependent conductivity
[Fig. 2(b)].
In the presence of dephasing processes, i.e., for a finite

τΦ, the mobility μ is the sum of the static contribution μS
and of a contribution due to the lattice dynamics μLD with

μ ¼ μS þ μLD; μLD ¼ e
kbT

L2ðτΦÞ
2τΦ

: ð6Þ

Since lattice dynamics tends to break quantum localization,
μLD is positive with L2ðτΦÞ ¼ 2CBτ

2
B=ð1þ τB=τΦÞ. In the

classical limit, there is no backscattering, CB ¼ 0 and
μLD ¼ 0. In the weak-localization regime, there is some
backscattering, and μLD gives a correction to the static

mobility μS. In the strongly localized limit μS ≃ 0, but
transport is still possible thanks to the μLD > 0 term. In this
regime and in the limit of large τΦ, LðτΦÞ is essentially
equal to the localization length (see Supplemental Material
[26]). The physical picture is that the charge can diffuse up
to a maximum extent, which is the localization length. Then
diffusion stops and can start again only if a dephasing
process breaks the electronic coherence, that is, after a
sufficiently large atomic displacement. The physical picture
of the dephasing process corresponds to the so-called
Thouless regime [37–41] that is expected to occur near a
metal-insulator transition. It is also related to the concept of
transient localization that has been proposed for crystalline
organic semiconductors like rubrene [42–45]. This can also
be seen as a process of diffusion that follows nearly
adiabatically the evolution of the electrostatic potential.
Indeed, in this regime, the typical time needed for locali-
zation τB is much smaller than the typical time of vibrations
τΦ and the charge carrier is always close to its state of
maximum extension. Therefore, the diffusion is driven by
the lattice dynamics, and the diffusion coefficient increases
linearly with the vibration frequency ωE ∝ 1=τϕ. Let us
emphasize that diffusion results from a dephasing process
that differs from the thermally activated hopping regime.
We add that in this scenario the mobility decreases when
the temperature increases, just as in a bandlike conduction
regime. Indeed, increasing temperature, and therefore static
disorder, decreases the localization length and L2ðτΦÞ
without changing τΦ. From Eq. (6) this decreases μLD.
A numerical study of the temperature dependence for
MAPI confirms this, as shown below.
We come now to the study of charge carrier mobilities.

By applying the real-space Kubo-Greenwood method [16–
19], we compute the quantum diffusion X2ðtÞ and the time-
dependent mobility μ̃ðtÞ without resorting to perturbative
treatment of disorder (see Supplemental Material [26]). As
shown previously, holes and electrons have similar mobil-
ities and we present in Fig. 3 values of the time- and
frequency-dependent mobilities averaged over electrons
and holes states. We emphasize that the optical conduc-
tivity, obtained from the frequency-dependent mobility,
reflects the dynamics of the charge diffusion and can
provide much information [46–48], as shown in Fig. 2.
The model with ωE ¼ 10 meV is expected to be the

closest to perfect bulk MAPI, ωE ¼ 12.5 meV is a high
expectation value, and ωE ¼ 7.5 meV describes a more
imperfect MAPI sample with extrinsic disorder. As shown
in Fig. 3, the Drude-Anderson model fits the numerical data
of μ̃ðtÞ very accurately, which allows us to derive funda-
mental transport parameters (see Supplemental Material
[26]). We find that the LO phonon modes of MAPI limit the
mobilities to maximum values of about 200 cm2=ðV sÞ.
This result is consistent with recent work [13], which finds
strong scattering by LO phonon modes and mobilities
of the order of 50–100 cm2=Vs. However, we find that

(a) (b)

FIG. 2. (a) Normalized time-dependent mobility μ̃ðtÞ=μC and
(b) normalized frequency-dependent mobility μ̃ðωÞ=μC for differ-
ent localization ratio R ¼ μS=μC, with (dashed line) or without
(full line) dephasing process. Here τB ¼ 2.5τC and τϕ ¼ 8τB.
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quantum localization effects are strong, with R ≃ 0.15 and
comparable contributions of μS and μLD. This differs from
[13], which is based on the Boltzmann transport formalism
that neglects quantum localization effects. For ωE ¼
10 meV (respectively, ωE ¼ 12.5 meV), the elastic mean
free path l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔX2ðτCÞ

p
is about 20 Å (respectively, 30 Å),

and the scattering times τC are about 8.3 fs (respectively,
10.3 fs). As expected, the backscattering times τB are 2–3
times larger than τC.
The case ωE ¼ 7.5 meV is equivalent to an increase of

about 30% of the disorder potential with respect to
ωE ¼ 10 meV. The scattering time is τC ≃ 2.6 fs, and a
large portion of the charge carrier states close to the band
edges are strongly localized on a timescale τB ≃ 8 fs, which
is short compared to the phonon period (of about 400 fs).
Figure 3 shows that for this disorder the mobility is around
μ ≃ 50 cm2=V s, with μS ≃ 10 and μLD ≃ 40 cm2=V s. The
maximum of optical conductivity occurs around 100 meV,
which is comparable to results on MAPI films, although it
is interpreted by a polaronic state in Ref. [46].
The above results allow us to discuss the formation of

large polarons at room temperature. The coupling constant
α ≃ 2–3 implies the formation of large polarons at low
temperatures. The formation energy of the polaron is given
by Epol ≃ αℏωE ≃ 30 meV [6,7]. Yet, above the Debye
temperature (175 K in MAPI [8]), the phonon modes are
thermally excited, and this induces a scattering of electrons
and a tendency to erase the polaronic state. This is shown, for
example, by recent theoretical calculations in the case of
CsPbBr3 [49]. This scattering remains delicate to compute
with standard polaron theories [50,51]. The scattering by
thermal vibrations induces an energy broadeningΔE ≃ ℏ=τ,
where τ is the electron lifetime. In our case, due to the long-
range nature of the scattering by longitudinal modes, there is
forward scattering, and τ ≤ τC. Then, for the systems with

highest mobilities μ ≃ 200 cm2=V s, the energy broadening
is ΔE≥ℏ=τC≥90meV. Therefore, even for this less disor-
dered case, the energy broadening due to the scattering
by disorder is larger than the polaron formation energy,
ΔE > Epol. Correlatively the estimated polaron radius, of
about 40–50 Å, is larger than the elastic mean free path,
which is less than 20–30 Å. This indicates that, because of
the moderate coupling constant α ≃ 2–3, the polaron state is
erased by the strong disorder that exists at room temperature.
This justifies the starting assumption of the present model
that consists to neglect, at sufficiently high temperature, the
action of the charge carrier on the lattice and just retain the
action of the lattice on the charge carrier.
Finally, we considered the temperature dependence of

the mobility in the 300–400 K temperature range. We find
that the mobility decreases with increasing temperature
(see Supplemental Material [26]), which is in agreement
with experimental results. The law μ ∝ T−3=2 that is often
mentioned in the literature [52] is roughly obeyed. These
first results show that the experimental data, which are
often considered as an indication of standard bandlike
transport, are also consistent with strong quantum locali-
zation effects.
Figure 4 summarizes the scenario that is supported by the

present Letter. Figure 4(a) shows an instantaneous con-
figuration of the disordered potential, which tends to create
localized states. As shown in Fig. 4(b), for an instantaneous
potential disorder, extended states, in energy range III, are
separated by a mobility edge from localized states, in
energy range II and I. For the localized states closest to the
mobility edge (region II), the mobility is induced by the
dephasing process described in this Letter, with charge
carriers following nearly adiabatically the evolution of the
electrostatic potential. Farther from the mobility edge
(energy range I), one expects that the diffusion will be

(a) (b)

FIG. 3. (a) Mobility μ̃ðtÞ as a function of time for different
values of ωE (full line) and the corresponding fits using the
Drude-Anderson model (black dashed line). The ratio R ¼ μS=μC
is obtained from the fitted parameters. (b) Mobility μ̃ðωÞ as a
function of energy ℏω calculated without dephasing processes
(full line) and with a dephasing time τϕ ¼ 1=ωE (dotted line). The
mobility of the system is μ ¼ μ̃ðt → ∞Þ ¼ μ̃ðω → 0Þ. Note that
for ωE ¼ 10 meV μS and μLD contributions to the total mobility μ
are nearly equal.

FIG. 4. (a) Variation with position of the electric potential on a
planar cut. (b) Energy ranges where different transport mecha-
nisms dominate. I, diffusion dominated by thermally activated
hopping. II, diffusion is through the dephasing processes induced
by the lattice dynamics. III, bandlike diffusion. (Inset) Schematic
representation of the evolution of the mobility μ ¼ μS þ μLD as a
function of disorder. Static contribution μS (light blue) and lattice
driven mobility μLD (dark blue) are shown.
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dominated by thermally activated hopping, as is usual in
disordered systems. The transitions between the different
energy regions are expected to be progressive due to the
dynamic disorder. We suggest that the small Urbach energy
(EU ≤ 15 meV) that is measured in MAPbI3 could be
related to region I. The inset of Fig. 4(b) shows a qualitative
behavior of the mobility μ, and of its static μS and dynamic
μLD components, when disorder increases.
To conclude, the present Letter indicates a strong

Fröhlich scattering, which induces important quantum
localization effects in MAPbI3. The quantum localization
that we predict can appear experimentally similar to a large
polaronic effect, but is induced by the strong potential
disorder. Indeed, we find that the large polaron is not stable
at room temperature, because its formation energy is
small compared to the energy broadening of disorder.
The maximum mobility at room temperature, i.e., without
extrinsic disorder, is about 200 cm2=Vs for both electrons
and holes. With additional extrinsic disorder, we find that a
large fraction of electrons and holes are localized. Yet these
charges can diffuse because they adapt nearly adiabatically
to the time evolution of the electrostatic potential. We find
that for mobilities below μc ≃ 50 cm2=V s the electronic
diffusion is mainly due to this process. Finally, we believe
that the quantum localization demonstrated here could have
a profound effect on other properties of MAPI, such as
electron-hole recombination, and could also occur in other
soft materials, for example, crystalline organic semicon-
ductors [42–45].

We acknowledge fruitful discussions with many col-
leagues and wish to thank Jacky Even, Claudine Katan,
Paulina Plochocka, Julien Delahaye, Dang Le-Si, and
Gabriele Davino. We also thank Ghassen Jemai and
Kevin-Davis Richler for their help during this study.
A. L. is supported by a doctoral grant delivered by the
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