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Abstract We consider in this paper the m-machine per-
mutation flow-shop problem with total tardiness minimiza-
tion. We propose several matheuristic algorithms, which are
an hybridization of a local search and an exact resolution
method. The matheuristics are compared to a genetic algo-
rithm. Computational experiments are performed on bench-
mark instances and the results show the good performances
of the matheuristic algorithms. Finally, some future research
directions are given.

Keywords Scheduling · Flow-shop · Matheuristic ·
Genetic algorithm

Introduction

We consider in this paper the permutation flow-shop schedul-
ing problem, one of the most famous scheduling problems.
We consider that there is a set J = {J1, . . . , Jn} of n jobs
to schedule on a set M = {M1, . . . , Mm} of m machines. A
machine can process only one job at a time and we assume
that the machines are immediately available. All the jobs have
the same routing, they are processed in the same order, i.e. on
machine M1 first and then on machine M2, M3, etc. Also we
assume that the sequence of jobs on each machine is the same.
We denote by pi, j the processing time of J j on machine Mi
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and d j is the due date of J j , and preemption is not allowed.
Variable C j denotes the completion time of job J j and vari-
able Tj its tardiness, defined by Tj = max(C j − d j , 0), ∀ j ,
1 ≤ j ≤ n.

The objective is to minimize the total tardiness denoted
by

∑
Tj = ∑n

j=1 Tj . The problem is classically denoted
by F |prmu|∑ Tj (Pinedo 1995), where prmu indicates a
“permutation flow-shop” (same sequence on each machine).
This problem is known to be NP-hard in the ordinary sense
when there is a single machine and NP-hard in the strong
sense for m ≥ 2 (Lenstra 1977; Du and Leung 1990).

The literature contains a lot of papers dealing with this
problem, some of them dealing with the particular case of two
machines. In the case of two machines, some exact methods
have been proposed such as branch-and-bound algorithms
(see Sen et al. 1989; Kim 1993; Pan and Fan 1997). In Pan
et al. (2002), instances with up to 24 jobs can be solved
to optimality, which shows the difficulty to solve this prob-
lem with only two machines. Some heuristic approaches
have been proposed, such as greedy heuristics using pri-
ority rules or inspired by NEH algorithm (Nawaz et al.
1983), and a shifting bottleneck procedure (Koulamas 1998).
Some metaheuristics have also been proposed in the litera-
ture, such as simulated annealing (Osman and Potts 1989),
tabu search algorithms (Kim 1993; Nowicki and Smutnicki
1996; Grabowski and Wodecki 2004) genetic algorithms
(Onwubolu and Mutingi 1999), particle swarm optimization
(Tasgetiren et al. 2007; Liao et al. 2007), etc.

For the m-machine flow-shop scheduling problem,
Onwubolu and Mutingi propose in Onwubolu and Mutingi
(1999) a genetic algorithm minimizing a combination of the
total tardiness and the number of tardy jobs. In the survey
of Vallada et al. (2008), a lot of algorithms are implemented
and compared. A neighborhood search algorithm based on
the permutation of blocks of consecutive jobs seems to be one
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of the most efficient methods. In Vallada and Ruiz (2010), the
authors propose three genetic algorithms including advanced
techniques such as path relinking, local search, and a proce-
dure to control the diversity of the population. We do not
mention the wide literature concerning flow-shop problems
with total completion time minimization (equivalent to the
total tardiness if due dates are all equal to 0), but a lot of
exact and approximate methods have also been proposed.
The interested reader can find a more complete state-of-the-
art survey on the m-machine flow-shop problem with total
tardiness minimization in Vallada et al. (2008).

Since several years, a new type of approximated algo-
rithms, including exact resolution inside heuristic approaches,
has received a great interest in the literature, because of their
very good performances for solving some difficult prob-
lems (Maniezzo et al. 2010; Talbi 2013). These methods
are called matheuristics or “hybrid heuristics”. For exam-
ple in the scheduling literature, Della Croce et al. (2011)
embed a mixed integer programming formulation solved by
a commercial solver into a neighborhood search algorithm,
for the two-machine flow-shop problem with total comple-
tion time minimization. In Ta et al. (2013), the authors pro-
posed a matheuristic algorithm for the F2||∑ Tj schedul-
ing problem. Pessan et al. (2008) propose a branch-and-
bound algorithm and a genetic algorithm for solving a par-
allel machine scheduling problem. The methods are per-
formed in parallel and synchronized and exchange some
information for improving the resolution. But the hybridiza-
tion of exact and approximate methods is not so recent. Port-
mann, Vignier, Dardilhac and Dezalay propose in Portmann
et al. (1998) a branch-and-bound algorithm crossed with
a genetic algorithm for solving an hybrid flow-shop prob-
lem with makespan minimization. The genetic algorithm is
used during the search of the branch-and-bound in order to
improve the upper bound. Jouglet, Oguz and Sevaux con-
sider in Jouglet et al. (2009) an hybrid flow-shop scheduling
problem and use a constraint programming based branch-
and-bound algorithm as a local search engine of a memetic
algorithm.

In this paper, we propose a genetic algorithm and sev-
eral matheuristic algorithms, initialized by the solution of a
greedy algorithm. The solutions of the matheuristic methods
are compared to the solutions of the genetic algorithm. For
the evaluation, 108 benchmark instances proposed in Vallada
et al. (2008) have been used.

The rest of the paper is organized as follows. In “Genetic
algorithm” section, the genetic algorithm is described. In
“MILP formulation” section, an MILP formulation of the
problem is given. Then, the neighborhood search method
that includes the exact resolution of some subproblems
is described in “Matheuristic algorithms” section. Several
methods are proposed for the optimization of a partial
sequence. “Computational experiments” section reports the

settings of the methods and the computational results. A con-
clusion and some future research directions are proposed in
“Conclusion” section.

Genetic algorithm

We remember in this section some basic notions on Genetic
Algorithms and then we describe our implementation of the
crossover and of the mutation operators.

Principles of a genetic algorithm

Genetic Algorithms have been originally proposed by Hol-
land (1975) and further developed by Goldberg (1989). This
is a general search technique where a population composed
by individuals evolves following nature inspired mechanisms
called “genetic operators”. The population is composed by
individuals that are evaluated by a fitness, which is often
related to the objective function.

Starting from an initial population, new solutions are gen-
erated by selecting some “parents” randomly, but with a prob-
ability growing with fitness, and by applying genetic opera-
tors such as selection, crossover and mutation, which intro-
duce random modifications. Some individuals are randomly
selected for crossover, some individuals are selected for
mutation, and a new population of the same size is obtained.
The process is repeated until a given stopping criterion is
reached, e.g. a time limit or when a sufficiently satisfactory
individual has been found.

Genetic Algorithms have been largely used for solving
scheduling problems. The main steps of the Genetic Algo-
rithm that has been developed, are:

1. Generation of the initial population P0,
2. Evaluation of the fitness of each individual,
3. Selection of the individual couples in population Pk−1,
4. Application of the crossover operator: with a probability

ρc, two individuals of Pk−1 are crossed to create two new
individuals in a set Ck ,

5. Application of the mutation operator: with a probability
ρm , each individual is modified by a mutation and inserted
in a set Mk ,

6. Replace population Pk−1 by population Pk : Pk contains
the PopSize best individuals of Pk−1 ∪ Mk ∪ Ck .

7. Repeat the process at step 2 until a stopping condition is
satisfied.

A Genetic Algorithm is designed by several parameters
of high importance. First of all, there are several ways for
coding a solution. In our scheduling problem, solving the
problem is equivalent to finding a sequence of jobs, and it is
generally convenient to consider that an individual is exactly
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this sequence. This is called in the litterature “direct encod-
ing” because an individual corresponds to a solution without
ambiguity. For more complicated scheduling problems such
as job-shop or parallel machine problems, an individual may
represent a list of jobs, but an algorithm has to be used to
determine the corresponding solution. This is called in the
literature “undirect encoding” because an individual does not
correspond “immediately” to a solution.

The other key points in a Genetic Algorithm are the
crossover and the mutation operators. The literature con-
tains a lot of definitions, strongly related to the coding defin-
ition. For classical scheduling problems, the most famous
crossover operators are 1-point crossover up to k-point
crossover. Mutation generally consists in changing arbitrar-
ily an element of an individual. Fixing the probabilities ρc

of crossover and ρm of mutation is not an easy task and it is
generally done after some preliminary computational experi-
ments on a subset of the data set. A survey of the applications
of Genetic Algorithms to scheduling problems can be found
in Portmann and Vignier (2008).

Genetic operators

Coding

The crucial step in designing a Genetic Algorithm is to define
an encoding, i.e. a way to represent a solution. In the case
of the m-machine flow-shop scheduling problem with n jobs
indexed from 1 to n, an individual is represented by a per-
mutation.

Initial population

The initial population P0 contains PopSize individuals. One
individual is obtained by sequencing the jobs according to
a given rule. The other individuals are randomly generated.
The way that the first individual is generated leads to different
versions of the algorithm. If the first individual is given by
EDD rule (Earliest Due Date first, i.e. sort the jobs in d j

non decreasing order), the method is called GAEDD. If the
initial sequence is given by applying an adaptation of NEH
algorithm Nawaz et al. (1983) (described in Algorithm 1),
the method is called GANEH. Finally, if one initial sequence
is given by the best sequence among EDD and NEH, the
method is called GAEN.

Fitness

The fitness of an individual S is the value of the objective
function

∑
Tj (S) of the corresponding sequence.

Algorithm 1 NEH algorithm
1: Input: S = jobs sorted in the decreasing order of Pj ,

2: where Pj =
m∑

i=1

pi, j , ∀ j = 1, . . . , n

3: Consider the partial sequence with minimum total tardiness and
minimum makespan in case of ties among σ = (S[1], S[2]) or
σ = (S[2], S[1])

4: for k = 3 to n do
5: Test the insertion of S[k] at any possible position in σ from 1 to

k + 1 in the partial sequence σ .
6: Keep the best insertion, i.e. the insertion with minimum total tar-

diness, and the insertion with minimum makespan in case of ties.
7: end for
8: return(σ )

Crossover

Several crossover operators have been tested. Finally, two
crossover operators are used: the one-point crossover (X1)
and the linear order crossover (LOX) Werner (1984):

– X1: one crossover point is randomly generated. Let
A = A1//A2 and B = B1//B2 be the two parents.
Two offsprings are calculated. Offspring 1 denoted by
O1 contains the jobs of A1 in the order of A and the
jobs of A2 in the order of B. Offspring 2 denoted by O2
contains the jobs of B1 in the order of B and the jobs of
B2 in the order of A.

– LOX: two different crossover points are randomly gener-
ated. Let A = A1//A2//A3 and B = B1//B2//B3 be
the two parents. Two offsprings are calculated. Offspring
1 denoted by O1 contains in the middle the jobs of A2
in the order of A. The jobs of A1 ∪ A3 in the order of B
fill the first and the last part of A. Offspring 2 denoted by
O2 contains in the middle the jobs of B2 in the order of
B. The jobs of B1 ∪ B3 in the order of A fill the first and
the last part of B.

The two crossover operators are illustrated in Fig. 1.
In our genetic algorithm, the crossover operator is chosen

randomly, with equal probability.

Mutation

Two mutation operators have been used, called Backward
and Forward Insertion Della Croce et al. (2004) and denoted
by BI and FI in the following. Two positions i and j ( j > i)
are randomly chosen in a sequence S = A/S[i]/B/S[ j]/C ,
with A, B and C three subsequences and S[i] and S[ j] the
jobs in positions i and j in S. In the backward insertion, the
job in position j is sequenced before the job in position i ,
leading to sequence S′ = A/S[ j]/S[i]/B/C and in the for-
ward insertion, the job in position i is sequenced after the job
in position j , leading to a sequence S′ = A/B/S[ j]/S[i]/C .
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Fig. 1 Illustration of two
crossover operators: backward
insertion and forward insertion 1 2 3 4 5 6 7 8 9 10

7 3 5 2 9 6 8 4101

1 2 3 4 5 6 7 8 9 10

7 3 5 2 9 6 8 4101

X1 LOX

A

B

A

B

1 2 3 45 67 8910

7 3 5 2 9 101 4 86

16543 2 7 8 910

73 5 2 910 14 86

O1

O2

O1
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Fig. 2 Illustration of two
mutation operators
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B I

S

S

A Si B S j C

1 2 3 7 4 5 6 8 9 10
A S j Si B C

1 2 3 4 5 6 7 8 9 10

F I

S

S

A Si B S j C

1 2 3 7 45 6 8 9 10
A S j SiB C

The two mutation operators are illustrated in Fig. 2.

Selection and generational scheme

At iteration k, two parents are randomly selected in popu-
lation Pk−1. The two crossover operators are applied on the
two parents, generating four offsprings, inserted into popula-
tion set Ck . The process is repeated until CrossSize offsprings
have been generated.

The mutation operator is applied on randomly selected
individuals of population Pk−1. The new individuals consti-
tute a population Mk of size MutSize.

The PopSize best individuals of Pk−1 ∪Ck ∪ Mk constitute
population Pk .

Stopping criterion

The process iterates until a given time limit has been reached.
This time limit is denoted by TimeLimGA.

MILP formulation

In this section, we propose an MILP formulation of the prob-
lem based on positional variables (firstly introduced in Wag-
ner 1959). Binary variable x j,k is equal to 1 if job J j is in
position k in the sequence, and 0 otherwise, ∀ j ∈ {1, . . . , n},
∀k ∈ {1, . . . , n}. Continuous variable Ci,k ≥ 0 is the
completion time of the job in position k on machine Mi ,
∀i ∈ {1, . . . , m}, ∀k ∈ {1, . . . , n} and Tk ≥ 0 is the tardiness
of the job in position k, ∀k ∈ {1, . . . , n}.

The MILP model is the following:

Minimize
n∑

k=1

Tk (1)

subject to
n∑

k=1

x j,k = 1, ∀ j ∈ {1, . . . , n} (2)

n∑

j=1

x j,k = 1, ∀k ∈ {1, . . . , n} (3)

C1,1 =
n∑

j=1

p1, j x j,1 (4)

C1,k = C1,k−1 +
n∑

j=1

p1, j x j,k, ∀k ∈ {2, . . . , n} (5)

Ci,1 = Ci−1,1 +
n∑

j=1

pi, j x j,1, ∀i ∈ {2, . . . , m} (6)

Ci,k ≥ Ci−1,k +
n∑

j=1

pi, j x j,k, ∀i ∈ {2, . . . , m},

∀k ∈ {1, . . . , n} (7)

Ci,k ≥ Ci,k−1 +
n∑

j=1

pi, j x j,k, ∀i ∈ {2, . . . , m},

∀k ∈ {1, . . . , n} (8)

Tk ≥ Cm,k −
n∑

j=1

d j x j,k, ∀k ∈ {1, . . . , n} (9)

Constraints (2) and (3) ensure that there is exactly one job
per position and one position per job. Constraints (4) and (6)
compute the completion times on machine M1. Constraints
(5), (7) and (8) determine the completion times on machine
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A X B

R

H

R + H

re-optimize

A X B

S

S

Fig. 3 Illustration of the matheuristic algorithm for sequence “AXB”

Mi . Constraints (9) determine the total tardiness. This model
contains n2 binary variables, n(m + 1) continuous variables
and m + 4n + 2nm constraints.

Matheuristic algorithms

In this section, we propose several matheuristic algorithms,
based on iterative calls of the MILP presented in “MILP for-
mulation” section, for the exact resolution of sub-problems.

General framework “AXB”

Given a sequence S = AXB, with an index denoted by R and
a size window denoted by H , in the method, the sequence of
jobs from position 1 to position R − 1 (sequence A) and the
sequence of jobs from position R + H to the end (sequence
B) are unchanged. The sequence of jobs between position
R and position R + H − 1 (sequence X ) is re-optimized,
giving sequence X ′. The sequence S′ = AX ′ B is a new
sequence, hopefully better than S, that replaces sequence S.
The process iterates for other values of R, up to n− H . When
all the values for R have been tested, a neighborhood based
on swaps of jobs is applied to the sequence S, in order to
modify and possibly improve this solution, and the procedure
iterates from R = 1, until the stopping criterion is reached.
The stopping criterion is a time limit called TimeLimMH.
This process is illustrated in Fig. 3 and the general algorithm
of the method is given in Algorithm 2.

In Algorithm 2 and Algorithm 3, S[k] denotes the job of S
in position k. If an improvement is found at a given iter-
ation for the jobs in positions [R, R + H − 1], then the
positions considered for the next iteration are in the inter-
val [R + H, R + 2H − 1], if R + 2H − 1 ≤ n (i.e.
(R − 1) + H ≤ n − H . Otherwise, the positions consid-
ered for the next iteration are in the interval [R + 1, R + H ].

In Algorithm 3, pairs of jobs are swapped if the differ-
ence between the positions of the two jobs does not exceed
n/2. If a swap improves the solution, the current sequence is
immediately updated and swaps continue.

Algorithm 2 The general Matheuristic algorithm
1: Input: S = initial solution
2: improved = true
3: while (CPU ≤ T imeLimM H ) and (improved = true) do
4: improved = false; R = 0
5: while R ≤ n − H do
6: A = (S[1], S[2], ..., S[R−1]); X = (S[R], S[R+1], ..., S[R+H−1])
7: B = (S[R+H ], S[R+H+1], ..., S[n])
8: X ′ = re-optimization of X
9: S′ = AX ′ B
10: if (

∑
Tj (S′) <

∑
Tj (S)) then

11: improved = true; S = S′
12: if (R + H ≤ n − H ) then
13: R = R + H − 1
14: end if
15: end if
16: R = R + 1
17: end while
18: S′ = Swap(S)

19: if (
∑

Tj (S′) <
∑

Tj (S)) then
20: improved = true; S = S′
21: end if
22: end while
23: return(S)

Algorithm 3 Swap (S)
1: Input: S = initial solution
2: for i = 1 to n − 1 do
3: j = i + 1
4: while ( j ≤ n) and ( j − i ≤ n/2) do
5: S′ =(S[1], ..., S[i−1], S[ j], S[i+1], ..., S[ j−1], S[i], S[ j+1], ...S[n])
6: if (

∑
Tj (S′) <

∑
Tj (S)) then

7: S = S′
8: end if
9: j = j + 1
10: end while
11: end for
12: return(S)

Notice that Algorithm 2 can be used with any initial solu-
tion.

Several versions of this algorithm are derived, depending
on how sequence X ′ is obtained, and on the application, or
not, of an additional neighborhood search. The solver for the
MILP model is called iteratively.

Matheuristic algorithm MHXB(S)

The simplest way to re-optimize S in MH(S) is to introduce
the following constraints into the model:

xS[k],k = 1, ∀k ∈ {1, . . . , R − 1} ∪ {R + H, . . . , n} (10)

These n − H constraints ensure that sequences A and B
will not be changed in S′. However, because sequence A
is known, there is no need to give to the solver a complete
MILP model with n2 binary variables. Therefore, in order
to reduce the size of the MILP, we compute the completion
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A X B

R

H

R + H

re-optimize

A X B

S

S

Fig. 4 Illustration of the MHXB(S) algorithm

times of the last job of sequence A on each machine and
we only re-optimize XB, within an MILP model with only
(n − R + 1)2 binary variables. This reduction is interesting
for large values of R. We denote by CAi the completion time
of the last job of sequence A on machine Mi and by

∑
Tj (A)

the total tardiness of the jobs in A. New constraints are added
to the model related to the CAi . We only indicate here these
new constraints. The rest of the model is unchanged, except
for the definition of indices: the problem which is solved is
smaller than before and only the n − R + 1 jobs which are
not in A are sequenced from position 1 (i.e. R) to position
n − R +1 (i.e. n). Notice that the indices in the expression of
the constraints (11) and (12) refer to the complete sequence
S.

C1,R = C A1 +
n∑

j=1

p1, j x j,R (11)

Ci,R ≥ C Ai +
n∑

j=1

pi, j x j,R, ∀i ∈ {2, . . . , m} (12)

Remember that Ci,R is the completion time on machine
Mi of the job in position R in S, i.e. of the first job of X B. If
we denote by

∑
Tj (X B∗) the value of the optimal solution

of this model, the value of S′ is given by:
∑

Tj (S′) =
∑

Tj (A) +
∑

Tj (X B∗)

The process of MHXB(S) algorithm is illustrated in Fig. 4.
In Della Croce et al. (2011), a similar method is proposed

for the F2||∑ C j problem, where the initial solution is given
by a Recovering Beam Search algorithm, and a different
method is used for fixing the parameters of the MILP.

Matheuristic algorithm MHXB1(S)

This method is similar to MHXB(S), but a neighborhood oper-
ator [among SWAP, BI and FI (see “Genetic operators” sec-
tion)] is applied to the sequence of jobs from position 1 to
position R − 1 (i.e. sequence A), leading to a new sequence
A′. The objective function of the neighborhood operator is
such that sequence A′ will not penalize too much sequence

A X B

R

H

R + H

re-optimize

A X BS

A X BS

neighbors

Fig. 5 Illustration of the MHXB1 algorithm

X , i.e. it is a linear combination of the total tardiness of the
jobs of A′ and the makespan of A′. The expression of this
objective function to minimize is:

Z = α

(
∑

i∈A′
Ti

)

+ (1 − α)Cm,R−1 (13)

where Cm,R−1 denotes the completion time on machine Mm

of the job in position R − 1, i.e. the last job of sequence A′,
and 0 ≤ α ≤ 1.

The process of MHXB1(S) is illustrated in Fig. 5.
The total tardiness of A′ and the completion time of the

last job of A′ on each machine are computed and denoted by
CAi , the constraints with CAi are introduced as in (11) and
(12) for algorithm MHXB(S). The value of S′ is given by:
∑

Tj (S′) =
∑

Tj (A′) +
∑

Tj (X B∗)

where
∑

Tj (X B∗) is computed as in “Matheuristic algo-
rithm M HX B(S)” section.

Matheuristic algorithm MHX (S)

In order to continue reducing the size of the problem to be
solved by the solver, we limit now the problem exactly to the
optimization of sequence X . Of course, minimizing the total
tardiness of the jobs of X (sequenced after the jobs of A) and
after that, sequencing the jobs of B leads to a worse solution
than minimizing the total tardiness of the jobs of X B, even
if B is fixed. Therefore, we introduce another criterion in the
objective function for the optimization of X . More precisely,
in order to finish the jobs of X not too late, which could
be penalizing for B, we change the objective function for a
linear combination of the total tardiness of the jobs of X and
the makespan of X . Therefore, the objective function is equal
to:
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A X B

R

H

R + H

re-optimize

A X BS

S

Fig. 6 Illustration of the MHX (S) algorithm

Minimize α

(
R+H−1∑

k=R

Tk

)

+ (1 − α)Cm,R+H−1 (14)

where Cm,R+H−1 denotes the completion time on machine
Mm of the job in position R + H − 1, i.e. the last job of
sequence X .

The process of MHX (S) is illustrated in Fig. 6.
First, the total tardiness of A and the completion time of

the last job of A on each machine are computed and the
constraints with C Ai are introduced in the model (same way
as in MHXB). Then, the optimization of X is done by the
solver, and a sequence X ′ = X∗ is obtained. The completion
times of the last job of X ′ on each machine are denoted by
CXi . Then, sequence B is scheduled after X , taking the CXi

values into account. Finally, the value of S′ is given by:

∑
Tj (S′) =

∑
Tj (A) +

∑
Tj (X∗) +

∑
Tj (B)

Matheuristic algorithm MHX1(S)

We propose another matheuristic method of type MHX called
MHX1(S), based also on a partial resolution of the MILP
(see “MILP formulation” section), similarly as in “General
framework “AXB” ”section. Firstly, neighborhood operators
(among SWAP, BI and FI) are applied to sequence A and the
obtained sequence is called A′. Secondly, the sequence X
is re-optimized, giving sequence X ′. Finally, neighborhood
operators are also applied to sequence B, giving sequence
B ′. The sequence S′ = A′ X ′ B ′ is a new sequence, hopefully
better than S, and the process iterates for other values of R,
up to n − H . This process is performed until the stopping cri-
terion is reached, i.e. a time limit called TimeLimMH. This
matheuristic algorithm is illustrated in Fig. 7 and the algo-
rithm is given in Algorithm 4.

The objective function for finding the best possible subse-
quence A′ is a linear combination of the total tardiness of the
jobs of A′ and of the makespan of A′. This objective function
is equal to:

A X B

R

H

R + H

re-optimize

A X B

A X BS

neighbors

B

neighbors

A XS

Fig. 7 Illustration of the MHX1 (S) algorithm

Algorithm 4 The M HX1(S) algorithm
1: Input: S = initial solution
2: improved = true
3: while (CPU ≤ T imeLimM H ) and (improved = true) do
4: improved = false ; R = 0
5: while R ≤ n − H do
6: A = (S[1], S[2], ..., S[R−1]); A′ = Neighborhood operator(A)
7: X = (S[R], S[R+1], ..., S[R+H−1]); X ′ = re-optimization of X
8: B = (S[R+H ], S[R+H+1], ..., S[n]); B ′ = Neighborhood

operator(B)
9: S′ = A′ X ′ B ′
10: if (

∑
Tj (S′) <

∑
Tj (S)) then

11: improved = true ; S = S′
12: if (R + H ≤ n − H ) then
13: R = R + H − 1
14: end if
15: end if
16: R = R + 1
17: end while
18: end while
19: return(S)

Z A = α

(
R−1∑

i=1

Ti

)

+ (1 − α)Cm,R−1 (15)

where Cm,R−1 denotes the completion time on machine Mm

of the job in position R − 1, i.e. the last job of sequence A′.
For the same reasons, the objective function for finding the

best possible subsequence X ′ is also a linear combination of
the total tardiness of the jobs of X ′ and of the makespan of
X ′. This objective function is equal to:

Z X = α

(
R+H−1∑

k=R

Tk

)

+ (1 − α)Cm,R+H−1 (16)
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A X B

R

H

R + H

re-optimize

A X B

S

A X BS

neighbors

Fig. 8 Illustration of the MHX2 (S) algorithm

where Cm,R+H−1 denotes the completion time on machine
Mm of the job in position R + H − 1, i.e. the last job of
sequence X ′.

First, the total tardiness of A′ and the completion time of
the last job of A′ on each machine are computed and denoted
by CAi , the constraints with CAi are introduced in the model
(same way as in MHXB(S)). Then, the optimization of X is
done by the solver, and a sequence X ′ = X∗ is obtained.
The completion times of the last job of X ′ on each machine
are denoted by CXi . Then, sequence B ′ is scheduled after
X , taking the CXi values into account with the following
objective function:

Z B =
n∑

k=R+H

Tk

Finally, the value of S′ is given by:

∑
Tj (S′) =

∑
Tj (A′) +

∑
Tj (X∗) +

∑
Tj (B ′)

Matheuristic algorithm MHX2(S)

Another matheuristic method of type MHX (S) is called
MHX2(S). Similarly as in “General framework “AXB” ” sec-
tion, the sequence A and the sequence B are unchanged.
The sequence X is re-optimized, giving sequence X ′. The
sequence S′ = AX ′ B is a new sequence. Then, the neigh-
borhood operators (among SWAP, BI and FI) are applied to
sequence S′, in order to modify it and possibly improve this
solution. The procedure iterates from R = 1, until the time
limit called TimeLimMH. This process is illustrated in Fig. 8.
The algorithm is given in Algorithm 5.

Similarly as in “General framework “AX B” ” section, the
value of S′ is given by:

∑
Tj (S′)∗ =

∑
Tj (A) +

∑
Tj (X∗) +

∑
Tj (B)

Algorithm 5 The M HX2 algorithm
1: Input: S = initial solution
2: improved = true
3: while (CPU ≤ T imeLimM H ) and (improved = true) do
4: improved = false ; R = 0
5: while R ≤ n − H do
6: A = (S[1], S[2], ..., S[R−1])
7: X = (S[R], S[R+1], ..., S[R+H−1]); X ′ = re-optimization of X
8: B = (S[R+H ], S[R+H+1], ..., S[n])
9: S′ = AX ′ B
10: if (

∑
Tj (S′)∗ <

∑
Tj (S)) then

11: improved = true ; S = S′
12: end if
13: S′= Neighborhood operator(S)
14: Compute (

∑
Tj (S′))

15: if (
∑

Tj (S′) <
∑

Tj (S)) then
16: improved = true ; S = S′
17: if (R + H ≤ n − H ) then
18: R = R + H − 1
19: end if
20: end if
21: R = R + 1
22: end while
23: end while
24: return(S)

Matheuristic algorithm MHPOS(S)

With this method, the hypothesis is that the positions of jobs
in S are not that bad, and only few changes in the sequence
X are sufficient to improve the solution. More precisely, we
assume that a job in a position k ∈ {R, . . . , R + H − 1} may
only be scheduled at a position between k − δ and k + δ.

The following constraints are added to the MILP:

k+δ∑

�=k−δ

xS[k],� = 1,∀k ∈ {R, R + H − 1}, k − δ

≥ 1, k + δ ≤ n (17)

The process is the same as in MHXB, i.e. sequence XB is
re-optimized, with this limitation for the possible positions
of each job. The idea is that with this limitation in the position
changes, it will be possible to increase the size of H . Finally,
the value of S′ is given by:
∑

Tj (S′) =
∑

Tj (A) +
∑

Tj (X B∗)

Computational experiments

Settings

The algorithms have been tested on a PC Intel coreT Mi5
CPU 2.4 GHz. 108 benchmark instances proposed in Val-
lada et al. (2008) have been used for the evaluation. Nine
instances of these benchmark instances are used for each
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Table 1 Comparison of genetic
algorithms n × m GAEDD GAEN GANEH

Best Cpu(s) ΔEDD (%) Best Cpu(s) ΔEN (%) Best Cpu(s) ΔNEH (%)

50 × 10 5 22.00 0.79 3 22.00 3.68 5 22.00 2.78

50 × 30 3 67.01 2.59 3 67.00 3.92 3 67.00 2.70

50 × 50 5 112.01 1.22 4 112.01 1.61 0 112.01 2.36

150 × 10 6 67.02 0.49 2 67.02 6.58 5 67.02 4.35

150 × 30 7 202.04 1.53 2 202.05 4.70 2 202.02 3.46

150 × 50 5 337.05 1.39 3 337.05 1.93 2 337.03 5.81

250 × 10 8 112.03 0.08 4 112.07 5.76 3 112.04 4.60

250 × 30 7 337.05 0.23 4 337.12 5.40 2 337.05 7.09

250 × 50 5 562.08 1.07 3 562.06 2.15 3 562.06 5.21

350 × 10 8 157.09 0.58 4 157.07 4.47 2 157.03 17.13

350 × 30 8 472.13 0.06 3 472.10 4.20 1 472.06 15.83

350 × 50 6 787.09 0.23 4 787.14 3.00 1 787.11 6.22

Sum/avg 73 269.55 0.86 39 269.56 3.95 29 269.54 6.46

combination of n and m, with n ∈ {50, 150, 250, 350} and
m ∈ {10, 30, 50}. In these instances, the processing times are
uniformly distributed between 1 and 99. The due dates are
generated with a uniform distribution between P(1−τ−ρ/2)

and P(1 − τ + ρ/2) following the method of Potts and Van
Wassenhove 1982 with P a lower bound of the makespan and
τ and ρ two parameters called tardiness factor and due date
range, which take the following values: τ ∈ {0.2, 0.4, 0.6},
ρ ∈ {0.2, 0.6, 1}. The first instance (among five) of Vallada
et al. (2008) for each tuple (n, m, τ, ρ) has been used for the
tests, which gives the 108 instances.

For the genetic algorithms, some preliminary experiments
have conducted to the following parameters settings:

– TimeLimGA = (n(m/2)× 90)/1000 s (as defined in Val-
lada et al. 2008),

– PopSize = |Pk | = 150 individuals,
– CrossSize = |Ck | = 200 individuals,
– MutSize = |Mk | = 100 individuals.

For the same instance, the genetic algorithm has been exe-
cuted ten times and it returns quite always solutions with the
same quality. The average relative deviation between ten runs
is <3 %.

The matheuristic algorithms have been tested with several
initial solutions. The best solutions have been obtained with
the initial sequence EDD. In the following, all the matheuris-
tic algorithms start their process with this sequence of jobs.

The time limit of the matheuristic algorithms has been
fixed to T imeLim M H = (200 + n + m) seconds. The
size window has been fixed to H = 6, the coefficient α in
the linear combination for MHXB(S), MHXB1(S), MHX (S),
MHX1(S) and MHX2(S) have been fixed to α = 0.5, and
the coefficient δ in M HP O S(S) has been fixed to δ = 3.

The solver that has been used for solving the MILP model is
CPLEX v12.2.

In the Tables, each line summarizes the results for 9
instances and of course, the methods may return solutions
with the same quality, so the total per line of ‘Best’ may
exceed 9. In each line, the number in bold corresponds to the
best value in the line.

Comparison of the genetic algorithms

The three Genetic Algorithms are compared in terms of qual-
ity. In Table 1, column ‘Best’ for ‘GAχ ’ (χ ∈ {E DD, E N ,

N E H}) indicates the number of times the method G Aχ out-
performs the other methods, column Cpu(s) indicates the
average computation time of GAχ per nine instances, col-
umn ‘Δχ ’ indicates the average deviation between G Aχ and
the best method between GAEDD, GAEN and GANEH.

Δχ = GAχ − min (GAEDD, GAEN, GANEH)

G Aχ

As we can see from Table 1, the Genetic Algorithm where
the initial population is given by EDD rule leads to the
best results. On average, the deviation between the solutions
returned by this method and the best solutions is 0,86 %. This
value is around 3,95 % for GAEN and 6,46 % for GANEH.
Algorithm GAEDD has been used in the following for the
comparisons with the matheuristic algorithms.

Comparison of the matheuristics

The six matheuristic methods (MHX , MHX1 , MHX2 ,MHX B ,
MHX B1 and MHP O S) are compared in terms of quality. In
Tables 2 and 3, similarly to the previous table, column ‘Best’
for ‘MHχ ’ (χ ∈ {X B, X B1, X, X1, X2, P O S}) indicates
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Table 2 Comparison of
matheuristic algorithms (1) n × m MHX MHX1 MHX2

Best Cpu(s) ΔX (%) Best Cpu(s) ΔX1 (%) Best Cpu(s) ΔX2 (%)

50 × 10 3 260.11 2.32 4 260.11 13.34 2 260.09 7.03

50 × 30 4 280.23 8.69 1 280.17 10.06 1 280.15 10.89

50 × 50 2 300.56 1.78 4 300.40 0.48 2 300.39 2.87

150 × 10 3 360.30 5.11 5 360.21 11.82 3 360.04 5.96

150 × 30 3 380.18 2.87 7 380.61 3.96 1 380.03 6.46

150 × 50 1 400.56 5.52 7 402.81 3.99 1 400.21 5.07

250 × 10 3 461.88 3.03 9 460.73 0.00 3 460.02 2.87

250 × 30 2 486.62 5.75 8 483.64 11.11 1 480.05 17.25

250 × 50 1 504.20 15.88 8 503.42 0.08 0 500.11 17.00

350 × 10 3 588.03 14.26 6 562.58 11.37 4 560.01 1.28

350 × 30 4 608.87 3.63 6 591.63 12.20 1 580.08 16.11

350 × 50 4 636.10 1.19 0 606.78 27.18 6 600.04 3.46

Sum/avg 33 438.97 5.84 65 432.76 8.80 25 430.10 8.02

Table 3 Comparison of
matheuristic algorithms (2) n × m MHXB MHXB1 M HPOS

Best Cpu(s) ΔXB (%) Best Cpu(s) ΔXB1 (%) Best Cpu(s) ΔPOS (%)

50 × 10 3 260.23 13.95 2 260.25 21.08 1 260.45 18.02

50 × 30 2 281.08 8.94 0 281.24 17.62 1 281.10 5.02

50 × 50 1 304.26 4.36 0 301.80 11.62 0 302.45 6.32

150 × 10 3 360.41 4.79 1 360.61 42.48 2 361.25 11.21

150 × 30 1 384.19 13.59 0 383.76 41.18 0 385.56 38.44

150 × 50 0 418.15 16.81 0 415.52 28.73 0 406.76 35.96

250 × 10 3 462.14 10.86 1 462.36 50.74 1 462.95 48.76

250 × 30 1 487.57 35.18 1 485.83 42.18 1 489.21 44.69

250 × 50 0 524.79 44.13 0 523.70 44.49 0 520.97 45.42

350 × 10 2 562.87 37.89 2 565.43 44.82 2 564.95 45.59

350 × 30 1 594.79 45.02 1 598.22 45.32 1 594.84 45.72

350 × 50 0 636.69 45.96 0 668.86 45.99 0 665.74 46.43

Sum/Avg 17 439.76 23.46 8 442.30 36.35 9 441.35 32.63

the number of times method MHχ outperforms the other
methods, column Cpu(s) indicates the average computation
time of MHχ per nine instances and column ‘Δχ ’ indicates
the average deviation between M Hχ and the best matheuris-
tic.

Δχ = MHχ − min
(
MHX , MHX1 , MHX2 , MHXB, MHXB1 , MHPOS

)

MHχ

The results clearly show the domination of MHX1 , mainly
for instances with (n × m) = (150 × 10) up to (n × m) =
(350 × 30). For (n × m) = (350 × 30) instances, MHX2 per-
forms better. We can also see that the MHX , MHX1 , MHX2 are
better than the MHXB, MHXB1 , MHPOS algorithms. The main
reason is due to the computation time required by CPLEX for
solving each MILP model. For MHXB and MHXB1 CPLEX

takes time for loading the problem and solving it, as soon
as the problem size increases, which limits the number of
neighbors explored. The fact that some variables are already
decided clearly helps, but is not sufficient for making this
method competitive. The advantage of MHX , MHX1 , MHX2

are that the problem given to CPLEX is very small and very
quickly solved. Therefore, the algorithm can perform several
times the loop (starting several times with R = 1), before
reaching quickly a better solution. The method MHPOS is not
able to find good solutions before the end of the algorithm for
the same reasons. Clearly, the quality of the matheuristic is
strongly related to its ability of solving quickly to optimality
a big number of partial sequences.

Method MHX1 is kept in the next section for the compar-
ison with GAEDD.
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Table 4 Comparison of the best
matheuristic and the best genetic
algorithm

n × m MHX1 GAEDD

Best Cpu(s) ΔMH (%) Best Cpu(s) ΔGA (%)

50 × 10 5 260.11 11.91 5 260.01 −1.30

50 × 30 5 280.17 0.06 4 280.01 −0.20

50 × 50 6 300.40 −0.62 3 300.02 0.59

150 × 10 7 360.21 6.30 3 360.02 4.06

150 × 30 7 380.61 −1.21 3 380.02 1.14

150 × 50 6 402.81 1.35 3 400.05 −3.67

250 × 10 9 460.73 −3.28 3 460.03 3.08

250 × 30 8 483.64 8.07 2 480.05 2.90

250 × 50 9 503.42 −3.59 1 500.07 3.43

350 × 10 7 562.58 7.39 4 560.08 3.46

350 × 30 6 591.63 7.42 4 580.10 3.31

350 × 50 0 606.78 25.36 9 600.10 −22.68

Sum/avg 75 432.76 4.93 44 430.05 −0.49

Comparison between genetic algorithm and matheuristic

The best proposed matheuristic algorithms (MHX1) is now
compared to the best proposed Genetic Algorithm (GAEDD).
The time limit of the Genetic Algorithm and of the matheuris-
tic algorithm have been fixed to (200 + n + m) seconds.

In Table 4, column ‘Best’ for MHX1 indicates the number
of times the method outperforms GAEDD. Column ‘ΔMH’
indicates the average deviation between MHX and GAEDD:

ΔMH = MHX1 − GAEDD

MHX1

Column ‘Best’ for GAEDD indicates the number of times
the method GAEDD outperforms method MHX1 , column
‘ΔGA’ indicates the average deviation between GAEDD and
MHX1 .

ΔGA = GAEDD − M HX1

GAEDD

The results clearly show that the matheuristic outperforms
the Genetic Algorithm in most of the cases. However, the
performance of the Genetic Algorithm is better than the per-
formance of the matheuristic for (n × m) = (350 × 50),
We also notice that for n = 50 jobs, the two methods are
equivalent.

Conclusion

We consider in this paper the m-machine flow-shop schedul-
ing problem, with the objective to minimize the total tar-
diness. We propose several matheuristic algorithms that are
compared to a Genetic Algorithm. The computational exper-

iments show that the matheuristic algorithms are competi-
tive with the Genetic Algorithm and that the best matheuris-
tic algorithm outperforms the Genetic Algorithm, except for
problems of size (350, 50).

Several research directions can be considered for a future
work. The first idea is to embed the resolution of the MILP
model into the Genetic Algorithm or into another metaheuris-
tic, as a new neighborhood operator. A second idea is to find
better crossover and mutation operators, in order to improve
the Genetic Algorithm and the neighborhood search in some
matheuristic algorithms. Some first experiments have already
been conducted in this sense without a significant success. A
third idea is to use the solution of the Genetic Algorithm as
an initial solution for the matheuristic algorithm. Finally, the
matheuristic methods that are proposed here can be used for
minimizing the total tardiness in more complicated schedul-
ing problems such as an integrated flow-shop scheduling and
vehicle routing problem.
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