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a  b  s  t  r  a  c  t

One  of  the  most  challenging  problems  in biology  resides  in unraveling  the molecular  mechanisms,  hard-
wired in  the  genome,  that  define  and  regulate  the  multiscale  tridimensional  organization  of organs,
tissues  and  individual  cells.  While  works  in  cultured  cells  have  revealed  the importance  of  cytoskeletal
networks  for  cell  architecture,  in vivo  models  are  now  required  to explore  how  such  a  variety  in cell shape
is produced  during  development,  in interaction  with  neighboring  cells  and  tissues.  The  genetic  analysis  of
epidermis  development  in  Drosophila  has  provided  an unbiased  way  to  identify  mechanisms  remodeling
tereocilia
ochlea

the  shape  of epidermal  cells,  to  form  apical  trichomes  during  terminal  differentiation.  Since  hearing  in
vertebrates  relies  on  apical  cell  extensions  in  sensory  cells  of  the  cochlea,  called  stereocilia,  the mapping
of human  genes  causing  hereditary  deafness  has  independently  identified  several  factors  required  for
this peculiar  tridimensional  organization.  In this  review,  we  summarized  recent  results  obtained  toward
the identification  of genes  involved  in these  localized  changes  in cell shape  and  discuss  their  evolution
throughout  developmental  processes  and  species.
© 2012 Elsevier Ltd. 
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. Introduction

Every animal cell is characterized by a specific tridimensional
rganization, directly linked to its function within the whole organ-
sm. Indeed there is a huge diversity in the size and shape of

control of cell shape, including hereditary sensory disorders or
blood diseases, and defects in cell shape and adhesion impinge on
many cancers. The general question of morphogenesis can be for-
mulated as which are the mechanisms that define a subpopulation
of cells to achieve a specific behavior [1].  While it is well established

Open access under CC BY-NC-ND license. 
ndividual cells, and the ways they establish physical contacts
etween each other, well illustrated when comparing meter long
eurons, discoid small erythrocytes or densely packed epithelial
ells. Various human pathologies are linked to failures in a proper

∗ Corresponding authors at: Centre de Biologie du Développement, Université
e Toulouse, CNRS UMR5547, Bat 4R3 b3, 118 route de Narbonne, 31062 Cedex 9,
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erge.plaza@univ-tlse3.fr (S. Plaza).
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Open access under CC BY-NC-ND license. 
that the morphological differentiation of our cells relies on differ-
ential genome expression, little remains known on which factors
directly remodel the cell shape and the way their action is finely
coordinated.

Genetic analyses in Drosophila have provided a rich source of
information about the molecular players involved in tissue mor-
phogenesis. Early developmental processes depend on collective
cell reorganization. For instance, studies on mesoderm invagina-

tion, germ band extension and dorsal closure in Drosophila have
shown the importance of apical constriction, asymmetric cortical

dx.doi.org/10.1016/j.semcdb.2012.03.002
http://www.sciencedirect.com/science/journal/10849521
http://www.elsevier.com/locate/semcdb
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Fig. 1. Morphology of epidermal cells in the Drosophila embryo. Confocal images of
presumptive epidermal cells (7 h after egg laying – AEL-, F-actin is in red) (A) and
differentiating epidermal cells (14 h AEL) stained for F-actin (red) and �-catenin
(green) (B). (C) Cuticle of an abdominal segment showing the stereotyped pattern
42 H. Chanut-Delalande et al. / Seminars in C

ension and lamellipodia/filopodia formation, relying on reorgani-
ation of the actin cytoskeleton [2–5] and junction complexes [6].

Another important but yet poorly understood aspect of mor-
hogenesis consists in the localized tridimensional shaping of the
pical side of epithelial cells that occurs at later developmental
tages [7,8]. This leads to the production of polarized cell mor-
hologies, characterized by a variety of cell extensions. This review
ocuses on terminal differentiation of the Drosophila epidermis and
f the sensory part of the inner ear in vertebrates, two  cell types
hat produce highly differentiated apical extensions required for
heir respective functions.

. Morphological differentiation of Drosophila epidermal
ells

The Drosophila embryonic epidermis is composed of a layer of
ost mitotic cells that become patterned by cascades of transcrip-
ion factors and signaling pathways, ultimately determining their

orphological fate. The tissue comprises cells with a smooth or
naked” surface and cells producing apical extensions involved in
arval locomotion, called ventral denticles and dorsal hairs, col-
ectively referred to as trichomes [7].  Epidermal cells that will
orm trichomes modify their apical region, from square-like to a
ectangular shape extending along the dorso-ventral axis (Fig. 1A
nd B), and align into parallel columns [9,10].  This is achieved
hrough junctional conversion, relying on actomyosin contractility
nd remodeling of polarity complexes, including Disc large [10],
ethal giant larvae and Disheveled [11].

Trichome cells then accumulate F-actin at the posterior margin
f each cell where cytoplasmic protrusions begin to elongate [9,12]
Fig. 1B). In the mean time, epidermal cells start secreting cuti-
le, a complex exoskeleton composed of chitin, various proteins
nd lipids (reviewed in [13]). At the end of embryogenesis, cuticle
ayers become thicker and harder and microfilaments supporting
xtensions eventually disassemble. Fully differentiated trichomes
resent a specific size, shape and orientation depending on their
osition along the body (Fig. 1C and D).

. Genetic determinants of epidermal cell morphogenesis

The stereotyped arrangement of naked versus trichome cells
as been widely used as developmental readout in genetic screen-

ngs, allowing the discovery of numerous genes establishing the
richome pattern.

Signaling pathways including Wnt, EFG-r, Hedgehog and Notch
ontrol epidermal cell fate [14], at least in part through regulating
he expression of a common gene, shavenbaby (svb) [7,15] (Fig. 2A).
vb encodes a transcription factor specifically expressed in tri-
home cells and required for their morphological differentiation.
he ectopic expression of svb is sufficient to promote trichome for-
ation when artificially expressed in smooth cells [15,16], showing

hat Svb governs the transcriptional program of trichome morpho-
enesis.

Supporting this conclusion, modifications of svb expression have
ed to the diversification of trichome patterns in various clades of
nsects [17–20].  For example, the restriction of svb expression in
orsal cells has evolved the trichome pattern in Drosophila sechel-

ia, in which several rows of dorsal hairs are replaced by naked
uticle [18,19]. Transcription of svb in the embryonic epidermis
s directed by seven cis-regulatory modules (CRM), driving over-
apping expression in subsets of cells [21,22]. These apparently

edundant CRMs actually ensure a robust svb expression in vary-
ng environmental or developmental conditions [21]. Consistently,
he modification of several independent CRMs has been required to
volve svb expression and thus the trichome pattern across species

of naked cuticle and trichomes in the ventral region of a first instar larva (24 h AEL).
(D) Electron micrograph showing the apical organization of a ventral trichome cell;
fourth row of an abdominal segment (20 h AEL).
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Fig. 2. Genetic networks regulating trichome differentiation. (A) In response to signaling pathways, a subset of epidermal cells turn on expression of shavenbaby, which
initially produces a transcriptional repressor (red). Pri expression provides a temporal control, converting Svb into an activator (green). This triggers the transcription of Svb
downstream targets (orange), encoding cell effectors of trichome formation. (B) Spatial cues are integrated by the cis-regulatory modules directing svb transcription in the
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roper pattern of trichome cells. pri mRNA is a polycistronic transcript encoding 4 p
vb  transcription factor, releasing the N-terminal region that contains a repressor d
emodeling different cellular compartments to achieve localized changes in the sha

22]. Thus, both developmental and evolutionary data show that
vb plays a pivotal role in determining which epidermal cells form
richomes.

Two groups have identified a novel player required for trichome
ormation, called tarsal-less or polished-rice (pri) [23,24]. Like in
he absence of svb, trichomes are replaced by naked cuticle in
ri mutants [24]. pri expresses a 1.5 kb long polyadenylated RNA,
hich comprises only five small ORFs (smORFs). These smORFs
ave been conserved throughout considerable evolutionary dis-
ances, e.g. in silk moth, beetles and even crustaceans [25]. The
rst four pri smORFs encode 11–32 aa peptides, which share a
DPTGQ/TY motif. Compelling evidence support that the activ-
ty of pri is mediated by these short peptides, which are able
o diffuse over several cell diameters within epithelial tissues

23,24].

Although pri and svb are both required for trichome formation,
heir expression is mutually independent [23,24]. Indeed, Pri
eptides switch the transcriptional activity of the Svb protein,
es of 11–32 aa in length. These peptides induce a post-translational cleavage of the
. Once activated, Svb directly triggers the transcription of a battery of target genes,

epidermal cells.

from a repressor to an activator. This is achieved through a
post-translational cleavage releasing the N-terminal region of
Svb, which comprises a repressor domain [26] (Fig. 2B). In the
absence of pri,  Svb thus persists as a transcriptional repressor,
preventing the expression of the whole set of its target genes
(see below). It has been proposed that Pri provides a temporal
control of epidermal differentiation, determining when the Svb
transcription factor turns into an activator, and thus triggers the
program of trichome production [26].

4. Cellular effectors involved in epidermal cell shape
changes

Consistently with the actin reorganization that occurs in

trichome cells, several related factors have been reported to accu-
mulate in growing extensions (Table 1). This includes the two  main
actin nucleator complexes Arp2/3 and the formin Diaphanous, ENA,
APC [9,16] or nonmuscle Myosin II Heavy Chain. The transcription
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Table 1
Cellular factors involved in epidermal morphogenesis. Schematic representations are taken from Prosite or SMART, numbers refer to references cited. Mwh, Multiple wing hair; Dia, Diaphanous.

Schematic representation In vitro assays Drosophila Vertebrate cochlea

Trichome Wing hair Bristle

Actin nucleation Arp2 [41] [41]

Arp3 [41]

Wasp [41] [26] [41] [40]

Toca1 [41] [42]

Dia  [41] [71] [49]

Mwh  [11] [27,28]

Microfilament
organization

Fascin  [41] [11] [38] [53,72]

Espin  [11] [39] [50,73,74]

Whirlin [66,75]

Motors Myosin  VI [67]

Myosin  XV [65,70]

Membrane  interaction Ezrin, Radixin, Moesin [67]

PCP Frizzled  [41] [67] [41]

Dachsous [41] [41]

Apical  ECM Miniature [26] [43]

Trynity [32]

Tectorin [57,76]
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Fig. 3. Planar cell polarity and organization of apical cell extensions. (A) Cuticle of wild type (left) and ds mutant (right) larvae. Pictures are from [37]. (B) Scanning electron
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icrographs of cochlea in wild type and vangl2 mutant mice [67]. Scale bars: 10 �m

f these genes is mostly ubiquitous throughout embryonic tissues,
s expected for components of basic actin machineries.

The identification of Svb target genes in the embryonic epi-
ermis has provided, however, an unbiased means to identify
dditional factors controlling cell shape remodeling. Svb drives the
ranscription, specifically in trichome cells, of various cytoskele-
al regulators directly involved in trichome formation [27]. WASp
s an activator of the Arp2/3 complex that promotes forma-
ion/elongation of actin filaments. Multiple wing hairs encode a
ormin-related protein that locally inhibits ectopic hair initia-
ion [28,29]. Shavenoid encodes a fast evolving protein, putatively
nvolved in remodeling the actin cytoskeleton and playing a criti-
al role in trichome morphogenesis [27,30]. Singed and Forked are
ctin bundling proteins that localize in growing trichomes where
hey play non-redundant roles in organizing microfilaments into
arallel arrays [12,27].

Beside actin regulators, Svb also triggers the expression of
embrane-anchored extracellular proteins, including eight pro-

eins comprising a zona pellucida domain (ZPD) [27,31].  The ZPD is
 polymerization module promoting assembly of ZP proteins into
xtracellular fibers (reviewed in [32,33]). ZP proteins are expressed
n various epithelia and organize specialized ECMs involved in cell
hape and function [34]. In Drosophila trichome cells, they display
ifferential distribution along the extension, revealing an unex-
ected sub-compartmentalization of the apical region [31]. Each ZP
rotein links the plasma membrane to cuticle layers in a restricted
egion of the apical domain and mutants for ZP genes display dis-
inct abnormalities in trichome shape [27,31].  These data therefore
how that the apical matrix constitutes an extracellular scaffold
equired for shaping the trichomes.

In the course of epidermal differentiation, cuticle becomes
ocally modified to regulate the exoskeleton mechanical proper-
ies. For example, the catecholamine pathway produces quinone

pecies, mediating cuticle hardening (sclerotization) and tanning
melanization). Several enzymes of the pathway are expressed in
richome cells, and at least one gene, yellow,  is regulated by Svb
27]. Several studies have uncovered additional genes activated by
Svb in trichome cells, including cuticle components [35], enzymes
and membrane proteins [27,31].

The individual inactivation of a given svb target gene does not
prevent trichome formation. Instead, it leads to specific defects in
trichome shape. The simultaneous inactivation of several target
genes led to cumulative defects in shape, ultimately leading to a
reduction in trichome number [27]. This suggests that trichome
formation relies on the collective action of various classes of effec-
tors, acting together as a developmental module that reorganizes
apical cell shape. Supporting this conclusion, expression of the set
of trichome-specific effectors is lost in epidermal cells that have
evolved a naked morphology in D. sechellia [27].

The planar cell polarity (PCP) pathway is required for position-
ing and orientation of embryonic trichomes (Figs. 1B and 3). PCP
relies on two systems, Frizzled (Fz) and Dachsous (Ds) that interact
differently between tissues, such as the adult wing, eye or abdomen
[36]. In the embryo, trichome polarity is mainly controlled by the
Ds pathway, whist the Fz system may  play a subtler role [9,37,38].
Although multiple wing hairs and shavenoid interact with PCP com-
ponents in adult tissues [29,30,39],  it is not yet clear whether Svb
controls the expression of bona fide PCP genes in the embryonic epi-
dermis. However, supernumerary trichomes formed upon ectopic
expression of svb are not properly implanted within the apical sur-
face [40], suggesting that at least some PCP cues are independent
of svb.

The general view emerging from these studies is that trichome
differentiation requires the transcriptional regulation of an unex-
pectedly large number of cell effectors, which switch or finely
modify the activity of basic cellular machineries. This occurs in a
pre-differentiated tissue, which has already established a polarized
organization (apicobasal and planar) and mature cell junctions,
both being a prerequisite for trichome formation. Therefore, the
control of cell shape involves generic factors (such as Arp2/3),

tissue specific polarity determinants and junction complexes, and
a surprising diversity of effectors that are specifically expressed
in a restricted array of cells. In addition to the cytoskeleton,
these results highlight the overlooked importance of remodeling
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ifferent cell compartments including membrane domains and
he extra-cellular matrix for the fine sculpting of cell extensions.

. A conserved effector module for epithelial cell
xtensions?

Cell effectors of embryonic trichomes are also expressed in other
rosophila epithelial cells that produce apical extensions, such as
dult wing hairs or sensory bristles (Table 1). For example, WASp,
orked and Singed are involved in bristle development [41–43].
he large size of bristles (400 �m)  facilitates their analyses, show-
ng regionalized activity of these proteins for the formation of large
undles of actin filaments. Each wing cell forms a unique hair, with a
tereotyped polarity at the distal vertex of the apical region. Genetic
nalyses of wing hair orientation have led to the discovery of the
CP pathway and of many of its components. Shavenoid is also
xpressed in wing cells, where it is required for the formation of
pical hairs [30]. Singed accumulates in the growing extensions
upporting wing hairs and its absence alters their proper shap-
ng. Multiple wing hairs are renowned for its function during wing
air morphogenesis [28,29] where it determines the position of cell
xtension within the apical region and regulates its elongation [44].

Lee et al. have developed an elegant approach to study in vitro

he formation of cell extensions, using frog egg extracts and
ipid bilayer [45]. They show that the initiation of filopodia-like
xtensions is primarily determined by the local accumulation of
oca1 and N-WASP, together with the Arp2/3 complex and actin.

ig. 4. Evolution of cell effectors of apical extensions. Scanning electron micrographs of s
C).  (A) Left: low magnification view of a mouse cochlea (13-month old), scale bar is 100 �
.  Bartles (see [55]). (B) Close ups showing cochlear outer hair cells in wild type, espin −/

ere  adapted from [55,78]. (C) Trichomes produced by embryonic epidermal cells in wild
evelopmental Biology 23 (2012) 341– 349

Interestingly, Toca1 and WASP were recently shown to be involved
in wing hair morphogenesis [46]. As observed in vivo, elongation
of filopodia-like in vitro then requires Diaphanous and Fascin [45].
Therefore the core of proteins identified in vivo for their role in
epithelial cell remodeling appears sufficient to promote membrane
protrusions in a reconstituted assay.

Furthermore, several ZPD proteins have a documented role in
wing morphogenesis. Miniature was  initially identified as a muta-
tion leading to small wing size, a phenotype resulting from defects
in apical cell flattening and actin organization [47]. Additional ZPD
proteins, Dusky [47], Papillote, Piopio and Dumpy [48] are required
for wing morphogenesis, the three latter impairing microtubule
organization when missing in wing cells. Interfering with Dusky
and Dusky-like activity also impairs bristle formation [49,50].

Despite the different morphologies observed between
Drosophila tissues, formation of apical cell extensions thus
requires a similar set of cell effectors, ranging from factors promot-
ing assembly of actin filaments and regulating their organization,
to proteins mediating specific interaction between architectural
elements and the membrane compartment(s).

6. Evolutionary aspects
The cochlea is a region of vertebrate inner ears specialized in
hearing. Sensory part of the cochlea is composed of supporting cells
interspersed with two  types of sensory hair cells forming apical
extensions, the stereocilia (Fig. 4), supported by actin bundles [51].

ensory hair cells in the mouse cochlea (A, B) and of Drosophila epidermal trichomes
M.  Right: outer and inner hair cells in wild type mouse; pictures kindly provided by
− (jerker), whirlin −/− (whirler) and myoXVa −/− (shaker-2) mutant mice. Pictures

 type, or forked (espin), shavenoid and miniature mutants.
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nner hair cells (IHC) display a single row of stereocilia and transmit
lectric signals to the auditory nerve. Outer hair cells (OHC) differ-
ntiate 3–4 rows of stereocilia with a staircase arrangement that
mplify vibrations. Hair cells sense sound through vibrations of the
ectorial membrane (TM), a specialized extracellular matrix.

Similarly to Drosophila trichome cells, the specification of sen-
ory versus non-sensory hair cells involves both signaling, e.g. FGF,
h and Notch pathways, and transcription factors such as Math1

reviewed in [52]). However, the register of their target genes in
ensory cells remains to be fully elucidated. Many factors involved
n stereocilia morphogenesis have been identified from genetic
nalyses of human deafness and targeted gene inactivation in mice
as provided animal models [8].

Pioneering studies have proposed that, besides morphologi-
al differences, the mechanisms underlying the differentiation of
tereocilia, sensory bristles and more generally microvilli-like api-
al extensions may  share common properties and players [53].
ndeed, several factors required for stereocilia belong to the core

odule of effectors, as defined by both genetics in flies and in vitro
pproaches (Table 1). For example, Diaphanous is linked to deaf-
ess suggesting a role in stereocilia morphogenesis [54]. The role
f Espin in stereocilia formation and/or maintenance is well estab-
ished and espin mutations cause hearing impairment in mammals
55]. Several protein isoforms are produced from the espin gene, dis-
laying distinct localizations along stereocilia [56]. Interestingly,

orked,  the putative homolog of espin in flies, also expresses vari-
us protein isoforms [57], albeit their respective distribution within
ristles or hairs is not known.

Fascin is required for hearing since DBA/2J deaf mice present a
ascin-2 point mutation, in a region that directly contacts F-actin
58]. Compared to espin mutants in which hair defects appear dur-
ng embryogenesis, stereocilia start to degenerate only after birth
n DBA/2J mutants. Fascin-2 normally accumulates at the tip of
allest stereocilia [58], where it impacts on bundle length [59]. The
unction of vertebrate Fascin is controlled by phosphorylation of a
onserved Serine that regulates its bundling properties [60], and
his regulation is also occurring in flies for trichome and bristle

orphogenesis [61].
In addition to collagens, �-tectorin and �-tectorin, two  pro-

eins that contain a zona pellucida domain, are necessary for TM
ssembly and function. Targeted inactivation of �-tectorin in mice
isrupts the TM matrix and thus impairs sound transmission [62].
utations in �-tectorin provoke human deafness [63,64],  includ-

ng dominant hearing loss due to a punctual mutation (Y1870C) in
he ZPD [64]. Strikingly, engineering a corresponding mutation in
-tectorin in mice [65], or even in the Drosophila protein Miniature

31], leads to dominant defects in hearing or epidermal morpho-
enesis, respectively. Structural studies establish that this mutation
ffects the conformation of the ZPD and impairs it homo- (and pos-
ibly hereto-) dimerization capability [66]. Therefore, despite the
apid evolutionary divergence of ZPD proteins [34], these results
upport that they exert their function through conserved molecular
nteractions.

Planar cell polarity determine stereocilia orientation through
wo components of the Frizzled system, Vangl2 and Scrib, homologs
o Drosophila Vang Gogh and Scribble, respectively [67]. As
bserved in flies, PCP components are asymmetrically distributed
t the apex of sensory hair cells, and mutant mice for PCP compo-
ents display altered hair polarity [68,69].

Additional factors required for apical extensions have been
ncovered in mammals. For example, Whirlin, scaffolding PDZ
rotein controls actin polymerization and membrane growth of

tereocilia [70,71].  Several unconventional Myosins, which medi-
te the polarized transport of molecular machines and organelles,
re required for stereocilia differentiation [70,72].  In the same vein,
zrin, Radixin, Moesin (ERM) proteins that regulate the interaction
evelopmental Biology 23 (2012) 341– 349 347

between actin filaments and the membrane compartment [73]
accumulate in growing stereocilia [74]. ERM are highly related
proteins, which are often co-expressed within a given tissue.
Radixin stays expressed in sensory hair cells after birth, when
Ezrin and Moesin expression progressively decreases, and consis-
tently Radixin knocked-out mice display a late onset degeneration
of stereocilia [75].

These data illustrate two  important views for our understand-
ing of morphological differentiation and its evolution in animals.
First, a common theme for the formation of apical extensions is the
switch of basic machineries, through the transcriptional control of
a battery of various effectors and regulators, showing unexpected
similarity between tissues and species. Second, the phenotypi-
cal identification of effectors may  be hampered by the existence
of functional redundancy between paralogs. Cytoskeletal proteins
derive from a common set in primitive eukaryotes, and mammalian
genomes often encode several paralogs. While diversification of
protein sequences is clearly playing a role in the evolution of ZPD
proteins for example [34], modifications of gene expression has also
contributed to specialized morphological differentiation between
tissues, as illustrated by differential expression of the three Fascin
[60] and three ERM [75] genes in human.

7. Conclusion

The comparison between terminal differentiation of epithelial
derivatives in flies and vertebrates identifies similar regulatory
mechanisms for cell specification and common effectors of 3D
morphogenesis. Although confirming the importance of cytoskele-
tal regulators, recent insights into the mechanisms of cell shape
changes highlight the importance of different cell compartments,
including membrane domains, junction complexes, extracellular
matrices etc.  A future challenge in understanding morphogenesis
is to unravel how these different cellular elements and machiner-
ies communicate together, and with the general components of
differentiated cells. Moreover these cellular processes are likely
influenced by the mechanical constraints [76] exerted by the
cytoskeleton, extracellular coats and other external cues [77]. In
addition to top-down genetic approaches, bottom-up identifica-
tion of genes regulated by transcription factors specifying a given
morphological state will provide precious information. While inde-
pendent identification of the same players in different tissues and
species plaids in favor of the evolutionary conservation of the
mechanisms of epithelial 3D remodeling, it also illustrates a puz-
zling paradox: how similar mechanisms can produce such diversity
in the number per cell, size and shape of apical extensions. It is
possible that our current view has been influenced by a will of high-
lighting common mechanisms. A similar trend has been noticed in
the beginning of the so-called evo-devo field, initially focusing on
evolutionary conserved mechanisms, but more recently engaged
in tackling the question of evolutionary diversification, including
that of animal forms. We  believe that extensive molecular profil-
ing of differentiated cells, in various model systems amenable to
functional studies, may  contribute in the next future to a better
comprehension of how, besides common mechanisms, the shape
of distinct apical extensions is finely tuned to fulfill their specific
functions.
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