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Abstract 70 

 71 

Background: Atopic dermatitis (AD) is one of the most common chronic inflammatory skin 72 

diseases, usually occurring early in life, and often preceding other atopic diseases like asthma. 73 

Th2 cell has been believed to play a crucial role in cellular and humoral response in AD, but 74 

accumulating evidences have shown that T follicular helper (Tfh) cell, a critical player in 75 

humoral immunity, is associated with disease severity and plays an important role in AD 76 

pathogenesis.  77 

Objectives: We aimed at investigating how Tfh cells are generated during the pathogenesis of 78 

AD, particularly what is the role of keratinocyte-derived cytokine TSLP and Langerhans cells 79 

(LCs). 80 

Methods: We employed two experimental AD mouse models, triggered by the overproduction 81 

of TSLP through topical application of MC903, or induced by epicutaneous allergen ovalbumin 82 

(OVA) sensitization.  83 

Results: We demonstrated that the development of Tfh cells and GC response were crucially 84 

dependent on TSLP in MC903 model and OVA sensitization model. Moreover, we found that 85 

LCs promoted Tfh cell differentiation and GC response in MC903 model, and the depletion of 86 

Langerin+ DCs or selective depletion of LCs diminished the Tfh/GC response. By contrast, in 87 

the model with OVA sensitization, LCs inhibited Tfh/GC response and suppressed Th2 skin 88 

inflammation and the subsequent asthma. Transcriptomic analysis of Langerin+ and Langerin- 89 

migratory DCs revealed that Langerin+ DCs became activated in MC903 model, whereas these 90 

cells remained inactivated in OVA sensitization model.  91 

Conclusion: Together, these studies revealed a dual functionality of LCs in TSLP-promoted 92 

Tfh and Th2 cell differentiation in AD pathogenesis. 93 

  94 



 5 

Capsule Summary  95 

 96 

This study demonstrates that keratinocyte-derived cytokine TSLP plays a critical role in 97 

promoting not only Th2 but also Tfh/GC response in the pathogenesis of atopic dermatitis, 98 

which implicates a dual function of epidermal Langerhans cells. 99 

  100 
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 101 

Introduction 102 

 103 

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases which 104 

affects up to 20% of children and 3% of adults worldwide, with increasing prevalence in the 105 

industrialized countries during the last 30 years 1. AD is characterized by chronic cutaneous 106 

inflammation, T helper type 2 (Th2) response and hyper immunoglobulin IgE. Patients 107 

suffering from AD often present genetic risk factors in the form of mutations affecting the skin 108 

barrier structure or the immune system 2. Onset of AD usually occurs early in life and may lead 109 

to allergen sensitization, which can trigger the progression from AD to other atopic diseases 110 

such as asthma/allergic rhinitis, in a process called “atopic march” 3, 4.  111 

It has been recognized that Th2 cell response is critically implicated in the pathogenesis of 112 

AD. Previous studies from us and others using mouse models have established a central role of 113 

the cytokine thymic stromal lymphopoietin (TSLP) expressed by epidermal keratinocytes in 114 

promoting Th2 cell response and driving the pathogenesis of AD 5-8. In addition to Th2 cell 115 

response, humoral immune response is another key feature of AD, with increased serum IgE 116 

and IgG1 levels associated with AD, which contribute to AD pathology and the atopic march 9, 117 

10.  For a long time, Th2 cell has been believed to play a crucial role both in cellular response 118 

and humoral response, e.g. helping B cells to produce Igs. However, such knowledge has been 119 

challenged with the identification of T follicular helper (Tfh) cell, which emerges to be a critical 120 

player in humoral immunity and T cell memory 11.  121 

In lymphoid organs, Tfh cell differentiation process is believed to begin with an initial 122 

dendritic cell (DC) priming of naive CD4+ T cells, which undergo a cell-fate decision with the 123 

acquisition of master transcription factor Bcl6 expression and chemokine receptor CXCR5 124 

expressed on cell surface to become early Tfh cells, of which CXCR5 promotes their migration 125 
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from T cell zone to the B cell follicles 12, 13. The full differentiation and maintenance of Tfh 126 

cells implicate the Tfh cell-B cell interaction, leading to GC Tfh cells which are phenotypically 127 

defined by their high expression of CXCR5 and PD-1 14. It has been shown that Tfh cells 128 

coordinate generation of the GC, initiate help for antigen-specific B cells, and promote selection 129 

of high-affinity B cells and differentiation into either memory B cells or long-lived plasma cells 130 

15. Recent studies have identified Tfh cells as an important source of IL-4, a master regulator in 131 

type 2 immunity which was previously thought to be produced by Th2 cells, for providing 132 

critical B-cell help by its anti-apoptotic and IgE and IgG1 class switch effects 16. In addition, it 133 

was reported that Tfh cells produce IL-4 in a GATA3-independent manner 17, suggesting 134 

distinct mechanisms employed by Tfh and Th2 cells in the regulation of IL-4.  135 

Since their initial identification, the biological functions of Tfh cells and their mechanisms 136 

of action in the onset and development of diseases have been studied in autoimmuity, infectious 137 

diseases, immunodeficiencies and vaccination 18. Less is known on Tfh cells in the context of 138 

AD and other atopic diseases, but more and more evidences have suggested that Tfh cells are 139 

associated with disease severity and Tfh cells play an important role in the pathogenesis 19-21. 140 

In human, alteration of circulating Tfh cells is correlated with severity of the disease in children 141 

with AD 22, or with the comorbid association of allergic rhinitis with asthma 23, and allergen-142 

specific T follicular helper cell counts are correlated with specific IgE levels and efficacy of 143 

allergen immunotherapy 24. In mice, it has been reported that Tfh cells are important for house 144 

dust mite-induced asthma 25 or peanut allergy 26.  145 

Despite of these accumulating evidences showing the importance of Tfh cells in atopic 146 

diseases, how Tfh cells and humoral responses are generated and regulated in AD remained to 147 

be investigated. In this study, by employing two experimental AD mouse models, one triggered 148 

by the overexpression of TSLP in mouse skin through topical application of MC903 6, 7, 27, and 149 

the other one induced by epicutaneous allergen ovalbumin (OVA) sensitization, we 150 
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demonstrated that skin TSLP plays a crucial role in driving/promoting Tfh cell differentiation 151 

and GC response, in addition to its recognized role in promoting Th2 cell response. Moreover, 152 

we investigated the role of skin DCs in mediating the Tfh cell differentiation. We uncovered a 153 

dual functionality of epidermal langerhans cells (LCs) in TSLP-promoted Tfh/Th2 cell 154 

differentiation in AD pathogenesis, and further explored the molecular insights by 155 

transcriptomic analyses, thus shedding new light onto the long-standing controversy of LCs in 156 

skin immunity. 157 

  158 
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Methods 159 

Details on the methods used in this study are described in the Methods section in this article’s 160 

Online Repository, including Experimental mice; MC903 topical application; Epicutaneous 161 

OVA sensitization and airway challenge; Depletion of Langerin+ DCs or LCs in mice; Cell 162 

preparation for flow cytometry analyses; Surface staining for flow cytometry analyses; LN cell 163 

culture and antigen stimulation; RNA sequencing; BAL cell analyses; ELISA; Histopathology; 164 

IHC staining; RNA in situ hybridization and Statistics.  165 

 166 

Results 167 

 168 

Topical MC903 treatment induces TSLP-dependent Tfh cell differentiation and GC 169 

response 170 

We have previously reported that topical treatment with MC903, a low calcemic analog of 171 

vitamin D3, induces the overproduction of TSLP (TSLPover) and the pathogenesis of AD 6, 172 

7. To examine the Tfh cell differentiation and GC response in MC903-induced AD model, 173 

Balb/c wildtype (WT) mouse ears were topically treated every other day from day (D) 0 to 174 

D10 with MC903 and ear-draining lymph nodes (EDLN) were analyzed at D0, D7 and D11 175 

(Fig 1A). Results showed that the frequency and number of CXCR5+ PD-1+ Tfh cells were 176 

both increased in MC903-treated WT mice at D7 and further augmented at D11 (Fig 1B). 177 

We next examined the expression of IL-4, a key signal provided by Tfh cells to sustain B 178 

cell maturation, by taking use of Il4/Il13 dual reporter 4C13RTg/0 mice, in which AmCyan 179 

and dsRed are expressed under the control of IL-4 and IL-13 regulatory elements, 180 

respectively 28. In agreement with a previous report 29, CXCR5+ PD-1+ Tfh cells in EDLNs 181 

express IL-4 (AmCyan) but not IL-13 (dsRed) (Fig E1A), and the IL-4 expression by Tfh 182 

cells was augmented in MC903-treated 4C13RTg/0 mice at both D7 and D11 (Fig 1C). 183 
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Together, MC903 treatment induces not only Tfh cell differentiation but also the production 184 

of IL-4 by Tfh cells. 185 

To examine whether the induction of Tfh cells in MC903 model is triggered by TSLP, 186 

mice lacking TSLP (Tslp-/-) 6 were subjected to MC903 treatment. Results showed that these 187 

mice exhibited highly diminished Tfh cell frequency and number at D7 and D11, compared 188 

to WT mice (Fig 1B). By breeding Tslp-/- with 4C13RTg/0 to generate Tslp-/-/4C13RTg/0 mice, 189 

we showed that MC903-induced IL-4 expression in Tfh cells was abrogated in the absence 190 

of TSLP (Fig 1C). In agreement with the recognized role of TSLP in Th2 cell differentiation, 191 

we showed that the MC903-induced IL-4- or IL-13-expressing CXCR5- CD4+ non-Tfh cells 192 

(representing Th2 cells) were also abrogated in Tslp-/- mice (Fig E1B). These results indicate 193 

that the overproduction of TSLP triggers not only Th2 cell differentiation, but also Tfh cell 194 

differentiation and IL-4 expression by these cells.  195 

Next, we examined the GC response in MC903-treated Balb/c WT mice. The number 196 

of GC B cells, identified as GL-7+ CD95+ B cells, exhibited an increase in MC903-treated 197 

WT mice at D11, but not at D7 (Fig 1D). Such increase was abrogated in MC903-treated 198 

Tslp-/- mice (Fig 1D). This was confirmed by immunofluorescence (IF) staining for GCs (Fig 199 

E2A). In addition, both IgG1+ and IgE+ B cells exhibited an increase in their numbers in 200 

MC903-treated WT mice at D11, which was also abrogated in MC903-treated Tslp-/- mice 201 

(Fig 1E). Of note, we observed that most of the IgG1+ B cells were GL-7+ CD95+ (Fig E1C), 202 

suggesting that these cells harbor a GC phenotype; however, this was not the case for IgE+ 203 

B cells (Fig E1C). 204 

Taken together, these data indicate that the overproduction of TSLP triggers Tfh cell 205 

differentiation and GC response.  206 

 207 
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Depletion of Langerin+ DCs or LCs diminishes the TSLPover-triggered Tfh/GC 208 

response 209 

LCs reside in the epidermis as a dense network of immune system sentinels, in close 210 

proximity to keratinocytes. We then asked whether LCs mediate the TSLPover-triggered 211 

Tfh/GC response. To this aim, we first employed Langerin-DTR knock-in mice (LangDTR) 212 

in which Langerin+ cells, including LCs and Langerin+ dermal DCs, express the human 213 

diphtheria toxin receptor (DTR) and can thus be depleted upon injection of diphtheria toxin 214 

(DT) 30. LangDTR mice and their wildtype control littermates were intraperitoneally (i.p.) 215 

injected with DT at D-2, D0 and every 4 days to maintain the depletion of Langerin+ cells 216 

(named LangDEP and CT respectively), and were subjected to topical MC903 treatment (Fig 217 

2A). Results showed that the TSLPover-triggered Tfh cell differentiation was largely 218 

diminished in LangDEP mice (Fig 2B). The expression of IL-4 (AmCyan) by Tfh cells was 219 

also reduced in LangDEP/4C13RTg/0 mice (Fig 2C). Accordingly, GC B cell number was 220 

lower and IgG1+ (however not in IgE+) B cell number was significantly decreased (Fig 2D). 221 

Therefore, these results indicate that Langerin+ DCs play an important role in mediating the 222 

TSLPover-induced Tfh/GC response. 223 

As LCs and Langerin+ cDC1s were both depleted in LangDEP mice, we next examined 224 

whether LCs mediate Tfh cell differentiation by depleting selectively LCs using two 225 

strategies: one took use of the differential recovery time between LCs and Langerin+ cDC1s 226 

after DT-induced depletion as previously reported 31 (Fig E3A-B), and the other one 227 

employed human Langerin-DTR (huLangDTR) mice in which DT injection efficiently 228 

depletes LCs but not Langerin+ cDC1s 32 (Fig E3C-D). In both cases,  we showed that the 229 

selective depletion of LCs led to a decrease in frequency and number of Tfh cells, suggesting 230 

an important role for LCs in TSLPover-triggered Tfh cell differentiation.  231 

 232 
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Epicutaneous OVA sensitization induces a TSLP-dependent Tfh cell differentiation 233 

and GC response 234 

We have previously reported that TSLP plays a crucial role for promoting skin sensitization 235 

to allergens, using an experimental mouse protocol in which OVA sensitization through 236 

tape-stripped (TS) skin leads to an allergic AD inflammation, accompanied by Th2 cell 237 

response, and an increased production of OVA-specific IgG1 and IgE in sera 33. Here, we 238 

developed a novel experimental protocol, in which Precise Laser Epidermal System 239 

(P.L.E.A.S.E.®) 34 was used to disrupt skin barrier and to generate patterned micropores in 240 

mouse skin. This protocol allowed us to deliver allergens to micropores at precise depths of 241 

the epidermis, thereby achieving a higher efficiency and reproducibility of allergen 242 

sensitization through the skin compared with experiments based on TS. We showed that 243 

micropores at a depth of 30µm (30µm-LMP) on Balb/c WT mouse ears reached basal layer 244 

of ear epidermis (Fig 3A). ELISA analyses indicated that the protein level of TSLP increased 245 

at 48 hours after treatment (Fig 3B), in agreement with the previous studies showing that 246 

barrier disruption induces TSLP production in mouse 33 and human skin 35. Notably, such 247 

level of TSLP was comparable to our previously reported TSLP level in TS skin 33, although 248 

it was much lower compared to that of MC903-treated skin (Fig 3B; see also Fig E13B). 249 

The administration of OVA did not further induce the TSLP level (Fig 3B). In situ 250 

hybridization showed that TSLP RNA expression was restricted to epidermal keratinocytes 251 

in LMP skin (Fig 3C). 252 

As expected, OVA treatment on LMP ears (named “LMP/OVA”; Fig 3D) induced a 253 

Th2-type skin inflammation in TSLP-dependent manner, showing that OVA sensitization-254 

induced infiltration of eosinophils and basophils (Fig E4A-B), Th2 cytokines (IL-4 and IL-255 

13) expression by T cells in the skin (Fig E4C) and by CXCR5-CD4+ cells in EDLNs (Fig 256 

E4D), were all abolished in mice lacking TSLP. Examination of EDLNs revealed that both 257 
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frequency and number of Tfh cells were increased in LMP/OVA- compared to LMP/PBS-258 

treated WT mice, and such increase was largely diminished in Tslp-/- mice (Fig 3E). Note 259 

that LMP/PBS was not sufficient to induce Tfh cell differentiation (despite of the induction 260 

of TSLP), but LMP plus OVA together promoted Tfh/GC response which was TSLP-261 

dependent (Fig 3E). Moreover, IL-4 production by Tfh cells was augmented in LMP/OVA-262 

treated Tslp+/+/4C13RTg/0 mice but not Tslp-/-/4C13RTg/0 mice (Fig 3F). GC B cell number 263 

analyzed by flow cytometry (Fig 3G) and GC size analyzed by immunofluorescence (Fig 264 

E2B) both showed an increase in LMP/OVA-treated WT mice, and this increase was 265 

abrogated in the absence of TSLP. IgG1+ and IgE+ B cell numbers were also increased in 266 

LMP/OVA-treated WT mice, and they were much lower in LMP/OVA-treated Tslp-/- mice 267 

(Fig 3G). Accordingly, serum levels of OVA-IgG1 and OVA-IgE were decreased in Tslp-/- 268 

mice compared to WT mice upon LMP/OVA treatment (Fig 3H). Together, these results 269 

demonstrate that TSLP is crucially required for epicutaneous OVA sensitization-induced 270 

Th2 and Tfh/GC responses. 271 

 272 

Depletion of Langerin+ DCs or LCs augments the Tfh/GC response induced by 273 

epicutaneous OVA sensitization 274 

Based on the above data from MC903-induced AD, we had expected that Langerin+ DCs 275 

would be crucially required for epicutaneous OVA-induced Tfh/GC response. To our 276 

surprise, when subjected to 30µm-LMP/OVA sensitization (Fig 4A), LangDEP mice did not 277 

exhibit a reduction in frequency and number of CXCR5+ PD-1+ Tfh cells, instead they tended 278 

to be higher compared to CT mice (Fig 4B). More strikingly, IL-4 expression by Tfh cells 279 

was higher in EDLN from LMP/OVA-treated LangDEP/4C13RTg/0 mice (Fig 4C). 280 

Accordingly, the GC B cell, IgG1+ and IgE+ B cell number were not reduced in LMP/OVA-281 

treated LangDEP mice (Fig 4D), and serum OVA-specific IgE and OVA-specific IgG1 were 282 
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higher or tended to be higher (Fig 4E). Thus, in contrast to our expectation, Langerin+ DCs 283 

are not required for the Tfh/GC response in LMP/OVA-induced AD model; instead, they 284 

appear to play a counteracting role. 285 

Because LCs are located on the suprabasal layer of the epidermis, we suspected that 286 

Langerin+ cells would be only required in Tfh cell differentiation when allergens are 287 

encountered superficially on the skin. To test this possibility, LMP was performed at the 288 

depth of 11 m, which disrupted only the cornified layer of the epidermis (Fig 5A). We 289 

observed that the 11µm-LMP induced also the production of TSLP, even though its level 290 

was lower compared to 30µm-LMP (Fig 5B). Treatment of wildtype control (CT) ears with 291 

11µm-LMP/OVA induced significant increases (although milder than 30µm-LMP/OVA) in 292 

Tfh cell frequency as well as GC B cell number, which were all abolished in Tslp-/- mice 293 

(Fig 5C), indicating that, despite of a low induction of TSLP, the Tfh/GC response promoted 294 

by 11µm-LMP/OVA is still crucially dependent on TSLP. However, when LangDEP mice 295 

were subjected to 11µm-LMP/OVA treatment, they exhibited a significant increase in the 296 

frequency of Tfh cells, in IL-4 expression by Tfh cells, as well as in GC B cell, IgG1+ and 297 

IgE+ B cell numbers in EDLNs (Fig 5D-F), accompanied by augmented serum levels of 298 

OVA-IgG1 and OVA-IgE (Fig 5G). Similar results were also obtained with huLangDEP mice 299 

(Fig 5H-I), indicating that LCs significantly counteract the Tfh/GC response induced upon 300 

the 11µm-LMP/OVA sensitization. 301 

Furthermore, we sought to compare antigen-specific Tfh cells between CT and 302 

huLangDEP mice using an activation-induced marker assay 36. In this assay, the stimulation 303 

of LN suspensions with specific antigen drives upregulation of CD154 (CD40L), CD25 and 304 

OX40 on Tfh cells, providing a sensitive method for quantifying antigen-specific Tfh cells 305 

in mice 36. We showed that in vitro stimulation with OVA drove the upregulation of CD154, 306 

OX40 and CD25 in EDLN-derived Tfh cells from LMP/OVA-sensitized CT mice; and such 307 
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upregulation was significantly higher in Tfh cells from LMP/OVA-sensitized huLangDEP 308 

mice (Fig 5J), thus indicating a stronger OVA-specific Tfh cell differentiation in huLangDEP 309 

mice upon OVA sensitization. 310 

Together, these data indicate that LCs suppress the TSLP-dependent Tfh/GC response 311 

in epicutaneous OVA sensitization model. 312 

 313 

Langerin+ DCs or LCs limit epicutaneous OVA-induced Th2 skin inflammation and 314 

the subsequent asthma 315 

Having observed the opposite role of Langerin+ DCs or LCs in Tfh/GC response in the two 316 

mouse AD models, we further explored their involvement in the induction of Th2 cell 317 

response. Upon MC903 treatment, LangDEP/4C13RTg/0 mice exhibited a slight decrease in 318 

IL-4 and a tendency of decrease in IL-13 production by CXCR5-CD4+ cells in EDLN (Fig 319 

E5A), or by TCRβ+ cells in dermis (Fig E5B), which suggests a role, even though minor, 320 

for Langerin+ DCs in the development of Th2 cell response. In contrast, upon 30µm-321 

LMP/OVA treatment, LangDEP/4C13RTg/0 mice exhibited a higher Th2 cell response in both 322 

skin (Fig 6A) and EDLN (Fig E6). This was in accordance with the observation that 323 

LMP/OVA-sensitized LangDEP mice exhibited a stronger skin inflammation (Fig 6B), 324 

accompanied with an increase in eosinophils and basophils (Fig 6C). Moreover, when 325 

subjected to 11µm-LMP/OVA sensitization, both LangDEP and huLangDEP mice exhibited an 326 

enhanced AD-like skin inflammation compared to CT mice (Fig E7). Therefore, contrary to 327 

their minor role in promoting Th2 cell response in MC903-AD, LCs suppress the Th2 cell 328 

response in OVA-AD.   329 

We further examined whether Langerin+ DCs limit the atopic march. Upon intranasal 330 

(i.n.) OVA challenge following epicutaneous allergen sensitization (Fig 6D), the LangDEP 331 

mice developed a much stronger asthmatic inflammation compared with CT mice, exhibiting 332 
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an increase in the number of eosinophils in bronchoalveolar lavage fluid (BAL) (Fig 6E), 333 

and in RNA expression of Th2 cytokines IL-4, IL-5 and IL-13, as well as chemokine receptor 334 

CCR3 (eosinophils) and MCPT8 (basophils) by BAL cells (Fig 6F). In addition, H&E 335 

staining of lung sections of OVA-treated LangDEP mice revealed an increased peribronchial 336 

and perivascular infiltration, and PAS staining showed an enhanced goblet cells hyperplasia 337 

(Fig 6G). Similar results were obtained with huLangDEP mice (Fig E8 A-F), indicating that 338 

LCs counteract the asthma development following epicutaneous allergen sensitization. To 339 

exclude the possibility that the enhanced asthmatic inflammation is due to any depletion of 340 

lung DCs during the intranasal challenge, we subjected huLangDEP mice to i.p. sensitization 341 

with OVA/alum and i.n. OVA challenge, and observed that these mice developed similar 342 

asthmatic inflammation as wildtype control mice (Fig E8 G-H). This suggests that the 343 

limitation of asthma inflammation by LCs is indeed due to their role in suppressing the 344 

epicutaneous allergen sensitization. 345 

Taken together, these studies reveal opposite roles of LCs in two AD models: in MC903-346 

AD, LCs play an important role in priming Tfh/GC response; they participate but to a lesser 347 

extend in promoting Th2 responses. In OVA-AD, LCs are neither required for Tfh/GC nor 348 

Th2 responses, instead, they suppress OVA-induced Tfh/GC and Th2 responses as well as 349 

the “atopic march”.  350 

 351 

Langerin+ migratory DCs from MC903-AD but not from OVA-AD mice present 352 

profound transcriptomic changes 353 

We next conducted transcriptomic studies to explore molecular insights underlying the 354 

opposite roles of Langerin+ DCs in Tfh and Th2 cell differentiation in MC903-AD and OVA-355 

AD, by taking use of LangGFP mouse line in which GFP reports the expression of Langerin 356 

30. LangGFP mice were treated with MC903 (at D0, D2 and D4) or LMP/OVA (at D0 and 357 
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D3), and at D5, Langerin+ (GFPpos) and Langerin- (GFPneg) migratory DCs (migDCs) were 358 

sorted from EDLNs of non-treated (NT), MC903- or LMP/OVA-treated mice, and 359 

proceeded to mRNA sequencing (Fig E9A). The time point at D5 was selected to compare 360 

gene expression patterns of migDCs at the initiation stage of Tfh and Th2 cell differentiation. 361 

Principle component analysis (PCA) for the RNAseq data revealed that the Pos_MC 362 

(GFPpos migDCs from MC903-treated LangGFP mice) was clearly separated from the Pos_NT 363 

(GFPpos migDCs from non-treated LangGFP mice); however, the Pos_OVA (GFPpos migDCs 364 

from LMP/OVA-treated LangGFP mice) was inseparable from the Pos_NT (Fig 7A). 365 

Correspondingly, analyses of differentially expressed genes (DEGs) in Pos_MC vs Pos_NT 366 

identified 756 upregulated and 559 downregulated genes (with a fold change >1.5 and 367 

adjusted p<0.05; Fig 7B); in a sharp contrast, the comparison of Pos_OVA vs Pos_NT 368 

revealed only 39 upregulated and 9 downregulated genes (Fig 7B). Therefore, in MC903-369 

AD, Langerin+ migDCs undergo profound transcriptomic changes, but in OVA-AD, they 370 

present almost no, or very little, transcriptomic changes.  371 

As to Langerin- migDCs, PCA showed that Neg_MC (GFPneg migDCs from MC903-372 

treated LangGFP mice), Neg_OVA (GFPneg migDCs from LMP/OVA-treated LangGFP mice) 373 

and Neg_NT (GFPneg migDCs from non-treated LangGFP mice) were all clustered away from 374 

each other (Fig 7A). Analyses of DEGs identified 710 upregulated and 698 downregulated 375 

genes for Neg_MC vs Neg_NT; and 431 upregulated and 427 downregulated genes for 376 

Neg_OVA vs Neg_NT (Fig 7B), suggesting that Langerin- migDCs present major 377 

transcriptomic changes in both MC903-AD and OVA-AD, with considerable numbers of 378 

overlapped DEGs (249 upregulated and 215 downregulated). 379 

 380 

Gene ontology analyses of DEGs in Langerin+ migDCs from MC903-treated mice 381 
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Next, using the upregulated or downregulated DEGs identified in Pos_MC (vs Pos_NT) as 382 

input, we performed cluster analyses of all the groups and generated heat map to visualize 383 

trends of expression for genes across the different groups. Results are presented in Fig E9B 384 

and Fig E10A. Further, we performed gene ontology (GO) analyses of the upregulated genes 385 

in Pos_MC (Fig 7C), and examined whether these genes were also significantly upregulated 386 

in Neg_MC (vs Neg_NT), and Neg_OVA (vs Neg_NT). We paid particular attention to the 387 

upregulated genes shared in all the three groups (Pos_MC, Neg_MC and Neg_OVA), 388 

standing here for “commonly upregulated” genes (highlighted in red in Fig 7C), as they 389 

could be implicated in TSLP-promoted Tfh and/or Th2, a common feature shared by 390 

MC903-AD and OVA-AD. Among them, we found genes related to: 1) “regulation of cell 391 

migration”, many of which were reported to facilitate DC migration (Mmp14 37; Stat5 38; 392 

Nrp2 39; Sema7a 40); 2) “T cell costimulation”: Cd80 and Cd86 41, IL2ra 42, Pdcd1lg2 (PD-393 

L2)43, Cd274 (PD-L1), Gpr183 (EBI2)44, 45; 3) “cytokine signal”: Il2ra, Tnfrsf11b and Ccl22;  394 

and 4) “transcription factors” such as Ikzf4, Irf4, Stat4 and Stat5a. 395 

We examined TSLP signaling pathway among the upregulated genes in Pos_MC. Using 396 

the reported TSLP-regulated gene set 46, we identified Cd84, Cd82, Ccl17, Ccl22 and Tnfrsf11b 397 

(in the cluster with higher expression in Pos_MC than Neg_MC), as well as Cish, Cd86, Cd80, 398 

Cd274, Il2ra, Il6, ccr2, Tgfb1 (in the cluster with higher expression in Neg_MC than Pos_MC) 399 

(Fig 7D). In addition, we identified Irf4, which has been recently shown to be downstream of 400 

TSLP signaling in human migratory LCs 47. The upregulation of these TSLP-targeting genes 401 

by Langerin+ migDCs suggests that these cells could be a direct responder to TSLP signaling, 402 

although it remains to be demonstrated that TSLP signals through its receptor on LCs drive 403 

their migration/activation. Besides these known TSLP downstream genes, more TSLP pathway 404 

genes identified from those “commonly upregulated” genes can be envisaged. 405 
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Interestingly, we did not find Tnfsf4 (encoding OX40L) among the DEGs in Pos_MC,  406 

despite that OX40L was reported to be TSLP-responsive gene and mediate TSLP-promoted 407 

Th2 48 and Tfh 49 cell differentiation. Actually, OX40L expression by GFPpos cells was barely 408 

detected in Pos_NT, Pos_MC or Pos_OVA (Fig 7E). On the other hand, OX40L was expressed 409 

in Neg_NT, and its expression was further upregulated in Neg_MC and Neg_OVA. Therefore, 410 

it is unlikely that OX40L would be responsible for the Tfh-promoting function of Langerin+ 411 

DCs, while its precise function as a potential TSLP downstream factor in Langerin- DCs 412 

remains to be defined (Fig 7E).  413 

Among the above-mentioned TSLP-regulated gene, IL-6 has been shown to be a critical 414 

cytokine for Tfh cell differentiation 50, 51. We thus tested whether IL-6 neutralization decreases 415 

Tfh / GC response in MC903-AD. Results showed that IL-6 was not required for the initiation 416 

of Tfh cell differentiation and the overall GC reaction (Fig E11), although it is possible that its 417 

function in Tfh response is redundant with other signals as suggested by Eto et al 52. Besides 418 

IL-6, several other Tfh-promoting factors derived from DCs have been recently reported, 419 

including IRF-453, IL-2Ra42, 54 and EBI2 (Gpr183) 44, 45, whose expression was all “commonly 420 

upregulated” in Pos_MC, Neg_MC and Neg_OVA (Fig 7D). The role of these potential 421 

candidates in TSLP-promoting Tfh cell differentiation remains to be examined. 422 

Finally, among the downregulated genes (Fig E10B), less knowledge was available, but 423 

we could see Il12b (IL-23/IL-12p40), whose expression in DCs was previously reported to be 424 

suppressed by TSLP 55. Other commonly downregulated ones included genes related “T cell 425 

costimulation” Havcr2 (TIM3), Lgals8 (Galectin 8); “Regulation of cell migration” Adam15 426 

and Ptk2 (negative regulators for cell migration) and “regulation of transcription” Foxc2, Thrb, 427 

Tcf7l2, Ehf and Lmo2. 428 

  429 
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Discussion 430 

 431 

In this study, we analyzed how Tfh cells were generated in two experimental AD mouse models, 432 

triggered by the overproduction of TSLP by topical application of MC903, or induced by 433 

epicutaneous OVA sensitization. We demonstrated a crucial role for TSLP in promoting Tfh 434 

cells and GC response in MC903-AD as well as OVA-AD. Intriguingly, we revealed a dual 435 

function of LCs in TSLP-promoted Tfh/Th2 cell differentiation: while they promoted Tfh cell 436 

differentiation in MC903-AD, they inhibited Tfh/GC response and suppressed Th2 skin 437 

inflammation and the atopic march in OVA-AD. This is schematically illustrated in Fig 8, and 438 

is discussed below. 439 

 440 

1) TSLP: critical player for Th2 and Tfh cell response in AD  441 

It has been recognized that TSLP is overproduced in AD lesional skin 56, however, its 442 

expression varies from high to low, which could be related with the cause (e.g. genetic mutation 443 

of Spink5 which induces a high level of TSLP 57 vs skin barrier impairment which induces a 444 

low level of TSLP 35), age (e.g. TSLP serum level in AD children is high at early stage and 445 

decreases with age 58), or the nature of disease (e.g. intrinsic or extrinsic AD). Our study 446 

demonstrates that no matter in AD models associated with either high or low TSLP expression, 447 

TSLP is crucial for promoting Tfh/GC response in AD. Recently, the link between TSLP and 448 

Tfh cell differentiation was suggested by the study with human blood DC-T cell coculture 449 

system 49. Thus, the Tfh-promoting function of TSLP appears to be conserved between mouse 450 

and human, which suggests that it is relevant and valuable to employ AD mouse models to 451 

elucidate mechanisms underlying the TSLP (skin)-Tfh (draining LN) axis, particularly the 452 

access of tissue and lymphoid organs is rather limited in human study. 453 
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Our data add new evidence that neutralization of TSLP or blocking TSLP downstream 454 

pathway will be helpful for reducing Th2 and Tfh cell responses in AD.  Notably, TSLP is 455 

crucial for driving the downstream IL-4/IL-13 expression by Th2 cells, as well as IL-4 456 

expression by Tfh cells. Indeed, blocking antibody against IL-4/-13R (Dupilumab), which may 457 

actually target both Th2 and Tfh cell responses, has been shown to achieve significant 458 

therapeutic effect on AD 59. Intriguingly, neutralization TSLP antibody Tezepelumab has been 459 

demonstrated to significantly reduce annual asthma exacerbation rate in patients with 460 

uncontrolled asthma 60. A recent study with Tezepelumab showed numeric improvements in 461 

patients with moderate to severe AD, despite that there were certain limitations in that study 462 

including patient selection, use of topical corticosteroids, duration of treatment and uncertain 463 

inhibition of TSLP with the dose used 61. Given the preclinical evidence for the role of TSLP 464 

in AD, more clinical studies are required to evaluate TSLP as therapeutic target in AD. 465 

It should be also noted that recent studies have recognized the importance of Tfh cells in 466 

AD 19-21, but the in vivo function of Tfh remains to be further delineated using AD mouse 467 

models. This is challenged by the lack of appropriate tools to deplete Tfh cells. We are under 468 

the way to generate mouse line in which DTR can be selectively expressed in Tfh cells, thus 469 

allowing the DT-induced depletion of Tfh cells.  470 

 471 

2) LCs: function as migratory DCs to promote Tfh cell differentiation 472 

LCs represent one of the most studied but controversial DC subtypes. Our study shows that LCs 473 

are importantly engaged in the initiation Tfh cell differentiation and GC response triggered by 474 

TSLPover in MC903-AD. This provides new evidence on the Tfh-promoting function of LCs in 475 

AD, in addition to several studies reporting the requirement of LCs for humoral responses in 476 

other contexts 62,63,64. In MC903-AD, we observed that LCs play a dominant role in Tfh cell 477 

differentiation, although dermal langerin- DCs may also contribute. On the other hand, langerin- 478 
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DCs (cDC2) appear to be the major player for the TSLPover-induced Th2, while LCs have 479 

somewhat but minor contribution. Nevertheless, to provide direct evidence for the contribution 480 

of cDC2 in TSLP-driven Tfh and Th2 responses in AD, further studies could be performed 481 

using DC-specific KO of IRF4 or Dock8 mice, which have impaired development and 482 

migration of CD11b+ cDC2 65, or CD301b-DTR mice in which CD301b+ cDC2 can be 483 

transiently depleted 66.  484 

There have been long debates on the migration, antigen uptake, and T cell differentiation 485 

of LCs in different contexts; but transcriptomic study on migratory LCs in skin-draining LNs 486 

under inflammatory pathological contexts was lacking. Our transcriptomic data are therefore of 487 

value; however, one drawback is that migratory LCs and cDC1 were not separated in Langerin+ 488 

(GFPpos) migDCs, thus the gene expression data still need to be cautiously interpreted 489 

concerning LCs. Nevertheless, we have shown that Langerin+ migDCs in EDLN of MC903-490 

induced TSLPover mice presented substantial transcriptional changes, suggesting that the 491 

activation and migration of Langerin+ DC to the draining LNs underlie its function to prime 492 

Tfh cell differentiation in MC903-AD. Indeed, when comparing numbers of GFPpos and GFPneg 493 

migratory DCs in EDLN of MC903-treated LangGFP mice at D5, we observed that both were 494 

increased (Fig E12), supporting that both Langerin+ DCs and Langerin- DCs migrate to draining 495 

LNs in MC903-AD.  496 

 497 

3) LCs: function as non-migratory cells in the skin to suppress Tfh/Th2 response? 498 

Our study revealed a suppressive role of LCs for epicutaneous OVA-induced Tfh and Th2 cell 499 

differentiation. This is in contrast with two previous studies which reported a role of LCs in 500 

provoking AD inflammation by using a tape stripping (TS) OVA sensitization model 67, 68. To 501 

examine whether the discrepancy is due to the different effects of LMP compared to TS, we 502 

performed TS/OVA sensitization on mouse ears. Results showed that, similar to LMP/OVA, 503 
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TS/OVA-sensitized LangDEP mouse EDLNs exhibited increased frequency and number of  Tfh 504 

cells, increased IL-4 expression by Tfh cells, higher numbers of GC B cells, IgG1+ and IgE+ B 505 

cells, with elevated OVA-IgG1 and OVA-IgE in sera (Fig E13 A-G). Moreover, when i.n. 506 

challenged with OVA, LangDEP mice developed a stronger asthmatic inflammation (Fig E13 507 

H-I). Therefore, the discrepancy with the previous reports 67, 68 is not explained by the 508 

difference of LMP vs TS technique in epicutaneous OVA sensitization; rather, it could be due 509 

to other factors remained yet to be determined, such as the allergen application method: topical 510 

OVA vs long exposure (2-day) of OVA placed on patch-test tape; the difference of mouse 511 

background: Balb/c vs C57Bl/6; or the site of allergen application: ear vs back.  512 

Why are LCs not implicated in the promotion of Tfh/Th2 cell differentiation in EDLN in 513 

this context? Transcriptomic analyses showed that in sharp contrast to MC903-AD, Langerin+ 514 

migDCs in OVA-AD presented almost the same transcriptomic program as in untreated mice, 515 

suggesting an absence of migration/activation of these cells. Indeed, Langerin+ migDC numbers 516 

in EDLNs from LMP/OVA-treated or TS/OVA-treated mice at D5 were nearly unchanged, 517 

whereas Langerin- migDC number was increased (Fig E12). This is in agreement with previous 518 

studies showing that when skin was treated with fluorescence-conjugated OVA 66, HDM 69, or 519 

Dextran 70, antigen uptake and transport to draining LNs were mainly exerted by Langerin- DCs. 520 

Of note, it was recently shown that LCs can transfer antigen to cDC2 in the context of Langerin 521 

mAb-mediated targeting 71. It will be interesting to see whether this occurs in AD models, and 522 

whether efficiency of LC antigen transfer could be altered in the two models, as another possible 523 

explication of different implication of LCs in Tfh cell differentiation. 524 

Then how do LCs exert their anti-Tfh/Th2 role in OVA-AD? A recent study showed that 525 

LCs played an immunosuppressive role when OVA was applied on the intact skin, in 526 

accompany with the induction of IL-10 in LCs in skin-draining LNs 72. However, this does not 527 

seem to be our case, because Langerin+ migDCs in EDLN did not exhibit any transcriptional 528 
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change of Treg-inducing signals including IL-10 and TGFβ, or RALDH2. More likely, the anti-529 

Tfh/Th2 effect of LCs is related to their immune suppression function in situ in the skin, in 530 

keeping with LC ontogeny not only as DCs but also as non-migratory macrophages 73, 74. It 531 

should be further studied how LCs exert such functionality, for example, by limiting the 532 

antigen-uptake by cDC2 in the skin, or by promoting local Tregs in OVA-sensitized skin 75 76. 533 

Transcriptomic analysis of LCs isolated from the OVA-treated skin site may provide further 534 

molecular insights. 535 

 536 

4) What signals switch the function of LCs? 537 

One intriguing question is what microenvironment cues and molecular signals switch the 538 

function of LC between anti-Tfh/Th2 to pro-Tfh/Th2 in AD contexts. Notably, MC903-AD and 539 

OVA-AD exhibit similar AD phenotype which is TSLP-dependent, but the quantity of TSLP 540 

and the nature of antigen are different in these two models. In MC903-AD, MC903 induced a 541 

high production of TSLP 7 (Fig 8) which was sufficient to induce Tfh and Th2 cell 542 

differentiation. As there was no administration of experimental allergen, the nature of antigen 543 

implicated in T cell differentiation in MC903 model may involve endogenous antigens or 544 

microbiota co-existing in the skin. On the other hand, in OVA-AD, the disruption of skin barrier 545 

with LMP induced TSLP expression however to a much lower extent (Fig 8). It is possible that 546 

LCs sense the quantity of TSLP. Indeed, as a danger signal, TSLP may convert the function of 547 

LCs when its level is above certain threshold. In vitro studies have shown that TSLP triggers 548 

DC migration 77, or promotes the survival, maturation and migration of human LCs, and 549 

allogenic naïve CD4+ T cells cocultured with TSLP-conditioned LCs produced cytokines IL-4 550 

and IL-13 78, but quantitative study on TSLP signaling has never been performed. It will be 551 

interesting to explore whether and how quantitative TSLP signaling determines the role of LCs, 552 

by conducting in vivo or ex vivo dose-dependent experiments. In addition, the nature and 553 
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quantity of antigens can be also involved in the functional switch of LCs. To unravel such 554 

complexity, the emerging mathematic modeling 79, 80 may eventually help to integrate multiple 555 

parameters for a better understanding of functional switch of LCs.  556 

It will be interesting to further explore in AD patients whether and how TSLP levels are 557 

correlated with the states and function of LCs. A better understanding of what molecular switch 558 

determines the function of LCs either as "pro-Tfh/Th2" or as "anti-Tfh/Th2", and of how LCs 559 

exert such functions, will allow us to shape LCs to act in suppressing the skin inflammation, 560 

limiting the allergen sensitization through AD skin, thus preventing the progression from AD 561 

to asthma. On the other hand, the potential of LCs to induce Tfh cell differentiation and GC 562 

response and the subsequent induction of antigen-specific antibodies has been of interest for 563 

transcutaneous vaccination 63, 81. Therefore, the knowledge we obtain from this study should be 564 

also insightful for LC-based skin vaccination, including the use of TSLP at an appropriate level 565 

as an effective adjuvant for promoting Tfh cell differentiation and humoral response.  566 

  567 
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Figure Legends 820 

 821 

FIG 1. Overproduction of TSLP in the skin triggers Tfh differentiation and GC reponse in 822 

MC903-induced AD mice. A, Experimental protocol. Mouse ears were topically treated with 823 

MC903 or ethanol (EtOH; as vehicle control) every other day from day (D) 0 to D10 and 824 

EDLNs were analyzed at D0, D7 and 11. B, Frequency and number of CXCR5+ PD-1+ Tfh cells 825 

in EDLN from MC903-treated Balb/c wildtype (WT) and Tslp-/- mice. C, Frequency of IL-4 826 

(AmCyan) + in Tfh cells and cell number of IL-4+ Tfh cells in EDLNs. D-E, Number of CD95+ 827 

GL-7+ GC B cells, IgG1+ B cells and IgE+ B cells in EDLNs. Values shown are means ± SEMs. 828 

B-D, one-way ANOVA with Tukey’s multiple comparison post-hoc test; E, unpaired t-test with 829 

Welch’s correction. Data are representative of 3 independent experiments with similar results.   830 

 831 

FIG 2. Depletion of Langerin+ cells diminishes the MC903-induced Tfh/GC response. A, 832 

Experimental protocol. LangDTR mice and wildtype littermate controls (CT) were i.p. injected 833 

with DT at D-2 and D0 and then every 4 days. Mouse ears were topically treated with MC903 834 

or EtOH every other day from D0 to D10 and EDLNs were analyzed at D11. B, Frequency and 835 

number of Tfh cells. C, IL-4 (AmCyan) expression by Tfh cells. D, Total number of GC B cells, 836 

IgG1+ and IgE+ B cells. Values shown are means ± SEMs; one-way ANOVA with Tukey’s 837 

multiple comparison post-hoc test.  Data are representative of 3 independent experiments with 838 

similar results.   839 

 840 

FIG 3. OVA sensitization through laser-microporated (LMP) skin induces TSLP-dependent 841 

Tfh/GC response. A, H&E staining of untreated or 30µm-LMP ears of Balb/c WT mice. The 842 

red arrow points to a micropore with the disruption of the epidermis. Scale bar, 100 m. B, 843 

TSLP protein levels in ears of WT mice at 48h after the indicated treatment. C, RNAscope in 844 
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situ hybridization for TSLP in untreated or 30μm-LMP-ears at 48h after the microporation. The 845 

black arrow points to one of the positive signals. Scale bar, 50 m. D, Experimental protocol 846 

for OVA epicutaneous sensitization through LMP ears. OVA or PBS (vehicle) were topically 847 

applied on LMP ears at D0, D4, D7 and D11 and EDLNs were analyzed at D13. E-F, Frequency 848 

and cell number of Tfh cells (E) and IL-4 (AmCyan) producing Tfh cells (F) in EDLNs. G, GC 849 

B cell, IgG1+ and IgE+ B cell numbers in EDLNs. H, Serum levels of OVA-IgG1 and OVA-850 

IgE. Values shown are mean ± SEM; one-way ANOVA with Tukey’s multiple comparison 851 

post-hoc test.  Data are representative of 3 independent experiments with similar results. 852 

 853 

FIG 4. Depletion of Langerin+ cells does not reduce but rather tends to augment 30µm-854 

LMP/OVA-induced Tfh/GC response. A, Experimental protocol. LangDTR mice and wildtype 855 

littermate controls (CT) were i.p. injected with DT at D-2, D0 and then every 4 days. Mouse 856 

ears were treated by 30µm-LMP/OVA or 30µm-LMP/PBS at D0, D4, D7 and D11 and EDLNs 857 

were analyzed at D13. B, Frequency and number of Tfh cells. C, IL-4 (AmCyan) expression 858 

by Tfh cells. D, Number of GC B cells, IgG1+ and IgE+ B cells. E, Serum levels of OVA-859 

specific IgG1 and OVA-specific IgE in 30µm-LMP/OVA-sensitized LangDEP or CT mice.  Data 860 

are means ± SEM; B-D, one-way ANOVA with Tukey’s multiple comparison post-hoc test. E, 861 

unpaired t-test with Welch’s correction. Data are representative of 3 independent experiments 862 

with similar results.  863 

 864 

FIG 5. Depletion of Langerin+ cells or LCs enhances 11µm-LMP/OVA-induced TSLP-865 

dependent Tfh/GC response. A, H&E staining of untreated or 11µm-LMP ears of Balb/c WT 866 

mice. The red arrow points to a micropore with the impairment of cornified layer. Scale bar, 867 

100 µm. B, TSLP protein levels in ears of WT mice. C, Comparison of Tfh cells and GC B 868 

cells in EDLNs from WT or Tslp-/- mice. D-F, Comparison of Tfh cells (D), IL-4 (AmCyan) 869 
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expression by Tfh cells (E) and number of GC B cells, IgG1+ B cells and IgE+ B cells (F) in 870 

EDLNs from CT or LangDEP mice. G, Serum OVA-IgG1 and OVA-IgE levels. H, Experimental 871 

protocol. I, Comparison of Tfh cells, GC B cells, IgG1+ and IgE+ B cells in CT and huLangDEP 872 

mice. J, Comparison of antigen-specific Tfh cells between LMP/OVA-sensitized CT and 873 

huLangDEP mice. EDLNs were in vitro stimulated with OVA or PBS (vehicle control), and 874 

activation markers CD154, CD25 and OX40 expressed by EDLN-derived Tfh cells were 875 

examined. Values shown are mean ± SEM; one-way ANOVA with Tukey’s multiple 876 

comparison post-hoc test. Data are representative of 2 independent experiments with similar 877 

results. 878 

 879 

FIG 6. Langerin+ cells counteract LMP/OVA sensitization-induced skin Th2 inflammation and 880 

the subsequent asthmatic phenotype. A, IL-4 (AmCyan) and IL-13 (DsRed) expression in 881 

TCRβ+ dermal cells. B, H&E staining of mouse ears. C, IHC staining of mouse ears with anti-882 

MBP (for eosinophils) or anti-MCPT8 (for basophils). Arrows point to positive signals. D, 883 

Experimental protocol for OVA epicutaneous sensitization and airway challenge. Mice were 884 

i.p. injected with DT at D-2, D0 and then every 4 days. Mice were either treated with OVA on 885 

LMP ears at D0, D4, D7 and D11 or non-treated (NT). All mice were subjected to i.n. 886 

instillation with OVA from D9 to D12, and analyzed at D13. E, Differential cell counting for 887 

eosinophils (Eos), neutrophils (Neutro), lymphocytes (Lympho) and macrophages (Macro) in 888 

BAL. F, RNA levels of indicated genes in BAL cells by RT-qPCR. G, Lung sections were 889 

stained with H&E for histology or PAS for goblet cell hyperplasia analyses. B: bronchiole, V: 890 

blood vessel. Scale bar, 100µm. Values shown are means ± SEM; one-way ANOVA with 891 

Tukey’s multiple comparison post-hoc test.  Data are representative of 2 independent 892 

experiments with similar results.  893 

 894 
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FIG 7. Transcriptomic analyses of migratory DCs in EDLNs of LangGFP mice upon MC903 895 

treatment or epicutaneous OVA sensitization. LangGFP mice were treated with MC903 at D0, 896 

D2 and D4 or 30µm-LMP/OVA on D0 and D3; EDLNs were collected at D5 for cell sorting 897 

and RNAseq analyses. A, Left, percentage of variability explained by each Principal 898 

Component. Right, principal component analyses showing PC1, PC2 and PC3. B, Venn 899 

diagram showing the number of upregulated and downregulated genes (fold change > 1.5; p < 900 

0.05; raw read > 200 in at least one sample of all groups), and the number of commonly 901 

upregulated or downregulated genes between the comparisons, as indicated. Pos_NT, Pos_MC, 902 

Pos_OVA: GFPPos migDCs from non-treated, MC903-treated or LMP/OVA-treated LangGFP 903 

mice; Neg_NT, Neg_MC, Neg_OVA: GFPneg migDCs from non-treated, MC903-treated or 904 

LMP/OVA-treated LangGFP mice. C, Selected genes corresponding to gene ontology terms. *, 905 

p<0.05; NS, non significant. D, Heatmaps of the reported TSLP pathway genes, which are 906 

significantly upregulated in Pos_MC vs Pos_NT. E, Heatmap of Tnfsf4 (encoding OX40L) 907 

from RNAseq data, and RT-qPCR analyses.  908 

 909 

FIG 8. A schematic representation of the dual functions of LCs in regulating TSLP-dependent 910 

Tfh cell and Th2 cell response, revealed by two experimental AD mouse models, triggered by 911 

the overproduction of TSLP through topical application of MC903, or induced by epicutaneous 912 

allergen ovalbumin (OVA) sensitization. 913 

 914 

  915 
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Supplementary Figure Legends 916 

 917 

FIG E1. (A) CXCR5+ PD-1+ Tfh cells produce IL-4 (AmCyan) but not IL-13 (dsRed) in 918 

EDLNs of MC903-treated 4C13RTg/0 mice at D11. 4C13R0/0 EDLNs were used as gating 919 

control.  (B) Frequency and number of CXCR5- CD4+ (non-Tfh) cells producing IL-4  920 

(AmCyan) or IL-13 (dsRed), representing Th2 cells, in EDLNs from Balb/c wildype (WT) and 921 

Tslp-/- mice in the background of 4C13RTg/0, treated with MC903 or ethanol, and analyzed at 922 

D0, D7 and D11. (C) The majority of IgG1+ but not IgE+ B cells in EDLNs from MC903-923 

treated wildtype Balb/c mice are GL-7+ CD95+. 924 

 925 

FIG E2. Germinal center staining. Wildtype (WT) and Tslp-/- mice were treated with MC903 926 

(A) or subjected to OVA-sensitization (B) as shown in FIG 1A and 4D respectively. EDLN 927 

were collected and fixed overnight with 4% PFA at 4°C. After 2 times 30 minutes of wash in 928 

PBS at room temperature (RT), samples were included in 4% low melting point agarose in PBS. 929 

Vibratome sections of 100µm were blocked with 5% normal donkey serum (NDS), 0.1% Triton 930 

X-100 in PBS and then stained overnight at 4°C with anti CD4-AlexaFluor 647 (RM4-5, 931 

Biolegend, d=1/100; shown in blue), anti IgD-FITC (11-26c.2a, BD Biosciences, d=1/50; 932 

shown in green) and biotinylated PNA (Vectorlabs, d=1/250; shown in red) diluted in 5% NDS, 933 

0.1% Triton X-100 in PBS. Sections were subsequently incubated 1h at RT with Neutravidin-934 

Dylight550 (ref 84606, Thermofisher, d=1/200) diluted in PBS. After 2 washing of 30 minutes 935 

with PBS at RT, sections were kept at 4°C in PBS containing Hoechst 33342 (Sigma Aldrich) 936 

and images were acquired using Leica LSI confocal macroscope. Measurements were 937 

performed with ImageJ software. Data are means ± SEM; one-way ANOVA with Tukey’s 938 

multiple comparison post-hoc test. 939 

 940 
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FIG E3. Selective depletion of LCs leads to a diminished Tfh cell differentiation in MC903 941 

model. (A) Experimental protocol. LangDTR mice and wildtype littermate controls were 942 

intraperitoneally (i.p.) injected with diphtheria toxin (DT) at D-2 and D0. Mouse were then 943 

topically treated with MC903 or EtOH every other day from D13 to D19 and ear draining lymph 944 

nodes (EDLN) were analyzed at D20. (B) Frequency and number of CXCR5+ PD-1+ Tfh cells 945 

in LangDEP mice and CT at D20. (C) Experimental protocol. huLangDTR mice and wildtype 946 

littermate controls were intraperitoneally i.p. injected with DT at D-2 and D0. Mouse were then 947 

topically treated with MC903 or EtOH every other day from D0 to D10 and EDLN were 948 

analyzed at D11. (D) Frequency and number of CXCR5+ PD-1+ Tfh cells in huLangDEP mice 949 

and CT at D11. Values shown are means ± SEMs; one-way ANOVA with Tukey’s multiple 950 

comparison post-hoc test. Data are representative of 2 independent experiments with similar 951 

results.   952 

 953 

FIG E4. TSLP is crucially required for 30µm-LMP/OVA-induced skin Th2 inflammation. (A) 954 

Hematoxylin and eosin (HE) staining of mouse ears. (B) Immunohistochemistry staining of 955 

mouse ears with anti-MBP antibody (for eosinophils) or anti-MCPT8 antibody (for basophils). 956 

Arrow points to one of the positive cells. Scale bar, 100µm. (C-D) IL-4 (AmCyan) and IL-13 957 

(dsRed) expression in TCRβ+ dermal cells (C) or CXCR5- CD4+ (non-Tfh) cells (D). 958 

 959 

FIG E5. Depletion of Langerin+ cells slightly diminishes the MC903- induced Th2 cell 960 

response. Comparison of IL-4 and IL-13 expression among CXCR5-CD4+ (non-Tfh) cell in the 961 

EDLN (A), or among TCRβ+ cells in the dermis (B) of EtOH- or MC903-treated control (CT) 962 

or LangDEP mice, all in the background of 4C13RTg/0. 963 

 964 
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FIG E6. Depletion of Langerin+ cells increases the LMP/OVA-induced Th2 cell response in 965 

EDLNs. Comparison of IL-4 and IL-13 expression among CXCR5-CD4+ (non-Tfh) cell in 966 

EDLNs from LMP/OVA-treated control (CT) or LangDEP in the background of 4C13RTg/0 mice. 967 

 968 

FIG E7. 11µm-LMP/OVA-induced skin inflammation is enhanced in mice with the depletion 969 

of Langerin+ DCs or LCs.  Hematoxylin and eosin staining of ears from LangDEP (A, top) and 970 

huLangDEP (B, top) mice after 11µm-LMP/OVA sensitization. Immunohistochimstry for MBP 971 

(eosinophils) and MCPT8 (basophils) of ears from LangDEP (A, bottom) and huLangDEP (B, 972 

bottom) mice after 11µm-LMP/OVA treatment. Scale bar, 100µm. 973 

 974 

FIG E8. LCs counteract LMP/OVA sensitization-induced skin inflammation and the 975 

subsequent asthmatic response. (A) Experimental protocol for OVA epicutaneous sensitization 976 

and airway challenge. Mice were intraperitoneally injected with DT at D-2, D0. Mice were 977 

either treated with OVA on LMP ears at D0, D4, D7 and D11 or ears were non treated (NT). 978 

All mice were subjected to intranasal (i.n.) instillation with OVA from D9 to D12. Ears and 979 

lungs were analyzed at D13. (B) H&E staining of mouse ears. Scale bar, 100µm. (C) IHC 980 

staining of mouse 30µm-LMP/OVA ears with anti-MBP (for eosinophils) or anti-MCPT8 (for 981 

basophils). (D) Differential counting of eosinophils (Eos), neutrophils (Neutro), lymphocytes 982 

(Lympho) and macrophages (Macro) in BAL. (E) RNA levels of indicated genes in BAL cells 983 

by RT-qPCR. (F) Lung sections were stained with H&E for histological analyses or PAS for 984 

goblet cell hyperplasia analyses. B: bronchiole; V: blood vessel. Scale bar, 250µm. (G) 985 

Experimental protocol for OVA i.p. sensitization and airway challenge. Mice were i.p. injected 986 

with DT at D-2 and D0. Mice were i.p. sensitized with OVA/alum at D0 and D4, and subjected 987 

to i.n. instillation with OVA from D9 to D12. Lungs were analyzed at D13. (H) Differential 988 

cell counting in BAL. Data are means ± SEM; unpaired two-tailed t-test. 989 
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 990 

FIG E9. Transcriptomic analyses of migratory DCs in EDLNs of LangGFP mice upon MC903 991 

treatment or epicutaneous OVA sensitization. LangGFP mice were treated with MC903 at D0, 992 

D2 and D4 or 30µm-LMP/OVA on D0 and D3; EDLNs were collected at D5 for cell sorting 993 

and RNAseq analyses. (A) Gating strategy used to sort resident (res) and migratory (mig) 994 

GFPpos and GFPneg DCs. (B) Heatmap generated with the input of upregulated genes identified 995 

in Pos_MC compared with Pos_NT (FC > 1.5; p < 0.05; raw read > 200 in at least one sample 996 

of the Pos groups), to visually assess the results of clustering on the data to observe trends of 997 

expression for genes across all groups. Z score of the expression level is used to generate 998 

heatmap. Pos_NT, Pos_MC, Pos_OVA: GFPpos migDCs from non-treated, MC903-treated or 999 

LMP/OVA-treated LangGFP mice; Neg_NT, Neg_MC, Neg_OVA: GFPneg migDCs from non-1000 

treated, MC903-treated or LMP/OVA-treated LangGFP mice.  1001 

Two clusters C1 and C2 were revealed. The cluster C1 genes exhibited the expression trends: 1002 

1) in non-treated groups, they had a lower expression in GFPpos cells than in GFPneg cells 1003 

(Pos_NT < Neg_NT); 2) in MC903-treated groups, their expression in GFPpos cells increased, 1004 

reaching a similar or higher expression than non-treated GFPneg cells (Pos_MC = or > Neg_NT), 1005 

and their expression in GFPneg cells was also increased (Neg_MC > Neg_NT), with a higher 1006 

level than Pos_MC cells; 3) in OVA-treated groups, the expression of some genes was also 1007 

increased in GFPneg cells (Neg_OVA versus Neg_NT) (subcluters of C1: a, b and c) while 1008 

others remained not changed. Together, expression features of the cluster C1 suggest that in the 1009 

MC903-AD, Langerin+ migDCs acquire many gene expression of Langerin- migDCs, and share 1010 

the upregulation of these genes with Langerin- migDCs; and moreover, the upregulation of 1011 

some (although less) of these genes also occurs in Langerin- migDCs (but not Langerin+ 1012 

migDCs) in OVA-AD. 1013 
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Different from the cluster C1, the cluster C2 genes were highly upregulated in Pos_MC; some 1014 

of them were also upregulated in Neg_MC (but reaching a lower level) and very few of them 1015 

were upregulated in Neg_OVA, suggesting that this cluster represents the upregulated genes 1016 

rather specific for Langerin+ migDCs under MC903 treatment.   1017 

 1018 

FIG E10. (A) Heatmap generated with the input of downregulated genes identified in Pos_MC 1019 

compared with Pos_NT (FC > 1.5; p < 0.05; raw read > 200 in at least one sample of the Pos 1020 

groups), to visually assess the results of clustering on the data to observe trends of expression 1021 

for genes across all groups. Z score of the expression level was used to generate heatmap. (B) 1022 

Selected genes corresponding to gene ontology terms for Cytokine activity, Regulation of 1023 

transcription, Regulation of cell migration, or T cell costimulation. *, adjusted p<0.05; NS, non 1024 

significant. 1025 

 1026 

FIG E11. IL-6 neutralization does not significantly diminish Tfh cell differentiation and GC B 1027 

cell numbers. (A) experimental scheme. 4C13RTg/0 mice were i.p. injected with 200 mg anti-1028 

IL-6 neutralizing antibody (@IL-6; Clone MP5-20F3, BioXcell) every other day from D0 to 1029 

D10, and mouse ears were topically treated with MC903 or EtOH every other day from D0 to 1030 

D10. EDLNs were analyzed at D7 or D11. (B) Frequency and number of CXCR5+ PD-1+ Tfh 1031 

cells. (C) IL-4 (AmCyan) expression by Tfh cells. (D) Frequency and number of CD95+ GL-7+ 1032 

GC B cells at D11. Data are means ± SEM, one-way ANOVA with Tukey’s multiple 1033 

comparison post-hoc test. 1034 

 1035 

FIG E12. MC903 treatment leads to increased numbers of both langerin-GFPpos and langerin-1036 

GFPneg migratory DCs in EDLNs at D5.  LangGFP mice were treated with MC903 at D0, D2 and 1037 

D4, or 30µm-LMP/OVA at D0 and D3, or tape-stripping (TS)/OVA at D0 and D3, and EDLNs 1038 



 41 

were collected at D5 for flow cytometry analyses. Absolute numbers of GFP-positive (GFPpos) 1039 

and -negative (GFPneg) migratory DCs in EDLN, compared with non-treated (NT), are shown. 1040 

 1041 

FIG E13. Depletion of Langerin+ cells enhances the TS/OVA-induced Tfh/GC response and 1042 

the subsequent asthmatic phenotype. (A)  H&E staining of untreated or tape-stripped (TS) 1043 

Balb/c wildtype mice. Arrow points to the absence of stratum corneum in TS-ear. Scale bar, 1044 

100µm. (B) Dorsal side of ears of WT mice were tape-stripped 10 times and topical treated with 1045 

200µg of OVA in 10µl PBS. TSLP protein levels in ears were measured by ELISA at 48h after 1046 

treatment. (C) Experimental protocol. LangDTR mice and wildtype littermate controls (CT), in 1047 

the background of 4C13RTg/0, were i.p. injected with DT at D-2, D0 and then every 4 days. 1048 

OVA (200µg) were topically applied on TS-ears at D0, D4, D7 and D11. All mice were 1049 

subjected to intranasal (i.n.) instillation with 50µg of OVA from D9 to D12 and analyzed at 1050 

D13. (D-F) Frequency and number of Tfh cells (D), IL-4 (AmCyan) expression by Tfh cells 1051 

(E) and numbers of CD95+ GL-7+ GC B cells, IgG1+ and IgE+ B cells in EDLNs (F). (G) Serum 1052 

levels of OVA-IgG1 and OVA-IgE. (H) Differential cell counting for eosinophils (Eos), 1053 

neutrophils (Neutro), lymphocytes (Lympho) and macrophages (Macro) in BAL. (I) H&E 1054 

staining of lung sections. B: bronchiole; V: blood vessel. Scale bar, 250µm. Data are means ± 1055 

SEM; unpaired two-tailed t-test.    1056 

 1057 
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Abstract 70 

 71 

Background: Atopic dermatitis (AD) is one of the most common chronic inflammatory skin 72 

diseases, usually occurring early in life, and often preceding other atopic diseases like asthma. 73 

Th2 cell has been believed to play a crucial role in cellular and humoral response in AD, but 74 

accumulating evidences have shown that T follicular helper (Tfh) cell, a critical player in 75 

humoral immunity, is associated with disease severity and plays an important role in AD 76 

pathogenesis.  77 

Objectives: We aimed at investigating how Tfh cells are generated during the pathogenesis of 78 

AD, particularly what is the role of keratinocyte-derived cytokine TSLP and Langerhans cells 79 

(LCs). 80 

Methods: We employed two experimental AD mouse models, triggered by the overproduction 81 

of TSLP through topical application of MC903, or induced by epicutaneous allergen ovalbumin 82 

(OVA) sensitization.  83 

Results: We demonstrated that the development of Tfh cells and GC response were crucially 84 

dependent on TSLP in MC903 model and OVA sensitization model. Moreover, we found that 85 

LCs promoted Tfh cell differentiation and GC response in MC903 model, and the depletion of 86 

Langerin+ DCs or selective depletion of LCs diminished the Tfh/GC response. By contrast, in 87 

the model with OVA sensitization, LCs inhibited Tfh/GC response and suppressed Th2 skin 88 

inflammation and the subsequent asthma. Transcriptomic analysis of Langerin+ and Langerin- 89 

migratory DCs revealed that Langerin+ DCs became activated in MC903 model, whereas these 90 

cells remained inactivated in OVA sensitization model.  91 

Conclusion: Together, these studies revealed a dual functionality of LCs in TSLP-promoted 92 

Tfh and Th2 cell differentiation in AD pathogenesis. 93 

  94 
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Capsule Summary  95 

 96 

This study demonstrates that keratinocyte-derived cytokine TSLP plays a critical role in 97 

promoting not only Th2 but also Tfh/GC response in the pathogenesis of atopic dermatitis, 98 

which implicates a dual function of epidermal Langerhans cells. 99 

  100 
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 101 

Introduction 102 

 103 

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases which 104 

affects up to 20% of children and 3% of adults worldwide, with increasing prevalence in the 105 

industrialized countries during the last 30 years 1. AD is characterized by chronic cutaneous 106 

inflammation, T helper type 2 (Th2) response and hyper immunoglobulin IgE. Patients 107 

suffering from AD often present genetic risk factors in the form of mutations affecting the skin 108 

barrier structure or the immune system 2. Onset of AD usually occurs early in life and may lead 109 

to allergen sensitization, which can trigger the progression from AD to other atopic diseases 110 

such as asthma/allergic rhinitis, in a process called “atopic march” 3, 4.  111 

It has been recognized that Th2 cell response is critically implicated in the pathogenesis of 112 

AD. Previous studies from us and others using mouse models have established a central role of 113 

the cytokine thymic stromal lymphopoietin (TSLP) expressed by epidermal keratinocytes in 114 

promoting Th2 cell response and driving the pathogenesis of AD 5-8. In addition to Th2 cell 115 

response, humoral immune response is another key feature of AD, with increased serum IgE 116 

and IgG1 levels associated with AD, which contribute to AD pathology and the atopic march 9, 117 

10.  For a long time, Th2 cell has been believed to play a crucial role both in cellular response 118 

and humoral response, e.g. helping B cells to produce Igs. However, such knowledge has been 119 

challenged with the identification of T follicular helper (Tfh) cell, which emerges to be a critical 120 

player in humoral immunity and T cell memory 11.  121 

In lymphoid organs, Tfh cell differentiation process is believed to begin with an initial 122 

dendritic cell (DC) priming of naive CD4+ T cells, which undergo a cell-fate decision with the 123 

acquisition of master transcription factor Bcl6 expression and chemokine receptor CXCR5 124 

expressed on cell surface to become early Tfh cells, of which CXCR5 promotes their migration 125 
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from T cell zone to the B cell follicles 12, 13. The full differentiation and maintenance of Tfh 126 

cells implicate the Tfh cell-B cell interaction, leading to GC Tfh cells which are phenotypically 127 

defined by their high expression of CXCR5 and PD-1 14. It has been shown that Tfh cells 128 

coordinate generation of the GC, initiate help for antigen-specific B cells, and promote selection 129 

of high-affinity B cells and differentiation into either memory B cells or long-lived plasma cells 130 

15. Recent studies have identified Tfh cells as an important source of IL-4, a master regulator in 131 

type 2 immunity which was previously thought to be produced by Th2 cells, for providing 132 

critical B-cell help by its anti-apoptotic and IgE and IgG1 class switch effects 16. In addition, it 133 

was reported that Tfh cells produce IL-4 in a GATA3-independent manner 17, suggesting 134 

distinct mechanisms employed by Tfh and Th2 cells in the regulation of IL-4.  135 

Since their initial identification, the biological functions of Tfh cells and their mechanisms 136 

of action in the onset and development of diseases have been studied in autoimmuity, infectious 137 

diseases, immunodeficiencies and vaccination 18. Less is known on Tfh cells in the context of 138 

AD and other atopic diseases, but more and more evidences have suggested that Tfh cells are 139 

associated with disease severity and Tfh cells play an important role in the pathogenesis 19-21. 140 

In human, alteration of circulating Tfh cells is correlated with severity of the disease in children 141 

with AD 22, or with the comorbid association of allergic rhinitis with asthma 23, and allergen-142 

specific T follicular helper cell counts are correlated with specific IgE levels and efficacy of 143 

allergen immunotherapy 24. In mice, it has been reported that Tfh cells are important for house 144 

dust mite-induced asthma 25 or peanut allergy 26.  145 

Despite of these accumulating evidences showing the importance of Tfh cells in atopic 146 

diseases, how Tfh cells and humoral responses are generated and regulated in AD remained to 147 

be investigated. In this study, by employing two experimental AD mouse models, one triggered 148 

by the overexpression of TSLP in mouse skin through topical application of MC903 6, 7, 27, and 149 

the other one induced by epicutaneous allergen ovalbumin (OVA) sensitization, we 150 
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demonstrated that skin TSLP plays a crucial role in driving/promoting Tfh cell differentiation 151 

and GC response, in addition to its recognized role in promoting Th2 cell response. Moreover, 152 

we investigated the role of skin DCs in mediating the Tfh cell differentiation. We uncovered a 153 

dual functionality of epidermal langerhans cells (LCs) in TSLP-promoted Tfh/Th2 cell 154 

differentiation in AD pathogenesis, and further explored the molecular insights by 155 

transcriptomic analyses, thus shedding new light onto the long-standing controversy of LCs in 156 

skin immunity. 157 

  158 
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Methods 159 

Details on the methods used in this study are described in the Methods section in this article’s 160 

Online Repository, including Experimental mice; MC903 topical application; Epicutaneous 161 

OVA sensitization and airway challenge; Depletion of Langerin+ DCs or LCs in mice; Cell 162 

preparation for flow cytometry analyses; Surface staining for flow cytometry analyses; LN cell 163 

culture and antigen stimulation; RNA sequencing; BAL cell analyses; ELISA; Histopathology; 164 

IHC staining; RNA in situ hybridization and Statistics.  165 

 166 

Results 167 

 168 

Topical MC903 treatment induces TSLP-dependent Tfh cell differentiation and GC 169 

response 170 

We have previously reported that topical treatment with MC903, a low calcemic analog of 171 

vitamin D3, induces the overproduction of TSLP (TSLPover) and the pathogenesis of AD 6, 172 

7. To examine the Tfh cell differentiation and GC response in MC903-induced AD model, 173 

Balb/c wildtype (WT) mouse ears were topically treated every other day from day (D) 0 to 174 

D10 with MC903 and ear-draining lymph nodes (EDLN) were analyzed at D0, D7 and D11 175 

(Fig 1A). Results showed that the frequency and number of CXCR5+ PD-1+ Tfh cells were 176 

both increased in MC903-treated WT mice at D7 and further augmented at D11 (Fig 1B). 177 

We next examined the expression of IL-4, a key signal provided by Tfh cells to sustain B 178 

cell maturation, by taking use of Il4/Il13 dual reporter 4C13RTg/0 mice, in which AmCyan 179 

and dsRed are expressed under the control of IL-4 and IL-13 regulatory elements, 180 

respectively 28. In agreement with a previous report 29, CXCR5+ PD-1+ Tfh cells in EDLNs 181 

express IL-4 (AmCyan) but not IL-13 (dsRed) (Fig E1A), and the IL-4 expression by Tfh 182 

cells was augmented in MC903-treated 4C13RTg/0 mice at both D7 and D11 (Fig 1C). 183 
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Together, MC903 treatment induces not only Tfh cell differentiation but also the production 184 

of IL-4 by Tfh cells. 185 

To examine whether the induction of Tfh cells in MC903 model is triggered by TSLP, 186 

mice lacking TSLP (Tslp-/-) 6 were subjected to MC903 treatment. Results showed that these 187 

mice exhibited highly diminished Tfh cell frequency and number at D7 and D11, compared 188 

to WT mice (Fig 1B). By breeding Tslp-/- with 4C13RTg/0 to generate Tslp-/-/4C13RTg/0 mice, 189 

we showed that MC903-induced IL-4 expression in Tfh cells was abrogated in the absence 190 

of TSLP (Fig 1C). In agreement with the recognized role of TSLP in Th2 cell differentiation, 191 

we showed that the MC903-induced IL-4- or IL-13-expressing CXCR5- CD4+ non-Tfh cells 192 

(representing Th2 cells) were also abrogated in Tslp-/- mice (Fig E1B). These results indicate 193 

that the overproduction of TSLP triggers not only Th2 cell differentiation, but also Tfh cell 194 

differentiation and IL-4 expression by these cells.  195 

Next, we examined the GC response in MC903-treated Balb/c WT mice. The number 196 

of GC B cells, identified as GL-7+ CD95+ B cells, exhibited an increase in MC903-treated 197 

WT mice at D11, but not at D7 (Fig 1D). Such increase was abrogated in MC903-treated 198 

Tslp-/- mice (Fig 1D). This was confirmed by immunofluorescence (IF) staining for GCs (Fig 199 

E2A). In addition, both IgG1+ and IgE+ B cells exhibited an increase in their numbers in 200 

MC903-treated WT mice at D11, which was also abrogated in MC903-treated Tslp-/- mice 201 

(Fig 1E). Of note, we observed that most of the IgG1+ B cells were GL-7+ CD95+ (Fig E1C), 202 

suggesting that these cells harbor a GC phenotype; however, this was not the case for IgE+ 203 

B cells (Fig E1C). 204 

Taken together, these data indicate that the overproduction of TSLP triggers Tfh cell 205 

differentiation and GC response.  206 

 207 
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Depletion of Langerin+ DCs or LCs diminishes the TSLPover-triggered Tfh/GC 208 

response 209 

LCs reside in the epidermis as a dense network of immune system sentinels, in close 210 

proximity to keratinocytes. We then asked whether LCs mediate the TSLPover-triggered 211 

Tfh/GC response. To this aim, we first employed Langerin-DTR knock-in mice (LangDTR) 212 

in which Langerin+ cells, including LCs and Langerin+ dermal DCs, express the human 213 

diphtheria toxin receptor (DTR) and can thus be depleted upon injection of diphtheria toxin 214 

(DT) 30. LangDTR mice and their wildtype control littermates were intraperitoneally (i.p.) 215 

injected with DT at D-2, D0 and every 4 days to maintain the depletion of Langerin+ cells 216 

(named LangDEP and CT respectively), and were subjected to topical MC903 treatment (Fig 217 

2A). Results showed that the TSLPover-triggered Tfh cell differentiation was largely 218 

diminished in LangDEP mice (Fig 2B). The expression of IL-4 (AmCyan) by Tfh cells was 219 

also reduced in LangDEP/4C13RTg/0 mice (Fig 2C). Accordingly, GC B cell number was 220 

lower and IgG1+ (however not in IgE+) B cell number was significantly decreased (Fig 2D). 221 

Therefore, these results indicate that Langerin+ DCs play an important role in mediating the 222 

TSLPover-induced Tfh/GC response. 223 

As LCs and Langerin+ cDC1s were both depleted in LangDEP mice, we next examined 224 

whether LCs mediate Tfh cell differentiation by depleting selectively LCs using two 225 

strategies: one took use of the differential recovery time between LCs and Langerin+ cDC1s 226 

after DT-induced depletion as previously reported 31 (Fig E3A-B), and the other one 227 

employed human Langerin-DTR (huLangDTR) mice in which DT injection efficiently 228 

depletes LCs but not Langerin+ cDC1s 32 (Fig E3C-D). In both cases,  we showed that the 229 

selective depletion of LCs led to a decrease in frequency and number of Tfh cells, suggesting 230 

an important role for LCs in TSLPover-triggered Tfh cell differentiation.  231 

 232 
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Epicutaneous OVA sensitization induces a TSLP-dependent Tfh cell differentiation 233 

and GC response 234 

We have previously reported that TSLP plays a crucial role for promoting skin sensitization 235 

to allergens, using an experimental mouse protocol in which OVA sensitization through 236 

tape-stripped (TS) skin leads to an allergic AD inflammation, accompanied by Th2 cell 237 

response, and an increased production of OVA-specific IgG1 and IgE in sera 33. Here, we 238 

developed a novel experimental protocol, in which Precise Laser Epidermal System 239 

(P.L.E.A.S.E.®) 34 was used to disrupt skin barrier and to generate patterned micropores in 240 

mouse skin. This protocol allowed us to deliver allergens to micropores at precise depths of 241 

the epidermis, thereby achieving a higher efficiency and reproducibility of allergen 242 

sensitization through the skin compared with experiments based on TS. We showed that 243 

micropores at a depth of 30µm (30µm-LMP) on Balb/c WT mouse ears reached basal layer 244 

of ear epidermis (Fig 3A). ELISA analyses indicated that the protein level of TSLP increased 245 

at 48 hours after treatment (Fig 3B), in agreement with the previous studies showing that 246 

barrier disruption induces TSLP production in mouse 33 and human skin 35. Notably, such 247 

level of TSLP was comparable to our previously reported TSLP level in TS skin 33, although 248 

it was much lower compared to that of MC903-treated skin (Fig 3B; see also Fig E13B). 249 

The administration of OVA did not further induce the TSLP level (Fig 3B). In situ 250 

hybridization showed that TSLP RNA expression was restricted to epidermal keratinocytes 251 

in LMP skin (Fig 3C). 252 

As expected, OVA treatment on LMP ears (named “LMP/OVA”; Fig 3D) induced a 253 

Th2-type skin inflammation in TSLP-dependent manner, showing that OVA sensitization-254 

induced infiltration of eosinophils and basophils (Fig E4A-B), Th2 cytokines (IL-4 and IL-255 

13) expression by T cells in the skin (Fig E4C) and by CXCR5-CD4+ cells in EDLNs (Fig 256 

E4D), were all abolished in mice lacking TSLP. Examination of EDLNs revealed that both 257 
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frequency and number of Tfh cells were increased in LMP/OVA- compared to LMP/PBS-258 

treated WT mice, and such increase was largely diminished in Tslp-/- mice (Fig 3E). Note 259 

that LMP/PBS was not sufficient to induce Tfh cell differentiation (despite of the induction 260 

of TSLP), but LMP plus OVA together promoted Tfh/GC response which was TSLP-261 

dependent (Fig 3E). Moreover, IL-4 production by Tfh cells was augmented in LMP/OVA-262 

treated Tslp+/+/4C13RTg/0 mice but not Tslp-/-/4C13RTg/0 mice (Fig 3F). GC B cell number 263 

analyzed by flow cytometry (Fig 3G) and GC size analyzed by immunofluorescence (Fig 264 

E2B) both showed an increase in LMP/OVA-treated WT mice, and this increase was 265 

abrogated in the absence of TSLP. IgG1+ and IgE+ B cell numbers were also increased in 266 

LMP/OVA-treated WT mice, and they were much lower in LMP/OVA-treated Tslp-/- mice 267 

(Fig 3G). Accordingly, serum levels of OVA-IgG1 and OVA-IgE were decreased in Tslp-/- 268 

mice compared to WT mice upon LMP/OVA treatment (Fig 3H). Together, these results 269 

demonstrate that TSLP is crucially required for epicutaneous OVA sensitization-induced 270 

Th2 and Tfh/GC responses. 271 

 272 

Depletion of Langerin+ DCs or LCs augments the Tfh/GC response induced by 273 

epicutaneous OVA sensitization 274 

Based on the above data from MC903-induced AD, we had expected that Langerin+ DCs 275 

would be crucially required for epicutaneous OVA-induced Tfh/GC response. To our 276 

surprise, when subjected to 30µm-LMP/OVA sensitization (Fig 4A), LangDEP mice did not 277 

exhibit a reduction in frequency and number of CXCR5+ PD-1+ Tfh cells, instead they tended 278 

to be higher compared to CT mice (Fig 4B). More strikingly, IL-4 expression by Tfh cells 279 

was higher in EDLN from LMP/OVA-treated LangDEP/4C13RTg/0 mice (Fig 4C). 280 

Accordingly, the GC B cell, IgG1+ and IgE+ B cell number were not reduced in LMP/OVA-281 

treated LangDEP mice (Fig 4D), and serum OVA-specific IgE and OVA-specific IgG1 were 282 
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higher or tended to be higher (Fig 4E). Thus, in contrast to our expectation, Langerin+ DCs 283 

are not required for the Tfh/GC response in LMP/OVA-induced AD model; instead, they 284 

appear to play a counteracting role. 285 

Because LCs are located on the suprabasal layer of the epidermis, we suspected that 286 

Langerin+ cells would be only required in Tfh cell differentiation when allergens are 287 

encountered superficially on the skin. To test this possibility, LMP was performed at the 288 

depth of 11 m, which disrupted only the cornified layer of the epidermis (Fig 5A). We 289 

observed that the 11µm-LMP induced also the production of TSLP, even though its level 290 

was lower compared to 30µm-LMP (Fig 5B). Treatment of wildtype control (CT) ears with 291 

11µm-LMP/OVA induced significant increases (although milder than 30µm-LMP/OVA) in 292 

Tfh cell frequency as well as GC B cell number, which were all abolished in Tslp-/- mice 293 

(Fig 5C), indicating that, despite of a low induction of TSLP, the Tfh/GC response promoted 294 

by 11µm-LMP/OVA is still crucially dependent on TSLP. However, when LangDEP mice 295 

were subjected to 11µm-LMP/OVA treatment, they exhibited a significant increase in the 296 

frequency of Tfh cells, in IL-4 expression by Tfh cells, as well as in GC B cell, IgG1+ and 297 

IgE+ B cell numbers in EDLNs (Fig 5D-F), accompanied by augmented serum levels of 298 

OVA-IgG1 and OVA-IgE (Fig 5G). Similar results were also obtained with huLangDEP mice 299 

(Fig 5H-I), indicating that LCs significantly counteract the Tfh/GC response induced upon 300 

the 11µm-LMP/OVA sensitization. 301 

Furthermore, we sought to compare antigen-specific Tfh cells between CT and 302 

huLangDEP mice using an activation-induced marker assay 36. In this assay, the stimulation 303 

of LN suspensions with specific antigen drives upregulation of CD154 (CD40L), CD25 and 304 

OX40 on Tfh cells, providing a sensitive method for quantifying antigen-specific Tfh cells 305 

in mice 36. We showed that in vitro stimulation with OVA drove the upregulation of CD154, 306 

OX40 and CD25 in EDLN-derived Tfh cells from LMP/OVA-sensitized CT mice; and such 307 
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upregulation was significantly higher in Tfh cells from LMP/OVA-sensitized huLangDEP 308 

mice (Fig 5J), thus indicating a stronger OVA-specific Tfh cell differentiation in huLangDEP 309 

mice upon OVA sensitization. 310 

Together, these data indicate that LCs suppress the TSLP-dependent Tfh/GC response 311 

in epicutaneous OVA sensitization model. 312 

 313 

Langerin+ DCs or LCs limit epicutaneous OVA-induced Th2 skin inflammation and 314 

the subsequent asthma 315 

Having observed the opposite role of Langerin+ DCs or LCs in Tfh/GC response in the two 316 

mouse AD models, we further explored their involvement in the induction of Th2 cell 317 

response. Upon MC903 treatment, LangDEP/4C13RTg/0 mice exhibited a slight decrease in 318 

IL-4 and a tendency of decrease in IL-13 production by CXCR5-CD4+ cells in EDLN (Fig 319 

E5A), or by TCRβ+ cells in dermis (Fig E5B), which suggests a role, even though minor, 320 

for Langerin+ DCs in the development of Th2 cell response. In contrast, upon 30µm-321 

LMP/OVA treatment, LangDEP/4C13RTg/0 mice exhibited a higher Th2 cell response in both 322 

skin (Fig 6A) and EDLN (Fig E6). This was in accordance with the observation that 323 

LMP/OVA-sensitized LangDEP mice exhibited a stronger skin inflammation (Fig 6B), 324 

accompanied with an increase in eosinophils and basophils (Fig 6C). Moreover, when 325 

subjected to 11µm-LMP/OVA sensitization, both LangDEP and huLangDEP mice exhibited an 326 

enhanced AD-like skin inflammation compared to CT mice (Fig E7). Therefore, contrary to 327 

their minor role in promoting Th2 cell response in MC903-AD, LCs suppress the Th2 cell 328 

response in OVA-AD.   329 

We further examined whether Langerin+ DCs limit the atopic march. Upon intranasal 330 

(i.n.) OVA challenge following epicutaneous allergen sensitization (Fig 6D), the LangDEP 331 

mice developed a much stronger asthmatic inflammation compared with CT mice, exhibiting 332 
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an increase in the number of eosinophils in bronchoalveolar lavage fluid (BAL) (Fig 6E), 333 

and in RNA expression of Th2 cytokines IL-4, IL-5 and IL-13, as well as chemokine receptor 334 

CCR3 (eosinophils) and MCPT8 (basophils) by BAL cells (Fig 6F). In addition, H&E 335 

staining of lung sections of OVA-treated LangDEP mice revealed an increased peribronchial 336 

and perivascular infiltration, and PAS staining showed an enhanced goblet cells hyperplasia 337 

(Fig 6G). Similar results were obtained with huLangDEP mice (Fig E8 A-F), indicating that 338 

LCs counteract the asthma development following epicutaneous allergen sensitization. To 339 

exclude the possibility that the enhanced asthmatic inflammation is due to any depletion of 340 

lung DCs during the intranasal challenge, we subjected huLangDEP mice to i.p. sensitization 341 

with OVA/alum and i.n. OVA challenge, and observed that these mice developed similar 342 

asthmatic inflammation as wildtype control mice (Fig E8 G-H). This suggests that the 343 

limitation of asthma inflammation by LCs is indeed due to their role in suppressing the 344 

epicutaneous allergen sensitization. 345 

Taken together, these studies reveal opposite roles of LCs in two AD models: in MC903-346 

AD, LCs play an important role in priming Tfh/GC response; they participate but to a lesser 347 

extend in promoting Th2 responses. In OVA-AD, LCs are neither required for Tfh/GC nor 348 

Th2 responses, instead, they suppress OVA-induced Tfh/GC and Th2 responses as well as 349 

the “atopic march”.  350 

 351 

Langerin+ migratory DCs from MC903-AD but not from OVA-AD mice present 352 

profound transcriptomic changes 353 

We next conducted transcriptomic studies to explore molecular insights underlying the 354 

opposite roles of Langerin+ DCs in Tfh and Th2 cell differentiation in MC903-AD and OVA-355 

AD, by taking use of LangGFP mouse line in which GFP reports the expression of Langerin 356 

30. LangGFP mice were treated with MC903 (at D0, D2 and D4) or LMP/OVA (at D0 and 357 
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D3), and at D5, Langerin+ (GFPpos) and Langerin- (GFPneg) migratory DCs (migDCs) were 358 

sorted from EDLNs of non-treated (NT), MC903- or LMP/OVA-treated mice, and 359 

proceeded to mRNA sequencing (Fig E9A). The time point at D5 was selected to compare 360 

gene expression patterns of migDCs at the initiation stage of Tfh and Th2 cell differentiation. 361 

Principle component analysis (PCA) for the RNAseq data revealed that the Pos_MC 362 

(GFPpos migDCs from MC903-treated LangGFP mice) was clearly separated from the Pos_NT 363 

(GFPpos migDCs from non-treated LangGFP mice); however, the Pos_OVA (GFPpos migDCs 364 

from LMP/OVA-treated LangGFP mice) was inseparable from the Pos_NT (Fig 7A). 365 

Correspondingly, analyses of differentially expressed genes (DEGs) in Pos_MC vs Pos_NT 366 

identified 756 upregulated and 559 downregulated genes (with a fold change >1.5 and 367 

adjusted p<0.05; Fig 7B); in a sharp contrast, the comparison of Pos_OVA vs Pos_NT 368 

revealed only 39 upregulated and 9 downregulated genes (Fig 7B). Therefore, in MC903-369 

AD, Langerin+ migDCs undergo profound transcriptomic changes, but in OVA-AD, they 370 

present almost no, or very little, transcriptomic changes.  371 

As to Langerin- migDCs, PCA showed that Neg_MC (GFPneg migDCs from MC903-372 

treated LangGFP mice), Neg_OVA (GFPneg migDCs from LMP/OVA-treated LangGFP mice) 373 

and Neg_NT (GFPneg migDCs from non-treated LangGFP mice) were all clustered away from 374 

each other (Fig 7A). Analyses of DEGs identified 710 upregulated and 698 downregulated 375 

genes for Neg_MC vs Neg_NT; and 431 upregulated and 427 downregulated genes for 376 

Neg_OVA vs Neg_NT (Fig 7B), suggesting that Langerin- migDCs present major 377 

transcriptomic changes in both MC903-AD and OVA-AD, with considerable numbers of 378 

overlapped DEGs (249 upregulated and 215 downregulated). 379 

 380 

Gene ontology analyses of DEGs in Langerin+ migDCs from MC903-treated mice 381 
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Next, using the upregulated or downregulated DEGs identified in Pos_MC (vs Pos_NT) as 382 

input, we performed cluster analyses of all the groups and generated heat map to visualize 383 

trends of expression for genes across the different groups. Results are presented in Fig E9B 384 

and Fig E10A. Further, we performed gene ontology (GO) analyses of the upregulated genes 385 

in Pos_MC (Fig 7C), and examined whether these genes were also significantly upregulated 386 

in Neg_MC (vs Neg_NT), and Neg_OVA (vs Neg_NT). We paid particular attention to the 387 

upregulated genes shared in all the three groups (Pos_MC, Neg_MC and Neg_OVA), 388 

standing here for “commonly upregulated” genes (highlighted in red in Fig 7C), as they 389 

could be implicated in TSLP-promoted Tfh and/or Th2, a common feature shared by 390 

MC903-AD and OVA-AD. Among them, we found genes related to: 1) “regulation of cell 391 

migration”, many of which were reported to facilitate DC migration (Mmp14 37; Stat5 38; 392 

Nrp2 39; Sema7a 40); 2) “T cell costimulation”: Cd80 and Cd86 41, IL2ra 42, Pdcd1lg2 (PD-393 

L2)43, Cd274 (PD-L1), Gpr183 (EBI2)44, 45; 3) “cytokine signal”: Il2ra, Tnfrsf11b and Ccl22;  394 

and 4) “transcription factors” such as Ikzf4, Irf4, Stat4 and Stat5a. 395 

We examined TSLP signaling pathway among the upregulated genes in Pos_MC. Using 396 

the reported TSLP-regulated gene set 46, we identified Cd84, Cd82, Ccl17, Ccl22 and Tnfrsf11b 397 

(in the cluster with higher expression in Pos_MC than Neg_MC), as well as Cish, Cd86, Cd80, 398 

Cd274, Il2ra, Il6, ccr2, Tgfb1 (in the cluster with higher expression in Neg_MC than Pos_MC) 399 

(Fig 7D). In addition, we identified Irf4, which has been recently shown to be downstream of 400 

TSLP signaling in human migratory LCs 47. The upregulation of these TSLP-targeting genes 401 

by Langerin+ migDCs suggests that these cells could be a direct responder to TSLP signaling, 402 

although it remains to be demonstrated that TSLP signals through its receptor on LCs drive 403 

their migration/activation. Besides these known TSLP downstream genes, more TSLP pathway 404 

genes identified from those “commonly upregulated” genes can be envisaged. 405 
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Interestingly, we did not find Tnfsf4 (encoding OX40L) among the DEGs in Pos_MC,  406 

despite that OX40L was reported to be TSLP-responsive gene and mediate TSLP-promoted 407 

Th2 48 and Tfh 49 cell differentiation. Actually, OX40L expression by GFPpos cells was barely 408 

detected in Pos_NT, Pos_MC or Pos_OVA (Fig 7E). On the other hand, OX40L was expressed 409 

in Neg_NT, and its expression was further upregulated in Neg_MC and Neg_OVA. Therefore, 410 

it is unlikely that OX40L would be responsible for the Tfh-promoting function of Langerin+ 411 

DCs, while its precise function as a potential TSLP downstream factor in Langerin- DCs 412 

remains to be defined (Fig 7E).  413 

Among the above-mentioned TSLP-regulated gene, IL-6 has been shown to be a critical 414 

cytokine for Tfh cell differentiation 50, 51. We thus tested whether IL-6 neutralization decreases 415 

Tfh / GC response in MC903-AD. Results showed that IL-6 was not required for the initiation 416 

of Tfh cell differentiation and the overall GC reaction (Fig E11), although it is possible that its 417 

function in Tfh response is redundant with other signals as suggested by Eto et al 52. Besides 418 

IL-6, several other Tfh-promoting factors derived from DCs have been recently reported, 419 

including IRF-453, IL-2Ra42, 54 and EBI2 (Gpr183) 44, 45, whose expression was all “commonly 420 

upregulated” in Pos_MC, Neg_MC and Neg_OVA (Fig 7D). The role of these potential 421 

candidates in TSLP-promoting Tfh cell differentiation remains to be examined. 422 

Finally, among the downregulated genes (Fig E10B), less knowledge was available, but 423 

we could see Il12b (IL-23/IL-12p40), whose expression in DCs was previously reported to be 424 

suppressed by TSLP 55. Other commonly downregulated ones included genes related “T cell 425 

costimulation” Havcr2 (TIM3), Lgals8 (Galectin 8); “Regulation of cell migration” Adam15 426 

and Ptk2 (negative regulators for cell migration) and “regulation of transcription” Foxc2, Thrb, 427 

Tcf7l2, Ehf and Lmo2. 428 

  429 
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Discussion 430 

 431 

In this study, we analyzed how Tfh cells were generated in two experimental AD mouse models, 432 

triggered by the overproduction of TSLP by topical application of MC903, or induced by 433 

epicutaneous OVA sensitization. We demonstrated a crucial role for TSLP in promoting Tfh 434 

cells and GC response in MC903-AD as well as OVA-AD. Intriguingly, we revealed a dual 435 

function of LCs in TSLP-promoted Tfh/Th2 cell differentiation: while they promoted Tfh cell 436 

differentiation in MC903-AD, they inhibited Tfh/GC response and suppressed Th2 skin 437 

inflammation and the atopic march in OVA-AD. This is schematically illustrated in Fig 8, and 438 

is discussed below. 439 

 440 

1) TSLP: critical player for Th2 and Tfh cell response in AD  441 

It has been recognized that TSLP is overproduced in AD lesional skin 56, however, its 442 

expression varies from high to low, which could be related with the cause (e.g. genetic mutation 443 

of Spink5 which induces a high level of TSLP 57 vs skin barrier impairment which induces a 444 

low level of TSLP 35), age (e.g. TSLP serum level in AD children is high at early stage and 445 

decreases with age 58), or the nature of disease (e.g. intrinsic or extrinsic AD). Our study 446 

demonstrates that no matter in AD models associated with either high or low TSLP expression, 447 

TSLP is crucial for promoting Tfh/GC response in AD. Recently, the link between TSLP and 448 

Tfh cell differentiation was suggested by the study with human blood DC-T cell coculture 449 

system 49. Thus, the Tfh-promoting function of TSLP appears to be conserved between mouse 450 

and human, which suggests that it is relevant and valuable to employ AD mouse models to 451 

elucidate mechanisms underlying the TSLP (skin)-Tfh (draining LN) axis, particularly the 452 

access of tissue and lymphoid organs is rather limited in human study. 453 
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Our data add new evidence that neutralization of TSLP or blocking TSLP downstream 454 

pathway will be helpful for reducing Th2 and Tfh cell responses in AD.  Notably, TSLP is 455 

crucial for driving the downstream IL-4/IL-13 expression by Th2 cells, as well as IL-4 456 

expression by Tfh cells. Indeed, blocking antibody against IL-4/-13R (Dupilumab), which may 457 

actually target both Th2 and Tfh cell responses, has been shown to achieve significant 458 

therapeutic effect on AD 59. Intriguingly, neutralization TSLP antibody Tezepelumab has been 459 

demonstrated to significantly reduce annual asthma exacerbation rate in patients with 460 

uncontrolled asthma 60. A recent study with Tezepelumab showed numeric improvements in 461 

patients with moderate to severe AD, despite that there were certain limitations in that study 462 

including patient selection, use of topical corticosteroids, duration of treatment and uncertain 463 

inhibition of TSLP with the dose used 61. Given the preclinical evidence for the role of TSLP 464 

in AD, more clinical studies are required to evaluate TSLP as therapeutic target in AD. 465 

It should be also noted that recent studies have recognized the importance of Tfh cells in 466 

AD 19-21, but the in vivo function of Tfh remains to be further delineated using AD mouse 467 

models. This is challenged by the lack of appropriate tools to deplete Tfh cells. We are under 468 

the way to generate mouse line in which DTR can be selectively expressed in Tfh cells, thus 469 

allowing the DT-induced depletion of Tfh cells.  470 

 471 

2) LCs: function as migratory DCs to promote Tfh cell differentiation 472 

LCs represent one of the most studied but controversial DC subtypes. Our study shows that LCs 473 

are importantly engaged in the initiation Tfh cell differentiation and GC response triggered by 474 

TSLPover in MC903-AD. This provides new evidence on the Tfh-promoting function of LCs in 475 

AD, in addition to several studies reporting the requirement of LCs for humoral responses in 476 

other contexts 62,63,64. In MC903-AD, we observed that LCs play a dominant role in Tfh cell 477 

differentiation, although dermal langerin- DCs may also contribute. On the other hand, langerin- 478 
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DCs (cDC2) appear to be the major player for the TSLPover-induced Th2, while LCs have 479 

somewhat but minor contribution. Nevertheless, to provide direct evidence for the contribution 480 

of cDC2 in TSLP-driven Tfh and Th2 responses in AD, further studies could be performed 481 

using DC-specific KO of IRF4 or Dock8 mice, which have impaired development and 482 

migration of CD11b+ cDC2 65, or CD301b-DTR mice in which CD301b+ cDC2 can be 483 

transiently depleted 66.  484 

There have been long debates on the migration, antigen uptake, and T cell differentiation 485 

of LCs in different contexts; but transcriptomic study on migratory LCs in skin-draining LNs 486 

under inflammatory pathological contexts was lacking. Our transcriptomic data are therefore of 487 

value; however, one drawback is that migratory LCs and cDC1 were not separated in Langerin+ 488 

(GFPpos) migDCs, thus the gene expression data still need to be cautiously interpreted 489 

concerning LCs. Nevertheless, we have shown that Langerin+ migDCs in EDLN of MC903-490 

induced TSLPover mice presented substantial transcriptional changes, suggesting that the 491 

activation and migration of Langerin+ DC to the draining LNs underlie its function to prime 492 

Tfh cell differentiation in MC903-AD. Indeed, when comparing numbers of GFPpos and GFPneg 493 

migratory DCs in EDLN of MC903-treated LangGFP mice at D5, we observed that both were 494 

increased (Fig E12), supporting that both Langerin+ DCs and Langerin- DCs migrate to draining 495 

LNs in MC903-AD.  496 

 497 

3) LCs: function as non-migratory cells in the skin to suppress Tfh/Th2 response? 498 

Our study revealed a suppressive role of LCs for epicutaneous OVA-induced Tfh and Th2 cell 499 

differentiation. This is in contrast with two previous studies which reported a role of LCs in 500 

provoking AD inflammation by using a tape stripping (TS) OVA sensitization model 67, 68. To 501 

examine whether the discrepancy is due to the different effects of LMP compared to TS, we 502 

performed TS/OVA sensitization on mouse ears. Results showed that, similar to LMP/OVA, 503 
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TS/OVA-sensitized LangDEP mouse EDLNs exhibited increased frequency and number of  Tfh 504 

cells, increased IL-4 expression by Tfh cells, higher numbers of GC B cells, IgG1+ and IgE+ B 505 

cells, with elevated OVA-IgG1 and OVA-IgE in sera (Fig E13 A-G). Moreover, when i.n. 506 

challenged with OVA, LangDEP mice developed a stronger asthmatic inflammation (Fig E13 507 

H-I). Therefore, the discrepancy with the previous reports 67, 68 is not explained by the 508 

difference of LMP vs TS technique in epicutaneous OVA sensitization; rather, it could be due 509 

to other factors remained yet to be determined, such as the allergen application method: topical 510 

OVA vs long exposure (2-day) of OVA placed on patch-test tape; the difference of mouse 511 

background: Balb/c vs C57Bl/6; or the site of allergen application: ear vs back.  512 

Why are LCs not implicated in the promotion of Tfh/Th2 cell differentiation in EDLN in 513 

this context? Transcriptomic analyses showed that in sharp contrast to MC903-AD, Langerin+ 514 

migDCs in OVA-AD presented almost the same transcriptomic program as in untreated mice, 515 

suggesting an absence of migration/activation of these cells. Indeed, Langerin+ migDC numbers 516 

in EDLNs from LMP/OVA-treated or TS/OVA-treated mice at D5 were nearly unchanged, 517 

whereas Langerin- migDC number was increased (Fig E12). This is in agreement with previous 518 

studies showing that when skin was treated with fluorescence-conjugated OVA 66, HDM 69, or 519 

Dextran 70, antigen uptake and transport to draining LNs were mainly exerted by Langerin- DCs. 520 

Of note, it was recently shown that LCs can transfer antigen to cDC2 in the context of Langerin 521 

mAb-mediated targeting 71. It will be interesting to see whether this occurs in AD models, and 522 

whether efficiency of LC antigen transfer could be altered in the two models, as another possible 523 

explication of different implication of LCs in Tfh cell differentiation. 524 

Then how do LCs exert their anti-Tfh/Th2 role in OVA-AD? A recent study showed that 525 

LCs played an immunosuppressive role when OVA was applied on the intact skin, in 526 

accompany with the induction of IL-10 in LCs in skin-draining LNs 72. However, this does not 527 

seem to be our case, because Langerin+ migDCs in EDLN did not exhibit any transcriptional 528 
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change of Treg-inducing signals including IL-10 and TGFβ, or RALDH2. More likely, the anti-529 

Tfh/Th2 effect of LCs is related to their immune suppression function in situ in the skin, in 530 

keeping with LC ontogeny not only as DCs but also as non-migratory macrophages 73, 74. It 531 

should be further studied how LCs exert such functionality, for example, by limiting the 532 

antigen-uptake by cDC2 in the skin, or by promoting local Tregs in OVA-sensitized skin 75 76. 533 

Transcriptomic analysis of LCs isolated from the OVA-treated skin site may provide further 534 

molecular insights. 535 

 536 

4) What signals switch the function of LCs? 537 

One intriguing question is what microenvironment cues and molecular signals switch the 538 

function of LC between anti-Tfh/Th2 to pro-Tfh/Th2 in AD contexts. Notably, MC903-AD and 539 

OVA-AD exhibit similar AD phenotype which is TSLP-dependent, but the quantity of TSLP 540 

and the nature of antigen are different in these two models. In MC903-AD, MC903 induced a 541 

high production of TSLP 7 (Fig 8) which was sufficient to induce Tfh and Th2 cell 542 

differentiation. As there was no administration of experimental allergen, the nature of antigen 543 

implicated in T cell differentiation in MC903 model may involve endogenous antigens or 544 

microbiota co-existing in the skin. On the other hand, in OVA-AD, the disruption of skin barrier 545 

with LMP induced TSLP expression however to a much lower extent (Fig 8). It is possible that 546 

LCs sense the quantity of TSLP. Indeed, as a danger signal, TSLP may convert the function of 547 

LCs when its level is above certain threshold. In vitro studies have shown that TSLP triggers 548 

DC migration 77, or promotes the survival, maturation and migration of human LCs, and 549 

allogenic naïve CD4+ T cells cocultured with TSLP-conditioned LCs produced cytokines IL-4 550 

and IL-13 78, but quantitative study on TSLP signaling has never been performed. It will be 551 

interesting to explore whether and how quantitative TSLP signaling determines the role of LCs, 552 

by conducting in vivo or ex vivo dose-dependent experiments. In addition, the nature and 553 
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quantity of antigens can be also involved in the functional switch of LCs. To unravel such 554 

complexity, the emerging mathematic modeling 79, 80 may eventually help to integrate multiple 555 

parameters for a better understanding of functional switch of LCs.  556 

It will be interesting to further explore in AD patients whether and how TSLP levels are 557 

correlated with the states and function of LCs. A better understanding of what molecular switch 558 

determines the function of LCs either as "pro-Tfh/Th2" or as "anti-Tfh/Th2", and of how LCs 559 

exert such functions, will allow us to shape LCs to act in suppressing the skin inflammation, 560 

limiting the allergen sensitization through AD skin, thus preventing the progression from AD 561 

to asthma. On the other hand, the potential of LCs to induce Tfh cell differentiation and GC 562 

response and the subsequent induction of antigen-specific antibodies has been of interest for 563 

transcutaneous vaccination 63, 81. Therefore, the knowledge we obtain from this study should be 564 

also insightful for LC-based skin vaccination, including the use of TSLP at an appropriate level 565 

as an effective adjuvant for promoting Tfh cell differentiation and humoral response.  566 

  567 
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Figure Legends 820 

 821 

FIG 1. Overproduction of TSLP in the skin triggers Tfh differentiation and GC reponse in 822 

MC903-induced AD mice. A, Experimental protocol. Mouse ears were topically treated with 823 

MC903 or ethanol (EtOH; as vehicle control) every other day from day (D) 0 to D10 and 824 

EDLNs were analyzed at D0, D7 and 11. B, Frequency and number of CXCR5+ PD-1+ Tfh cells 825 

in EDLN from MC903-treated Balb/c wildtype (WT) and Tslp-/- mice. C, Frequency of IL-4 826 

(AmCyan) + in Tfh cells and cell number of IL-4+ Tfh cells in EDLNs. D-E, Number of CD95+ 827 

GL-7+ GC B cells, IgG1+ B cells and IgE+ B cells in EDLNs. Values shown are means ± SEMs. 828 

B-D, one-way ANOVA with Tukey’s multiple comparison post-hoc test; E, unpaired t-test with 829 

Welch’s correction. Data are representative of 3 independent experiments with similar results.   830 

 831 

FIG 2. Depletion of Langerin+ cells diminishes the MC903-induced Tfh/GC response. A, 832 

Experimental protocol. LangDTR mice and wildtype littermate controls (CT) were i.p. injected 833 

with DT at D-2 and D0 and then every 4 days. Mouse ears were topically treated with MC903 834 

or EtOH every other day from D0 to D10 and EDLNs were analyzed at D11. B, Frequency and 835 

number of Tfh cells. C, IL-4 (AmCyan) expression by Tfh cells. D, Total number of GC B cells, 836 

IgG1+ and IgE+ B cells. Values shown are means ± SEMs; one-way ANOVA with Tukey’s 837 

multiple comparison post-hoc test.  Data are representative of 3 independent experiments with 838 

similar results.   839 

 840 

FIG 3. OVA sensitization through laser-microporated (LMP) skin induces TSLP-dependent 841 

Tfh/GC response. A, H&E staining of untreated or 30µm-LMP ears of Balb/c WT mice. The 842 

red arrow points to a micropore with the disruption of the epidermis. Scale bar, 100 m. B, 843 

TSLP protein levels in ears of WT mice at 48h after the indicated treatment. C, RNAscope in 844 
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situ hybridization for TSLP in untreated or 30μm-LMP-ears at 48h after the microporation. The 845 

black arrow points to one of the positive signals. Scale bar, 50 m. D, Experimental protocol 846 

for OVA epicutaneous sensitization through LMP ears. OVA or PBS (vehicle) were topically 847 

applied on LMP ears at D0, D4, D7 and D11 and EDLNs were analyzed at D13. E-F, Frequency 848 

and cell number of Tfh cells (E) and IL-4 (AmCyan) producing Tfh cells (F) in EDLNs. G, GC 849 

B cell, IgG1+ and IgE+ B cell numbers in EDLNs. H, Serum levels of OVA-IgG1 and OVA-850 

IgE. Values shown are mean ± SEM; one-way ANOVA with Tukey’s multiple comparison 851 

post-hoc test.  Data are representative of 3 independent experiments with similar results. 852 

 853 

FIG 4. Depletion of Langerin+ cells does not reduce but rather tends to augment 30µm-854 

LMP/OVA-induced Tfh/GC response. A, Experimental protocol. LangDTR mice and wildtype 855 

littermate controls (CT) were i.p. injected with DT at D-2, D0 and then every 4 days. Mouse 856 

ears were treated by 30µm-LMP/OVA or 30µm-LMP/PBS at D0, D4, D7 and D11 and EDLNs 857 

were analyzed at D13. B, Frequency and number of Tfh cells. C, IL-4 (AmCyan) expression 858 

by Tfh cells. D, Number of GC B cells, IgG1+ and IgE+ B cells. E, Serum levels of OVA-859 

specific IgG1 and OVA-specific IgE in 30µm-LMP/OVA-sensitized LangDEP or CT mice.  Data 860 

are means ± SEM; B-D, one-way ANOVA with Tukey’s multiple comparison post-hoc test. E, 861 

unpaired t-test with Welch’s correction. Data are representative of 3 independent experiments 862 

with similar results.  863 

 864 

FIG 5. Depletion of Langerin+ cells or LCs enhances 11µm-LMP/OVA-induced TSLP-865 

dependent Tfh/GC response. A, H&E staining of untreated or 11µm-LMP ears of Balb/c WT 866 

mice. The red arrow points to a micropore with the impairment of cornified layer. Scale bar, 867 

100 µm. B, TSLP protein levels in ears of WT mice. C, Comparison of Tfh cells and GC B 868 

cells in EDLNs from WT or Tslp-/- mice. D-F, Comparison of Tfh cells (D), IL-4 (AmCyan) 869 
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expression by Tfh cells (E) and number of GC B cells, IgG1+ B cells and IgE+ B cells (F) in 870 

EDLNs from CT or LangDEP mice. G, Serum OVA-IgG1 and OVA-IgE levels. H, Experimental 871 

protocol. I, Comparison of Tfh cells, GC B cells, IgG1+ and IgE+ B cells in CT and huLangDEP 872 

mice. J, Comparison of antigen-specific Tfh cells between LMP/OVA-sensitized CT and 873 

huLangDEP mice. EDLNs were in vitro stimulated with OVA or PBS (vehicle control), and 874 

activation markers CD154, CD25 and OX40 expressed by EDLN-derived Tfh cells were 875 

examined. Values shown are mean ± SEM; one-way ANOVA with Tukey’s multiple 876 

comparison post-hoc test. Data are representative of 2 independent experiments with similar 877 

results. 878 

 879 

FIG 6. Langerin+ cells counteract LMP/OVA sensitization-induced skin Th2 inflammation and 880 

the subsequent asthmatic phenotype. A, IL-4 (AmCyan) and IL-13 (DsRed) expression in 881 

TCRβ+ dermal cells. B, H&E staining of mouse ears. C, IHC staining of mouse ears with anti-882 

MBP (for eosinophils) or anti-MCPT8 (for basophils). Arrows point to positive signals. D, 883 

Experimental protocol for OVA epicutaneous sensitization and airway challenge. Mice were 884 

i.p. injected with DT at D-2, D0 and then every 4 days. Mice were either treated with OVA on 885 

LMP ears at D0, D4, D7 and D11 or non-treated (NT). All mice were subjected to i.n. 886 

instillation with OVA from D9 to D12, and analyzed at D13. E, Differential cell counting for 887 

eosinophils (Eos), neutrophils (Neutro), lymphocytes (Lympho) and macrophages (Macro) in 888 

BAL. F, RNA levels of indicated genes in BAL cells by RT-qPCR. G, Lung sections were 889 

stained with H&E for histology or PAS for goblet cell hyperplasia analyses. B: bronchiole, V: 890 

blood vessel. Scale bar, 100µm. Values shown are means ± SEM; one-way ANOVA with 891 

Tukey’s multiple comparison post-hoc test.  Data are representative of 2 independent 892 

experiments with similar results.  893 

 894 
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FIG 7. Transcriptomic analyses of migratory DCs in EDLNs of LangGFP mice upon MC903 895 

treatment or epicutaneous OVA sensitization. LangGFP mice were treated with MC903 at D0, 896 

D2 and D4 or 30µm-LMP/OVA on D0 and D3; EDLNs were collected at D5 for cell sorting 897 

and RNAseq analyses. A, Left, percentage of variability explained by each Principal 898 

Component. Right, principal component analyses showing PC1, PC2 and PC3. B, Venn 899 

diagram showing the number of upregulated and downregulated genes (fold change > 1.5; p < 900 

0.05; raw read > 200 in at least one sample of all groups), and the number of commonly 901 

upregulated or downregulated genes between the comparisons, as indicated. Pos_NT, Pos_MC, 902 

Pos_OVA: GFPPos migDCs from non-treated, MC903-treated or LMP/OVA-treated LangGFP 903 

mice; Neg_NT, Neg_MC, Neg_OVA: GFPneg migDCs from non-treated, MC903-treated or 904 

LMP/OVA-treated LangGFP mice. C, Selected genes corresponding to gene ontology terms. *, 905 

p<0.05; NS, non significant. D, Heatmaps of the reported TSLP pathway genes, which are 906 

significantly upregulated in Pos_MC vs Pos_NT. E, Heatmap of Tnfsf4 (encoding OX40L) 907 

from RNAseq data, and RT-qPCR analyses.  908 

 909 

FIG 8. A schematic representation of the dual functions of LCs in regulating TSLP-dependent 910 

Tfh cell and Th2 cell response, revealed by two experimental AD mouse models, triggered by 911 

the overproduction of TSLP through topical application of MC903, or induced by epicutaneous 912 

allergen ovalbumin (OVA) sensitization. 913 

 914 

  915 
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Supplementary Figure Legends 916 

 917 

FIG E1. (A) CXCR5+ PD-1+ Tfh cells produce IL-4 (AmCyan) but not IL-13 (dsRed) in 918 

EDLNs of MC903-treated 4C13RTg/0 mice at D11. 4C13R0/0 EDLNs were used as gating 919 

control.  (B) Frequency and number of CXCR5- CD4+ (non-Tfh) cells producing IL-4  920 

(AmCyan) or IL-13 (dsRed), representing Th2 cells, in EDLNs from Balb/c wildype (WT) and 921 

Tslp-/- mice in the background of 4C13RTg/0, treated with MC903 or ethanol, and analyzed at 922 

D0, D7 and D11. (C) The majority of IgG1+ but not IgE+ B cells in EDLNs from MC903-923 

treated wildtype Balb/c mice are GL-7+ CD95+. 924 

 925 

FIG E2. Germinal center staining. Wildtype (WT) and Tslp-/- mice were treated with MC903 926 

(A) or subjected to OVA-sensitization (B) as shown in FIG 1A and 4D respectively. EDLN 927 

were collected and fixed overnight with 4% PFA at 4°C. After 2 times 30 minutes of wash in 928 

PBS at room temperature (RT), samples were included in 4% low melting point agarose in PBS. 929 

Vibratome sections of 100µm were blocked with 5% normal donkey serum (NDS), 0.1% Triton 930 

X-100 in PBS and then stained overnight at 4°C with anti CD4-AlexaFluor 647 (RM4-5, 931 

Biolegend, d=1/100; shown in blue), anti IgD-FITC (11-26c.2a, BD Biosciences, d=1/50; 932 

shown in green) and biotinylated PNA (Vectorlabs, d=1/250; shown in red) diluted in 5% NDS, 933 

0.1% Triton X-100 in PBS. Sections were subsequently incubated 1h at RT with Neutravidin-934 

Dylight550 (ref 84606, Thermofisher, d=1/200) diluted in PBS. After 2 washing of 30 minutes 935 

with PBS at RT, sections were kept at 4°C in PBS containing Hoechst 33342 (Sigma Aldrich) 936 

and images were acquired using Leica LSI confocal macroscope. Measurements were 937 

performed with ImageJ software. Data are means ± SEM; one-way ANOVA with Tukey’s 938 

multiple comparison post-hoc test. 939 

 940 
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FIG E3. Selective depletion of LCs leads to a diminished Tfh cell differentiation in MC903 941 

model. (A) Experimental protocol. LangDTR mice and wildtype littermate controls were 942 

intraperitoneally (i.p.) injected with diphtheria toxin (DT) at D-2 and D0. Mouse were then 943 

topically treated with MC903 or EtOH every other day from D13 to D19 and ear draining lymph 944 

nodes (EDLN) were analyzed at D20. (B) Frequency and number of CXCR5+ PD-1+ Tfh cells 945 

in LangDEP mice and CT at D20. (C) Experimental protocol. huLangDTR mice and wildtype 946 

littermate controls were intraperitoneally i.p. injected with DT at D-2 and D0. Mouse were then 947 

topically treated with MC903 or EtOH every other day from D0 to D10 and EDLN were 948 

analyzed at D11. (D) Frequency and number of CXCR5+ PD-1+ Tfh cells in huLangDEP mice 949 

and CT at D11. Values shown are means ± SEMs; one-way ANOVA with Tukey’s multiple 950 

comparison post-hoc test. Data are representative of 2 independent experiments with similar 951 

results.   952 

 953 

FIG E4. TSLP is crucially required for 30µm-LMP/OVA-induced skin Th2 inflammation. (A) 954 

Hematoxylin and eosin (HE) staining of mouse ears. (B) Immunohistochemistry staining of 955 

mouse ears with anti-MBP antibody (for eosinophils) or anti-MCPT8 antibody (for basophils). 956 

Arrow points to one of the positive cells. Scale bar, 100µm. (C-D) IL-4 (AmCyan) and IL-13 957 

(dsRed) expression in TCRβ+ dermal cells (C) or CXCR5- CD4+ (non-Tfh) cells (D). 958 

 959 

FIG E5. Depletion of Langerin+ cells slightly diminishes the MC903- induced Th2 cell 960 

response. Comparison of IL-4 and IL-13 expression among CXCR5-CD4+ (non-Tfh) cell in the 961 

EDLN (A), or among TCRβ+ cells in the dermis (B) of EtOH- or MC903-treated control (CT) 962 

or LangDEP mice, all in the background of 4C13RTg/0. 963 

 964 



 38 

FIG E6. Depletion of Langerin+ cells increases the LMP/OVA-induced Th2 cell response in 965 

EDLNs. Comparison of IL-4 and IL-13 expression among CXCR5-CD4+ (non-Tfh) cell in 966 

EDLNs from LMP/OVA-treated control (CT) or LangDEP in the background of 4C13RTg/0 mice. 967 

 968 

FIG E7. 11µm-LMP/OVA-induced skin inflammation is enhanced in mice with the depletion 969 

of Langerin+ DCs or LCs.  Hematoxylin and eosin staining of ears from LangDEP (A, top) and 970 

huLangDEP (B, top) mice after 11µm-LMP/OVA sensitization. Immunohistochimstry for MBP 971 

(eosinophils) and MCPT8 (basophils) of ears from LangDEP (A, bottom) and huLangDEP (B, 972 

bottom) mice after 11µm-LMP/OVA treatment. Scale bar, 100µm. 973 

 974 

FIG E8. LCs counteract LMP/OVA sensitization-induced skin inflammation and the 975 

subsequent asthmatic response. (A) Experimental protocol for OVA epicutaneous sensitization 976 

and airway challenge. Mice were intraperitoneally injected with DT at D-2, D0. Mice were 977 

either treated with OVA on LMP ears at D0, D4, D7 and D11 or ears were non treated (NT). 978 

All mice were subjected to intranasal (i.n.) instillation with OVA from D9 to D12. Ears and 979 

lungs were analyzed at D13. (B) H&E staining of mouse ears. Scale bar, 100µm. (C) IHC 980 

staining of mouse 30µm-LMP/OVA ears with anti-MBP (for eosinophils) or anti-MCPT8 (for 981 

basophils). (D) Differential counting of eosinophils (Eos), neutrophils (Neutro), lymphocytes 982 

(Lympho) and macrophages (Macro) in BAL. (E) RNA levels of indicated genes in BAL cells 983 

by RT-qPCR. (F) Lung sections were stained with H&E for histological analyses or PAS for 984 

goblet cell hyperplasia analyses. B: bronchiole; V: blood vessel. Scale bar, 250µm. (G) 985 

Experimental protocol for OVA i.p. sensitization and airway challenge. Mice were i.p. injected 986 

with DT at D-2 and D0. Mice were i.p. sensitized with OVA/alum at D0 and D4, and subjected 987 

to i.n. instillation with OVA from D9 to D12. Lungs were analyzed at D13. (H) Differential 988 

cell counting in BAL. Data are means ± SEM; unpaired two-tailed t-test. 989 
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 990 

FIG E9. Transcriptomic analyses of migratory DCs in EDLNs of LangGFP mice upon MC903 991 

treatment or epicutaneous OVA sensitization. LangGFP mice were treated with MC903 at D0, 992 

D2 and D4 or 30µm-LMP/OVA on D0 and D3; EDLNs were collected at D5 for cell sorting 993 

and RNAseq analyses. (A) Gating strategy used to sort resident (res) and migratory (mig) 994 

GFPpos and GFPneg DCs. (B) Heatmap generated with the input of upregulated genes identified 995 

in Pos_MC compared with Pos_NT (FC > 1.5; p < 0.05; raw read > 200 in at least one sample 996 

of the Pos groups), to visually assess the results of clustering on the data to observe trends of 997 

expression for genes across all groups. Z score of the expression level is used to generate 998 

heatmap. Pos_NT, Pos_MC, Pos_OVA: GFPpos migDCs from non-treated, MC903-treated or 999 

LMP/OVA-treated LangGFP mice; Neg_NT, Neg_MC, Neg_OVA: GFPneg migDCs from non-1000 

treated, MC903-treated or LMP/OVA-treated LangGFP mice.  1001 

Two clusters C1 and C2 were revealed. The cluster C1 genes exhibited the expression trends: 1002 

1) in non-treated groups, they had a lower expression in GFPpos cells than in GFPneg cells 1003 

(Pos_NT < Neg_NT); 2) in MC903-treated groups, their expression in GFPpos cells increased, 1004 

reaching a similar or higher expression than non-treated GFPneg cells (Pos_MC = or > Neg_NT), 1005 

and their expression in GFPneg cells was also increased (Neg_MC > Neg_NT), with a higher 1006 

level than Pos_MC cells; 3) in OVA-treated groups, the expression of some genes was also 1007 

increased in GFPneg cells (Neg_OVA versus Neg_NT) (subcluters of C1: a, b and c) while 1008 

others remained not changed. Together, expression features of the cluster C1 suggest that in the 1009 

MC903-AD, Langerin+ migDCs acquire many gene expression of Langerin- migDCs, and share 1010 

the upregulation of these genes with Langerin- migDCs; and moreover, the upregulation of 1011 

some (although less) of these genes also occurs in Langerin- migDCs (but not Langerin+ 1012 

migDCs) in OVA-AD. 1013 



 40 

Different from the cluster C1, the cluster C2 genes were highly upregulated in Pos_MC; some 1014 

of them were also upregulated in Neg_MC (but reaching a lower level) and very few of them 1015 

were upregulated in Neg_OVA, suggesting that this cluster represents the upregulated genes 1016 

rather specific for Langerin+ migDCs under MC903 treatment.   1017 

 1018 

FIG E10. (A) Heatmap generated with the input of downregulated genes identified in Pos_MC 1019 

compared with Pos_NT (FC > 1.5; p < 0.05; raw read > 200 in at least one sample of the Pos 1020 

groups), to visually assess the results of clustering on the data to observe trends of expression 1021 

for genes across all groups. Z score of the expression level was used to generate heatmap. (B) 1022 

Selected genes corresponding to gene ontology terms for Cytokine activity, Regulation of 1023 

transcription, Regulation of cell migration, or T cell costimulation. *, adjusted p<0.05; NS, non 1024 

significant. 1025 

 1026 

FIG E11. IL-6 neutralization does not significantly diminish Tfh cell differentiation and GC B 1027 

cell numbers. (A) experimental scheme. 4C13RTg/0 mice were i.p. injected with 200 mg anti-1028 

IL-6 neutralizing antibody (@IL-6; Clone MP5-20F3, BioXcell) every other day from D0 to 1029 

D10, and mouse ears were topically treated with MC903 or EtOH every other day from D0 to 1030 

D10. EDLNs were analyzed at D7 or D11. (B) Frequency and number of CXCR5+ PD-1+ Tfh 1031 

cells. (C) IL-4 (AmCyan) expression by Tfh cells. (D) Frequency and number of CD95+ GL-7+ 1032 

GC B cells at D11. Data are means ± SEM, one-way ANOVA with Tukey’s multiple 1033 

comparison post-hoc test. 1034 

 1035 

FIG E12. MC903 treatment leads to increased numbers of both langerin-GFPpos and langerin-1036 

GFPneg migratory DCs in EDLNs at D5.  LangGFP mice were treated with MC903 at D0, D2 and 1037 

D4, or 30µm-LMP/OVA at D0 and D3, or tape-stripping (TS)/OVA at D0 and D3, and EDLNs 1038 
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were collected at D5 for flow cytometry analyses. Absolute numbers of GFP-positive (GFPpos) 1039 

and -negative (GFPneg) migratory DCs in EDLN, compared with non-treated (NT), are shown. 1040 

 1041 

FIG E13. Depletion of Langerin+ cells enhances the TS/OVA-induced Tfh/GC response and 1042 

the subsequent asthmatic phenotype. (A)  H&E staining of untreated or tape-stripped (TS) 1043 

Balb/c wildtype mice. Arrow points to the absence of stratum corneum in TS-ear. Scale bar, 1044 

100µm. (B) Dorsal side of ears of WT mice were tape-stripped 10 times and topical treated with 1045 

200µg of OVA in 10µl PBS. TSLP protein levels in ears were measured by ELISA at 48h after 1046 

treatment. (C) Experimental protocol. LangDTR mice and wildtype littermate controls (CT), in 1047 

the background of 4C13RTg/0, were i.p. injected with DT at D-2, D0 and then every 4 days. 1048 

OVA (200µg) were topically applied on TS-ears at D0, D4, D7 and D11. All mice were 1049 

subjected to intranasal (i.n.) instillation with 50µg of OVA from D9 to D12 and analyzed at 1050 

D13. (D-F) Frequency and number of Tfh cells (D), IL-4 (AmCyan) expression by Tfh cells 1051 

(E) and numbers of CD95+ GL-7+ GC B cells, IgG1+ and IgE+ B cells in EDLNs (F). (G) Serum 1052 

levels of OVA-IgG1 and OVA-IgE. (H) Differential cell counting for eosinophils (Eos), 1053 

neutrophils (Neutro), lymphocytes (Lympho) and macrophages (Macro) in BAL. (I) H&E 1054 

staining of lung sections. B: bronchiole; V: blood vessel. Scale bar, 250µm. Data are means ± 1055 

SEM; unpaired two-tailed t-test.    1056 

 1057 
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Methods 

Experimental mice. Balb/c mice were purchased from Charles River Laboratory. Tslp-/- 1, 4C13RTg/0 2, 

LangerinDTR 3 and huLangerinDTR 4 were as described and were all backcrossed to >99.9 % Balb/c genetic 

background. LangGFP reporter mice 3 were in C57BL/6J background. Breeding and maintenance were 

performed under institutional guidelines, and all of the animal experiments were approved by the animal 

care and ethics committee of animal experimentation of the IGBMC. 

 

MC903 topical application. MC903 (Calcipotriol, Sigma) was dissolved in 100% ethanol and topically 

applied on mouse ears (2 nmol in 25 µl per ear) as previously described 5. 

 

Epicutaneous OVA sensitization and airway challenge. Laser-assisted skin microporation (LMP) was 

performed using P.L.E.A.S.E.® research system (Pantec Biosolutions) on the dorsal side of mouse ears. 

For the depth of 30μm (30μm_LMP): 2 pulses per pore, with fluence of 7.5 J/cm2, pulse length of 75 

μs, RepRate of 500 Hz and power of 1.0 W; for the depth of 11µm (11µm_LMP): 1 pulse per pore with 

fluence of 1,8 J/cm2, pulse length of 50 µs, RepRate of 500 Hz and power of 0.7 W. In all cases, the 

pore array size was set 14 mm and the pore density was set 15%. To induce epicutaneous OVA 

sensitization, 10 μl of sterile PBS solution containing 200 μg of OVA (Sigma-aldrich) were applied 

immediately on LMP ear skin at the time points indicated in experimental schemes in the Figures. In 

case of airway challenge, 25 µL of saline solution containing 50 µg of OVA was intranasally instilled. 

 

Depletion of Langerin+ DCs or LCs in mice. LangDTR or huLangDTR mice were intraperitoneally 

injected with diphtheria toxin (DT; Sigma-Aldrich) (1 g per 25 g body weight) at the time points 

indicated in the experimental schemes in the Figures. The DT-injected wild-type littermate mice were 

used as controls.   

 

Cell preparation for flow cytometry analyses. For cell preparation from ear-draining lymph nodes 

(EDLN) for Tfh/GC staining, EDLNs were dissociated with piston, passed through a 70μm strainer 

Supplementary Methods



(Falcon) and resuspended in PBS containing 0.5% BSA and 2mM EDTA. Cells were then centrifuged 

and resuspended in FACS buffer (PBS containing 1% FCS and 2mM EDTA), counted and used for 

FACS staining. In case of preparation of EDLN cells for DC staining, EDLNs were cut in small pieces 

and incubated 30 minutes at 37°C in 2mg/mL collagenase D (Roche), 0.25mg/mL DNase I (Sigma) and 

2.5% foetal calf serum (Thermofisher) in PBS prior passing through the strainer. 

For preparation of dermal cells, ears were split into ventral and dorsal halves and floated 1h at 37°C 

on a PBS solution containing 4mg/ml Dispase (Gibco). Dermis was subsequently separated from 

epidermis and incubated 1h at 37°C with 1mg/ml collagenase D, 0.25mg/ml DNase I and 2.5% of foetal 

calf serum in PBS. Cells were passed through a 70µm cell strainer and resuspended in PBS containing 

0.5% BSA and 2mM EDTA. Cells were then centrifuged and resuspended in FACS buffer, counted and 

used for FACS staining. 

 

Surface staining for flow cytometry analyses. Two million cells were used for antibody staining. Cells 

were first incubated with anti-CD16/CD32 (clone 93, eBioscience) to block unspecific binding, followed 

by surface staining with the following antibody panels : CD11c biotin (clone HL3), IgE biotin (clone 

R35-72), CD95 PE-Cy7 (clone Jo2), CD19 FITC (clone 1D3), CXCR5 biotin (clone 2G8), CD4 Alexa 

Fluor 700 (clone RM-5), CD4 BV421 (clone GK1.5), streptavidin BV605 were from BD Biosciences; 

CD8a PerCP-Cy5.5 (clone 53-6.7), B220 APC (clone RA3-6B2), GL-7 PE (clone GL-7), I-A/I-E PE 

(clone M5/114.15.2) and streptavidin APC were from eBioscience. PD-1 PE-Cy7 (clone RMP1-30), 

IgG1 PerCP-Cy5.5 (clone RMG1-1) were from Biolegend. Viability staining was performed by adding 

propidium iodide to a final concentration of 4 µg/mL prior to cell passing with the cytometer. Stained 

cells were analysed on a Fortessa or LSRII flow cytometer (BD Biosciences). Results were analysed 

using FlowJo (Treestar). 

 

LN cell culture and antigen stimulation. To identify OVA-specific Tfh cells by activation-induced 

marker assay 6,  one million of freshly isolated EDLN single cell suspensions were cultured in 96-well 

U-bottom plate in 200µl of medium (RPMI 1640 supplemented with 10% FCS, HEPES, 0.05mM 2-



mercaptoethanol, 100U/ml penicillin, 100U/ml streptomycin), stimulated with 500µg/ml of OVA or 

PBS (vehicle) for 18h. Anti-CD154 BV650 antibody (clone MR1, BD Biosciences) was added to all 

culture conditions. After the culture, cells were incubated with anti-CD16/CD32 (Clone 93, eBioscience) 

to block unspecific binding, and stained with viability dye 506 (eBioscience) and antibody panels:  B220 

FITC (clone RA3-6B2, Biolegend), CD4 BV421 (clone GK1.5, BD Biosciences), CXCR5 biotin (Clone 

2G8, BD Biosciences), Streptavidin PE (eBioscience), PD-1 PE-Cy7 (clone RMP1-30, Biolegend), 

OX40 APC (clone OX86, eBiosience) and CD25 PerCP-Cy5.5 (clone PC61, BD Biosciences). 

 

RNA sequencing. Migratory DCs from EDLNs were FACS-sorted with ARIA II (BD) (see Fig 8A for 

sorting strategies). RNA was extracted using RNeasy Micro Kit (Qiagen). RNA-seq was performed in 

IGBMC high-throughput mRNA sequencing facility. Full length cDNAs were generated from 1ng of 

total RNA using Clontech SMART-Seq v4 Ultra Low Input RNA kit for Sequencing (Takara Bio Europe, 

Saint Germain en Laye, France) according to manufacturer's instructions with 12 cycles of PCR for 

cDNA amplification by Seq-Amp polymerase. Six hundred pg of pre-amplified cDNA were then used 

as input for Tn5 transposon tagmentation by the Nextera XT DNA Library Preparation Kit (96 samples) 

(Illumina, San Diego, CA) followed by 12 cycles of library amplification. Following purification with 

Agencourt AMPure XP beads (Beckman-Coulter, Villepinte, France), the size and concentration of 

libraries were assessed by capillary electrophoreris. Libraries were sequenced as 50bp single-end reads 

on an Illumina HiSeq 4000 sequencer. 

Reads were preprocessed in order to remove adapter, polyA and low-quality sequences (Phred 

quality score below 20). After this preprocessing, reads shorter than 40 bases were discarded for further 

analysis. These preprocessing steps were performed using cutadapt version 1.10. Reads were mapped 

onto the mm10 assembly of mouse genome using STAR version 2.5.3a. Read counts have been 

normalized across samples with the median-of-ratios method proposed by Anders and Huber 7, to make 

these counts comparable between samples. Comparisons of interest were performed using the method 

proposed by Love et al. 8 and implemented in the DESeq2 Bioconductor library version 1.16.1. P-values 

were adjusted for multiple testing using the Benjamini and Hochberg method. Gene expression 



quantification was performed from uniquely aligned reads using htseq-count version 0.6.1p1, with 

annotations from Ensembl version 96 and "union" mode. The RNA-Seq data have been deposited in the 

NCBI’s Gene Expression Omnibus (GEO) and are accessible as GSE149039. 

 

Bronchoalveolar lavage (BAL) cell analyses. BAL was taken in anaesthetized mice by instilling and 

withdrawing 0.5 ml of saline solution (0.9% NaCl, 2.6mM EDTA) in the trachea. After six times lavages, 

BAL fluid was centrifuged, and BAL cells were counted using a Neubauer hemocytometer. 5x104 BAL 

cells were cytospined and stained with Hemacolor kit (Merck) to identify macrophages, lymphocytes, 

neutrophils and eosinophils. After differential counting to obtain their frequencies, the number of each 

cell type was calculated according to the total BAL cell number and the frequency. For RT-qPCR 

analyses, RNA was extracted from BAL cells using NucleoSpin RNA XS kit (Macherey-Nagel), reverse 

transcribed by using random oligonucleotide hexamers and SuperScript IV Reverse Transcriptase 

(Invitrogen) and amplified by means of quantitative PCR with LightCycler 480 SYBR Green kit (Roche), 

according to the manufacturer’s instructions. Relative RNA levels were calculated with hypoxanthine 

phosphoribosyl- transferase (HPRT) as an internal control. For analyses of each set of gene expression, 

an arbitrary unit of 1 was given to the samples with the highest level, and the remaining samples were 

plotted relative to this value. Sequences of qPCR primers are: Hprt (TGGATACAGGCCAGACTTTG ; 

GATTCAACTTGCGCTCATCTTA; 161 bp); Il4 (GGCATTTTGAACGAGGTCAC; 

AAATATGCGAAGCACCTTGG; 132 bp); Il5 (AGCACAGTGGTGAAAGAGACCTT; 

TCCAATGCATAGCTGGTGATTT; 117 bp); Il13 (GGAGCTGAGCAACATCACACA; 

GGTCCTGTAGATGGCATTGCA; 142 bp); Ccr3 (TAAAGGACTTAGCAAAATTCACCA; 

TGACCCCAGCTCTTTGATTC; 150 bp); Mcpt8 (GTGGGAAATCCCAGTGAGAA; 

TCCGAATCCAAGGCATAAAG; 160 bp). 

 

Enzyme-linked immunosorbent assay (ELISA). To measure TSLP levels by ELISA, mouse skin was 

chopped and homogenized with a Mixer Mill MM301 (Retsch, Dusseldorf, Germany) in lysis buffer (25 

mmol/L Tris pH 7.8, 2 mmol/L EDTA, 1 mmol/L dithiothreitol, 10% glycerol, and 1% Triton X-100) 



supplemented with protease inhibitor cocktail (Roche). Protein concentrations of skin extract were 

quantified by using the Bio-Rad Protein Assay (Bio-Rad Laboratories, Hercules, Calif), and TSLP levels 

in skin extracts were determined with the DuoSet ELISA Development Kits (R&D Systems, 

Minneapolis, Minn). 

To measure OVA-specific IgG1 and IgE in sera, microtiter plates were coated with OVA and then 

blocked with BSA. Serum samples were incubated in the coated plates overnight at 4°C followed by 

incubation with a biotinylated rat anti-mouse IgE (BD Biosciences; clone R35-118) or IgG1 (BD 

Biosciences; clone A85-1). Extravidin horseradish peroxidase (Sigma) and TMB (tetramethylbenzidine) 

Substrate Reagent Set (BD Biosciences) were used for detection. Levels of OVA-specific IgG1 and 

OVA-specific IgE were calculated relevant to a pre-prepared serum pool from OVA-sensitized and 

challenged mice and expressed as arbitrary units.  

 

Histopathology. Mouse ears and lungs were fixed in 4% paraformaldehyde overnight at 4°C and 

embedded in paraffin. 5μm sections were stained with hematoxylin & eosin (H&E). For periodic Acid 

Schiff (PAS) staining, slides were incubated with 0.5% aqueous periodic acid (Alfa Aesar), washed with 

water and incubated 15 minutes in Schiff’s reagent (Merck). Slides were counterstained with 

hematoxylin and differentiated with acid alcohol.  

 

Immunohistochemistry (IHC). For IHC staining of major basic protein (MBP) and mast cell protease 

8 (MCPT8), 5μm paraffin sections were treated with 0.6% H2O2 to block endogenous peroxidase activity 

before antigen retrieval with either Pepsin (for IHC of MBP; Life technologies) or citric buffer (10 

mmol/L citric acid, pH 6; for IHC of MCPT8). Slides were then blocked with normal rabbit serum 

(Vector Laboratories) and incubated overnight with primary antibody (Rat anti-mouse MBP antibody 

(Mayo Clinic, Rochester); Rat anti-mouse TUG8 (Biolegend)). Slides were then incubated with 

biotinylated rabbit anti-rat IgG (dilution: 1/300) and treated with AB complex (Vector Laboratories). 

Staining was finally visualized with AEC high-sensitivity substrate chromogen solution (Dako) and 

counterstained with hematoxylin. 



 

RNA in situ hybridization.  Mouse ears were fixed in formalin and embedded in paraffin. RNA in situ 

hybridization was performed on freshly 5µm sections using RNAscope® 2.5 HD Reagent Kit-

RED (Advanced Cell Diagnostics, Hayward, CA, USA) according to the manufacturer’s instructions. 

Probe Mm-Tslp was used for detection of TSLP (Cat 432741). 

Statistics. Data were analyzed using GraphPad Prism 6. Comparison of two samples was performed 

either by Student’s two-tailed unpaired t-test with Welch's correction or the Mann–Whitney rank sum 

nonparametric test depending on results from the Kolmogorov–Smirnov test for normality. Comparison 

of more than two samples was performed by ordinary one-way ANOVA followed by Tukey's post-hoc 

test.  
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