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We report on improvements extending the capabilities of the atom-by-atom assembler described by Barredo
et al. [Science 354, 1021 (2016)] that we use to create fully-loaded target arrays of more than 100 single
atoms in optical tweezers, starting from randomly loaded, half-filled initial arrays. We describe four variants
of the sorting algorithm that decrease the number of moves needed for assembly and enable the assembly of
arbitrary, nonregular target arrays. We demonstrate experimentally the performance of this enhanced assembler
for a variety of target arrays.
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I. INTRODUCTION

Over the past few years, arrays of single laser-cooled atoms
trapped in optical tweezers have become a prominent platform
for quantum science, in particular for quantum simulation [1].
They allow single-atom imaging and manipulation, fast repe-
tition rates, and high tunability of the geometry of the arrays.
When combined with excitation to Rydberg states, these sys-
tems naturally implement quantum spin models, with either
Ising [2–6] or XY [7] interactions. They can also be used to
realize quantum gates with fidelities approaching those of the
best quantum computing platforms [8–11].

A crucial ingredient of the atom array platform is the
atom-by-atom assembly of fully loaded arrays, starting from
the partially loaded arrays (with a typical filling fraction of
50%–60%) obtained when loading optical tweezers with sin-
gle atoms [12]. This technique, first demonstrated in [13–15],
can follow different approaches. A fast and effective approach
for realizing one-dimensional chains uses an acousto-optic
deflector (AOD) driven with multiple radio-frequency tones to
generate all the traps [14]; after loading, empty traps are then
switched off and the remaining ones are brought to their target
position, thus achieving a fully loaded chain in a single step.
However, directly extending this approach to more than one
dimension is challenging [16]. A different approach consists
in using a spatial light modulator (SLM) to generate arbitrary
patterns of traps in one, two, or three dimensions, load them
with atoms, and then dynamically change the SLM pattern to
rearrange the atoms in space [17]. However, SLMs are slow,
making the rearrangement time prohibitive, which limits this
approach to small atom numbers. Another approach is using
a static trap array and combining it with a moving tweezer
[13,18].

Our experiment [13] follows this strategy and uses an SLM
that produces a user-defined fixed pattern of optical tweez-
ers which includes the final (target) array, combined with a
moving tweezer. This extra microtrap, controlled by a two-
dimensional (2D) AOD, is used to move the atoms one by
one to reach a fully loaded target array. The heuristic shortest-
moves-first algorithm used in [13] to find the set of needed

moves is versatile, as any target array included in an initial
regular array can be assembled. It works well up to a few
tens of atoms, but it has some limitations. First, the algorithm
was written for regular arrays, such as square and triangular
lattices. On completely arbitrary arrays, lattice edges along
which atoms can be moved are not naturally given, and using
straight paths between source and target traps would lead to
unwanted losses, as another target trap already containing an
atom may be in the way. Another limitation is that the number
of moves needed for ordering is not optimal and minimizing
this number becomes more crucial when the number N of
assembled atoms increases beyond a few tens.

Here we describe four improved algorithms that can be
used without any change in the hardware; the choice of the
most efficient approach depends on the characteristics of the
target array. We first recall in Sec. II the problem we need to
solve and review our previous approach and its shortcomings
(Sec. III). We then discuss in Sec. IV a compression algorithm
which is well adapted for compact arrays (here, by compact
we mean that no trap other than target ones lies within the
target array). The number of moves is then at most N , which
significantly reduces the assembly time. We show in Sec. V
that a similar scaling can be obtained for all arrays (compact
or not) by using algorithms based on a linear sum assignment
problem solver. In Sec. VI we extend these algorithms to the
case of fully arbitrary two-dimensional patterns (i.e., they are
not embedded in a regular Bravais lattice). Finally, in Sec. VII
we experimentally implement these approaches in a variety
of arrays.

II. STATEMENT OF THE PROBLEM

Our goal is to obtain a fully loaded array of N traps, whose
positions are given by the user (this defines the target array,
denoted by green circles in this paper). To do so, we start
from a larger array, with ∼2N traps, containing the target
array and extra, reservoir traps (these will be denoted by red
circles). The entire array is loaded in a stochastic way with an
∼50% filling fraction at each realization of the experiment.
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Therefore, we have, with high probability, at least N atoms
in the full array. Using a moving optical tweezer, we then
transport the atoms one by one, from an initial trap to one
of the target traps, until the target array is fully filled.

To maximize the success probability of the assembly pro-
cess, we need to minimize the total assembly time. One reason
for that arises from the vacuum-limited lifetime of a trapped
atom, which, in our experiments, is τvac ∼ 20 s. This means
that for an array with N atoms, the lifetime of the config-
uration is τvac/N . It is thus important, when N increases,
to minimize the total assembly time to reduce atom losses
during rearrangement. As atoms are moved between traps
at a constant velocity (typically ∼100 nm/μs, meaning we
need ∼50 μs to move over a typical nearest-neighbor dis-
tance of 5 μm) and as it requires a comparatively longer time
(600 μs) to capture or release an atom [13], minimizing the
arrangement time mainly amounts to minimizing the number
of moves and, but to a lesser extent, the total travel distance
(defined as the sum of the lengths of the successive straight
paths over which an atom is moved). A second reason for
minimizing the number of moves is that each transfer from
a source trap to a target trap has a finite success probability
p (typically around p ∼ 0.98–0.99 in our experiments), partly
due to the already mentioned vacuum-limited losses, but also
due to, e.g., inaccuracy in the positioning of the moving
tweezers or residual heating. Beyond the number of moves
and the total travel distance, the time it takes for the algorithm
to compute the moves at each repetition of the experiment
contributes to the total assembly time.

In [13] we distinguished two types of moves for reordering.
The first approach (which we called type 1) corresponds to the
situation where the atom can be moved in between adjacent
rows of traps. Then, as on average N/2 atoms are out of place
initially, the mean number of needed moves is Nmv = N/2
and we have to solve a linear sum assignment problem [19].
Using the Hungarian algorithm (as in [20]) then minimizes
the assembly time. However, type-1 moves require a large
distance (at least 5 μm) between any two traps to avoid atom
loss due to disturbances of the trap potential. In practice, many
experimental reasons (the finite field of view of the lenses
used to focus the tweezers, the need to have large interaction
strength between Rydberg atoms, and to have uniform Ry-
dberg excitation lasers over the array) call for having smaller
distances in the arrays. Furthermore, as we will see in Sec. VI,
type-1 moves are not well suited for the assembly of truly arbi-
trary geometries. For these reasons, we here focus on solving
our problem using just type-2 moves, where an atom can only
be moved along a straight path between adjacent traps.

In the case of type-2 moves, assigning any source trap to
any target trap is not possible, since other traps might be in the
way. While an atom can be moved over an empty trap as the
moving tweezer is ∼10 times as deep as the stationary traps,
having filled traps on the path would lead to collisions and
atom loss. Finding the optimal set of moves is thus nontrivial
since it requires finding a collision-free assignment with a
well-defined ordering of the moves. In computer science, this
problem is known as the pebble motion on a graph (in a variant
with unlabeled pebbles) and is intractable for large N [21],
even more so in practice as we need to solve it in a time short
compared to the configuration lifetime. Therefore, we opt for

heuristic algorithms, provided they give a solution not too far
from the optimum and run in a few tens of milliseconds at
most for up to a few hundred atoms. In the next section, we
will see that the algorithm used in [13] actually meets these
criteria only when the target array is not too compact and
when N is not too large.

III. OUR PREVIOUS ASSEMBLER: PRINCIPLE
OF OPERATION AND LIMITATIONS

The atom-by-atom assembler described in [13,22] allowed
us to create user-defined arrays in one, two, and three di-
mensions at unit filling. Nonperiodic structures, or complex
lattices such as ladder, honeycomb, kagome, or pyrochlore
geometries could also be obtained by selecting a subset of
target traps on an underlying Bravais lattice.

We chose a heuristic approach to the problem that had the
advantage of requiring a short computation time, scaling as
O(N2), albeit at the expense of not guaranteeing the opti-
mal assignment. This greedy algorithm, which we will call
the shortest-moves-first algorithm, works as follows. We first
compute a matrix of distances D = di j between each out-of-
place atom si and each (empty) target t j trap. Then we order
the entries of this matrix by increasing length and select the
first N/2 elements with the condition that only one element
per row or column is chosen (i.e., that each atom or target trap
is only assigned once).

This initial matching is not collision-free, as already filled
traps may lie in between a matched reservoir atom and an
empty target trap. Therefore, in a second step, we postpro-
cess this assignment by applying a rule that splits each move
S → T from a source atom S to a target trap T in two moves
O → T and S → O for each obstacle atom O that is found
in the path. Note that this process leaves the travel distance
unchanged but increases the number of moves, therefore in-
creasing the total assembly time.

Figure 1 shows the number of moves Nmv returned by
the above algorithm to assemble a target array of N atoms
embedded in a square array, for three different geometries: (i)
a staggered pattern, (ii) a random pattern, and (iii) a compact
square in the center. The number of moves is averaged over
1000 realizations of the initial random loading. We observe
that Nmv is only slightly above N/2 for the cases (i) and
(ii) where the reservoir and target traps are strongly mixed.
However, in the case (iii) of compact geometries, where all
the reservoir atoms lie outside the target array, we observe that
this procedure scales as Nmv ∝ Nα , with α � 1.4 (red dashed
line), making it unsuitable for large arrays.

The reason for this is illustrated in Fig. 2, which shows a
few snapshots of the reordering process. The shortest moves
are those connecting out-of-place atoms with target traps on
the border of the array; therefore, the algorithm starts by filling
the outermost shell. Once this is done, it is no longer possible
to fill the (empty) inner traps without performing extra oper-
ations to displace the atoms that lie in the way, giving rise to
many extra moves to fill the inner part of the target array. For
the initial configuration in Fig. 2(b), the 14×14 target array is
assembled in 444 moves. As picking up and releasing an atom
takes extra time, this behavior leads to prohibitive rearrange-
ment times, even if the distance traveled is close to optimal.
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(iii)

(ii)

(i)

FIG. 1. Scaling of the number of moves for different geometries,
with the shortest-moves-first approach. The plot shows the number
Nmv of moves (averaged over 1000 realizations of the random load-
ing; the error bars indicate the standard deviation of the distribution
of Nmv) as a function of the size N of the target array. For staggered
configurations (blue), where a target trap and a reservoir trap alter-
nate, the overhead as compared to the lower bound N/2 (indicated
by the solid black line above the gray-shaded area) is small. For a
random subset of target traps in a square array (purple), the number
of postprocessing moves due to obstacles is already bigger, but the
scaling is still linear with N . A drastic change appears in the case
of compact geometries (red), where the target array is surrounded by
reservoir atoms. Here the number of moves does not increase linearly
with N , but rather as N1.4 (dashed line) and many postprocess moves
are needed. This means that the current algorithm is unsuited for
large compact geometries.

This behavior is problematic, as many arrays of interest
for quantum simulation are compact. Therefore, it is crucial
to find an assignment between the reservoir and target traps
which really minimizes the number of moves. For assembling
compact arrays, a much better approach, where the maximum

FIG. 2. Assembling of a compact array using the shortest-moves-first algorithm. (a) Microscopic view. The first set of moves (blue lines)
connects out-of-place atoms with target traps on the outer shell of the structure (e.g., move 1). Once the border is populated, it is no longer
possible to fill the inner traps without performing extra moves (move 2). (b) The macroscopic behavior on a 14×14 array reveals that the
algorithm starts by filling the border of the target array (green circles) with atoms from reservoir traps (red circles), while inner traps are still
empty (e.g., move 82), leading to a large overhead in the number of moves for successful assembling.

number of moves is at most N , is the compression algorithm
that we now describe.

IV. IMPROVED ASSEMBLY OF COMPACT ARRAYS
BY THE COMPRESSION ALGORITHM

From the above considerations it is clear that we need to
prevent the formation of the outer shell during the assembling
process. A simple way to do this and have a collision-free
assignment without any postprocessing is to fill the target
traps in a determined order. We first fill the central traps and
progressively, one layer after the other, we fill the compact
structure until we reach its border. To fill the traps, we choose
the closest atoms lying outside the already assembled bulk.
An asset of this compression approach is that we can calculate
once, independently of the initial loading, a lookup table. The
table stores which source traps can be used to fill a given
target trap. In combination with the predetermined order in
which the target traps are filled, the lookup table reduces the
calculation time of a particular instance. We observe that it
scales roughly as N1.2 with the number of target traps and
amounts, in our implementation, to about 7 ms for N = 100
on a regular desktop computer with 16 GB of RAM.

Figure 3(a) illustrates how the algorithm works on a small
square array. The target array is first assembled from the
bottom left corner, then the diagonal, and finally the top right
corner. Using this algorithm, atoms which initially occupy
target traps can be displaced, which means additional moves
with respect to an optimal solution. However, as we always
use the atoms closest to the border of the compact structure to
assemble it, the path is always obstacle-free and therefore we
do not need any postprocessing. Consequently, each atom is
moved at most once during the assembling process, which sets
the upper bound Nmv � N and ensures on average a smaller
number of moves using the compression algorithm with
respect to the shortest-moves-first algorithm of the preceding
section. As Nmv cannot be lower than N/2 on average, our
solution, while not optimal for many initial loading instances,
is generally close to optimal. Figure 3(b) shows how this
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FIG. 3. Compression algorithm. (a) Illustration of the compression procedure for a 2×2 target array, requiring four moves. (b) A few
assembling steps using the compression algorithm to assemble a 14×14 target array in only 195 moves, to be contrasted with the 444 moves
needed previously.

compression algorithm outperforms the shortest-moves-first
one. The 196 target atoms are assembled in 195 moves,
whereas the same initial configuration required 444 moves to
be sorted with our previous approach.

As can be seen in Fig. 4(a), not only is the average number
of moves smaller than before, but the distribution of Nmv, cal-
culated for 1000 random initial loading instances of the array,
is also strongly sub-Poissonian, as well as asymmetric, with a
sharp cutoff at N . This is an appealing feature, as it indicates
that the success probability of the assembly process should
be more consistent from one shot to another, as compared to
the previous approach. Figure 4(b) shows the linear scaling of
Nmv with N .

This technique can be naturally extended to the case of
compact structures in other lattices (e.g., triangular) and also
to arbitrary geometries, as we will see in Sec. VI.

(a) (b)

FIG. 4. Compression vs shortest-moves-first algorithms. (a) His-
togram of the number of moves needed to fill a 14×14 square
array for 1000 initial random loading instances. The compression
algorithm (green) has a narrow distribution which is bounded by N .
The shortest-moves-first algorithm (red) has a broad distribution and
requires on average many more moves since the initial assignment is
not collision-free. (b) Comparison of the scaling of Nmv as a function
of N between the two algorithms. The compression algorithm gives
a number of moves linear in N . Error bars are the standard deviation
of the distribution.

V. USING A LINEAR SUM ASSIGNMENT
PROBLEM SOLVER

In view of minimizing the number of moves, it is inter-
esting to revisit the approach of the problem as a linear sum
assignment problem (LSAP), which was mentioned above for
the case of type-1 moves. However, for the type-2 moves
we are interested in here, a direct application of the LSAP
matching with the travel distance � as a cost function does not
yield a collision-free assignment and requires postprocessing,
which in general increases the number of moves. We describe
in this section two different algorithms that first use a LSAP
solver and then reprocess the moves, which leads to a low
number of moves. The LSAP solver we use in practice is
a modified Jonker-Volgenant algorithm with no initialization
[23], which is implemented in the scipy.optimize PYTHON

package [24].
The first algorithm (LSAP1) uses the total travel distance∑
moves i �i as the cost function, while the second one (LSAP2)

uses a modified metric
∑

moves i �
2
i , which favors shorter paths

[Fig. 5(a)]. In both cases, the set of returned moves is post-
processed to eliminate collisions and reduce the number of
moves.

A. LSAP1: Standard metric and merging

Our first approach, described using a simple example in
Fig. 5(b), starts with the LSAP algorithm using the travel
distance between the source and target traps as a cost function.
We first sort the returned moves from shortest to longest. Since
the found assignment leads to collisions, we then postprocess
the set of moves by splitting the paths with obstacles into two
or more moves, just as in the shortest-moves-first approach.
However, in a second iteration, we merge again some moves
in which an atom is picked up twice, thereby reducing the
number of moves considerably, checking at each step that
we do not reintroduce any collision in doing so. Note that
this second merging iteration can in principle be applied to
any algorithm, but yields the smallest number of moves when
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LSAP    = 1      (2,3,4),(0,1,2,3,4,5,6),(9,8,7)

Split                   (2,3,4),(5,6),(4,5),(0,1,2,3,4),(8,7),(9,8)

Merge                (5,6),(2,3,4,5),(0,1,2,3,4),(8,7),(9,8)

0 1 2 3 4 5 6 7 8 9

Remove
Obstacles

0 1 2 3 4 5 6 7 8 9

LSAP = 2   (0,1,2,3,4),(2,3,4,5),(5,6),(8,7),(9,8)

  (2,3,4,5),(5,6),(8,7),(9,8),(0,1,2,3,4)

Reordering (5,6),(8,7),(9,8),(0,1,2,3,4),(2,3,4,5)

  (5,6),(8,7),(9,8),(2,3,4,5),(0,1,2,3,4)

Case 2&3

Case 1

Case 2&3

moves i

α
i

LSAP1
LSAP2 

(d)

FIG. 5. Modified LSAP algorithms. (a) Using a cost function with α = 2 (see the text) in a LSAP solver favors short moves. (b) The
algorithm LSAP1 first uses a LSAP solver with α = 1, which returns a list of moves [here (2,3,4) means that the atom initially in trap
2 is moved, via trap 3, to trap 4]. Some moves lead to collisions (denoted in red) and thus the set of moves is postprocessed as in the
shortest-moves-first algorithms, by splitting the problematic moves into two or more stages. However, in a second step, two moves that share
the same trap as final and initial positions (denoted in red) can be merged together, reducing the total number of moves. (c) The algorithm
LSAP2 uses a modified cost function with α = 2, which returns a set of short moves; to avoid collisions, the moves are then reordered by
applying successively three rules (see the text) until the rearrangement can be performed without collisions. Numbers in red highlight the
breaking of a rule. (d) Number Nmv of needed moves as a function of N to assemble a staggered target array (blue), a random target array
(purple), or a compact target array (red), for the LSAP1 and LSAP2 algorithms. The dashed lines reproduce the fits of Fig. 1 for comparison.

starting from the LSAP matching. The computation time for
this approach is on average 4 ms for 100 target traps in a
staggered geometry and roughly scales as N2.1,2

Figure 5(d) shows the number of moves Nmv as a function
of N for LSAP 1 (disks). The performance is very satisfactory
for staggered or random target arrays, as the number of moves
is only 20–30 % higher than the absolute lower bound N/2.
For compact arrays, the number of needed moves is slightly
larger than N , making this approach less efficient than the
compression algorithm described in Sec. IV.

1In the worst case, the Hungarian matching algorithm is known to
scale as N3; however, we observe empirically that for the current
problem and for the values of N up to a few hundreds considered
here, the average runtime of our LSAP and reordering algorithm
scales roughly as N2.

2To reduce the computation time during the experiment, we precal-
culate a lookup table with the shortest paths and path lengths between
all trap pairs. During each assembly cycle, the cost matrix for the
LSAP algorithm is found as a submatrix of the lookup table.

B. LSAP2: Modified metric and reordering

Long moves lead to many collisions; therefore, it is benefi-
cial to avoid them. In our second approach we achieve this by
using a modified cost function

∑
paths i �

2
i . A similar idea was

introduced in [20], but here the moves are sequential and we
thus need to find the right ordering in which the moves have
to be performed to avoid collisions.

To do so, we apply the following rules. We examine each
move in the list and if the target trap of the move is occupied
(case 1), if another trap along the path of the move is filled
(case 2), or if the target trap is in the path of another move
following in the list (case 3), we postpone this move and put
it at the end of the list of moves. We find empirically that
this procedure always produces a collision-free set of moves.
This approach is illustrated in Fig. 5(c). The whole algorithm
(LSAP and reordering) has an average computation time of 4
ms for N = 100 target traps in a compact geometry and scales
roughly as N2.

Whatever the target array, the maximum number of moves
is bounded by N , the size of the cost matrix. As can be seen
in Fig. 5(d) (triangles), the number of moves returned by
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LSAP2 is slightly larger than LSAP1 for sparse arrays, but
is smaller for compact arrays, where it gives essentially the
same performance as the compression algorithm. The latter,
however, has the advantage of a shorter calculation time for
N > Nc, with a critical atom number Nc ∼ 300 in our current
implementation.

VI. ARRAYS WITH COMPLETELY
ARBITRARY GEOMETRY

Condensed-matter models are often studied on specific
crystalline arrangements which are described by a Bravais
lattice, e.g., a square or a triangular lattice. Our previous
assembler was therefore based on such an underlying lattice,
which simplifies the problem in two ways. First, this naturally
defines the paths along which the moving tweezer can travel
and, because these lattice edges are separated by a constant
spacing, it automatically ensures that a minimal distance be-
tween atoms in traps and the moving tweezer is always kept
during the rearrangement. Second, it simplifies the distance
calculation between two traps by defining the metric in terms
of lattice coordinates (Manhattan distance).

Not all physical structures of interest for quantum sim-
ulation, however, can be described by a Bravais lattice.
Examples of such nonperiodic features include crystals with
defects (interstitial defects, vacancies, dislocations, and grain
boundaries), quasicrystals, disordered arrays for Anderson
or many-body localization studies, and even totally arbitrary
structures in the context of combinatorial optimization prob-
lems such as finding the maximum independent set of a graph
[25,26]. To examine such systems, we developed a variant of
our algorithms, which is not based on an underlying lattice
and therefore allows us to assemble truly arbitrary structures.

The starting point for our algorithm is the set of N target
traps, whose positions are provided by the user. Because of
the stochastic loading, we have to place N additional reservoir
traps close to the arbitrary N-atom target configuration. This
reservoir generation works as follows [Fig. 6(a)]. Whenever
possible, to reduce the number of moves, a reservoir trap
should be placed in immediate proximity to each target trap.
To do so, we compute the Voronoi diagram [27] of the set of
target traps (i.e., divide the plane in N regions, one around
each target trap T , such that all points of this region are closer
to T than to any other trap). We then add in each Voronoi cell
a single reservoir trap, provided it can be placed at a distance
larger than a “safety” distance dm (typically ∼4 μm) from all
other traps. If successful, this procedure ensures that for each
target trap there is a single reservoir close to it [Fig. 6(b)]. If,
however, the density of the target traps is already comparable
to 1/d2

m, then we cannot add enough reservoir traps in this way
and so we place extra traps at the periphery of the pattern in a
compact triangular array [Fig. 6(c)].

The next step is to find paths along which an atom can
travel to an empty target trap. Contrary to the case of Bravais
lattices, no obvious edges are a priori connecting the traps
along which the moves can be performed. Direct straight-line
paths from the reservoir to the target trap are also not possible,
since there can be other traps in the way, leading to collisions
and atom losses. We thus define the set of allowed paths by
using a Delaunay triangulation [27] of the full set of traps

FIG. 6. Generating the reservoir arrays for arbitrary target arrays.
(a) Starting from the user-defined target array (left), we compute its
Voronoi diagram (middle) and in each cell we add a reservoir trap,
shown in red, if there is enough room (right); otherwise we add it
at the periphery (see the text for details). Also shown are examples
of generated reservoirs for an N = 200 target array, (b) without and
(c) with the need to add reservoirs at the periphery.

(target and reservoir) as shown in Fig. 7. In practice, we imple-
mented the triangulation in PYTHON 3.0 with the SCIPY library
[24]. To enforce the above-mentioned constraint of a minimal
passing distance, we postremove edges that do not meet this
requirement (see dashed lines in Fig. 7). We emphasize that
the generation of the reservoir traps and of the allowed edges
is done just once for any given target array, and not at each rep-
etition of the experiment, which considerably relaxes the con-
straints on the speed of this algorithm. In practice, arrays with
hundreds of target traps can be processed in a few seconds.

FIG. 7. Generating the allowed paths between traps. We first per-
form the Delaunay triangulation of the atom array. In a second step,
we remove edges which do not fulfill a minimal passing-distance
requirement (dotted line).
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This triangulation then allows us to naturally describe the
whole structure in terms of graph language, connecting the
nodes (trap positions) by edges along which the atoms are
allowed to move. In this way, we eliminate the necessity to
describe the problem with an underlying Bravais lattice. Fur-
thermore, it allows the implementation of efficient shortest-
path graph algorithms (e.g., the Dijkstra algorithm [19]) to
find the shortest path between a matched initial and target trap,
following the allowed edges of the graph. For the generation
of the graphs and graph algorithms the NETWORKX library
[28] is used. With these modifications, it is now possible to
extend the algorithms discussed above to arbitrary patterns.
The scaling and performance of the algorithms (in terms of
computation time and the number of moves) are essentially
unchanged as compared to the case of regular lattices.

VII. EXPERIMENTAL DEMONSTRATION

The experimental setup has been described in [13]. Using
an SLM (Hammamatsu X10468-02), a fixed pattern of optical
dipole traps at 850 nm is generated in the focal plane of a
high-numerical-aperture (equal to 0.5) aspheric lens. With
an available laser power of ∼1 W, we can generate up to
200 traps with a 1/e2 radius of ∼1 μm and a typical trap
depth of ∼1 mK, resulting in a radial (longitudinal) trapping
frequency around 100 kHz (20 kHz). Initially, the traps are
stochastically loaded with single atoms at a temperature of
∼10 μK from a magneto-optical trap of 87Rb atoms; the typ-
ical loading time is ∼150 ms. An initial fluorescence image
(20 ms) determines the initial occupancy of the traps, which
is 50–60% on average.

To assemble a target array, we use a single 850-nm dipole
trap with a 1/e2 radius of ∼1.3 μm, steered by a 2D AOD,
which can pick up an atom from a static trap by ramping
up its depth to ∼10 mK and subsequently moving and then
releasing the atom at the position of an empty static trap. After
the assembly, a fluorescence image with an exposure time of
20 ms determines the occupancy of the target array, before we
perform an actual experiment, e.g., quantum simulation of a
spin model, by exciting the atoms to Rydberg levels [1]. This
technique allows us to perform experiments with a typical
repetition rate of ∼3 Hz.

Once the trap array has been generated, we equalize the
trap intensities using the fluorescence signal of the loaded
traps.3 Then the choice of the optimal algorithm to be used
for assembly, among the three described above, is made ac-
cording to the characteristics of the target array to assemble,
as described in Fig. 8.

Finally, in order to further improve the success proba-
bility of assembling a defect-free array, we apply multiple

3It is of importance that all microtraps have a good optical quality
and in particular the same depth such that (i) single-atom loading
does indeed occur with a probability of ∼1/2 and (ii) the fluores-
cence signal from any given trap allows for efficient identification
of the presence of a single atom. We now equalize the trap depths
by a direct optimization of the fluorescence time trace of each single
trap, altering the trap intensity until we fulfill criteria (i) and (ii). A
detailed description of this procedure is left for future work.

User-defined 
target trap 
positions

Belongs to 
Bravais 
lattice?

N > Nc?

Generate 
reservoir traps 
and triangulate

Is target 
array 

‘compact’?

LSAP 1

Yes

No

LSAP 2Compression

Yes

No

Yes

No

FIG. 8. Algorithm choice flowchart. The best-suited algorithm to
be used depends on the characteristics of the target array. The critical
atom number Nc is defined at the end of Sec. V.

rearrangement cycles (similar to [14,18]). At the end of the
first rearrangement process, we keep the excess atoms and
determine the defects with a fluorescence image. We then fill
these defects [Fig. 9(a)]. This process can be repeated until a
defect-free array is obtained and excess atoms are removed.
However, since this procedure requires more than N initial

(a)

(b)

10 μm

FIG. 9. Multiple rearrangement cycles. The probability to assem-
ble a defect-free array can be increased by starting with more than N
atoms and repeating the rearrangement cycle more than once. (a) On
the shown 10×10 compact target square array, we can increase the
probability to create a defect-free array by a factor 10 (from 2% to
20%), when starting with 225 atoms and performing a second cycle.
(b) A Monte Carlo simulation (red) of the first cycle and second
cycle, including the measured efficiencies of performing the moves
and vacuum lifetime, reproduces the experimental distribution of
defects reasonably well.
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10 μm 

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 10. Gallery of assembled arbitrary structures. Shown from left to right are the target structure, the structure with the generated
reservoir traps (in red) and the allowed paths connecting traps, the fluorescence image of an initial random loading, the fluorescence image
of the assembled structure, and the probability distribution of the number of defects after a rearrangement cycle (gray) and after two such
cycles (dark gray). All white scale bars are 10 μm. (a) Compact square array (N = 100), (b) the arbitrary array used as an example in Sec. VI
(N = 14), (c) an edge dislocation in a square lattice (N = 39), (d) a grain boundary between a square and a triangular lattice (N = 91), (e) a
patch of a triangular lattice (N = 108), and (f) an atomic rendering of Mona Lisa (N = 106).
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atoms, a high efficiency of a single rearrangement cycle is
still essential as laser power is a limiting factor for scaling
up the number of atoms. Figure 9(b) shows the probability
distribution of the number of defects (missing atoms) after a
single (left) or two (right) rearrangement cycles, showing the
benefit of performing several cycles.

Examples of assembled structures of various types, with up
to N = 108 atoms, can be seen in Fig. 10. The probability to
have a given number of defects in the final array is shown in
the histograms on the right, for a single rearrangement (gray)
and for two cycles (dark gray). In the latter case, even for N >

100, defect-free arrays are obtained in about 20% of the shots.
Using a trapping wavelength closer to resonance (820 nm) in
order to generate more traps for a given laser power, we have
been able to assemble arrays of up to 209 atoms without any
given defects.

VIII. CONCLUSION

In this paper, we have shown how, without any change
in the hardware used in [13], improved algorithms can
significantly improve the capabilities of a moving-tweezer
atom-by-atom assembler, both in terms of possible array ge-
ometries and in terms of achievable atom numbers due to the
fact that fewer moves are required.

The algorithms demonstrated here can be used directly for
the plane-by-plane assembly of three-dimensional structures
[22]. Extending them to a full three-dimensional assembly

with atoms being moved also longitudinally, along the lens
optical axis, will require significant changes due to the fact
that transverse moves (using an AOD) and longitudinal moves
(done with an electrically tunable lens) do not obey the same
constraints.

Another natural extension of this study, which we leave for
future work, is to use multiple tweezers working in parallel, in
the spirit of [14]. This approach should be particularly easy to
adapt to the compression algorithm for assembling compact
regular structures; then, assuming that the laser power for
generating the multiple tweezers is not a limit, the assembly
time could scale as

√
N , making it possible to assemble struc-

tures with several hundreds of atoms. Combined with other
technical improvements, using, e.g., cryogenic environments
to drastically extend the vacuum-limited lifetime, reaching a
scale of 1000 atoms or more thus seems realistic in the rela-
tively near future, which would open up a variety of exciting
applications in quantum science and technology.
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Vuletić, and M. D. Lukin, Probing many-body dynamics on a
51-atom quantum simulator, Nature (London) 551, 579 (2017).

[4] V. Lienhard, S. de Léséleuc, D. Barredo, T. Lahaye, A.
Browaeys, M. Schuler, L.-P. Henry, and A. M. Läuchli, Observ-
ing the Space- and Time-Dependent Growth of Correlations in
Dynamically Tuned Synthetic Ising Models with Antiferromag-
netic Interactions, Phys. Rev. X 8, 021070 (2018).

[5] H. Kim, Y. Park, K. Kim, H.-S. Sim, and J. Ahn, Detailed Bal-
ance of Thermalization Dynamics in Rydberg-Atom Quantum
Simulators, Phys. Rev. Lett. 120, 180502 (2018).

[6] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler,
S. Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev, P.
Zoller, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin,
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