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Abstract
Entropy regularization in optimal transport (OT)
has been the driver of many recent interests for
Wasserstein metrics and barycenters in machine
learning. It allows to keep the appealing geomet-
rical properties of the unregularized Wasserstein
distance while having a significantly lower com-
plexity thanks to Sinkhorn’s algorithm. However,
entropy brings some inherent smoothing bias, re-
sulting for example in blurred barycenters. This
side effect has prompted an increasing tempta-
tion in the community to settle for a slower al-
gorithm such as log-domain stabilized Sinkhorn
which breaks the parallel structure that can be
leveraged on GPUs, or even go back to unregu-
larized OT. Here we show how this bias is tightly
linked to the reference measure that defines the
entropy regularizer and propose debiased Wasser-
stein barycenters that preserve the best of both
worlds: fast Sinkhorn-like iterations without en-
tropy smoothing. Theoretically, we prove that the
entropic OT barycenter of univariate Gaussians
is a Gaussian and quantify its variance bias. This
result is obtained by extending the differentiabil-
ity and convexity of entropic OT to sub-Gaussian
measures with unbounded supports. Empirically,
we illustrate the reduced blurring and the compu-
tational advantage on various applications.

1. Introduction
Comparing, interpolating or averaging probability distribu-
tions is an ubiquitous problem in machine learning. Optimal
transport (OT) offers an efficient way to do exactly that
while taking into account the geometry of the space they
live in (Peyré & Cuturi, 2018). Let P(Rd) denote the set
of probability measures on Rd. Given some divergence
F : P(Rd) × P(Rd) → R and weights (wk)k such that
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∑K
k=1 wk = 1, the weighted barycenter of a set of proba-

bility measures (αk)k can be defined as the Fréchet mean:

αF
def
= arg minα∈P(Rd)

K∑
k=1

wkF (αk, α) . (1)

Here αF can be thought as a weighted average of distri-
butions. While the (αk)k may have a fixed support or
known finite supports when working in machine learning
applications, the support of αF may or may not be known.
When the latter is unknown a priori, free support methods
are needed to jointly minimize the objective with respect
to both the support and the mass of the distribution (Cu-
turi & Doucet, 2014). Otherwise, fixed support methods,
which only optimize weights on known supports, are em-
ployed (Benamou et al., 2014). While free support methods
are more general and memory efficient, fixed support ones
are faster in practice. In this paper, we focus on fixed support
methods.

Using the Wasserstein distance as a divergence F , Li &
Wang (2006) were the first to propose the Fréchet mean (1)
for a clustering application in computer vision. This idea
was later adopted by Agueh & Carlier (2011) to formally
define Optimal Transport (OT) barycenters. However, the
Wasserstein distance is defined through a linear program-
ming problem which does not scale to large datasets. To
address this computational issue, some form of regulariza-
tion is mandatory: either regularize the measures themselves
using sliced projections for instances or regularize the OT
problem using `2 (Blondel et al., 2018) or entropy (Cu-
turi, 2013). While `2 preserves some of the sparsity of the
non-regularized optimal transportation plan, entropy reg-
ularization leads to an approximation of the Wasserstein
distance that can be solved using a fast and parallelizable
GPU-friendly algorithm: the celebrated Sinkhorn’s algo-
rithm (Cuturi, 2013). In the rest of this paper, we will focus
on entropic OT. Let C be a non-negative cost function on
Rd × Rd such that C(x, y) = 0 ⇔ x = y. For instance, a
usual choice is C(x, y) = ‖x − y‖2. Entropy regularized
OT between α, β ∈ P(Rd) with the reference measures
m1,m2 ∈ P(Rd) is defined as:

OTm1,m2
ε (α, β)

def
=

min
π∈P(Rd×Rd)
π#1=α,π#2=β

∫
Rd×d

C dπ + εKL(π|m1 ⊗m2) , (2)

ar
X

iv
:2

00
6.

02
57

5v
1 

 [
st

at
.M

L
] 

 3
 J

un
 2

02
0



Debiased Sinkhorn barycenters

where ε > 0, π#1, π#2 denote the left and right marginals
of π respectively, m1 ⊗m2 is the product measure of m1

and m2, and the relative entropy is defined as:

KL(π|m1 ⊗m2)
def
=

∫
Rd×Rd

log

(
dπ

d(m1 ⊗m2)

)
dπ .

(3)
Naturally, in the discrete case, Benamou et al. (2014) pro-
posed to compute OT barycenters of discrete measures using
F = OTm1,m2

ε with m1 = m2 = U , the uniform measure
over the finite set on which the measures are defined. Doing
so, they showed that the barycenter problem is equivalent
to Iterative Bregman Projections (IBP) which are similar to
Sinkhorn’s scaling operations. However, entropy regular-
ization leads to an undesirable blurring of the barycenter.
While using a very small regularization may appear as an
obvious solution, it leads to numerical instabilities that can
only be mitigated using log-domain stabilization or full log-
domain ‘logsumexp’ operations (Schmitzer, 2016). This
however considerably slows down Sinkhorn’s iterations.

To reduce this entropy bias, several divergences F have been
proposed. For instance, Solomon et al. (2015) proposed to
modify the IBP algorithm by adding a maximum entropy
constraint they called entropy sharpening. This leads to a
non-convex constraint which does not fit within the IBP
framework. Luise et al. (2018) proposed to compute the en-
tropy regularized solution π? and to evaluate the OT loss (2)
without the entropy term KL. This indeed leads to sharper
barycenters but can only be estimated via gradient descent,
thus requiring a full Sinkhorn loop at each iteration and set-
ting a pre-defined learning rate which can be cumbersome
in practice. Amari et al. (2019) proposed a modified entropy
regularized divergence OT that can still leverage the fast
IBP algorithm of Benamou et al. (2014) but requires a final
deconvolution step with the kernel exp(−C

ε ), which is only
feasible when ε is small. With this same objective of non-
blurred solutions, Ge et al. (2019) even called for a return
to the original non-regularized Wasserstein barycenter and
proposed an accelerated interior point methods algorithm.

Our main contributions Except (Ge et al., 2019), all the
works proposed above employ the uniform measure as refer-
ence, i.e they use OTUε

def
= OTm1,m2

ε with m1 = m2 = U .
The purpose of this paper is to highlight a direct link be-
tween the already known entropy bias of the OT barycenter
and this particular choice of m1 and m2. This link is illus-
trated by showing how the choice of m1 and m2 impact the
barycenter of univariate Gaussians in Rd. Following (Ram-
das et al., 2017; Genevay et al., 2018; Feydy et al., 2018;
Luise et al., 2019), we advocate for using the following
Sinkhorn divergence which can be defined without specify-
ing m1 and m2 for arbitrary measures α, β ∈ P(Rd):

Sε(α, β)
def
= OTε(α, β)− OTε(α, α) + OTε(β, β)

2
.

The choice of the reference measures m1 and m2 has led
to different formulations of regularized OT. The main con-
tributions of this paper are twofold. (1) theoretical: we
quantify the entropy bias of usual reference measures for
univariate Gaussians. Precisely, while the Lebesgue mea-
sure (m1 = m2 = L) induces a blurring bias and the
product measure (m1 = α,m2 = β) induces a shrinking
bias, Sε is actually debiased. (2) empirical: we propose a
fast iterative algorithm similar to IBP to compute debiased
barycenters. Unlike other gradient-based methods, this fixed
point algorithm can be efficiently differentiated with respect
to the barycentric weights via backpropagation. This allows
one to carry out Wasserstein barycentric projections without
entropy blurring. This will be illustrated in the experiments.

In the following section we discuss the different choices of
m1 andm2 and quantify their induced entropy bias upon the
barycenters of univariate Gaussians. In Section 3, we show
some useful properties of Sε (differentiability, convexity)
when defined on sub-Gaussian measures with unbounded
supports in Rd which are necessary to prove the theorems
of section 2. Next, in Section 4 we turn to computational
aspects and provide a fast Sinkhorn-like algorithm for debi-
ased barycenters. We conclude with numerical experiments
in Section 5.

2. Reference measure and entropy bias
Notation We denote by 1 the vector of ones in Rn. On
matrices, log, exp and the division operator are applied
element-wise. We use� for the element-wise multiplication
between matrices or vectors. On vectors and matrices, the
same notation denotes the usual scalar products: for x, y ∈
Rn, 〈x, y〉 =

∑n
i=1 xiyi; and for matrices A,B ∈ Rn,n,

〈A,B〉 =
∑n
i,j=1 AijBij .

Uniform reference and IBP Let X = {x1, . . . , xn} ⊂
Rd and consider two discrete measures α =

∑n
i=1 αiδxi

and β =
∑n
i=1 βiδxi . One can identify α and β with their

weights αi and βi where α>1 = β>1. Let C ∈ Rn×n+ be
the matrix such that Cij = C(xi, xj). The definition of
OTUε in (2) becomes:

OTUε (α, β) = min
π∈Rn×n+

π1=α,π>1=β

〈C, π〉+ εKL(π|U) , (4)

where U is the uniform measure on X 2 given by 11>

n2 . Let
K be the element-wise exponentiated kernel exp

(
−C
ε

)
. By

adopting the definition K̃L(A,B) =
∑n
i,jAij log

(
Aij

Bij

)
+

Bij−Aij for A,B ∈ Rn×n+ , Benamou et al. (2014) noticed
that (4) is equivalent to a Kullback-Leibler projection up to
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an additive constant:

OTUε (α, β) = min
π∈Rn×n+

π1=α,π>1=β

εK̃L(π|K) (5)

and proposed the Iterative Bregman Projections (IBP) algo-
rithm to solve the equivalent barycenter problem:

min
π1,...,πK
πk∈Ck∩C′

K∑
k=1

wkK̃L(πk|K) , (6)

where Ck = {π ∈ Rn×n+ |π1 = αk} and C′ = {π ∈
Rn×n+ |∃α ∈ ∆n, π

>
k 1 = α, ∀k = 1 . . .K}. The IBP

algorithm amounts to performing iterative minimization on
one constraint set at a time. Each step can be solved in
closed form, leading to Sinkhorn-like iterations, see supple-
mentary section D for details on IBP.

Lebesgue reference and smoothing bias As discussed
in the introduction, the obtained barycenter αOTUε

suffers
from entropy blurring. To quantify this blur, we turn to
Lebesgue continuous measures and consider the Lebesgue
measure as a reference by setting m1 = m2 = L. We ar-
gue that by considering normalized histograms, the discrete
formulation (5) provides an approximation of OTLε when
the number of histogram bins tends to +∞. Indeed, since
OTLε is defined on Lebesgue-continuous measures, one can
identify α, β and π with their density functions. Moreover,
if the density functions are positive, the same KL factor-
ization (5) is possible for OTLε . The following theorem
shows that the weighted barycenter of univariate Gaussians
is Gaussian with an increased variance. Figure 1 illustrates
this smoothing bias using discrete histograms with a grid of
500 bins.

Theorem 1 (Blurring bias of OTLε ). Let C(x, y) = (x−y)2

ε > 0 and ε = 2ε′2. Let (wk)k be positive weights that
sum to 1. Let N denote the Gaussian distribution. Assume
αk ∼ N (µk, σ

2
k) and let µ̄ =

∑
k wkµk,

then:

(i) αOTLε
∼ N (µ̄, S2) where S is a positive solution of the

equation:
∑
k=1 wk

√
ε′4 + 4σ2

kS
2 = −ε′2 + 2S2.

(ii) In particular, if all σk are equal to some σ > 0,

then αOTLε
∼ N (µ̄, σ2 + ε′2).

PROOF. See section C.3

The product measure and shrinking bias Besides the
smoothing bias of the uniform measure, OTUε cannot be
generalized to a general OT definition for any arbitrary
distributions that are non-discrete or non-Lebesgue con-
tinuous measures. To go beyond this binary classification

αOT
ε
 (IBP) Expected by Theorem 1

−5 0 5
0.000

0.005

0.010

0.015

0.020
ε = 0.1

−5 0 5

ε = 1.0

−5 0 5

ε = 10.0

Figure 1. Illustration of theorem 1 withN (−2, 0.4) andN (2, 0.7)
shown in black, and (w1, w2) = (0.4, 0.6). The barycenter OTU

ε

matches theoretical expectations and is biased towards blurred
distributions.

of probability measures, several authors (Ramdas et al.,
2017; Genevay et al., 2018; Feydy et al., 2018) proposed the
generic references m1 = α, m2 = β. Indeed, the marginal
constraints π1 = α, π2 = β imply that the support of π is
included in that of α ⊗ β and the KL term is always well-
defined regardless of the nature of α and β. For the sake
of convenience, we denote OT⊗ε

def
= OTα,βε . Di Marino

& Gerolin (2019) made the following key observation that
characterizes the change of reference. For discrete measures
α, β:

OTUε (α, β) = OT⊗ε (α, β) + εKL(α|U) + εKL(β|U) .
(7)

Similarly, the same identity holds for Lebesgue-continuous
measures in P(Rd):

OTLε (α, β) = OT⊗ε (α, β) + εKL(α|L) + εKL(β|L) .
(8)

The identity (7) unveils another merit of OT⊗ε over OTUε :
its corresponding barycenter problem is equivalent to a reg-
ularized OTUε barycenter with a negative KL penalty. In-
terestingly, even though ‘−KL’ is concave, OT⊗ε remains
convex with respect to one of its arguments (Feydy et al.,
2018). However, OT⊗ε yet suffers from some limitations:
(1) OT⊗ε cannot be written as a KL projection, thus the fast
IBP algorithm is lost; (2) the barycenter αOT⊗ε

of Gaus-
sians can be a degenerate Gaussian, as demonstrated by
Theorem 2 which shows that if ε is large, the barycenter
collapses to a Dirac (cf. Figure 3). This phenomenon can
however be leveraged as a deconvolution technique: Rigol-
let & Weed (2018) showed that minimizing OT⊗ε is equiv-
alent to maximum-likelihood deconvolution of an additive
Gaussian-noise model.

Theorem 2 (Shrinking bias of OT⊗ε ). Let C(x, y) = (x−
y)2, ε > 0 and ε = 2ε′2. Let (wk)k be positive weights
that sum to 1. Let N denote the Gaussian distribution.
Assume that αk ∼ N (µk, σ

2
k) and let µ̄ =

∑
k wkµk, σ̄2 =∑

k=1 wkσ
2
k:

(i) if ε′2 < σ̄2 then αOT⊗ε
∼ N (µ̄, S2) where S is a positive

solution of the equation:
∑
k=1 wk

√
ε′4 + 4σ2

kS
2 = ε′2 +
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2S2. In particular, if all σk are equal to some σ > 0, then
αOT⊗ε

∼ N (µ̄, σ2 − ε′2).

(ii) if ε′2 ≥ σ̄2 then αOT⊗ε
is a Dirac located at µ̄.

PROOF. See section 3.

Debiased barycenters Interestingly, these limitations and
significant differences between OTUε , OTLε and OT⊗ε disap-
pear when considering the following Sinkhorn divergences:

Smε (α, β)
def
= OTmε (α, β)− OTmε (α, α) + OTmε (β, β)

2
,

Sε(α, β)
def
= OT⊗ε (α, β)− OT⊗ε (α, α) + OT⊗ε (β, β)

2
.

Using (7) and (8) it holds:

Sε(α, β) = Smε (α, β) , (9)

where m is either U or L depending on the nature of α
and β. Therefore, Sε is defined on arbitrary probability
measures which can be mixtures of continuous measures
and Dirac masses. Moreover, Feydy et al. (2018) showed
that when the support of the measures is compact and with
the additional assumption that C is negative semi-definite,
Sε is differentiable and convex with respect to one of its
arguments. In the following section, we generalize the
aforementioned statements for measures with unbounded
supports in Rd. The negativity assumption on C holds for
instance if C(x, y) = ‖x− y‖d with 0 < d ≤ 2 (Berg et al.,
1984, Chapter 3, Cor 3.3) and is the only (cheap) price to
pay for a debiased OT divergence. These convexity and
differentiability results are essential to prove the debiasing
of Sε stated in Theorem 3 and illustrated in Figure 2.

Theorem 3 (Debiasing of Sε). Let C(x, y) = (x− y)2 and
0 < ε < +∞ and ε = 2ε′2. Let (wk)k be positive weights
that sum to 1. Let N denote the Gaussian distribution.
Assume that αk ∼ N (µk, σ

2
k) and let µ̄ =

∑
k wkµk then:

(i) αSε ∼ N (µ̄, S2) where S is a positive solution S? of the
equation:∑
k=1 wk

√
ε′4 + 4σ2

kS
2 =
√
ε′4 + 4S4. Moreover, given

a sorted sequence σ(1) ≤ · · · ≤ σ(K), it holds S? ∈
(σ(0), σ(K)).

(ii) In particular, if all σk are equal to some σ > 0, then
αSε ∼ N (µ̄, σ2).

PROOF. See section 3.

Figure 3 shows a comparison of the three barycenters dis-
cussed in this section. We intentionally chose Gaussians
with equal variances to emphasize two observations: (1) the
debiasing of Sε: the barycenter αSε has the same variance

αSε (proposed) Expected by Theorem 3

−5 0 5
0.000

0.005

0.010

0.015

0.020
ε = 0.1

−5 0 5

ε = 1.0

−5 0 5

ε = 10.0

Figure 2. Illustration of theorem 3. Unlike with the uniform mea-
sure (Figure 1), the debiased barycenter remains unscathed when
increasing ε.

αOT
ε
 (IBP) αOT⊗

ε αSε (proposed)

−5 0 5
0.00

0.01

0.02

0.03

0.04
ε = 0.2

−5 0 5

ε = 0.4

−5 0 5

ε = 1.0

Figure 3. Illustration of the three theorems with N (−3, 0.4) and
N (3, 0.4) shown in black using uniform weights. Entropy regular-
ization causes a smoothing bias (blue) and a shrinking bias (red).
Debiasing with Sε (cyan) is perfect and independent of ε.

of the input measures for all ε; (2) the shrinking bias of
OT⊗ε is significant even for small values of ε.

Besides debiasing, the barycenter αSε also comes with a
computational advantage. Using the identity (9), we bypass
the technical difficulties of the product measure in Sε and
derive an algorithm similar to IBP to compute αSε which
will be the subject of section 4.

3. Sε is convex and differentiable on
sub-Gaussian measures with unbounded
supports

Notation The set of continuous function on Rd is de-
noted by C(Rd). The set of probability measures with
a second order moment is denoted by P2(Rd). For α ∈
P(Rd), Lp(Rd, α) denotes the set of continuous functions
Rd → R such that

∫
|f |p dα < +∞. Let f ∈ L1(Rd, α),

g ∈ L1(Rd, β) and denote 〈α, f〉 =
∫
Rd f dα. The ten-

sor operators ⊗ and ⊕ denote respectively the mappings
f⊗g : (x, y) ∈ Rd×Rd 7→ f(x).g(y) and f⊕g : (x, y) ∈
Rd × Rd 7→ f(x) + g(y).

To prove theorems 2 and 3, we characterize the optimality
condition of the barycenter problem. First, we show that
OT⊗ε and Sε are convex (w.r.t. one variable) and differen-
tiable. Our differentiability proof is inspired from that of
Feydy et al. (2018) where the compactness assumption of
the whole X is replaced with a sub-Gaussian tails assump-
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tion on the measures that allows one to apply Lebesgue’s
dominated convergence theorem on Rd. The convexity
proof is however novel and is solely based on the dual prob-
lem of OT⊗ε . Proving theorem 1 requires studying OTLε
which involves a slightly different dual problem. Since the
differences are purely technical, we defer the proof of the-
orem 1 in the appendix and focus in this section on the
product measure OT⊗ε and Sε for the sake of clarity.

Dual problem In this section, we set C(x, y) = ‖x−y‖2

with its associated Gaussian kernel K(x, y) = e−
‖x−y‖2

ε .
Let α, β ∈ P(Rd). We define the linear operators on
K and K> such that K(µ) =

∫
Rd K(x, y) dµ(y) and

K>(µ) =
∫
Rd K

>(x, y) dµ(x) for any non-negative mea-
sure µ ∈ M+(Rd). Problem (2) has a dual formulation
given by:

OT⊗ε (α, β) = sup
f∈L1(Rd,α)

g∈L1(Rd,β)

∫
Rd
f dα+

∫
Rd
g dβ

−ε
∫
Rd×Rd

exp

(
f ⊕ g − C

ε

)
dα dβ + ε .

(10)

if α and β have finite second moments, (10) is well defined
and a couple of dual potentials (f, g) are optimal if and only
if they are solutions of Sinkhorn’s equations (Mena & Weed,
2019):

e
f
ε .K(e

g
ε .β) = 1, α− a.e ,

e
g
ε .K>(e

f
ε .α) = 1, β − a.e .

(11)

and the optimal transport plan π is given by:
π = exp

(
f⊕g−C

ε

)
.(α⊗ β)

Thus, at optimality the integral over Rd×Rd sums to 1 and:

OT⊗ε (α, β) =

∫
Rd
f dα+

∫
Rd
g dβ (12)

Symmetric terms OT⊗ε (α, α) When α = β, the symme-
try of the problem leads to the existence of a symmetric pair
of potentials (h, h). Indeed, if (f, g) is optimal (g, f) is
also optimal. Moreover, since C is symmetric, the optimal
transport plan π is also symmetric which leads to f = g.
Thus the following proposition holds.

Proposition 1. Let α ∈ P2(Rd), it holds:

OT⊗ε (α, α) = sup
h∈L1(Rd,α)

2

∫
Rd
hdα

− ε
∫
Rd×Rd

exp

(
h⊕ h− C

ε

)
d2α+ ε ,

(13)

Moreover, the supremum is attained at the unique (by strong
concavity; since C is definite negative) autocorrelation
potential h ∈ L1(Rd, α) if and only if h is a solution of
e
fh
ε .K(e

h
ε .α) = 1, α − a.e , and at optimality it holds:

1
2 OT⊗ε (α, α) =

∫
Rd hdα.

Restriction on sub-Gaussians To derive theorems 2 and
3, we show that both OT⊗ε and Sε are convex and differ-
entiable and provide a solution of the first order optimality
condition. Notice that the convexity of OT⊗ε with respect
to α and with respect to β follows immediately from (10)
since it corresponds to a supremum of linear functionals.
Feydy et al. (2018) showed the differentiability of OT⊗ε and
the convexity of Sε on measures with compact supports. On
Rd, more assumptions on α and β are required. Throughout
this section we restrict OT⊗ε and Sε to the convex set of
sub-Gaussian probability measures:
Assumption 1. We set C(x, y) = ‖x − y‖2 and restrict
OT⊗ε and Sε to the set of sub-Gaussian probability mea-

sures G(Rd) def
= {µ|∃q > 0, Eµ(e

‖X‖2

2dq2 ) ≤ 2}.

Mena & Weed (2019) showed that if α, β ∈ G(Rd), there
exists a pair of potentials (f, g) verifying the fixed point
equations (11) on the whole space Rd that are bounded by
quadratic functions. This result is key to show the differen-
tiability of OT⊗ε on G(Rd).
Proposition 2 (Mena & Weed (2019), Prop. 6). Let α, β ∈
G(Rd). There exists a pair of smooth functions (f, g) such
that (11) holds on Rd and ∀x, y ∈ Rd:

−dq2(1 +
1

2
(‖x‖+

√
2dq)2) ≤ f(x)

ε
≤ 1

2
(‖x‖+

√
2dq)2

−dq2(1 +
1

2
(‖y‖+

√
2dq)2) ≤ g(y)

ε
≤ 1

2
(‖y‖+

√
2dq)2

(14)

Differentiability In the rest of this section, (f, g) denotes
a pair of potentials defined by Proposition 2. We say that
a function F : G(Rd) → R is differentiable at α if there
exists ∇F (α) ∈ C(Rd) such that for any displacement tδα
with t > 0 and δα = α1 − α2 with α1, α2 ∈ G(Rd), and:

F (α+ tδα) = F (α) + t〈δα,∇F (α)〉+ o(t) , (15)

where 〈δα,∇F (α)〉 =
∫
Rd ∇F (α) dδα.

Proposition 3. Let α, β ∈ G(Rd), and (f, g) their as-
sociated pair of dual potentials given by proposition 2.
OT⊗ε (α, .) is differentiable on sub-Gaussian measures with
unbounded supports and its gradient is given by:

∇β OT⊗ε (α, β) = g . (16)

SKETCH OF PROOF. The proof is inspired from Feydy et al.
(2018) in the case of measures with compact supports. The
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difference arises when taking the limit of integrals of the
potentials. Thanks to assumption 1, proposition 2 provides
an upper bound that allows to conclude by dominated con-
vergence. The full proof is provided in the appendix.

The differentiability of Sε follows immediately:
Corollary 1. Let α, β ∈ G(Rd), and (f, g) their associated
pair of dual potentials given by proposition 2 and hβ the
autocorrelation potential associated with β. S⊗ε (α, .) is
differentiable on sub-Gaussian measures with unbounded
supports and its gradient is given by:

∇β S⊗ε (α, β) = g − hβ . (17)

Remark 1. It is important to keep in mind that the notion
of differentiability (and gradient) of the functions OT⊗ε and
Sε differ from the usual Fréchet differentiability. Indeed,
the space of probability measures P(Rd) has an empty in-
terior in the space of signed Radon measuresM(Rd). The
definition adopted here defines derivatives along feasible di-
rections in P(Rd). This is however sufficient to characterize
the convexity of Sε and its stationary points (see appendix
A for details).

Convexity Now we turn to showing that Sε is convex with
respect to either one of its arguments separately. To do so,
we prove the first order characterization of convexity of a
differentiable function F : P2(Rd)→ R given by:

F (α) ≥ F (α′) + 〈α− α′,∇F (α′)〉 , (18)

As shown by the proof of the following Lemma, the pos-
itivity of K plays a key role in proving the convexity of
Sε.
Lemma 1. Let α, α′ ∈ G(Rd) and let hα, hα′ denote their
respective autocorrelation potentials given by proposition 1.

Then if K(x, y) = e−
‖x−y‖2

ε :∫
e
hα(x)
ε K(x, y)e

h
α′ (y)
ε dα(x) dα′(y) ≤ 1 (19)

Proposition 4. Under assumption (1), Sε is convex on sub-
Gaussian measures with respect to either of its arguments.

PROOF. Let β ∈ G(Rd) . Let α, α′ ∈ G(Rd). Let
(f, g) and (f ′, g′) denote the pair of potentials associated
with OT⊗ε (α, β) and OT⊗ε (α′, β) respectively and for any
µ ∈ G(Rd), let hµ denote the autocorrelation potential as-
sociated with OT⊗ε (µ, µ). The first order inequality (18)
applied to F = Sε(., β) is equivalent to:

(18)⇔ 〈α, f − hα〉+ 〈β, g − hβ〉 ≥
〈α′, f ′ − hα′〉+ 〈β, g′ − hβ〉+ 〈α− α′, f ′ − hα′〉
⇔ 〈α, f − hα〉+ 〈β, g〉 ≥ 〈β, g′〉+ 〈α, f ′ − hα′〉
⇔ 〈α, f〉+ 〈β, g〉 ≥ 〈β, g′〉+ 〈α, f ′ − hα′ + hα〉
⇔ OT⊗ε (α, β) ≥ 〈α, f ′ − hα′ + hα〉+ 〈β, g′〉

(20)

To show the last inequality we use the definition of the
dual problem (10) and evaluate the dual function at the
suboptimal potentials (f ′ − hα′ + hα, g

′). Doing so leads
to:

OT⊗ε (α, β) ≥ 〈α, f ′ − hα′ + hα〉+ 〈β, g′〉+ ε

− ε
∫
Rd×Rd

exp

(
(f ′ − hα′ + hα)⊕ g′ − C

ε

)
dα dβ .

To conclude, all we need to show is that,

∫
Rd×Rd

exp

(
(f ′ − hα′ + hα)⊕ g′ − C

ε

)
dα dβ ≤ 1

(21)
By the Fubini-Tonelli theorem, the order of integration is
irrelevant. First integrating with respect to β, we use the
optimality conditions (11) on the pair (f ′, g′) then on hα′ :

B =

∫
Rd×Rd

exp

(
(f ′ − hα′ + hα)⊕ g′ − C

ε

)
dα dβ

=

∫
Rd

exp

(
hα − hα′

ε

)
dα

=

∫
Rd×Rd

exp

(
hα ⊕ hα′ − C

ε

)
dα dα′

Thus, Lemma 1 applies and we have B ≤ 1.

Barycenter of sub-Gaussian distributions. We have
shown that OT⊗ε and Sε are convex and differentiable,
thus the weighted barycenters αOT⊗ε

and αSε can be char-
acterized by the first order optimality condition as fol-
lows. Let (fk, gk) denote the potentials associated with
OT⊗ε (αk, α) and hα the autocorrelation potential associ-
ated with OT⊗ε (α, α). Using the first order characterization
of convexity (18), α? is a global minimizer of the barycenter
loss of OT⊗ε if and only if for any direction β ∈ G(Rd),
〈
∑K
k=1 wk∇α? OT⊗ε (αk, α

?), β − α?〉 ≥ 0. This is equiv-
alent to

∑K
k=1 wk〈gk, β − α?〉 ≥ 0 . Similarly, for αSε we

get the optimality condition
∑K
k=1 wk〈gk−hα? , β−α?〉 ≥

0 . We are now ready to summarize the different steps of the
proofs of the theorems. For Sε, we provide solutions of the
optimality conditions by considering quadratic potentials
and Gaussian barycenters αSε . We proceed by identification
of the coefficients of the polynomials and the parameters of
the barycenters and show that the obtained solutions verify
the optimality condition. For OT⊗ε , we proceed similarly
for 2ε′2 < σ2. For 2ε′2 ≥ 2σ2, we show directly that for
the Dirac measure α? = δµ̄, there exists a set of potentials
that verify the optimality condition alongside Sinkhorn’s
equations. The detailed derivations are provided in the sup-
plementary materials.
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4. Fast Sinkhorn-like algorithm
Discrete measures on a finite space The purpose of this
section is to derive a fast Sinkhorn-like algorithm to compute
αSε on a fixed support. Let X = {x1, . . . , xn} be a finite
grid of size n. With images for instance, each xi would
correspond to a pixel. We identify a probability measure
α =

∑n
i=1 αiδxi ∈ P(X ) with its weights vector (αi) ∈

Rn++ such that
∑
i=1 αi = 1. In the rest of this paper, OTε

and Sε can be seen as functions operating on the interior
of the probability simplex of Rn denoted by ∆n = {x ∈
Rn++|

∑
i=1 xi = 1}. We assume that the cost matrix C ∈

Rn×n+ is symmetric negative semi-definite (or equivalently,
its associated kernel K = e−

C
ε is positive semi-definite).

This assumption holds for instance if Cij = ‖xi − xj‖p
with p ∈]0, 2] (see (Berg et al., 1984, 3, Thm 2.2, Cor 3.3)
for both claims)

Debiased barycenters To obtain a fast iterative algorithm
for the debiased barycenters αSε , we are going to leverage
the IBP algorithm through the uniform measure on X as
follows. First, the identity (9) ensures that Sε is independent
of the reference measures. Thus, one can write:

Sε(α, β) = OTUε (α, β)− OTUε (α, α) + OTUε (β, β)

2
.

Using (5), one can write OTUε (α, β) as a KL projection.
The remaining autocorrelation terms can be replaced by
their dual problems to obtain the following proposition. A
detailed derivation is provided in appendix E.

Proposition 5. Let α1, . . . , αK ∈ ∆n and K = e−
C
ε . Let

π denote a sequence π1, . . . , πK of transport plans in Rn×n+

and the constraint sets H1 = {π|∀k, πk1 = αk}, and
H2 = {π|∀k ∀k′, π>k 1 = πk′1}. The barycenter problem
minα∈∆n

∑K
k=1 wk Sε(αk, α) is equivalent to:

min
π∈H1∩H2
d∈Rn+

[
ε

K∑
k=1

wkK̃L(πk|K diag(d))

+
ε

2
〈d− 1,K(d− 1)〉

]
.

(22)

where K̃L(A,B) =
∑n
i,jAij log

(
Aij

Bij

)
+ Bij −Aij .

Since K̃L is jointly convex and K is assumed positive-
definite, the objective (22) is convex. Minimizing (22)
with respect to π leads to the barycenter problem αOTUε
(6) with the modified kernel Kdiag(d). This problem can
be solved via the fast IBP algorithm. Minimizing with
respect to d leads to the Sinkhorn fixed point equation

d =
∑
wk

π>k 1

Kd for which there exists a converging sequence

dn+1 ←
√

dn�
∑
wk

π>k 1

Kd (?) (Knight et al., 2014). Given

1 2 3 4 5 6 7
time (s)

10−8

10−7

10−6

10−5

10−4

10−3

||α
⋆

−
α(

l) ||
∞

αOT
ε
 (IBP)

αSε (Alg 1)

Figure 4. Convergence to the true barycenters of univariate Gaus-
sians N (−0.5, 0.1) and N (0.5, 0.1). Algorithm 1 is as fast as
IBP with a linear convergence rate.

Algorithm 1 Debiased Sinkhorn Barycenter

Input: α1, . . . , αK , K = e−
C
ε

Output: αSε

Initialize all scalings (bk), d to 1,
repeat

for k = 1 to K do
ak ←

(
αk
Kbk

)
end for
α← d�

∏K
k=1(K>ak)wk

for k = 1 to K do
bk ←

(
α

K>ak

)
end for
d←

√
d�

(
α
Kd

)
until convergence

that (22) is smooth and convex, alternate minimization –
which amounts to perform IBP and (*) iterations – con-
verges towards its minimum. However, we notice that in
practice, either taking one iteration or fully optimizing the
subproblems produces the same minimizer. We thus pro-
pose to combine one IBP iteration with the update (?), which
leads to Algorithm 1 (see the appendix for further details
on the IBP algorithm). Using the theoretical barycenters of
Gaussians given by theorems 1 and 3, we can monitor the
convergence to the ground truth (Figure 4). Theoretically,
both IBP and algorithm 1 have a O(Kn2) complexity per
iteration. A convergence proof of IBP can obtained using al-
ternating Bregman projections (See (Benamou et al., 2014)
and the references theirein). For Algorithm 1 however, simi-
lar techniques were not successful. Proving its convergence
will be pursued in future work.
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Figure 5. 5 examples of random nested ellipses of size (60 × 60)
used to compute the barycenters of Figure 6.

5. Applications
Now we turn to showing the practical benefits of debiased
barycenters in terms of accuracy, speed and performance.

Benchmarks In addition to αOTUε
, αOT⊗ε

, we evaluate
the performance of the following barycenters:

• αAε : Sharp barycenters introduced by Luise et al.
(2018), where Aε is defined as: Aε(α, β) =
〈C, π?ε (α, β)〉. Here π?ε (α, β) is the primal minimizer
of the regularized problem OTUε (α, β), computed via
accelerated gradient descent.

• αFSε : Free support barycenters introduced by Luise
et al. (2019) that uses the same debiased divergence
Sε, and deals with the free support problem by adding /
removing a Dirac particle with Frank-Wolf’s algorithm.

• αW : The original non-regularized Wasserstein prob-
lem solved with interior point methods - using the
accelerated MAAIPM algorithm of Ge et al. (2019).

Debiased barycenters of ellipses To demonstrate how
debiased barycenters αSε reduce smoothing and are compu-
tationally competitive with αOTUε

, we compare the barycen-
ters of 10 randomly generated nested ellipses displayed in
Figure 5. We set the cost matrix C to the squared Euclidean
distance on the unit square and set ε = 0.002. We use
the same termination criterion for all methods based on a
maximum relative change of the barycenters set to 10−5.

For αSε , αOTUε
, αOT⊗ε

, αAε , we use the convolution trick
introduced by Solomon et al. (2015) which amounts to com-
puting the kernel operation Ka on a vectorized image a
by applying a Gaussian convolution on the rows and the
columns of a, thereby reducing the complexity of one Debi-
ased / IBP iteration from O(n2) to O(n

3
2 ).

Figure 5 shows that even though αAε and αW are not
blurred compared to αOTUε

, they cannot compete compu-
tationally with Sinkhorn-like algorithms. The debiased
barycenter is sharp and runs in about the same time as αOTUε

.
Besides, the shrinking bias of OT⊗ε unfolded by theorem 2
is illustrated in the degeneracy of the ellipse αOT⊗ε

.

Barycenters of 3D shapes To visually illustrate the im-
pact of the reduced smoothing bias of Sε, we computed
a barycentric interpolation of shapes discretized in a 3D
grid of 200 × 200 × 200 voxels. The different inter-

 Ran in 0.86 s

αSε (proposed)

 Ran in 0.11 s

αIBP

 Ran in 13.17 s

αOT⊗
ε

 Ran in 105.71 s

αAε

 Ran in 36.25 s

αF
Sε (Free support)

 Ran in 92.91 s

αW

Figure 6. Barycenters of the 10 nested ellipses shown in Figure 5.
Results illustrate the reduced blurring of the proposed approach
and running times presented below each image demonstrate the
computational efficiency. All 6 barycenters were computed on a
laptop with an Intel Core i5 3.1 GHz Processor.

Figure 7. Interpolation of two 3D shapes a (200)3 uniform grid
with IBP illustrating a clear blurring bias of OTU

ε .

Figure 8. Interpolation of two 3D shapes on a (200)3 uniform grid
with the proposed Debiased Sinkhorn (Alg 1). The interpolation
is sharper and completes in about the same time as figure 7 (5
seconds on a GPU).

polations correspond to weights (w, 1 − w) where w ∈
[0, 0.25, 0.5, 0.75, 1]. We set the cost matric C to the
squared Euclidean distance on the unit cube and set ε =
0.01. Results presented in Figures 7 and 8 using OTUε and
Sε qualitatively demonstrate that Sε leads to sharper edges,
while in both cases it takes a few seconds to compute on a
GPU. Again, the kernel operation Ka on a vectorized 3D
grid a can be computed via a sequence of 3 Gaussian convo-
lutions on each axis (x, y, z) which reduces the complexity
of one Debiased / IBP iteration from O(n2) to O(n

4
3 ).

Optimal transport barycentric embeddings One of the
many machine learning applications of OT barycenters
is to compute low-dimensional barycentric embeddings.
Introduced by Bonneel et al. (2016), OT barycentric co-
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Figure 9. Cross-validation accuracy with 95% confidence intervals
obtained on 500 MNIST images using barycentric embedding with
Sε or OTU

ε . Debiasing of Sε improves performance. Sε is less
sensitive to ε.

ordinates are defined as follows. Given a dictionary A
of distributions α1, . . . , αK and w ∈ ∆K , let αF (w) =

arg minα
∑K
k=1 wkF (αk, α) for some OT divergence F .

The OT coordinates ŵ of a distribution β are defined as
the weights of the barycenter αF (w) best approximating
β for a given divergence. Using a quadratic divergence, it
reads: ŵ = arg minw∈∆K

‖αF (w)− β‖2. To leverage the
differentiability of the IBP iterations, Bonneel et al. (2016)
used the divergence OTUε and proposed to substitute the
minimizer αF (w) with the l-th IBP iterate α(l)

F (w). Differ-
entiating the barycenter nets α(l)

F (w) with respect to w can
be done via automatic differentiation, while the full min-
imization can be done using accelerated gradient descent
using a soft-max reparametrization. Here we use the ADAM
optimizer of the pyTorch library (Paszke et al., 2017). To
evaluate the benefits of debiasing, we take 500 samples
of the MNIST dataset (LeCun & Cortes, 2010) with 100
instances of each digit (0-1-2-3-4). We select 10% of the
dataset (a subset of 50 images; ergo K=50) at random as our
learning dictionary A and compute the barycentric coordi-
nates of the remaining 90% subset denoted as D. Thus, for
each image among the 450 samples of D, we compute the
closest (in squared `2) weighted barycenter of the elements
of A by optimizing over the weights. Thus, each image
is represented by a vector of weights w ∈ ∆K . Our new
embedded dataset is now a table of shape (450× 50). We
train a random forest classifier using the Scikit-learn library
(Pedregosa et al., 2011) on this learned embedding) and
compute a 10-fold cross-validation. Figure 9 displays the
accuracy scores for F = OTUε and F = Sε for 20 different
randomized selections of the dictionary A. The debiased Sε
improves accuracy and is less sensitive to the setting of ε.

Conclusion
Entropy regularized OT was previously known to induce
a bias that can be mitigated using Sinkhorn divergences.
Using OT barycenters of Gaussian distributions, we have
shown that this entropy bias can be a blur or a shrink depend-
ing on the reference measure defining the relative entropy
function. We have also extended the convexity and differ-
entiability properties of OT and the Sinkhorn divergence to
measures with non-compact supports.
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Xavier Vialard for fruitful discussions, in particular for point-
ing out the identity (8). We thank Zikai Ziong for sharing
the matlab code and adapting it to our ellipses experiment.

References
Agueh, M. and Carlier, G. Barycenters in the Wasserstein

space. SIAM, 43(2):904–924, 2011.

Amari, S.-i., Karakida, R., Oizumi, M., and Cuturi, M.
Information geometry for regularized optimal transport
and barycenters of patterns. Neural computation, 31(5):
827–848, 2019.

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and
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A. Convexity and Optimality condition
In this section we show how the notion of differentiability along feasible directions in P(Rd) is enough to characterize
convexity and first order optimality conditions. Consider an arbitrary function F on the space of probability measures.

Definition 1. F is said to be differentiable at α ∈ P(Rd), if and only if there exists ∇F (α) ∈ C(Rd) such that for any
displacement δα = α1 − α2 with α1, α2 ∈ P(Rd):

F (α+ tδα) = F (α) + t〈δα,∇F (α)〉+ o(t) , (23)

where 〈η,∇F (α)〉 =
∫
Rd ∇F (α) dη.

Proposition 6 (convexity). Assume F is differentiable on P(Rd). F is convex If and only if for all α, α′ ∈ P(Rd):

F (α) ≥ F (α′) + 〈α− α′,∇F (α′)〉 , (24)

PROOF. (⇒). Assume (24) holds. Let λ ∈ [0, 1] and αλ = λα + (1 − λα′) with arbitrary probability measures α, α′.
Applying (24) twice with α′ = αλ leads to:

F (α) ≥ F (αλ) + 〈α− αλ,∇F (αλ)〉
F (α′) ≥ F (αλ) + 〈α′ − αλ,∇F (αλ)〉

Multiplying the first equation by λ and the second one by 1− λ before summing leads to:

λF (α) + (1− λ)F (α′) ≥ F (αλ).

Thus F is convex.

(⇐). Assume F is convex. Let λ ∈ (0, 1). Convexity implies that:

F (λα+ (1− λ)α′) ≤ λF (α) + (1− λ)F (α′)

⇒ F (α′ + λ(α− α′)) ≤ λF (α) + (1− λ)F (α′)

⇒ F (α′) + λ〈α− α′,∇F (α′)〉+ o(λ) ≤ λF (α) + (1− λ)F (α′)

⇒ λ〈α− α′,∇F (α′)〉+ o(λ) ≤ λF (α)− λF (α′)

⇒ 〈α− α′,∇F (α′)〉+
o(λ)

λ
≤ F (α)− F (α′)

Letting λ→ 0 leads to (24).

Proposition 7 (Optimality condition). Assume F is differentiable and convex on P(Rd) then α? minimizes F if and only if
〈∇F (α?), α− α?〉 ≥ 0.

PROOF. (⇒) Assume α? is a minimizer of F . Let t >. Since P(Rd) is convex, we can write for any α ∈ P(Rd):

F (α?) ≤ F (α? + t(α− α?))

For t small enough, we can use (23) on the right-hand side:

F (α?) ≤ F (α?) + t〈α− α?,∇F (α?)〉+ o(t)

Dividing by t and letting t→ 0 leads to 〈α− α?,∇F (α?)〉 ≥ 0 for all α.

(⇐) Assume 〈∇F (α?), α− α?〉 ≥ 0. Proposition 6 applies and (24) allows to conclude that α? is a minimizer of F.

B. Proofs of differentiability and convexity
Proof of Lemma 1
Lemma B.1. Let α, α′ ∈ G(Rd) and let hα, hα′ denote their respective autocorrelation potentials. Then:∫

e
hα(x)
ε K(x, y)e

h
α′ (y)
ε dα(x) dα′(y) ≤ 1 (25)
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PROOF. The left side of (25) can be equivalently written using Fubini-Tonelli:

A =

∫
e
hα(x)
ε K(x, y)e

h
α′ (y)
ε dα(x) dα′(y)

= 〈e
hα
ε .α,K(e

h
α′
ε α′)〉

= 〈e
h
α′
ε .α′,K>(e

hα
ε α)〉

= 〈e
h
α′
ε .α′,K(e

hα
ε α)〉 ,

where the last equality follows from the symmetry of K. Thus we have:

A =
1

2
〈e

h
α′
ε .α′,K(e

hα
ε α)〉+

1

2
〈e

hα
ε .α,K(e

h
α′
ε α′)〉 (26)

Since the optimal transport plans (primal solutions) associated with OT⊗ε (α, α) and OT⊗ε (α′, α′) integrate to 1, the right
side of (25) can be written:

1 =
1

2
〈e

hα
ε .α,K(e

hα
ε α)〉+

1

2
〈e

h
α′
ε .α′,K(e

h
α′
ε α′)〉 (27)

Combining (26) with (27), it holds:

1−A =
1

2
〈r,K(r)〉

where r = e
hα
ε .α− e

h
α′
ε .α′. Since K is semi-definite positive, 1−A ≥ 0.

Differentiability of OTε

Proposition B.1. Under assumption (1), OTε is differentiable and its gradient is given by:

∇OT⊗ε (α, β) = (f, g) (28)

Where f and g satisfy the Sinkhorn fixed point system (11) on Rd.

PROOF. Consider α, β, α1, α2, β1, β2 ∈ G(Rd) and denote the displacements δα = α1 − α2 and δβ = β1 − β2. Let ∆t

denote the ratio of (15):

∆t =
OT⊗ε (αt, βt)−OT⊗ε (α, β)

t
, (29)

where αt = α+ tδα and βt = β + tδβ. Similarly to the proof of Proposition 2 of Feydy et al. (2018), we derive a lower
and upper bound of ∆t using suboptimal potentials. On one hand, the pair (f, g) is suboptimal for the dual problem defining
OT⊗ε (αt, βt). Therefore:

OT⊗ε (αt, βt) ≥〈αt, f〉+ 〈βt, g〉

− ε〈αt ⊗ βt, exp

(
f ⊕ g − C

ε

)
〉+ ε

Therefore, (10) and (11) lead to the lower bound:

∆t ≥ 〈δα, f − ε〉+ 〈δβ, g − ε〉+ o(1)

And similarly we get the upper bound:

∆t ≤ 〈δα, ft − ε〉+ 〈δβ, gt − ε〉+ o(1)

As t→ 0, (αt, β)→ (α, β). On one hand, Proposition 4 of Mena & Weed (2019) leads to the pointwise convergence of
the sequence of potentials (ft, gt) towards (f, g). On the other hand, Proposition 2 implies that there exists M > 0 such
that |ft(x)| ≤M‖x‖2 for all x ∈ Rd. Given that any µ ∈ Gσ(Rd) has a second order moment, by Lebesgue’s dominated
convergence we have 〈µ, ft〉 → 〈µ, f〉. Similarly, 〈µ, gt〉 → 〈µ, g〉. Finally, since 〈δα, ε〉 = 〈δβ, ε〉 = 0, we get as t→ 0,
∆t → 〈δα, f〉 + 〈δβ, g〉. Since f and g are smooth (Prop 2) and square-integrable with respect to any µ ∈ G(Rd), (28)
holds for ∇OT⊗ε (α, β) = (f, g).
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B.1. Differentiability and convexity of OTLε

To prove theorem 1 we first need to establish the differentiability and convexity of OTLε on the set of sub-Gaussian measures
Gσ(Rd) which are absolutely continuous with respect to the Lebesgue measure.

Dual problem Let α, β continuous sub-Gaussian measures. Identifying α, β and π with their Lebesgue densities, The OT
problem (2) has a dual problem given by:

OTLε (α, β) = sup
f∈L1(α),g∈L1(β)

〈f, α〉+ 〈g, β〉 − ε
∫ ∫

exp

(
f(x) + g(y)− C(x, y)

ε

)
dxdy + ε , (30)

Notice that the convexity of OTLε follows immediately from (30) since it is a supremum of linear functions in α and β.
The optimality conditions are equivalent to the marginal constraints of the primal problem (2). However, they are slightly
different than those of OT⊗ε . Cancelling the gradient of the dual problem leads to the following system (Ivan Gentil, 2017):

e
f
εK(e

g
ε ) = α ,

e
g
εK>(e

f
ε ) = β ,

(31)

which in integral form can be written:

e
f(x)
ε

∫
e
−C(x,y)+g(y)

ε dy = α(x) ∀x,

e
g(x)
ε

∫
e
−C(y,x)+f(y)

ε dy = β(x) ∀x,
(32)

ánd the optimal transport plan’s density π is given by: π(x, y) = exp
(
f(x)+g(y)−C(x,y)

ε

)
Thus, at optimality the integral over Rd × Rd sums to 1 and:

OTLε (α, β) = 〈f, α〉+ 〈g, β〉 (33)

Convexity and Differentiability By using the existence of Lebesgue continuity, one can rewrite the KL in the primal
problem such that it holds (Di Marino & Gerolin, 2019):

OTLε (α, β) = OT⊗ε (α, β) + εKL(α|L) + εKL(β|L) (34)

We already showed that OT⊗ε is convex (w.r.t. to one argument); KL is also convex (even jointly convex). Since the set of
Lebesgue-continuous and sub-Gaussian measures is convex , OTLε is also convex with respect to one argument.

Identifying α with its density, we have E(α)
def
= KL(α,L) =

∫
α(x)(log(α(x))− 1) dx. If α > 0, then for any feasible

displacement h = h1 − h2 with density functions h1, h2. The functional derivative of E in the direction h is given by:[
dE(α+th)

dt

]
t=0

= 〈h, log(α)〉. Thus, in the sense of the directional differentiation (15): ∇α KL(α,L) = log(α).

Let (f, g) be a pair of optimal potentials for OT⊗ε (α, β). Following (B.1) and the differentiability of KL, OTLε
is differentiable on the set of sub-Gaussian measures with positive density functions and its gradient is given by:
∇1 OTLε (α, β) = f − ε log(α). By a simple calculation, it is easy to show that (f − ε log(α), g − ε log(β) are actu-
ally solutions of the Sinkhorn equations (33). Similarly, given a solution (f1, g1) of (30), (f1 + ε log(α), g1 + ε log(β)) are
optimal potentials of OT⊗ε . Therefore, the following proposition holds:

Proposition B.2. Let α, β ∈ Gσ(Rd). If α and β are Lebesgue-continuous with positive density functions, then OTLε is
differentiable and it holds:

∇OTLε (α, β) = (f, g) , (35)

where (f, g) is a pair of dual potentials verifying the fixed point equations (33).
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C. Proofs of the theorems
We first start by showing that the equations verified by the variance of the barycenter have a unique positive solution.

C.1. Fixed point equations Lemmas

For the 3 following lemmas, since the variance S can only be positive, we re-parametrized the equations by replacing S2

with S for the sake of simplicity.

Lemma C.1. Under the assumptions of Theorem 1, the equation in S:∑
k=1

wk

√
ε′4 + 4σ2

kS = −ε′2 + 2S (36)

has a positive solution.

PROOF. Let f : S ∈ R+ →
∑
k=1 wk

√
ε′4 + 4σ2

kS + ε′2 − 2S. Since f is continuous and f(0) = 2ε′2 > 0 and
lim

S→−∞
f(S) = −∞, there exists S > 0 such that f(S) = 0.

Lemma C.2. Under the assumptions of Theorem 2, the equation in S:∑
k=1

wk

√
ε′4 + 4σ2

kS = ε′2 + 2S (37)

has a positive solution if and only if ε′2 < σ̄ =
∑
k=1 wkσ

2
k.

PROOF. Let f : S ∈ R+ →
∑
k=1 wk

√
ε′4 + 4σ2

kS − ε′2 − 2S. Sufficient condition. since f(0) = 0 and lim
S→+∞

f(S) =

−∞, a positive solution exists if f ′(0) > 0.

f ′(0) > 0⇔
∑
k=1

wkσ
2
k

ε′2
− 1 > 0

⇔ σ̄ > ε′2

Necessary condition. Conversely, we have by Jensen’s inequality:

f(S) ≤
√
ε′4 + 4σ̄S − ε′2 − 2S

= 4S
σ̄ − S − ε′2√

ε′4 + 4σ̄S + ε′2 + 2S

Therefore, if σ̄ ≤ ε′2 then f(S) ≤ − 4S2
√
ε′4+4σ̄S+ε′2+2S

< 0 for any S > 0.

Lemma C.3. Under the assumptions of Theorem 3, the equation in S:∑
k=1

wk

√
ε′4 + 4σ2

kS =
√
ε′4 + 4S4 (38)

has a positive solution S? and it holds S? ∈ (σ(0), σ(K)).

PROOF. Let f : S ∈ R+ →
∑
k=1 wk

√
ε′4 + 4σ2

kS −
√
ε′4 + 4S2. It holds:

f(S) ≥
√
ε′4 + 4σ2

(0)S −
√
ε′4 + 4S2

=
4S(σ2

0 − S)√
ε′4 + 4σ2

0S +
√
ε′4 + 4S2

.

Thus f(σ2
(0)) ≥ 0. Similarly f(σ(K)) ≤ 0. Thus there exists S? ∈ (σ(0), σ(K)) such that f(S?) = 0.



Debiased Sinkhorn barycenters

C.2. Proofs of theorems 2 and 3

We turn now to proving theorems 3 and 2. We have shown that both OTε and Sε are convex and differentiable on the convex
set of sub-Gaussian measure on Rd. Thus, the proposition holds:

Proposition 8. Let α1, . . . , αK ∈ G(Rd). Let (w1, . . . , wK) be non-negative weights summing to 1. Then:

αOT⊗ε
= arg minα

∑K
k=1 wk OT⊗ε (αk, α) if and only if there exists at set of potentials f1, . . . , fK , g1, . . . , gK such that

for any direction β ∈ G(Rd) the following equations hold everywhere in Rd:{
e
fk
ε .K(e

gk
ε .αOT⊗ε

) = 1, e
gk
ε .K>(e

fk
ε .αk) = 1,

〈
∑K
k=1 wkgk, β − αOT⊗ε

〉 ≥ 0
(39)

αSε = arg minα
∑K
k=1 wk Sε(αk, α) if and only if there exists at set of potentials f1, . . . , fk, g1, . . . , gk, h such that for

any direction β ∈ G(Rd) the following equations hold everywhere in Rd:
e
fk
ε .K(e

gk
ε .αSε) = 1, e

gk
ε .K>(e

fk
ε .αk) = 1,

e
h
ε .K(e

h
ε .αSε) = 1,

〈
∑K
k=1 wkgk − h, β − αSε〉 ≥ 0

(40)

We solve the systems of equations (39) and (40) by restricting the potentials to quadratic functions. Since the objectives are
convex, showing the existence of a solution is sufficient for optimality. We start with the Debiased barycenter (theorem 3).

Theorem C.1 (Debiasing of Sε). Let C(x, y) = (x − y)2 and 0 < ε < +∞ and ε = 2ε′2. Let (wk) be positive
weights that sum to 1. Let N denote the Gaussian distribution. Assume that αk ∼ N (µk, σ

2
k) and let µ̄ =

∑
k wkµk,

σ̄ =
∑
k=1 wkσ

2
k then:

Then αSε ∼ N (µ̄, S2) where S is the unique non-zero solution S? of the fixed point equation:∑
k=1 wk

√
ε′4 + 4σ2

kS
2 =
√
ε′4 + 4S4. Moreover, given a sorted sequence σ(1) ≤ · · · ≤ σ(K), it holds S? ∈ (σ(0), σ(K)).

In particular, if all σk are equal to some σ > 0, then αSε ∼ N (µ̄, σ2).

PROOF. Convexity makes the system equations (39) and (40) sufficient for optimality. Thus, we only need to find a particular
solution. We are going to show that there exist a set of quadratic polynomial potentials and Gaussian probability measures
satisfying each system. First, let’s start with the Sε barycenter αSε .

Consider polynomial potentials of the form fk(x) = F2,kx
2 + F1,kx + F0,k and gk(x) = G2,kx

2 + G1,kx + G0,k and
h(x) = H2x

2 +H1x+H0for some unknown coefficients F2,k, F1,k, F0,k, G2,k, G1,k, G0,k, H2, H1, H0 ∈ R, and assume
that dαOTε

dλ = N (m,S) . First, we will write the first and second order coefficients as functions of m and S then use the
optimality condition to find m and S.

Sufficient optimality condition Let β ∈ G(Rd). And let Mr(β) denote the r-th moment of β. For any real sequence
y1, . . . , yk, let ȳ denote its weighted average

∑K
k=1 wkyk. The optimality condition reads:

〈
K∑
k=1

wkgk − h, β − αSε〉 ≥ 0

⇔ (Ḡ2 −H2)(M2(β)−M2(αSε)) + (Ḡ1 −H1)(M1(β)−M1(αSε)) + (Ḡ0 −H0)(M0(β)−M0(αSε)) ≥ 0

⇔ (Ḡ2 −H2)(M2(β)−M2(αSε)) + (Ḡ1 −H1)(M1(β)−M1(αSε)) ≥ 0

Where the last inequality follows from M0(β) = M0(αSε) =
∫

dαSε = 1. Thus, the 0-order coefficients are irrelevant
for optimality. We are going to show that there exist a set of coefficients such that the following sufficient conditions for
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optimality hold:

Ḡ2
def
=

K∑
k=1

wkG2,k = H2 (41)

Ḡ1
def
=

K∑
k=1

wkG1,k = H1 (42)

Kernel integration Dropping the k exponent for the sake of convenience, let’s carefully derive the integral K>(e
fk
ε .αk):

K>(e
f
ε αk)(x) =

∫
K(x, y)e

f(y)

2ε′2
dα

dλ
(y) dy

=
1√

2πσ2

∫
exp

(
−(x− y)2 + f(y)

2ε′2
− (y − µ)2

2σ2

)
dy

=
1√

2πσ2

∫
exp


[
F2 − 1

2ε′2
− 1

2σ2

]
︸ ︷︷ ︸

A

y2 +

[
F1

2ε′2
+

x

ε′2
+

µ

σ2

]
︸ ︷︷ ︸

Z(x)

y +

[
F0 − x2

2ε′2
− µ2

2σ2

] dy

=
1√

2πσ2
exp

(
F0 − x2

2ε′2
− µ2

2σ2

)∫
exp

(
A

[
y2 +

Z(x)

A
y

])
dy

=
1√

2πσ2
exp

(
F0 − x2

2ε′2
− µ2

2σ2

)∫
exp

(
A

[
y +

Z(x)

2A

]2

− Z(x)2

4A

)
dy

=
1

σ
exp

(
F0 − x2

2ε′2
− µ2

2σ2
− Z(x)2

4A

)
1√
2π

∫
exp

(
A

[
y +

Z(x)

2A

]2
)

dy︸ ︷︷ ︸
I

For the fourth equality to be sound, we need A 6= 0, and for the integral I to be finite, we need A < 0 which is equivalent to:

F2 < 1 +
ε′2

σ2
. (43)

In that case, I = 1√
−2A

thus:

K>(e
f
ε αk)(x) =

1

σ
√
−2A

exp

(
F0 − x2

2ε′2
− µ2

2σ2
− Z(x)2

4A

)
=

1

σ
√
−2A

exp

([
− 1

2ε′2
− 1

4Aε′4

]
x2 −

[
F1

4Aε′4
+

µ

2Aσ2ε′2

]
x− µ2

2σ2
+

F0

2ε′2
−
[
F1

2ε′2 + µ
σ2

]2
4A

)

= exp

([
− 1

2ε′2
− 1

4Aε′4

]
x2 −

[
F1

4Aε′4
+

µ

2Aσ2ε′2

]
x− µ2

2σ2
+

F0

2ε′2
−
[
F1

2ε′2 + µ
σ2

]2
4A

− log(σ
√
−2A)

)

Sinkhorn equations Using the first Sinkhorn equation e
gk
ε .K>(e

fk
ε .αk) = 1 we get by identification, for all k, with :

Ak =
F2,k − 1

2ε′2
− 1

2σ2
k

(44)


G2,k−1
ε′2 − 1

2Akε′4
= 0 [i]

G1,k

ε′2 −
F1,k

2Akε′4
− µk

Akσ2
kε
′2 = 0 [ii]

G0,k

ε′2 −
µ2
k

σ2
k

+
F0,k

ε′2 −

[
F1,k

2ε′2
+
µk
σ2
k

]2
2Ak

− log(−2σ2
kAk) = 0 [iii]
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Similarly, since the equations are symmetric, e
fk
ε .K(e

gk
ε .αOTε) = 1 with G2,k < 1 + ε′2

S2 and:

Bk =
G2,k − 1

2ε′2
− 1

2S2
(45)

lead to: 
F2,k−1
ε′2 − 1

2Bkε′4
= 0 [j]

F1,k

ε′2 −
G1,k

2Bkε′4
− m

BkS2ε′2 = 0 [jj]

F0,k

ε′2 −
m2

S2 +
G0,k

ε′2 −
[
G1,k

2ε′2
+ m
S2

]2
2Bk

− log(−2S2Bk) = 0 [jjj]

Second order coefficients G2, F2 Let’s rewrite [i] and [j] separately:{
2Bk + 1

S2 − 1
2Akε′4

= 0

2Ak + 1
σ2
k
− 1

2Bkε′4
= 0

⇔

{
AkBk + Ak

2S2 − 1
4ε′4 = 0

AkBk + Bk
2σ2
k
− 1

4ε′4 = 0

⇔

{
Bk
σ2
k

= Ak
S2

AkBk + Bk
2σ2
k
− 1

4ε′4 = 0

⇔

{
Bk
σ2
k

= Ak
S2

B2
k + Bk

2S2 − σ2
k

4ε′4S2 = 0

The roots of the polynomial above are: − 1
4S2 ±

√
1

16S4 +
σ2
k

4S2ε′4 . The constraint Bk < 0 eliminates the positive solution
and it holds:

Bk = − 1

4S2
−
√

1

16S4
+

σ2
k

4S2ε′4
(46)

Ak =
S2

σ2
k

Bk (47)

First order coefficients G1, F1 Let’s rewrite [ii] and [jj] separately:

{
G1,k

ε′2 −
F1,k

2Akε′4
− µk

Akσ2
kε
′2 = 0 [ii]

F1,k

ε′2 −
G1,k

2Bkε′4
− m

BkS2ε′2 = 0 [jj]

⇔

{
2AkG1,k − F1,k

ε′2 −
2µk
σ2
k

= 0 [ii]
F1,k

ε′2 −
G1,k

2Bkε′4
− m

BkS2ε′2 = 0 [jj]

⇔

{ (
2Ak − 1

2Bkε′4

)
G1,k − 2µk

σ2
k
− m

BkS2ε′2 = 0 [ii] + [jj]
F1,k

ε′2 −
G1,k

2Bkε′4
− m

BkS2ε′2 = 0 [jj]

The equations above between Ak and Bk lead to 2Ak − 1
2Bkε′4

= − 1
σ2
k

and the second order polynomial equation in Bk

leads to σ2
k

BkS2ε′2 = 4ε′2Bk + 2ε′2 1
S2 . Therefore, [ii] + [jj] can be written:

1

σ2
k

G1,k +
2µk
σ2
k

+
m

BkS2ε′2
= 0

⇒ G1,k + 2µk +m(4ε′2Bk + 2ε′2
1

S2
) = 0

⇒ G1,k + 2µk + 2m(G2,k − 1) = 0
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Using [jj] we recover the first order coefficients F1,k and G1,k as function of m:

G1,k + 2µk + 2m(G2,k − 1) = 0

F1,k + 2m+ 2µk(F2,k − 1) = 0
(48)

Sinkhorn auto-correlation equation Similarly, the auto-correlation equation e
h
ε .K>(e

h
ε .αk) = 1 leads to the same

system of equations (equal dual potentials), with H2 < 1 + ε′2

S2 and:

C =
H2 − 1

2ε′2
− 1

2S2
< 0 (49)


H2−1
ε′2 −

1
2Cε′4 = 0 [a]

H1

ε′2 −
H1

2Cε′4 −
µ

CS2ε′2 = 0 [b]

H0

ε′2 −
µ2

S2 + H0

ε′2 −
[ H1
2ε′2

+ µ

S2 ]
2

2C − log(−2S2C) = 0 [c]

Isolating [a] we get: 2C + 1
S2 − 1

2Cε′4 = 0. Again, the only negative root of [a] is given by:

C = − 1

4S2
−
√

1

16S4
+

1

4ε′4
(50)

and similarly to (48), we also get the link between H1 and H2:

H1 + 2mH2 = 0 (51)

Optimality condition and identifying σ and µ Using the definition of B2 (45) and (49) and then with their closed form
formulas (46) and (50), the first sufficient optimality condition (41) reads:

K∑
k=1

wkG2,k = H2 ⇒
K∑
k=1

wkB2,k =
H2 − 1

2ε′2
− 1

2S2

⇒
K∑
k=1

wkB2,k = C

⇒
K∑
k=1

wk

(
1

4S2
+

√
1

16S4
+

σ2
k

4S2ε′4

)
=

1

4S2
+

√
1

16S4
+

1

4ε′4

⇒
K∑
k=1

wk

√
1

16S4
+

σ2
k

4S2ε′4
=

√
1

16S4
+

1

4ε′4

⇒
K∑
k=1

wk

√
4σ2

kS
2 + ε′4 =

√
4S4 + ε′4

Lemma C.3 guarantees that the fixed point equation above possesses a unique positive solution S.

The second sufficient optimality condition (41) combined with the equations on G1, F1 (48) and H1 (51) lead to identifying
m:

K∑
k=1

wkG1,k = H1 ⇒ m =

K∑
k=1

wkµk

Identifying the offset coefficients F0, G0, H0 Since now m and S are known and unique, all the first and second order
coefficients F2,k, G2,k, H2, F1,k, G1,k, H1 are uniquely determined. H0 follows immediately from [c]. Finding F0,k and
G0,k can be done up to an additive constant. Adding [iii] and [jjj] leads to a closed form expression on F0,k +G0,k. Since
the optimality condition does not depend on H0, F0 and G0, one may simply set F0,k to 0, and solve G0,k exactly.
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Theorem C.2 (Shrinking bias of OT⊗ε ). Let C(x, y) = (x− y)2 and 0 < ε < +∞ and ε = 2ε′2. Let (wk) be positive
weights that sum to 1. Let N denote the Gaussian distribution. Assume that αk ∼ N (µk, σ

2
k) and let µ̄ =

∑
k wkµk,

σ̄ =
∑
k=1 wkσ

2
k then:

if ε′2 < σ̄ then αOT⊗ε
∼ N (µ̄, S2) where S is the unique non-zero solution of the fixed point equation:∑

k=1 wk
√
ε′4 + 4σ2

kS
2 = ε′2 + 2S2. In particular, if all σk are equal to some σ > 0, then αOT⊗ε

∼ N (µ̄, σ2 − ε′2).

if ε′2 ≥ σ̄ then αOT⊗ε
is a Dirac distribution located at µ̄.

PROOF. When ε′2 < σ̄, the same proof of theorem C.1 applies. Convexity makes the system equations (39) sufficient
for optimality. Thus, we only need to find a particular solution. We are going to show that there exist a set of quadratic
polynomial potentials and Gaussian probability measures satisfying each system.

Consider polynomial potentials of the form fk(x) = F2,kx
2 + F1,kx+ F0,k and gk(x) = G2,kx

2 +G1,kx+G0,kfor some
unknown coefficients F2,k, F1,k, F0,k, G2,k, G1,k, G0,k ∈ R, and assume that dαOTε

dλ = N (m,S) . First, we will write the
first and second order coefficients as functions of m and S then use the optimality condition to find m and S.

Sufficient optimality condition Let β ∈ P2(Rd). And let Mr(β) denote the r-th moment of β. For any real sequence
y1, . . . , yk, let ȳ denote its weighted average

∑K
k=1 wkyk. The optimality condition reads:

〈
K∑
k=1

wkgk, β − αSε〉 ≥ 0

⇔ Ḡ2(M2(β)−M2(αSε)) + Ḡ1(M1(β)−M1(αSε)) + Ḡ0(M0(β)−M0(αSε)) ≥ 0

⇔ Ḡ2(M2(β)−M2(αSε)) + Ḡ1(M1(β)−M1(αSε)) ≥ 0

Where the last inequality follows from M0(β) = M0(αSε) =
∫

dαSε = 1. Thus, the 0-order coefficients are irrelevant for
optimality.

1. Case 1: if ε′2 < σ̄: We are going to show that there exist a set of coefficients such that the following sufficient
conditions for optimality hold:

Ḡ2
def
=

K∑
k=1

wkG2,k = 0 (52)

Ḡ1
def
=

K∑
k=1

wkG1,k = 0 (53)

The Sinkhorn system on fk and gk is the same as in the proof above. Thus, the same equations still hold. The first differences
arise when using the optimality condition (52):

Optimality condition and identifying σ and µ Using the definition of B2 (45) and its closed form formulas (46), the
first sufficient optimality condition (52) reads:

K∑
k=1

wkG2,k = 0⇒
K∑
k=1

wkB2,k = − 1

2ε′2
− 1

2S2

⇒
K∑
k=1

wk

(
1

4S2
+

√
1

16S4
+

σ2
k

4S2ε′4

)
=

1

2ε′2
+

1

2S2

⇒
K∑
k=1

wk

√
4σ2

kS
2 + ε′4 = 2S2 + ε′2
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Lemma C.2 guarantees that the fixed point equation above possesses a unique positive solution S when ε′2 < σ̄ =∑
k=1 wkσ

2
k.

The second sufficient optimality condition (52) combined with the equations on G1, F1 (48) lead to identifying m:

K∑
k=1

wkG1,k = 0⇒ m =

K∑
k=1

wkµk

Identifying the offset coefficients F0, G0 Since now m and S are known and unique, all the first and second order
coefficients F2,k, G2,k, F1,k, G1,k are uniquely determined. Finding F0,k and G0,k can be done up to an additive constant.
Adding [iii] and [jjj] leads to a closed form expression on F0,k +G0,k. Since the optimality condition does not depend on
H0, F0 and G0, one may simply set F0,k to 0, and solve G0,k exactly.

2. Case 2: if ε′2 ≥ σ̄: We are going to show that there exist a set of potentials such that the Dirac at µ̄ =
∑
k=1 wkµk

verifies the optimality conditions (39). Let’s simplify the optimality condition for a Dirac minimizer αSε = δµ̄

〈
K∑
k=1

wkgk, β − αSε〉 ≥ 0

⇔ Ḡ2M2(β) + Ḡ1M1(β)− Ḡ2µ̄
2 − Ḡ1µ̄ ≥ 0

However since for any measure β,M1(β)2 ≤M2(β), the following condition is sufficient for optimality:

(∀x ∈ R) Ḡ2x
2 + Ḡ1x− Ḡ2µ̄

2 − Ḡ1µ̄ ≥ 0 (54)

Sinkhorn equations Using the second Sinkhorn equation with αSε = δµ̄ given by e
fk
ε .K(e

gk
ε .αOTε) = 1: F2,k − 1 = 0 [j]

F1,k + 2m = 0 [jj]
F0,k − µ̄2 +G2,kµ̄

2 +G1,kµ̄+G0,k = 0 [jjj]

Using the first Sinkhorn equation e
gk
ε .K>(e

fk
ε .αk) = 1 we get by identification, for all k, with :

Ak =
F2,k − 1

2ε′2
− 1

2σ2
k

(55)


G2,k−1
ε′2 − 1

2Akε′4
= 0 [i]

G1,k

ε′2 −
F1,k

2Akε′4
− µk

Akσ2
kε
′2 = 0 [ii]

G0,k

ε′2 −
µ2
k

σ2
k

+
F0,k

ε′2 −

[
F1,k

2ε′2
+
µk
σ2
k

]2
2Ak

− log(−2σ2
kAk) = 0 [iii]

Combining both systems:

F2,k = 1 [j]
F1,k = −2µ̄ [jj]

G2,k = 1− σ2
k

ε′2 [i]

G1,k =
2µ̄σ2

k

ε′2 − 2µk [ii]
G0,k

ε′2 −
µ2
k

σ2
k

+
F0,k

ε′2 + σ2
k

[
µ̄
ε′2 −

µk
σ2
k

]2
= 0 [iii]

⇒
{
Ḡ2 = 1− σ̄

ε′2

Ḡ1 = 2µ̄
(
σ̄
ε′2 − 1

)

[iii] can be simplified, it leads to: G0,k + F0,k +
σ2
kµ̄

2

ε′2 − 2µ̄µk = 0. Similarly, [jjj] can be written: F0,k +G0,k − µ̄2 σ
2
k

ε′2 +(
2µ̄σ2

k

ε′2 − 2µk

)
µ̄ = 0 which are equivalent.
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Using the assumption ε′2 > σ̄, the optimality condition (54) is equivalent to:

(∀x ∈ R) Ḡ2x
2 + Ḡ1x− Ḡ2µ̄

2 − Ḡ1µ̄ ≥ 0

⇔ (∀x ∈ R)
(

1− σ̄

ε′2

)
x2 + 2µ̄

( σ̄
ε′2
− 1
)
x−

(
1− σ̄

ε′2

)
µ̄2 − 2µ̄

( σ̄
ε′2
− 1
)
µ̄ ≥ 0

⇔ (∀x ∈ R) x2 − 2µ̄x+ µ̄2 ≥ 0

⇔ (∀x ∈ R) (x− µ̄)2 ≥ 0

Thus, the optimality condition holds.

As before, F0,k, G0,k can be determined up to a constant using [iii].

C.3. Proof of theorem 1

We showed in the supplementary section B.1 that OTLε is convex and differentiable on the set of sub-Gaussian measures
with positive densities with respect to the Lebesgue measure. Thus, the barycenter αOTLε

can be characterized by the first
order optimality condition:

Proposition C.1. Let α1, . . . , αK ∈ G(Rd) be Lebesgue-continuous measures with positive density functions. Let
(w1, . . . , wK) be non-negative weights summing to 1. Then:

αOTLε
= arg minα

∑K
k=1 wk OTLε (αk, α) if and only if there exists at set of potentials f1, . . . , fK , g1, . . . , gK such that

for any feasible (Lebesgue-continuous) direction β ∈ G(Rd) the following equations hold everywhere in Rd, identifying the
measures with their density functions:{

e
f
εK(e

g
ε ) = αk, e

g
εK>(e

f
ε ) = αOTLε

,

〈
∑K
k=1 wkgk, β − αOTLε

〉 ≥ 0
(56)

Theorem C.3 (Blurring bias of OTLε ). Let C(x, y) = (x− y)2 and 0 < ε < +∞ and ε = 2ε′2. Let (wk) be positive
weights that sum to 1. Let N denote the Gaussian distribution. Assume αk ∼ N (µk, σ

2
k) and let µ̄ =

∑
k wkµk,

then αOTLε
∼ N (µ̄, S2) where S is the unique solution of the fixed point equation:∑

k=1 wk
√
ε′4 + 4σ2

kS
2 = −ε′2 + 2S2.

In particular, if all σk are equal to some σ > 0, then

then αOTLε
∼ N (µ̄, σ2 + ε′2).

PROOF. The proof of this theorem is technically identical to that of 3. Except that the Sinkhorn-equations are slightly
different.

Consider polynomial potentials of the form fk(x) = F2,kx
2 + F1,kx+ F0,k and gk(x) = G2,kx

2 +G1,kx+G0,kfor some
unknown coefficients F2,k, F1,k, F0,k, G2,k, G1,k, G0,k ∈ R, and assume that dαL

dλ = N (m,S) . First, we will write the
first and second order coefficients as functions of m and S then use the optimality condition to find m and S.

Sufficient optimality condition Let a continuous measure β ∈ G(Rd) identified with a positive density function. And let
Mr(β) denote the r-th moment of β. For any real sequence y1, . . . , yk, let ȳ denote its weighted average

∑K
k=1 wkyk. The

optimality condition reads:

〈
K∑
k=1

wkgk, β − αL〉 ≥ 0

⇔ Ḡ2(M2(β)−M2(αL)) + Ḡ1(M1(β)−M1(αL)) + Ḡ0(M0(β)−M0(αL)) ≥ 0

⇔ Ḡ2(M2(β)−M2(αL)) + Ḡ1(M1(β)−M1(αL)) ≥ 0
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Where the last inequality follows from M0(β) = M0(αL) =
∫

dαL = 1. Thus, the 0-order coefficients are irrelevant
for optimality. We are going to show that there exist a set of coefficients such that the following sufficient conditions for
optimality hold:

Ḡ2
def
=

K∑
k=1

wkG2,k (57)

Ḡ1
def
=

K∑
k=1

wkG1,k (58)

Kernel integration Dropping the k exponent for the sake of convenience, let’s carefully derive the integral K>(e
fk
ε ):

K>e
f
ε =

∫
K(x, y)e

f(y)

2ε′2 dy

=

∫
exp

(
−(x− y)2 + f(y)

2ε′2

)
dy

=

∫
exp


[
F2 − 1

2ε′2

]
︸ ︷︷ ︸

A

y2 +

[
F1

2ε′2
+

x

ε′2

]
︸ ︷︷ ︸

Z(x)

y +

[
F0 − x2

2ε′2

]dy

= exp

(
F0 − x2

2ε′2

)∫
exp

(
A

[
y2 +

Z(x)

A
y

])
dy

= exp

(
F0 − x2

2ε′2

)∫
exp

(
A

[
y +

Z(x)

2A

]2

− Z(x)2

4A

)
dy

= exp

(
F0 − x2

2ε′2
− Z(x)2

4A

)∫
exp

(
A

[
y +

Z(x)

2A

]2
)

dy︸ ︷︷ ︸
I

For the fourth equality to be sound, we need A 6= 0, and for the integral I to be finite, we need A < 0 which is equivalent to:

F2 < 1 (59)

In that case, I =
√
− π
A thus:

K>(e
f
ε )(x) =

√
− π
A

exp

(
F0 − x2

2ε′2
− Z(x)2

4A

)
=

√
− π
A

exp

([
− 1

2ε′2
− 1

4Aε′4

]
x2 −

[
F1

4Aε′4

]
x+

F0

2ε′2
−
[
F1

2ε′2

]2
4A

)

= exp

([
− 1

2ε′2
− 1

4Aε′4

]
x2 −

[
F1

4Aε′4

]
x+

F0

2ε′2
−
[
F1

2ε′2

]2
4A

− log(

√
−A
π

)

)

Sinkhorn equations Using the first Sinkhorn equation e
gk
ε K>(e

fk
ε ) = αL we get by identification, for all k, with :

Ak =
F2,k − 1

2ε′2
(60)

G2,k−1
ε′2 − 1

2Akε′4
+ 1

S2 = 0 [i]
G1,k

ε′2 −
F1,k

2Akε′4
− 2m

S2 = 0 [ii]

G0,k

ε′2 + m2

S2 +
F0,k

ε′2 −
[
F1,k

2ε′2

]2
2Ak

− log(−Akπ ) + log(2πS2) = 0 [iii]
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Similarly, since the equations are symmetric, e
fk
ε .Ke

gk
ε = αk) with G2,k < 1 and:

Bk =
G2,k − 1

2ε′2
(61)

lead to: 
F2,k−1
ε′2 − 1

2Bkε′4
+ 1

σ2
k

= 0 [i]
F1,k

ε′2 −
G1,k

2Bkε′4
− 2µk

σ2
k

= 0 [ii]

F0,k

ε′2 +
µ2
k

σ2
k

+
G0,k

ε′2 −
[
G1,k

2ε′2

]2
2Bk

− log(−Bkπ ) + log(2πσ2
k) = 0 [iii]

Second order coefficients G2, F2 Let’s rewrite [i] and [j] separately:{
2Bk + 1

S2 − 1
2Akε′4

= 0

2Ak + 1
σ2
k
− 1

2Bkε′4
= 0

⇔

{
AkBk + Ak

2S2 − 1
4ε′4 = 0

AkBk + Bk
2σ2
k
− 1

4ε′4 = 0

⇔

{
Bk
σ2
k

= Ak
S2

AkBk + Bk
2σ2
k
− 1

4ε′4 = 0

⇔

{
Bk
σ2
k

= Ak
S2

B2
k + Bk

2S2 − σ2
k

4ε′4S2 = 0

The roots of the polynomial above are: − 1
4S2 ±

√
1

16S4 +
σ2
k

4S2ε′4 . The constraint Bk < 0 eliminates the positive solution
and it holds:

Bk = − 1

4S2
−
√

1

16S4
+

σ2
k

4S2ε′4
(62)

Ak =
S2

σ2
k

Bk (63)

First order coefficients G1, F1 Let’s rewrite [ii] and [jj] separately:

{
G1,k

ε′2 −
F1,k

2Akε′4
− 2m

S2 = 0 [ii]
F1,k

ε′2 −
G1,k

2Bkε′4
− 2µk

σ2
k

= 0 [jj]

⇔

{
2AkG1,k − F1,k

ε′2 −
4Akε

′2m
S2 = 0 [ii]

F1,k

ε′2 −
G1,k

2Bkε′4
− 2µk

σ2
k

= 0 [jj]

⇔


(

2Ak − 1
2Bkε′4

)
G1,k − 4Akε

′2m
S2 − 2µk

σ2
k

= 0 [ii] + [jj]
F1,k

ε′2 −
G1,k

2Bkε′4
− 2µk

σ2
k

= 0 [jj]

The equations above between Ak and Bk lead to 2Ak − 1
2Bkε′4

= − 1
σ2
k

and Ak = S2

σ2
k
Bk leads to:

1

σ2
k

G1,k +
2µk
σ2
k

+
4Bkε

′2m

σ2
k

= 0

⇒ G1,k + 2µk + 2m(G2,k − 1) = 0

Using [jj] we recover the first order coefficients F1,k and G1,k as function of m:

G1,k + 2µk + 2m(G2,k − 1) = 0

F1,k + 2m+ 2µk(F2,k − 1) = 0
(64)
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Optimality condition and identifying σ and µ Using the definition of B2 (61) and then with their closed form formulas
(62), the first sufficient optimality condition (57) reads:

K∑
k=1

wkG2,k = 0⇒
K∑
k=1

wkB2,k = − 1

2ε′2

⇒
K∑
k=1

wk

(
1

4S2
+

√
1

16S4
+

σ2
k

4S2ε′4

)
=

1

2ε2

⇒
K∑
k=1

wk

√
1

16S4
+

σ2
k

4S2ε′4
=

1

2ε2
− 1

4S2

⇒
K∑
k=1

wk

√
4σ2

kS
2 + ε′4 = 2S2 − ε′2

Lemma C.1 guarantees that the fixed point equation above possesses a unique positive solution S.

The second sufficient optimality condition (57) combined with the equations on G1, F1 (64) lead to identifying m:

K∑
k=1

wkG1,k = 0⇒ m =

K∑
k=1

wkµk

Identifying the offset coefficients F0, G0 Since now m and S are known and unique, all the first and second order
coefficients F2,k, G2,k, F1,k, G1,k are uniquely determined. Finding F0,k and G0,k can be done up to an additive constant.
Adding [iii] and [jjj] leads to a closed form expression on F0,k +G0,k. Since the optimality condition does not depend on
F0 and G0, one may simply set F0,k to 0, and solve G0,k exactly.

D. The IBP algorithm
Computing the OT barycenter with the divergence OTUε can be shown to be equivalent to the KL projection problem:

min
π1,...,πK
πk∈Ck∩C′

K∑
k=1

wkK̃L(πk|K) , (IBP)

where Ck = {π ∈ Rn×n+ |π1 = αk} and C′ = {π ∈ Rn×n+ |∃α ∈ ∆n, π
>
k 1 = α, ∀k = 1 . . .K}. The IBP algorithm

amounts to performing iterative minimization on one constraint set C at a time. Each step can be solved in closed form,
leading to Sinkhorn-like iterations. By combining both iterations, one can write every iterate of the transport plan as
π(l) = diag(a(l))Kdiag(b(l)) and perform the scaling operations on the variables a,b given in algorithm 2.

Algorithm 2 IBP algorithm (Benamou et al., 2014; Chizat et al., 2017)

Input: α1, . . . , αK , K = e−
C
ε

Output: αOTUε
Initialize all scalings (bk) to 1,
repeat

for k = 1 to K do
ak ←

(
αk
Kbk

)
end for
α←

∏K
k=1(K>ak)wk

for k = 1 to K do
bk ←

(
α

K>ak

)
end for

until convergence
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E. Additional Proofs
Proof of proposition 5

Proposition E.1. Let α1, . . . , αK ∈ ∆n and K = e−
C
ε . Let π denote a sequence π1, . . . , πK of transport plans in

Rn×n+ and the constraint sets H1 = {π|∀k, πk1 = αk}, and H2 = {π|∀k ∀k′, π>k 1 = πk′1}. The barycenter problem
minα∈∆n

∑K
k=1 wk Sε(αk, α) is equivalent to:

min
π∈H1∩H2
d∈Rn+

[
ε

K∑
k=1

wk KL(πk|K diag(d)) +
ε

2
〈d− 1,K(d− 1)〉

]
. (65)

PROOF. The barycenter problem of Sε only depends on OTUε (α, β)− 1
2 (OTε(α, α). Let’s rewrite this expression using the

IBP formulation and duality. the IBP formulation (5) is explicitly given by:

OTUε (α, β) = min
π∈Rn×n+

π1=α,π>1=β

εK̃L(π|K)− ε
∑
i,j

Kij (66)

And the autocorrelation term can be expressed via its dual problem:

OTUε (α, α) = max
h∈Rn

2〈h, α〉 − ε〈ehε ,Kehε 〉 − ε
∑
i,j

Kij (67)

= max
d∈Rn+

2〈ε log(d), α〉 − ε〈d,Kd〉 − ε
∑
i,j

Kij (68)

=− min
d∈Rn+

−2〈ε log(d), α〉+ ε〈d,Kd〉+ ε
∑
i,j

Kij (69)

Moreover, on the constraint set H1 ∩H2, it holds α = π>k for all k. Thus, denoting H2(α) = {π|∀k ∀k′, π>k 1 = α} the
following can be written:
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arg min
α∈∆n

K∑
k=1

wk Sε(αk, α)

= arg min
α∈∆n

min
π∈H1∩H2(α)

K∑
k=1

wkεK̃L(πk|K) + min
d∈Rn+

−〈ε log(d), α〉+
1

2
ε〈d,Kd〉 − 1

2
ε
∑
i,j

Kij

= arg min
α∈∆n

min
π∈H1∩H2(α)

d∈Rn+

K∑
k=1

wk

(
εK̃L(πk|K)− 〈ε log(d), α〉

)
+

1

2
ε〈d,Kd〉 − 1

2
ε
∑
i,j

Kij

= arg min
α∈∆n

min
π∈H1∩H2(α)

d∈Rn+

K∑
k=1

wk

(
εK̃L(πk|K)− 〈ε log(d), π>k 1〉

)
+

1

2
ε〈d,Kd〉 − 1

2
ε
∑
i,j

Kij

= min
π∈H1∩H2
d∈Rn+

K∑
k=1

wk

(
εK̃L(πk|K)− 〈ε log(d), π>k 1〉

)
+

1

2
ε〈d,Kd〉 − 1

2
ε
∑
i,j

Kij

= min
π∈H1∩H2
d∈Rn+

K∑
k=1

wk

εK̃L(πk|Kdiag(d))− ε〈Kd,1〉+ ε
∑
ij

Kij

+
1

2
ε〈d,Kd〉 − 1

2
ε
∑
i,j
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F. Supplementary details on experiments
F.1. Barycenters of nested ellipses

We simulate each ellipse by generating random major and minor radii with a moving a center from the top left quarter
corner to the bottom right quarter corner. The box constraints of the random generators of the radii are manually picked so
that ellipses are more likely to be nested with an assymetric surrounding ellipse (see supplementary code). The full list
of 10 images used to compute the barycenters is displayed in Figure 10. Each image has 60×60 pixels. The ground OT
cost function is the squared Euclidean cost over the unit square [0, 1]2. For entropy regularized distances (All except W ),
we set ε to the lowest value guaranteeing no numerical instabilities in Sinkhorn’s algorithm (this was particularly an issue
for Sharp barycenters αAε of Luise et al. (2018)). Now we detail the algorithm used for each divergence F defining each
barycenter αF of the experiment in Figure 6:

1. OTUε : OT with the uniform measure; computed using the IBP algorithm (Algorithm 2).
2. Sε: Proposed debiased divergence; computed using the proposed algorithm (Algorithm 1).
3. OT⊗ε : Computed using iterative IBP in minimization-majorization alternative algorithm. With (7), one can linearize

the concave negative KL penalty and solve the resulting problem using IBP iteratively and then update the KL term etc.
This leads to a series of nested IBP loops.

4. Aε: Sharp barycenters introduced by Luise et al. (2018). Solved using accelerated gradient descent. This method
required considerable manual effort to tune the learning rate in order to get an acceptable barycenter and was more
prone to numerical instabilities.

5. Free support barycenters with Sε: introduced by Luise et al. (2019), we used the online Python code provided by the
authors which amounts to add or remove a dirac particle at each iteration and update their weights using Frank-Wolf’s
algorithm. The algorithm is stopped when no particules are created / removed.

6. W : non regularized Wasserstein distance. We used the accelerated interior point methods introduced by Ge et al. (2019)



Debiased Sinkhorn barycenters

Figure 10. All 10 nested ellipses images used to compute the barycenters of Figure 6.

Figure 11. Input meshes used to compute the barycenters of 3D meshes.

with the online matlab implementation provided by the authors.

F.2. Barycenters of 3D shapes

The original 3D shapes (tore and rabbit) are taken from the PyVista (Sullivan & Kaszynski, 2019) Python library. We
preprocess the original meshes as follows. Each mesh is smoothed by 100 iterations of a Laplacian operator then the
coordinates are centered and rescaled to fit within 95% of the cube (−1, 1)3. We sample 3D histograms of both meshes
on a uniform 3D grid of size 2003. Both histograms are normalized and regularized by adding a 10−10 weight to avoid
numerical errors. We set the lowest stable regularization ε = 0.01 for the ground cost defined as the squared Euclidean
distance over the (−1, 1)3 cube. We compute weighted barycenters with the IBP algorithm 2 and the proposed debiased
Sinkhorn barycenter algorithm 1. For each method, we use the weights (w, 1 − w) for w ∈ [0, 0.25, 0.5, 0.75, 1.]. The
original meshes are shown in Figure 11.

F.3. OT barycentric embeddings

We use the Python library Torchvision that provides a fetch method to download the MNIST dataset. We first filter the data
by keeping the labels (0, 1, 2, 3, 4) then select the first 500 samples. This constitutes the global dataset of the experiment.
Then we randomly select K = 50 samples that will be considered as our learning dictionary A. Then for each sample
(image) β in the remaining 450 samples, we compute the weights w ∈ ΣK minimizing ‖αF (w)− β‖2 where αF (w) is the
weighted barycenter of the dictionary A. This leads to an embedding of 450 MNIST samples in a space of dimension K.
We then use this embedding to train a Random Forest Classifier with 100 estimators using scikit-learn’s default parameters
(version 0.21.3).


