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Abstract. This paper aims to analyze and adopt the term clustering method for
building a modular ontology according to its core ontology. The acquisition of
semantic knowledge focuses on noun phrase appearing with the same syntactic
roles in relation to a verb or its preposition combination in a sentence. The con-
struction of this co-occurrence matrix from context helps to build feature space
of noun phrases, which is then transformed to several encoding representations
including feature selection and dimensionality reduction. In addition, word em-
bedding techniques are also presented as feature representation. These representa-
tions are clustered respectively with K-Means, K-Medoids, Affinity Propagation,
DBscan and co-clustering algorithms. The feature representation and clustering
methods constitute the major sections of term clustering frameworks. Due to the
randomness of clustering approaches, iteration efforts are adopted to find the op-
timal parameter and provide convinced value for evaluation. The DBscan and
affinity propagation show their outstanding effectiveness for term clustering and
NMF encoding technique and word embedding representation are salient by its
promising facilities in feature compression.

Keywords: Text Mining - Feature Extraction - Ontology Learning - Term Clus-
tering.

1 Introduction

Ontology building is a complex process composed of several tasks: term or concept
acquisition, concept formation, taxonomy definition, ad-hoc relation definition, axiom
definition [17]. The ever-increasing access to textual sources has motivated the develop-
ment of ontology learning approaches based on techniques of different fields, like nat-
ural language processing, data mining and machine learning. Many works are focused
on the taxonomy definition and more especially on the hypernym relation extraction. A
term tl is a hypernym of a term t2 if the former categorizes the later. This relation is
also known as a terminological is-a relation. For its extraction from texts, several ap-
proaches based on Harris distributional hypothesis are proposed. This hypothesis states
that words/terms in the same context can have similar meanings [27]. Then each term
can be represented by a numeric vector in a vector space by taking into account the con-
text, with different word embedding techniques (e.g. co-occurrence matrix, word2vec,
NME, etc.)
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Based on the geometric similarity in a vector space, non-supervised methods are
applied for term clustering. Due to the concerns about the semantic relation between
terms upon the construction of vector space, each cluster is expected to include seman-
tically similar terms (i.e. synonyms or related by the hypernym relation) or semantically
connected terms.

In case that the semantic meaning of clusters could not match any existing concepts
of ontology, these clusters are not suitable for ontology building. Moreover, these ap-
proaches may have poor performance due to the sparsity of the co-occurrence matrix
[4]. Dimensionality reduction becomes a crucial issue. It can be performed by feature
selection. In the statistical stage, feature selection could be achieved by the frequency
of terms or the weighting of Tf-Idf (term frequency-inverse document frequency).

Clustering terms under the core concepts of ontology are demonstrated to be pro-
ductive to build a modular ontology [33]. A core ontology of a domain is a basic and
minimal ontology composed only of the minimal concepts (i.e core concepts) and the
principal relations between them that allow defining the other concepts of the domain
[40, 5]. This step (i.e. term clustering under core concepts) is the first stage towards a
taxonomy definition. Indeed, a term of each cluster is expected to be synonym or hy-
ponym of the core concept that corresponds to its cluster. Later, inside of each cluster,
other hypernym relations between terms have to be extracted.

In this paper, we will group terms under core concepts through clustering algorithms
and to evaluate these clustered terms whether they are synonym, hypernym or seman-
tically close to core concepts. Accordingly, we define and evaluate several frameworks
for term clustering by varying feature representations (i.e. co-occurrence representa-
tion, weighted co-occurrence representation, NMF representation, and word embedding
representation) and clustering techniques(i.e. k-means, k-medoids, affinity propagation,
DBscan and co-clustering). We present the ontology building steps from core ontology
in section 2. The related works are discussed in terms of term clustering for ontology
building in section 3. We then describe the corpus and the pre-processing steps served
for feature representation in section 4. Sequentially, we discuss the parameters setting
of these five clustering techniques, analysis their results. Finally, we conclude with the
term clustering techniques recommendation for ontology building purpose.

The main differences between this paper and previous work [52] can be summa-
rized regarding to the extension of content and the augmentation of experiments. We
progressively describe the ontology building procedures from ’core ontology’ to *'mod-
ular ontology’, and to our proposed ontology in section 2. Furthermore, we detail the
interesting clustering methods about their advantages and disadvantages and show their
utility over ontology building in previous work. In terms of experiments, we extend
our operation with three additional clustering techniques: k-medoids, DBscan and co-
clustering, and update the existing experiments with a much enlarged gold standard.
Ultimately, five different clustering techniques are compared together with their fresh
results in order to offer a broader comparison upon term clustering techniques.
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Fig. 1. The Ontology learning cake from [3] with modification
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2  Ontology Building

Ontology building from text could be achieved by various approaches, it could be per-
formed manually, automatically or semi-automatically. During the ontology construc-
tion procedures, respecting to the sequence of manipulation, ontology building is able
to be divided into the bottom-up approach, top-down approach, and mixed approach.
However, the step of human validation is irreplaceable at the end of ontology building,
to ensure the accuracy of knowledge representation in the constructed ontology.
Ontology conceptualization is the core part of ontology building. It can be simplified
into this ontology learning layer cake [3] in Fig. 1. As shown in this cake, starting with
terms from text, several steps are followed to explore concepts and their corresponding
relations. For example, in the music domain, the terms ’singer’, *vocalist’, 'musician’
and ’song’ are extracted. Then, term synonyms are identified and grouped to form con-
cepts (e.g. the synonyms terms ’singer’ and ’vocalist’ are grouped and constitute the
concept). From these isolated terms, we can find their synonyms. At the same time,
we can infer the relations between them. It could be the simple is-a relation or more
complex ad-hoc relation. Once enough relations are dug out, it is interesting to find the
axioms between these relations. In our approach, we concentrate on the bottom three
steps, from term extraction to synonyms identification and to concept definition. From
these stages, we are allowed to cluster the extracted terms to form concepts where each
cluster includes synonyms or hypernyms of core concepts. Then within each cluster,
further synonym or is-a relations between terms of the same cluster can be extracted.

2.1 Core Ontology

To steer the learning process of a domain ontology, we benefit from a domain core
ontology. A core ontology of a domain is the basic and minimal concepts (i.e. core
concepts) and the principle relations between them that allow defining the other con-
cepts of the domain [5, 38, 21]. Scherp [46] considers that a core ontology should be
characterized by a high degree of axiomatization and formal precision. Nevertheless, it
could be presented by a concept taxonomy structure with is-a relation as Fig. 2 shows.
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Fig. 2. The core ontology and its sub concepts.
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Furthermore, in a core ontology, generally, each core concept (except *Thing’) repre-
sents (conceptualize) a sub-domain (a topic) of the ontology domain and it could be
specialized on sub-concepts in order to define the sub-domains (see Fig. 3).

A core ontology could be considered as an upper ontology (i.e. top-level ontology
or foundation ontology [5]) of domain ontology, which provides the high possibilities
to be reused for extensive purpose. In most cases, the core ontology is predefined by a
domain expert, in order to provide guidelines in terms of domain ontology construction.

On the basis of core ontology, Gruber [25] suggests using core ontology of a domain
to build domain ontology. Additionally, several works define or reuse a core ontology
to identify and further define the domain concepts by specialization. For instance, on
the one hand, almost all OBOs (Open Biomedical Ontologies) have been originated by
importing the BFO (Basic Formal Ontology) and the RO (Relation Ontology); Opdhal
et al. [39] used BWW (Bunge Wand Weber) ontology to build the UEML ontology;
Chulyadyo et al. [7] improved the ontology flatness by inferring hypernym relation
between extracted terms and core concepts. On the other hand, some works map a core
ontology to a given domain ontology, so as to better define the concepts of the domain
and superimpose a structure of one domain ontology. For example, Deprs et al. [11]
map the Core Legal Ontology (CLO) to legal Ontologies; Burita et al. [5] map NEC
(Network Enabled Capabilities) core ontology to the NEC domain ontology.

2.2 Modular Ontology

Modular ontology is considered as a major topic to facilitate and simplify the ontology
engineering process in the field of formal ontology developments [29]. If it is required
to alter the structure of the ontology, we can just remove, add or enrich the target mod-
ules in modular ontology, without interference to other remaining parts of ontology.
Moreover, the modular representations are easier to understand, reason with, extend
and reuse [24]. Therefore, using these representations tends to reduce the complexity of
designing and to facilitate ontology reasoning, development, and integration [13].

Gangemi [22] and Kutz [33] suggest to map core ontology to domain ontology for
improving modularity. On this basis of core ontology, it is interesting to obtain a well-
structured taxonomy where each sub-domain is defined by a separate module (Fig. 3).
Then it becomes easier to define a modular regarding each core concept that represents
its sub-domain. The constituted several main topics (i.e. core concepts) in a specific
domain will lead the extension of sub-concepts (bottom layer in Fig. 3).
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Fig. 3. The domain modular ontology.
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2.3 Our Target Ontology

Concisely, we aim to build modular ontology from text using term clustering derived by
core ontology. Following the top-down approaches from the core ontology to modular
ontology in order to build an ontology, we would like to enrich each module by con-
cepts/terms, through extracting terms and clustering them where each cluster should
correspond to the terms/concepts of a module. We start by analysing term clustering
frameworks and comparing their suitability to put terms semantically close to a core
concept (i.e. synomym or hypernym terms of a core concept) in the same cluster. For
that, it is required to evaluate whether the resulted clusters are close to a manual term
classification.

In our work, a clustering framework concerning NPs as terms and it depends of
three main components: 1) feature representation approaches, 2) dimension reduction
techniques, 3) and clustering algorithms. These components allow to be substituted by
the different related techniques, which brings the high flexibility for the entire term
clustering framework.

3 Related Work

3.1 Feature Representations

In the field of knowledge acquisition from text, it is apparent that the functional en-
tities of sentences and their clauses constitute the dominant linguistic elements for
syntagmatic information collection. Cimiano [9] describe the local context by extract-
ing triples of nouns, their syntactic roles, and co-occurred verbs. They consider only
verb/object relations, so as to emphasize partial features of terms working as an object
by a conditional probability measure, which calculate the conditional probability that a
certain term appears as head of a certain argument position of a verb. Similarly, Jiang
[31] and Rios-alvarado [45] formed the triple term structure of noun phrases and verbs,
in the shape as subject of the noun, verb, the object of the noun. Moreover, ASITUM
[16] acquires semantic knowledge from the following canonical syntactic frames which
include the verb, and their preposition or syntactic roles and the headword of noun
phrases:
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<toverb> ((< preposition > | < syntactic role >) < headword >)

For examples, the instantiated syntactic frame of the clause, “Bart travels by a huge
boat”, we get:

<totravel > < subject > < Bart>

<by> < boat >

Itis evident that their focus is based on the dependency between the verb (i.e. ’to travel’)
and features of the verb (i.e. 'Bart’ with syntactic roles ’subject’; ’boat’ with preposition
"by’). Except for the extraction of nouns and verbs, some work consider the involve-
ment of adjectives as well, which would be considered as keywords of ontology learning
[50, 43].

Besides syntactic dependency, one recent work [19] extracts co-occurring couples
of entities and present their semantic relations with pattern-based representation. To
interpret these appearances, terms (entities) are presented by vectors with the frequent
sequential pattern as components. Then pattern-based feature space is constructed for
relation discovery. Moreover, according to Word2vec [36], a term is statistically en-
coded with analogies from its appearance in a different context, where the similarity of
encoding vectors reflect the semantic relations between terms.

3.2 Dimensionality Reduction Techniques

After the choice of the feature representation and the building of term-feature matrix,
often we have to deal with matrix sparsity problem using dimensionality reduction tech-
niques. Church et al. [8] proposed to apply PMI weighting (pointwise mutual informa-
tion) to reduce bias in rare contexts, in which values below 0 are replaced by 0. Tf-Idf
(term frequency-inverse document frequency) also contribute to weight terms by their
specificity to documents. The computational complexity grows exponentially with the
size of the lattice, where NMF (non-Negative Matrix Factorization) [34] is dedicated to
solving the dimensionality reduction problem by performing feature compression.

3.3 Clustering Techniques

K-Means The most typical clustering technique is k-means, which starts with ran-
domly selected centroids and performs iterative calculations to optimize the positions
of the centroids for partition purpose [28]. It is easy to be implemented and widely used
as a simple clustering solution. However, its drawbacks are also evident that 1) k-means
is quite sensitive to the initial set of seeds; 2) its performance could be strongly im-
pacted by the noisy elements. Despite that, k-means is always regarded as the baseline
to compare with other clustering algorithms.

K-Medoids Similar to k-means clustering algorithm, k-medoids also attempts to min-
imize the distance between centroids. In contrast to k-means, k-medoids choose the
starting centroids as priori before calculation [32]. K-medoids provides many favorable
properties: 1) it presents no limitations on attributes types, which means it is capable
of numerical, categorical and binary attributes. 2) the choice of medoids is dictated by
the location of a predominant fraction of points inside a cluster and, therefore, it is
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lesser sensitive to the presence of outliers. Briefly, it is more robust to noise and out-
liers as compared to k-means. However, this algorithm suffers from the negative effects
of unsuitable initial seeds, because it does not allow reassigning seeds while changing
mean values. Nevertheless, it could be a preferable clustering algorithm for us once we
acknowledge the proper starting seed for each cluster.

Affinity Propagation Like k-medoids, affinity propagation clustering algorithm finds
centroids to represent their located clusters during iterations. Differ from the dissimilar
distance in k-medoids, affinity propagation uses graph distance that performs in a mes-
sage passing way between data points [18]. With this approach, 1) it is not required to
determine the number of clusters in advance and 2) the centroid of each cluster is spec-
ified after calculation, which turns out to be helpful for cluster interpretation. However,
this algorithm is not friendly with big datasets because the time complexity of calcula-
tion increases dramatically along with the amount of clustered elements. Nevertheless,
affinity propagation is still interesting as clustering algorithm for normal-size datasets.

DBscan Despite those distance-based clustering methods, DBscan (Density-based spa-
tial clustering of applications with noise) [15] is distinguished as a density-based clus-
tering method. It groups together closely packed points and marks the low-density
points as outlier points, in order to accentuate the high-density points into clusters and
get rid of the negative impacts of outliers. DBscan clustering algorithm has some special
benefits: 1) it is capable to find arbitrarily shaped clusters, because of the reduced single-
link effect (different clusters being connected by a thin line of points) 2) no demand to
specify the number of clusters as that of affinity propagation. In opposite, DBscan al-
lows for points to be part of more than one cluster, which might induce overlapping
between clusters. It requires the knowledge of domain expert during the selection of
key parameters, such as the minimum number of points required to form a dense region
(i.e. minPts) and the radius of a neighborhood with respect to some points (i.e. eps).
It is desirable to apply DBscan clustering algorithm even with several pre-experiments
for the selection of parameter.

Co-clustering In co-clustering algorithm (also called bi-clustering, block clustering),
not only the targets but also the features of the targets can be clustered simultaneously,
which preserves the existing relation between targets and their features. We are inter-
ested in the bi-clustering over contingency table [23]. Typically, the input matrix would
be arranged as a two-way contingency table. This algorithm shows the encouraging per-
formance on the contingency outcomes. The co-clustering has practical importance in
gene research and also document classification. The resulted co-clusters are expected to
overlap with each other, where these overlaps themselves are often of interest. It has two
major shortcomings: 1) the problem of local optimization to each co-cluster individu-
ally; 2) the lack of a well-defined global objective during each iterations [40]. Despite
these facts, the co-clustering algorithm is attractive because it takes into account the
relation between clustered elements and the features of them.

In previous work, Clustering techniques have shown their favorable properties in
terms of ontology learning. The K-means clustering algorithm was implemented to
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separate the domain knowledge for the purpose of domain ontology learning [47]. One
adaptive k-medoids clustering method [14]could be applied to identify clusters by these
medoids, which are representing the concepts of ontology from the knowledge database.
Except for the typical clustering algorithm, there are many calculation approaches used
for clustering purpose. The Weka data mining tool [51] helps to implement many al-
gorithms for clustering purposes, such as viz., EM, Farthest First and k-Means. The
previous research showed that the Farthest First clustering technique yielded rather bet-
ter performance than the others in the attempt of concept clustering. The Farthest-First
[37] is a variant of K-Means that differs in the initial centroid assignment, which places
the cluster center at the point furthest from the existing centers. on the other hand, Hao
[26] aimed to construct a hierarchy of ontology by using EM algorithm [10] to cluster
the keywords from domain corpus. EM computes the distribution of parameters for each
cluster by the maximum likelihood criteria. Hao [26] implemented EM several times to
select the appropriate number of clusters and then summarized the subject of the cluster
for the convenience of hierarchy construction and organization.

Briefly, many clustering algorithms have participated in the procedures of ontology
learning. In previous work, the output of automatic term clustering for ontology build-
ing is hard to recognize the meaning of each cluster and label it relating to ontology
domain. In the same time, the quality of clusters is not satisfying. In our work, our
approach is based on a core ontology and aims at obtaining clusters, where each one
includes terms that are synonyms, hypernyms of a core concept or strongly related to
it. Meanwhile, little effort has been done in term clustering for ontology learning using
core ontology.

4 Frameworks Comparison Approach

For the purpose of ontology building, we established a workflow for the comparison
of approaches of term. The workflow is comprised of 5 stages to gradually transform
corpus into the dedicated clusters of terms. The corpus (stage 1) provides resources for
relation extraction of terms (stage 2). It brings two basic feature representations, co-
occurrence representation and word embedding representation. With respect to feature
transformation and dimension reduction techniques, the two initial features could be
transformed into 4 extensive feature representations (stage 3). Based on those repre-
sentations of terms, various clustering algorithms are employed to gather together the
semantic similar terms (stage 4). Finally, the quality of clusters is assessed according to
evaluation indices (stage 5).

4.1 Corpus Selection

With the aim of term clustering experiments, we choose two corpora in different do-
mains: music domain and ontology learning domain. Each corpus possess the gold stan-
dard, which includes a set of extracted terms that are classified manually over the core
concepts of the domain.

Music Corpus [6], is composed of 100M-word documents, includes Amazon re-
views, music biographies and Wikipedia pages about theory and music genres. We de-
liberately selected 2000 documents from 105,000 documents, ensuring that the chosen



Term Clustering Frameworks 9

Fig. 4. The term clustering workflow. Adapted from Xu et al. [52]
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Table 1. The Corpus Size and Statistics.

4 4 4 # # docs
: : #tokens i #CCs
Corpus Docs Sampling Sentences|occurrence | “MIUE | “docs containing | 7= =
tokens CC
Music [105,000f 2,000 | 28,286 | 703,519 |51,327 | 351 1,879 4.9
Ontology| 16 16 4,901 112,628 | 7,700 | 7,040 16 198.7

content includes the great proportion of terms in the predefined gold standards. The
Ontology Learning Corpus comprises of 16 scientific articles in the domain of ontology
learning. As shown in table 1, it presents the statistics of the number of documents,
the number of documents after sampling, the number of sentences, the occurrence of
tokens, the number of unique tokens, the number of tokens divided by the number of
sampled documents, the number of documents containing a core concept(CC) and the
number of core concepts(CCs) divided by the number of sampled documents. These
two corpora are different in terms of domain and the amounts of docs, however, their
evident contrast could help researchers to figure out whether it exists a relation between
corpus and term clustering techniques.

The aforementioned core concepts are predefined for each domain in the gold stan-
dard. As shown in table 2, the gold standard of Music Corpus is composed of 4,382
relevant terms (i.e nouns relevant for the music domain) labeled with one of the core
concepts of music domain, while in the gold standard of Ontology Learning Corpus,
2953 terms (as nouns) are labeled with one of the core concepts of the ontology learn-
ing domain.

4.2 Corpus Pre-processing

Considering that only semantic similar terms are interesting to be clustered, it turns to
be essential to extract the relations between terms from their context. Regarding to the
utility of syntactic roles, the skeleton of a sentence is supposed to comprise the subject,
the object and their related verb. In other words, terms with important syntactic roles
are assumed to cover the most descriptive information in a sentence. Thus noun phrases
(NP), acting as subject or object, are worth to be highlighted in concept extraction, while
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Table 2. The Gold Standard.

Corpus # core concepts # terms Labels of Core Concepts
Music 5 4,382 Album, Musician, Music Genre, Instru-
ments, Performance
Ontology Learning 8 2,953 Component, Technique, Ontology, Do-

main, Tool, User, Step, Resource

Fig. 5. The instantiated co-occurrence couples extraction. Adapted from Xu et al. [52]
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their contextual components, i.e. verbs, could present the concrete connection between
NPs.

In the procedure of relation tuples extraction based on dependency tagging, as
shown in the stage 2 of Fig. 4, syntactic information is extracted to help identify NPs
acting as a subject or object and their co-occurred verbs. In our experiment, we pro-
pose to use spaCy [48] as a parser tool. It could decompose an entire typical syntactic
tree into structured information, which shows the overwhelming convenience in post-
processing, comparing to other parser tools, such as cleanNLP [2] and coreNLP [35].

To explain how noun phrases (NPs) with subject and object role and verb-preposition
combinations (VPCs) are extracted during the POS tagging, we provide an instance
about co-occurrence couples extraction in Fig. 5. After the tokenization of a sentence,
tokens will be cleaned and lemmatized. Following the pre-processing steps, we start
with the recognition of skeleton terms. As shown in the top of Fig. 5, terms in a sen-
tence are presented with dependency relation, where the shaded terms have been tagged
as subject (nsubj), ROOT and object (dobj, pobj). The subject (ontowrapper) and direct
object (information) point to the ROOT (extract) with the solid lines, while the propo-
sition object (on-line resource) indirectly points to ROOT (extract from) with the relay
of dashed lines and solid lines. As for the non-skeleton dependency, they are connected
in dashed lines. Furthermore, we need to pay attention to the distinction between the
passive and active sentences. To simplify the composition of sentences, it is practical to



Term Clustering Frameworks 11

Fig. 6. The merged co-occurrenc matrix. Adapted from Xu et al. [52]
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record passive subject (nsubjpass) as direct object (dobj). With the help of head point-
ers, noun phrases (NPs) and verb-preposition combinations (VPCs) could be gathered
and extracted in the compound format. Finally, the pairs of ROOT (verbs) and skeleton
terms are tagged and recorded as the reconstruction resource taking the place of the raw
corpus.

4.3 Feature Representation

After the pre-processing, the feature representation stage are following as shown in
Fig. 4. We plant to experiment with 5 distinct strategies to build the word represen-
tation in a scalar vector space where each word is encoded as a numeric tuple/vector.
We begins with two disparate approaches to build the basic feature representations.
One of the fundamental vector spaces takes advantage of the frequency of NPs-VPCs
pairs, while another feature representation uses the entire context to acquire the word
embedding. They differ from each other in the range of terms co-location, for which
the fundamental method facilitates syntactic roles for co-occurrence pairs within a sen-
tence, while the word embedding method takes into account a certain length of context
of all appearance places of a term. Additionally, to tackle the sparseness problem of nu-
meric vectors, dimensionality reduction techniques are employed to condense feature
representation.

Co-occurrence Representation To build up the co-occurrence representation, the afore-
mentioned pairs are extracted and transformed into a co-occurrence frequency matrix,
where VPCs are considered as the features of NPs. Since we notice that it exists a big
gap in terms of the syntactic functionality between subject and object, their represen-
tation are supposed to be separated into different co-occurrence pairs, named subject
co-occurrence and object co-occurrence.

As a ground truth, one kind of co-occurrence pairs, either subject or object, could
only convey the partial linguistic knowledge from a sentence. It is profitable to delib-
erately combine subject and object co-occurrence pairs, with the intention of an entire
coverage of context. Thus, we propose the merged co-occurrence matrix (in Fig. 6). In
this model, we differentiate NPs and VPCs into pure subject, pure object and common
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part. The common part means NPs and VPCs appear in both subject and object. On the
whole, the merged matrix comprises 9 sub-parts, where the non-existing pairs present
to be all zero (blank rectangles) and the pure pairs (subject or object) present their fre-
quency respectively in two blue rectangles. Common couples (shaded rectangles), the
overlaps between subject rectangle and object rectangle, are filled with the accumula-
tive frequency of subject pairs and object pairs. From any objective perspective, as long
as subject and object co-occurrence pairs join together, the merged matrix theoretically
encompasses complete linguistic information. Hence, this merged model will work as
a primary representation in the following part.

Table 3. The dimensionality reduction after the threshold. Adapted from Xu et al. [52]

#NPs #VPCs Reduction with Frequency Reduction with Tf-Idf
#NPs #VPCs #NPs #VPCs
corpus subj. obj. both subj. obj. both Threshold 8;:Summation of frequency Threshold &,:Summation of value
music 3,138 7,272 1,560 254 3,054 532 o >8 8 >7
573 660 582 456
Ontology 401 1,643 281 80 889 219 8>3 % >4
602 505 563 502

Dimensionality Reduction The sparseness of a merged co-occurrence matrix becomes
a significant issue, where the dimension reduction technique can be applied to solve it.
For a sparse matrix, the reduction over row and column are both required to decrease
the noise effect. In table 3, we apply with the frequency-based thresholds to eliminate
the most common and rare NPs and VPCs. On the right hand, Tf-Idf encoding represen-
tation also provides bi-directional selection respecting to NPs and their tf-df features.

— Weighted Co-occurrence Representation. Based on the co-occurrence represen-
tation, we would like to weight values to differentiate the importance of co-occurrence
pairs. Tf-1df, is designed with this discriminative purpose. Basically, this algorithm
could extract the most descriptive terms from documents, which is able to be ex-
tended to weight the most significant NPs to specific VPCs, instead of documents.
With certain thresholds in rows and columns, only prominent NPs and their co-
occurred VPCs are kept at last. Owing to the derivation of Tf-Idf, the close con-
nected NPs and VPCs are preserved through the thresholds in table 3 so that the
weighted co-occurrence matrix gets refined from the reduced dimensionality.

— NMF Co-occurrence Representation. Term co-occurrences could be separated
into 3 levels according to the identity of words in context [20]. In the first-order
co-occurrence, terms appear together in the identical context. As for two terms
are associated by means of second-order co-occurrence, they share at least one-
word context and have strong syntactic relations. Besides, terms do not co-occur in
context with the same words but between words that can be related through indirect
co-occurrences, namely third (higher) order co-occurrence. To capture those co-
occurrences, NMF [34] is applied to condense the isolated VPCs into some encoded
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features. In this way, NPs with indirect co-occurrence are presented in the new
dense feature space. We set the number of features to be 100 during experiments.

Word Embedding Representation On the basis of contextual information, it allows
to build feature vectors that are adapted for semantic similarity tasks. Word embedding
representation was trained using word2vec [36] algorithm under the skip-gram model.
In the local aspect, terms can be represented by vectors of its co-located words within
certain window size, called co-locating vectors. The sum of co-locating vectors around
the appearance place of a term constitutes the context vectors. In the global aspect, the
sum of context vectors at all appearance places of a term gives the construction of word
vectors. It integrates all the contextual features of a word and presents by the encoded
similarity statistically. One of the advantages of word2vec is that it achieves dimension
reduction purposes by indicating the required amount of features. To be comparable
with NMF encoding technique, the number of features with word2vec is also given by
100.

4.4 The Clustering over Feature Representation

Heretofore, we have introduced all the alternative algorithms in the term clustering
workflow, involving four different feature representations and five diverse clustering
approaches. The composition of these alternatives is under interests for term cluster-
ing exploration, this effort assists to present a clear comprehension for the dominant
possibilities of term clustering workflows.

In this stage, we analysis the combination of the different feature representation and
clustering algorithms. The four feature representations have various concerns about re-
lations between terms. As we discussed in previous section, the co-occurrence repre-
sentation offers the co-occurrence relation between NPs and VPCs; the weighted co-
occurrence representation discriminates the principle co-occurrence from the rare or
extreme frequent pairs of NPs and VPCs; the NMF co-occurrence representation takes
into account the indirect co-occurrence of pairs by encoded features; the word embed-
ding representation emphasizes the co-occurrence within certain windows in sentences.
These distinct features would generate different compactness with these five cluster-
ing algorithms, including k-means, k-medoids, affinity propagation, DBscan and co-
clustering.

4.5 Evaluation Indices

A large number of indices provide possibilities to assess the clustering quality [1]. In
order to simplify the discrimination process, we select two distinct indices respectively
for internal evaluation and external evaluation.

Indices for Internal Evaluation To evaluate the observations that are aggregated into
clusters, one intuitive approach is to measure their compactness and separateness by
their geometric similarity. Without any assistance of extra knowledge, the cluster could
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Fig.7. The utility of gold standard. Adapted from Xu et al. [52]
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marked with different labels.

be evaluated with some distance-based indices, given the name as the internal evalu-
ation. In Fig. 7, after applying the clustering algorithm over one of the NPs feature
spaces, the terms could be directly evaluated by internal indices. However, in this situ-
ation, the clusters are difficult to be labeled with some human understandable concepts.

Silhouette width [44] and adjusted Dunn Index are chosen as indices of internal
evaluation. Silhouette method specifies how well each observation lies within its cluster.

b(i) —ali)

S0 = (@) b))

)]
In equation 1, i represents one observation in clusters, a(i) represents average dissim-
ilarity between i and all other observations of the cluster to which i belongs. For each
cluster C, d(i,C) denotes average dissimilarity of i to all observations of C. In this basis,
b(i) is set by the smallest d(i,C) and can be considered as the dissimilarity between an
observation i and its neighbor cluster. A high average silhouette width indicates a good
clustering according to features.

Adjusted Dunn Index proposed by Pal and Biswas [41] overcomes the presence of
noise comparing to original Dunn Index [12]. In general, they are both dedicated to
the identification of compact and well-separated clusters. Higher values are preferred,
which shows a good performance of compactness. Notably, the Dunn Index family does
not exhibit any trend with respect to the number of clusters, of which this property is
exceedingly welcomed since the number of clusters varies in different iterations.

Indices for External Evaluation In the case of external evaluation, the indices are
slightly different from the former because of the use of a gold standard. In the external
indices section of Fig. 7, the terms are marked with different labels by the classes of
gold standard, which becomes human interpretable. For instance, in the displaying of
clusters, the left cluster includes terms as ’pop singer’, new vocalist’, ’Celine Dion’
and ’jazz’. With the assistance of labels, it is straightforward to explain that this cluster
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is composed of 75% musician class and 25% music genre class. The top-right cluster is
constituted by 33% music genre class and 66% album class. The bottom-right cluster is
labeled with 100% instruments class. Further, in the approach of external evaluation, the
clusters are capable to be label by classes from external evaluation, which provides the
possibility for cluster labelling issues. According to the expected core concept classes,
Purity and Asymmetric Rand Index are representative of clustering quality measure-
ment.

Purity is one of the most simple and widely used indices. Each cluster firstly is
assigned with a label that is most frequent, according to the gold standard, then this as-
signment is calculated by counting the number of correctly assigned elements dividing
by all elements. High purity is easy to achieve when the number of clusters is large, be-
cause the number of terms in each cluster will significantly decease and the percentage
of terms with the same label probably increases. A larger amount of clusters may refine
the branches of structure in ontology building, however, it incurs complexity to label
clusters with core concepts, performing as the first step of ontology learning. Thus we
could not use only purity to trade off the quality of clustering against the number of
clusters.

The Asymmetric Rand Index proposed by Hubert and Arabie [30] is also consid-
ered, for which it provides the comparison between the result of a classification and a
correct classification. This index is developed from the idea of typical Rand Index (RI).
Instead of counting single observation, the typical Rand Index (RI) counts the correctly
classified pairs of observations. Then the rand index [42] is calculated by:

RI= 7
()
, where (g) is the number of un-ordered pairs in a sets of n observations. The a in the
formula refers to the number of times that the pair of observation belongs to the same
classification but exists in different clusters and the b indicates the opposite way, in
which a pair belongs to different classification and exists in different clusters. Hence RI
depends on both, the number of clusters and the number of observations [49].
However, we cannot get the lowest value (e.g. zero) for two random partitions by
typical Rand Index. Thus Hubert and Arabie [30] made a modification with the null
hypothesis, which means the value of Adjusted Rand Index (ARI) is expected to under

the null hypothesis, with 0 for independent clustering and 1 for identical clustering. The
Adjusted Rand Index (ARI) [30] is defined as follows:

@

k l i,j
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ARI = 3)

, where ] = Zf-;l (‘Czi‘), th = 25‘:1 (‘Czﬂ), 3 = % In general, the i and j represents
the cluster i and classification j. The m;; indicates the number of observations in cluster i
matching to classification j. The |C;| and |C}| represent the total number of observations
for each cluster i or for each classification j, respectively.

Additionally, ARI allows that the number of clustering can be different with the
number of classification of gold standard. During experiments, the number of partitions
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Table 4. The Parameters of 5 clustering algorithm.

clustering similarity R library function k selection parameter other
measure selection parameters
k-means cosine stats kmeans() 2-50 -
k-medoids cosine cluster pam() 2-50 - medoids
affinity propagation cosine  apcluster apclusterK() 2-50 - maxits=2000;convits=200
DBscan cosine fpc dbscan() - dbscan::kNNdistplot() eps=0.2;minpts=3
co-clustering - blockcluster coclusterContingency() 9 - -

are always larger than that of classification from gold standard, while the application of
Asymmetric Rand Index allows for a more accurate analysis.

5 Experiment Settings and Evaluation

However, before the examination of the combination between clustering algorithms
and feature representations, it is inevitable to preset the parameters regarding clustering
methods. How to choose the optimal number of clusters? And is it valuable to choose
the number of clusters according to core concepts? These puzzles would be tackled
in the following subsections. On the grounds of these prepared settings, the related
experiments are executed to provide the evaluation for each examination. The analysis
of those outcomes will bring in the recommendation about the alternative algorithms
for term clustering.

5.1 Parameter Setting of Clustering

On the basis of various feature representation of terms, the inner relations between terms
are able to be discovered by the clustering algorithms. The clustering algorithms differ
from each other with regards to both their distance measurements and their preference
on the optimal number of clusters.

Similarity Calculation of Clustering Before applying these representations to cluster-
ing algorithms, it is essential to illustrate the choice of similarity/dissimilarity measure
for each algorithm. For example, k-means, k-medoids and DBscan clustering algorithm
make use of cosine distance for each representation. The cosine measurement has an
outstanding favorable property as normalization, which fits well to the multi-nominal
probability distributions in Bag-of-word assumption. On the contrary, the affinity prop-
agation employs cosine similarity calculation as required by the executing algorithms.
However, the similarity or dissimilarity calculation is skipped for the co-clustering ap-
proach, because its concentration is to explore the contingency of raw data with row
and column effects.

Repetitions of Clustering To weaken the impact of the randomness of clustering, the
repetition of experiments is necessary as a proof for the subsequent analysis. Generally,
to serve our purpose about selecting the optimal number of clusters, each experiment
goes through all the parameters of k (the number of clusters) ranging from 2 to 50
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Fig. 8. The examples of parameter selection with K-Means
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Note: All values are statistically averaged from 10 times

for 10 repetitions. To get the convincing results, each index is statistically averaged to
mean values for evaluation. As presented in Fig. 7, each iteration allows for analysis of
clustering performance respecting to internal indices and external indices.

However, this method is not suitable for all of the clustering methods. On the one
hand, as we mentioned that some clustering algorithms do not require the pre-setting of
the number of clusters, instead, they are able to provide the choice of optimal number
of cluster. As shown in table 4, it depicts the experiment parameters for these five clus-
tering algorithms. Theoretically, affinity propagation can be implemented without such
prerequisite. However, from the experiments we obtained very poor performance based
on the automatic assignment of k. In order to acquire the optimal setting for such clus-
tering algorithm, we apply the k selection procedure to vary the number of clusters from
2 to 50. As for DBscan clustering algorithm, it could implement without such prerequi-
site of k, but it needs the parameter of the minimum number of points required to form a
dense region (i.e. minPts) and the radius of a neighborhood with respect to some points
(i.e. eps). Fortunately, it exist a function (parameter selection column of table 4)to assist
us to find a suitable value for DBscan by calculating the k-nearest neighbor distances
in a matrix of points. In the aspect of co-clustering, the selection of these two param-
eters brings many complexity. To solve this problem, the expert knowledge of domain
assists us to settle down these numbers. Hence, we can directly use the optimal number
of clusters the same as the number of core concepts in the different corpus.

Eventually, k-means, k-medoids and affinity propagation clustering are capable to
find their optimal number of clusters from a large range of candidates. To select the op-
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timal amount of clusters, we attempt to solve the multi-criteria optimization problem.
As Fig. 8 shows, it represents the evaluation results of k-means clustering with the co-
occurrence feature representations, for Ontology Learning Corpus and Music Corpus
separately. The two plots depict the fluctuation of all evaluation indices along with the
increasing of the number of clusters. In order to address the multi-criteria optimization
problem, we plan to find some evident peaks of one of the most fluctuating line and
choose one from these candidate peaks to assure a rather higher summation over the
entire indices. For instance, in the left sub-figure, we select the first 10 peaks of Dunn
Index as candidates, and calculate the summation of all indices for those 10 candidates.
Then we can choose the candidate with the highest summation as the optimal num-
ber of cluster. In Fig. 8, the dashed lines indicate the final parameter choice for this
specific representation. In this figure, we select 20 as the optimal k of left experiment
and select 14 for right experiment. Besides, the selection procedures of the rest feature
representations follow the same rules.

In other words, it seems better to choose a locally optimal k around the number of
core concepts, so as to restrict the number of clusters within a suitable range for ontol-
ogy learning purpose. This assumption takes into consideration of number of core con-
cepts. However, it rejects the possibilities of high-quality clustering along with smaller
clusters. Therefore, in replace of the local optimization approach, global optimization
of all indices is preferred to choose parameters of k-means and affinity propagation
clustering for each feature representation.

5.2 Evaluation of Clustering

Obviously, to complete the experiments, we need to apply the 5 different clustering
methods upon the 4 diverse feature representations. Thus around 20 experiment out-
comes are presented for each corpus. On the basis of these statistics, we have made
multiple comparisons to discover the valuable matching from corpus to clustering algo-
rithms and to feature representations for term clustering. The table 5 and table 6 indicate
the evaluation of 5 clustering methods and 4 feature representations. The co-occurrence
representations are denoted as "NP-VPC’, while their extended embedding techniques
weighted co-occurrence representation and NMF representation are denoted by "NP-
VPC-tfidf” and "NP-VPC-NMF'. To be short, these 3 representations are called by a
joint name 'NP-VPC representation family’. Besides, the word embedding representa-
tions is said to "NP-w2v’.

Generally, in the aspect of the corpus, it is evident that Music Corpus (see table 6)
reaches a much higher purity and higher Asymmetric Rand Index than that of Ontol-
ogy Learning Corpus (see table 5). It can be due to that bigger corpus (Music Corpus)
provides significant contextual features to cluster terms.

For the difference between 5 clustering methods, first of all, there is no overwhelm-
ing clustering approach according to those evaluation indices. The performance of k-
medoids is comparable or better than that of k-means, which conforms to our intu-
ition somehow. The k-medoids clustering methods need the knowledge of centroids be-
fore calculation, whose results are expected to be more accurate than that of k-means.
Moreover, co-clustering has a rather poor performance than others. During experiments,
some feature representations are even failed with this algorithm, due to the contingency
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Table 5. The evaluation of 5 clustering methods and 4 feature representations (Ontology Learning
Corpus).

corpus clustering feature representation # selected k Purity Asymm Rand Index Dunn2 Index Silhouette Width
NP-VPC 20 32.3% -0.1% 32.3% 18.6%
K-Means NP-VPC-tfidf 44 60.3% -2.6% 22.2% -2.0%
NP-VPC-NMF 37 43.3% -1.0% 24.7% 47.0%
NP-w2v 37 62.1% 51.2% 64.7% 13.9%
NP-VPC 25 36.2% -0.5% 70.2% 24.3%
K-Medoids NP-VPC-tfidf 18 36.2% -0.5% 70.2% 24.3%
NP-VPC-NMF 21 38.7% 1.0% 99.4% 25.7%
NP-w2v 17 51.8% 9.7% 85.5% 7.8%
NP-VPC 47 48.2% -0.3% 76.8% 34.7%
Ontology _ NP-VPC-tfidf - - - - -
Affinity Propagation  \1p \pe NMF 26 41.0% 3.1% 10.5% 50.0%
NP-w2v 43 62.2% 1.2% 87.1% 13.0%
NP-VPC 7 27.2% -0.6% - 1.6%
DBscan NP-VPC-tfidf 1 25.6% -1% - 17.6%
NP-VPC-NMF 76 56.6% 3.5% 79.4% 45.5%
NP-w2v 16 35.8% 0.7% 73.3% -12.2%
NP-VPC 9 26.6% 0.8% 49.0% -10.7%
Co-clustering NP-VPC-tfidf . ) . ) N
NP-VPC-NMF 9 26.6% -0.4% 99.4% 4.2%
NP-w2v - - - - -

Note: All values are statistically averaged

requirement of input data. While the affinity propagation algorithm achieves the rel-
atively best performance of clustering, and the DBscan clustering methods are slight
deficient than that of k-means, k-medoids and affinity propagation.

As for the evaluation indices, we notice that it occurs negative values in asymmetric
Rand Index and silhouette width. In this situation, the former index reflects a worse
elements labeling of clusters comparing to Gold Standard, while the latter index shows
that there are overlapping parts between different partitions, which means feature sim-
ilar terms probably share different labels. That is inevitable in linguistic because the
similar context of terms could not straightly infer to the same meaning of them.

In terms of the encoding representations, Tf-Idf representations provide unevenly
lower accuracy in clusters. While the NMF representations and the word embedding
representations have a good clustering quality overall. On the other hand, the perfor-
mance of co-occurrence representations varies along with different corpus. From the
results of evaluation, we observe a rather better performance in Music corpus than that
in Ontology Learning corpus. Due to that the bigger corpus(the Music corpus) contains
more frequent NP-VPC pairs, the co-occurrence matrix can present more distinguishing
values to accentuate their features for term clustering purpose.

In the aspect of the combination of clustering and feature representations, it is
preferable to list the most outstanding feature embedding technique for each cluster-
ing method. In table 5 and table 6, we select the required feature representations for
each clustering approach only if the amount of the underlined indices for that feature is
as many as possible (the underlines are used to mark the highest value for each cluster-
ing method). According to the bold values in table 5 and table 6, we are able to choose
the best combination for each corpus. The selected results are presented in table 7.
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Table 6. The evaluation of 5 clustering methods and 4 feature representations (Music Corpus).

corpus clustering feature representation # selected k Purity Asymm Rand Index Dunn2 Index Silhouette Width

NP-VPC 14 75.1% 63.3% 22.1% 20.8%

K-Means NP-VPC-tfidf 10 48.2% 0.1% 28.0% 13.3%
NP-VPC-NMF 14 70.4% 24.4% 64.6% 19.0%

NP-w2v 13 81.1% 59.9% 79.7% 16.1%

NP-VPC 23 78.9% 67.9% 72.3% 16.0%

K-Medoids NP-VPC-tfidf 17 53.1% 5.2% - 22.2%
NP-VPC-NMF 25 75.1% 74.5% 98.7% 16.7%

NP-w2v 27 80.9% 59.5% 87.1% 5.8%

. NP-VPC 33 85.3% 74.3% 86.0% 39.3%
Music Affinity P . NP-VPC-tfidf 37 69.9% 8.9% 11.1% 30.9%
nity Propagation - \p ypc.NMF 19 752% 59.1% 98.2% 26.9%
NP-w2v 37 89.6% 73.8% 91.4% 23.3%

NP-VPC 14 65.3% 19.1% 83.8% 2.6%

DBscan NP-VPC-tfidf 12 48.2% 2.2% - 20.7%
NP-VPC-NMF 60 78.2% 22.1% 78.2% 14.2%
NP-w2v 26 56.6% 7.0% 75.1% -12.0%

NP-VPC 9 49.5% -3.4% 59.9% -8.7%

Co-clustering NP-VPC-tfidf . ) - _ -
NP-VPC-NMF 9 48.5% -0.5% 96.7% 1.7%
NP-w2v - - - -

Note: All values are statistically averaged

Table 7. The resulted combination of clustering and feature representation

feature representations

clustering Ontology Learning Corpus Music Corpus
K-Means NP-w2v NP-w2v
K-Medoids NP-w2v NP-VPC-NMF
Affinity Propagation NP-w2v NP-VPC
DBscan NP-VPC-NMF NP-VPC-NMF
Co-clustering NP-VPC-NMF NP-VPC-NMF

From these voted combinations, we aware that the majority of feature representation
lies in NMF embedding technique. Except for k-means and affinity propagation, the
other clustering methods are prone to fit well with NMF in at least one corpus. From
table 7, we notice several outperforming combinations of clustering and feature repre-
sentation, including k-means with word embedding representation and DBscan or co-
clustering with NMF embedding technique. However, for the counterpart of k-medoids
and affinity propagation clustering algorithm, it does not exist a dominant feature rep-
resentation for the different corpus, however the word embedding representation can
achieve a rather good performance in small size corpus.

In general, NMF embedding technique and word embedding representations are
prominent in most clustering situations. The word embedding representations show an
enhanced quality of clustering with K-Means. The DBscan clustering algorithm ac-
companying with NMF encoding technique achieves a rather good performance in both
corpus. On the other hand, the co-occurrence representations reach comparatively good
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performance with affinity propagation clustering, which shows the affinity propaga-
tion’s feasibility over co-occurrence pairs.

6 Conclusions

Many works suggest making use of core ontology to build modular ontology. However,
most of these efforts are manually constructed and seldom in the automatic approach.
Term clustering according to a core ontology supports modular ontology construction
without artificial demands. Taxonomic relations are constructed by gathering of NPs
appearing with prominent syntactic roles after VPCs respecting to core concepts. Suc-
cessfully we constructed feature space with these characteristics from two specialized
corpora. To tackle the problem of sparsity, we benefit from feature selection and feature
extraction techniques, such as adjusted Tf-Idf algorithm and NMF technique. Apart
from that, word2vec is also compared as a benchmark. Along with all the extended
representations, terms are clustered by 5 different clustering algorithms, which con-
tains k-means, k-medoids, affinity propagation, DBscan and co-clustering algorithm.
We found that the original co-occurrence feature space appearing with syntactic roles is
not the most outstanding feature representation, while the usage of Affinity propagation
clustering based on this original representation could prominently improve clustering
performance. It is proved that the word embedding representations show an enhanced
quality with K-Means and NMF encoding technique achieves a rather good perfor-
mance with DBscan clustering algorithm. While the k-medoids and affinity propagation
clustering algorithm have their preference to feature representations depending on the
size of corpus.

From the comparison of term clustering frameworks, we recommend to start with a
bigger domain-specific corpora. The syntactic relations between noun phrases and verbs
are sufficient as features representation, with the assistance of encoding techniques, it
gives rather convincing results in term clustering, which provides us a guideline for
modular ontology building.

In the future work, we would like to explore the relations between terms in each
module of ontology, so as to construct the concept hierarchy in modules. On the other
hand, the relation between modules is still under our interests, in order to form a com-
plete domain modular ontology.
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