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Abstract 14 

Many scientific fields now use machine-learning tools to assist with complex classification tasks. In 15 

neuroscience, automatic classifiers may be useful to diagnose medical images, monitor 16 

electrophysiological signals, or decode perceptual and cognitive states from neural signals. Tools 17 

such as deep neural networks regularly outperform humans with such large and high-dimensional 18 

datasets. However, such tools often remain black-boxes: they lack interpretability. A lack of 19 

interpretability has obvious ethical implications for clinical applications, but it also limits the 20 

usefulness of machine-learning tools to formulate new theoretical hypotheses. Here, we propose a 21 

simple and versatile method to help characterize and understand the information used by a classifier 22 

to perform its task. The method is inspired by the reverse correlation framework familiar to 23 

neuroscientists. Specifically, noisy versions of training samples or, when the training set is 24 

unavailable, custom-generated noisy samples are fed to the classifier. Variants of the method using 25 

uniform noise and noise focused on subspaces of the input representations, so-called “bubbles”, are 26 

presented.  Reverse correlation techniques are then adapted to extract both the discriminative 27 

information used by the classifier and the canonical information for each class. We provide 28 

illustrations of the method for the classification of written numbers by a convolutional deep neural 29 

network and for the classification of speech versus music by a support vector machine. The method 30 

itself is generic and can be applied to any kind of classifier and any kind of input data. Compared to 31 

other, more specialized approaches, we argue that the noise-probing method could provide a generic 32 

and intuitive interface between machine-learning tools and neuroscientists. 33 

 34 

Keywords: Data analysis – Interpretability – Deep neural networks – Automatic classifiers – Reverse 35 

correlation – Auditory models 36 
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Introduction 38 

Applications of machine-learning techniques permeate more and more scientific fields, with rapid 39 

and sometimes unexpected success (LeCun et al., 2015; Jordan & Mitschell, 2015; Krigeskorte & 40 

Douglas, 2018; Richards et al., 2019). At the same time, it is becoming a widely-acknowledged issue 41 

that many of these tools are often used as black boxes, and need to be interpreted (Molnar, 2020; 42 

Doshi-Velez & Kim, 2017). For instance, if a Deep Neural Network (DNN) was used to make life-43 

changing decisions such as deciding on an intervention based on medical imagery, both the clinicians 44 

and patients would have a clear desire to know the rationale that motivated the decision. Also, the 45 

power of classifiers to detect useful information in large datasets holds many promises to improve 46 

theoretical models, but then, understanding at least to some extent the classifier’s operation is crucial 47 

(Zihni et al., 2020). 48 

Understanding what a complex classifier does after being trained on possibly millions or 49 

billions of samples is usually hard. It is hard for a reason: if the task that the classifier solves had a 50 

known explicit solution, then there probably would not have been any incentive to develop the 51 

classifier in the first place. In addition, modern techniques involve artificial network architectures 52 

with interconnected layers, each including highly non-linear operations (Sejnowski, Kienker, & 53 

Hinton, 1986). A lot of the computational power of such algorithms lies in such cascades of feed-54 

forward and feed-back non-linear operations. Unfortunately, human reasoning seems most at ease to 55 

generate intuitions with linear processes, and not for complex combinations of non-linear ones.  56 

As a consequence, designing methods to interpret machine learning tools is a fast-growing field of 57 

research of its own right, often designated under the term Explainable AI (Guidotti et al., 2018). It 58 

has dedicated journals within the machine learning community (e.g. Distill) and an associated 59 

DARPA challenge (XAI). Recent reviews covering the types of methods exist (Molnar, 2020), also 60 

covering more specifically the feature visualization approach taken here (Olah et al., 2017). Within 61 

this context, our aim is not to outperform the state-of-the art specialized interpretability methods, but 62 

rather to provide a general tool that will hopefully be intuitive to neuroscientists, as it is based on 63 

familiar methods for this community. The manuscript describes the method, provides an open 64 
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software library to use it, and shows examples of application, demonstrating how it can achieve 65 

useful results.   66 

The gist of the method is to try and reveal the input features used by an automatic classifier, a 67 

black-box, to achieve its task without any knowledge about what is inside the black-box. As such, it is 68 

what is termed an “agnostic” method of explanation: it does not attempt to describe mechanistically 69 

the operation of a specific classifier, which it considers unknown (even if the classifier’s details are 70 

available, as they may be too complex to understand intuitively). Rather, the aim is to relate features 71 

of the input space to the classifier’s decisions. Such a problem is closely related to issues that 72 

neuroscientists and experimental psychologists have been addressing for years: providing useful 73 

insights for theoretical models of, for instance, human perception, without a full knowledge of the 74 

highly complex and non-linear underlying information processing performed by the brain.  75 

In particular, the method we propose is directly inspired from the reverse correlation 76 

techniques developed for studying human vision (Ahumada et al., 1971; Neri et al., 1999; Gosselin & 77 

Shyns, 2001, 2003). Reverse correlation is based on linear systems analysis (Wiener, 1966). It uses 78 

stochastic perturbations of a system to observe its output. If the system were linear, an average of the 79 

inputs weighed by the observed outputs would be able to fully characterize the system. However, 80 

even for the highly non-linear systems studied by neuroscience, reverse correlation has a track-record 81 

of useful applications. For neurophysiology, averaging input stimuli according to neural firing rates 82 

has been used to describe neural selectivity (Ringach & Shapeley, 2004 for a review). For 83 

psychophysics, averaging input stimuli according to participant’s decisions has revealed stimulus 84 

features on which such decisions are made for detection or discrimination tasks (Ahumada et al., 85 

1971; Gosselin & Shyns, 2001, 2002). In this spirit, it seems appropriate to add reverse correlation to 86 

the toolbox of techniques to probe automatic classifiers, as its advantages and limitations are already 87 

well understood for non-linear systems. 88 

One important benefit of using the reverse correlation framework is its complete 89 

independence from the underlying classifier’s architecture. Unlike efficient but specific methods 90 

tuned to a classifier’s architecture (see Guidotti et al., 2018 for a review), the reverse correlation can 91 

be used to probe any algorithm that separates the input data into distinct classes. Even for the 92 
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currently popular agnostic interpretability methods, this is not always the case: Class Activation 93 

Maps (Zhou et al., 2016) are specific to convolutional networks; LIME (Ribeiro et al., 2016) and 94 

RISE (Petsiuk et al., 2018) highlight features of specific examples which may or may not be 95 

representative of the classification task in general. Also, the method operates in the same 96 

representation space used as an input to the classifier, and can be applied to any type of 97 

representation (2D images, 1D time series such as audio, higher-dimensional brain imaging data, for 98 

instance).  99 

The outline of the method is as follows. First, a set of stochastic inputs are generated, by 100 

introducing noise on the training dataset when available, or, when unavailable, by generating broad-101 

band noise to cover systematically the input space. The noise takes two forms: additive noise, as is 102 

classically the case, but also multiplicative low-pass noise known as “bubbles” (Gosselin & Shyns, 103 

2001, 2002) to focus the exploration on sub-spaces of the input representation. Second, the inputs are 104 

sorted according to the classification results. Third, inputs belonging to the same class are grouped 105 

together, with some refinements of the standard reverse correlation methods inspired by signal 106 

detection theory (Green & Wets, 1966) to weigh the results with the variability observed after 107 

classification. Two variants are described, aiming to probe two kinds of possibly overlapping but not 108 

necessarily identical input features: (1) the discriminative features, which correspond to the part of 109 

the input representation that is the most useful to ascribe a category (2) the canonical features, which 110 

correspond to the input features most representative of each category. In the machine-learning 111 

literature, these would loosely correspond to the “attribution” versus “feature visualization” problems 112 

(Ohla et al., 2017). In psychophysics, the distinction overlaps with the “potent information” (Gosselin 113 

et al., 2001) versus “prototypical information” (Rosch, 1983).  114 

 115 

1. Material and Methods 116 

1.1. Probing discriminative features 117 

We term “discriminative features” the subspaces of the input space that are the most potent in 118 

the decision taken by the classifier (Gosselin & Shyns, 2002). The aim of this first method is to 119 
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visualize such subspaces in the input space. In the following, we assume that the classifier has been120 

trained and is available to the probing method. 121 

1.1.1. Procedure 122 

To identify discriminative features, the input space is pseudo-randomly sampled with 123 

multiplicative low-pass filtered noise. The subspace enabling the highest classification performance124 

is then identified by a reverse correlation analysis of all classified samples. The algorithm is directl125 

inspired by the “bubbles” method (Gosselin & Shyns, 2001), originally designed to characterize the126 

visual features underlying human behavioral performance for image classification tasks.  127 

We present two sub-variants of the method, to account for the availability or not of the 128 

training set: a) multiplicative lowpass noise is applied to the training set; 1b) multiplicative lowpass129 

noise is applied to broadband noise generated in the input stimulus space. We now describe the 130 

algorithm, jointly for a) and b). A textual description is provided as well as a software repository 131 

written in Python programming language (https://github.com/EtienneTho/proise) and a schematic 132 

illustration (Figure 1).  133 

134 

Fig. 1. Summary of the two probing methods. Both method have 2 variants depending on the 135 

availability of the training set. Method 1: Training samples (1a) or noise (1b) are multiplied by 136 

bubble masks and then fed to the trained classifier. The bubble masks are then sorted according to 137 
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the output of the classifier to compute the discriminative map. Method 2: Training samples with 138 

additive noise (2a) or noise (2b) are fed to the trained classifier. The probing samples are then sorted 139 

according to the output of the classifier to compute the canonical map. For methods 1b and 2b, the 140 

noise can be either a gaussian noise or pseudo-random samples. 141 

 142 

For each pass (gray box in Fig. 1): 143 

1. A bubble mask is generated. This consists of a mask in the input space, of dimension N, 144 

consisting of randomly positioned N-dimensional Gaussian windows (see Figure 2). The 145 

number of bubbles, nbBubbles, as well as the size of the bubbles in terms of the Gaussian 146 

standard deviations can be arbitrarily chosen and are parameters of the algorithm. In practice, 147 

an input array of dimension N populated by zeroes except for nbBubbles unit values is 148 

convolved with N-dimensional Gaussian windows. The resulting mask is denoted 149 

BubbleMask. 150 

2. The probing data is generated. For variant a), the probing data is one exemplar of the training 151 

dataset, randomly chosen. For variant b), the probing data is an N-dimensional activation 152 

noise (see section 2.1.2 for details). The probing data is denoted ProbingData.  153 

3. The probing sample is obtained by multiplying the bubble mask with the probing noise: 154 

ProbingSample = BubbleMask * ProbingData. 155 

4. The probing sample is fed to the classifier and the output class is recorded. The probing 156 

sample is labeled C+ if it classified in the target class, C- otherwise. 157 

 158 

Analysis:  159 

For each point, i, in the stimulus space, the discriminative map for the class C+, Di,C+, is 160 

computed as the sum of all C+ bubble masks divided by the sum of all masks C+ and C-: 161 

��,�� �
∑����	
��
���,�

∑����	
��
��
 (Eq. 1). It should be noted that the analysis is performed on the 162 

bubble masks, and not on the probing samples. 163 

1.1.2. Generation of noise activations when the training set is unavailable  164 
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 As mentioned above, when the training set of the classifier is unavailable, the probing 165 

samples are generated from noise in the input space. The choice of the noise distributions is a free 166 

parameter of the method. The simplest choice is to draw samples from a uniform distribution at each 167 

point of the input space, covering the full range of valid input values. However, this sometimes leads 168 

to uneven coverage of the output categories, for instance if the classifier’s boundaries are especially 169 

complex or if the decision algorithm is highly non-linear. In this case, we suggest to generate pseudo-170 

random probing samples by first whitening the input dimensions, using a Principal Component 171 

Analysis (PCA). As the training set is unavailable, the PCA can be done on a representative set of 172 

inputs relative to the classifier’s task. After the PCA, uniform noise can be generated in the low 173 

dimension space – which can be seen as the latent PCA’s space – and inverted to obtain noise in the 174 

input space. The qualitative goal during the choice of the noise distribution is a balanced coverage of 175 

all output categories, and iterative choices may be a part of understanding the classifier’s features. 176 

1.1.3. Statistics 177 

  The discriminative maps show, in the input space, the features used by the classifier to assign 178 

samples to a given category. Visual inspection may be sufficient to get a qualitative understanding of 179 

the classifier’s operation. However, in some cases, it is desirable to assess statistically the relevance 180 

of each part of the discriminative map.  181 

There are many options to assess significance of such data, from which we outline one 182 

possible methodological choice. First, the maps can be shuffled by running the algorithm described 183 

above many times while randomly assigning output categories to each sample. For each point in the 184 

actual map, a t-test (or a non-parametric equivalent) is applied to compare the map value with the 185 

mean of the shuffled data. Maps are usually high-dimensional so a correction for multiple 186 

comparisons is needed. Again, several choices exist which are not specific to the methodology 187 

presented here, including Bonferroni correction, cluster permutation (Maris & Oostenveld, 2007), or 188 

False Discovery Rate (FDR) (Benjamini & Hochberg, 1995). In the illustrative examples below we 189 

only provide the raw discriminative and canonical maps, without statistics. 190 

1.2. Probing canonical features  191 
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We define “canonical features” as the representation, in the input space, that would best match 192 

the different items of a given class. As an analogy, the canonical information may be viewed as the 193 

centroid of a category in the input space. 194 

1.2.1. Procedure 195 

To build the canonical map, the whole input space is randomly perturbed, without bubbles, so 196 

the search is not focused on any subspace. The aim is to probe the whole feature space. Then, all 197 

probes classified as members of the same category are averaged, in a direct adaptation of the classic 198 

reverse correlation method. However, we introduce here two differences, though. First, for 199 

generality, we do not separate correct classifications from false positives or false negatives. This 200 

would require to know the training dataset or to have a large labeled testing dataset. Second, a 201 

normalization of the feature map is introduced, using standard deviations estimates at each point of 202 

the map. This facultative step serves to display units similar to z-scores and not arbitrary input values. 203 

Again, we propose two sub-variants of the algorithm depending on the availability or not of the 204 

training dataset: a) broadband noise in the input space is added to the training set; b) broadband noise 205 

is generated in the input space. We now describe the algorithm, jointly for a) and b). A textual 206 

description is provided as well as the scripts (https://github.com/EtienneTho/proise) and a schematic 207 

description (Figure 1). 208 

For each pass: 209 

1. The probing sample is generated. For a), the probing sample is one randomly chosen exemplar of 210 

the training dataset, with noise added. The goal is to perturb the input to introduce variability, so 211 

that only the most salient information (to the classifier) remains in the reverse correlation 212 

average. For b), the probing sample is an N-dimensional activation noise. The probing sample is 213 

denoted ProbingSample. 214 

2. The probing sample is fed to the classifier and the output class is recorded. The probing sample is 215 

labeled C+ if it classified in the target class, C- otherwise.   216 

Reverse correlation analysis: 217 
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• For each point, i, in the stimulus space, the discriminative information is computed as the mean of 218 

all C+ probing samples minus the mean of all C- probing samples, normalized by the standard 219 

deviation of all probing samples at this point in the input space: 220 

 �� �
�
��������������	
�,�����
��������������	
�,���


��������������	
�
     (Eq. 2) 221 

This reverse correlation definition adds a normalization factor to the simple average, using the 222 

standard deviation observed over all probing samples. This normalization is inspired from the 223 

discriminability index d' of signal detection theory (Green & Swets, 1966). It aims to visually 224 

emphasize reliably high values in the canonical map, by transforming the input units to z-score units. 225 

Note also that in a binary classification task, Pi is symmetric for the two classes. 226 

1.2.2.  Dimensionality reduction 227 

Depending on the architecture of the classifying pipeline and input space, the estimation of the 228 

canonical map with reverse correlation can be more or less efficient. In particular, a standard 229 

technique to improve efficiency when training a classifier is to reduce the number of dimensions of 230 

the input space, for instance by using PCA. (e.g., Patil et al., 2012). Here as well, the probing and 231 

reverse correlation analysis can be performed in the space with reduced dimensionality before 232 

inverting back to the original input space. 233 

For the generation of probing noise in variant b), the same remarks made in section 2.1.2 apply, 234 

with the same use of PCA to shape the noise for a balanced coverage of all output classes. 235 

1.2.3.  Statistics 236 

The statistical analysis of canonical maps can be done with the same tools as for 237 

discriminative maps, described in section 2.1.3. 238 

2. Results 239 

To illustrate the methods introduced above and their generality, we present two different use cases: 240 

interpreting the classification of handwritten digits, a visual task (2-D input space) performed with a 241 

deep neural network; interpreting the classification of speech versus music, an audio task (1-D time 242 

series converted to a 4-D auditory model) performed by a support vector machine. These two cases 243 

also cover binary versus multiclass decisions. Although voluntarily simple, these examples should 244 

cover most of the ingredients needed for use cases relevant to neuroscience, such as vocal 245 
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classification (Paquette et al., 2018), biomedical images classification (Wang et al., 2016), EEG 246 

decoding (King & Dehaene, 2015), Multi-Voxel Pattern Analysis (Formisano et al., 2008). 247 

2.1. Digits classification 248 

In this first example, we classify visual samples of handwritten digits from the MNIST database 249 

(Deng, 2012). This is a standard database for evaluating image classification algorithms in the 250 

machine-learning community. It is composed of handwritten digits, from 0 to 9, with 60000 samples 251 

in the training set and 10000 samples in the test set. Each sample is a two-dimensional greyscale 252 

image with pixels values between 0 and 1.  253 

Many algorithms can now successfully perform this classification task. Here we trained a 254 

Convolutional Neural Network (CNN) to discriminate between digits, with the following 255 

architecture: 2D-convolutional layer (3, 3), Max Polling layer (2, 2), 2D-convolution layer (3, 3), 256 

flattening layer, dense layer with 10 outputs and a softmax activation. Three epochs were run and, as 257 

expected, a high classification accuracy of 97% was obtained on the test set.  258 

The CNN was probed to visualize the output of our algorithms for discriminative and 259 

canonical features. The two variants, with the training set available and without the training set, were 260 

compared. Figure 2 visually illustrates the method on these 2-D examples, for the bubbles variant.  261 
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262 

Fig. 2. Illustration of the probing method with bubbles on 2-D images. Top row: construction 263 

the probing samples for discriminative features with the training set available. a) Rando264 

placement of bubbles b) Convolution with 2-D Gaussian distributions to obtain the bubble mask c)265 

training sample d) Bubble mask applied to the training sample to obtain the probing sample. Midd266 

row: discriminative features with training set unavailable, uniform noise.  Columns as abo267 

Using such probing samples do not cover the output categories efficiently (see text), likely because268 

their qualitative differences with digits. Bottom row: discriminative features with training s269 

unavailable, dimension-reduced noise. Here noise is generated in a reduced dimension spa270 

extracted from PCA over the test set. The resulting probing sample is not a recognizable digit b271 

shares visual features with actual digits.  272 

 273 

 Figure 3 shows the discriminative features obtained with Methods 1a) and 1b), expressed as274 

the Discriminative Index of Eq. 1 visualized in the 2-D input space (the visual image). The resulting275 

discriminative maps highlight regions of the input space that are needed to make a correct 
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classification, that is, the position of the bubbles most useful for identifying each class. These do not 277 

need to correspond to the actual shape of a digit (which will be targeted by canonical features later 278 

on). For example, for the digit “1”, the most useful regions are around the digit: knowing that there 279 

are no active pixels in such surrounding regions is most efficient for deciding that the narrow-shape 280 

of “1” was the input. For the digit “7”, the discriminative map highlights the top-right corner, which 281 

corresponds to the position of a sharp angle unique to “7”. In summary, while these maps may not 282 

make immediate intuitive sense on their own, they do orient the analysis of the input set towards 283 

regions of interest. Moreover, if the task was now to classify “7” versus all other digits, the input 284 

space could be weighed to emphasize the top-right corner to simplify the new classifier.  285 

The availability of training data is expected to provide faster and more robust convergence 286 

towards the features of interest. For each case, 60000 probing samples and 10 bubbles with standard 287 

deviation of 4 pixels were used. In the case of Method 1b), a uniform random noise was first tested 288 

but only lead to categorization in 5 digits categories, so a pseudo random noise obtained from the 289 

inversion of a PCA was instead used generated to probe the CNN. This new noise led to decisions 290 

covering the 10 categories. The discriminative information obtained in the two cases correlate 291 

strongly (r = .92 (SD = .01), df = 783, p < 10-3), showing that the methods’ sub-variants with or 292 

without the training dataset converge toward the same masks. 293 

 294 

 295 

 296 

 297 
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 299 

Fig. 3. Discriminative features maps for a CNN classifying handwritten digits. The maps show t300 

discriminative maps, in dB, obtained for each digit with Method 1a) with the training set availab301 

(left) and Method 1b) with the training set unavailable (right). Regions in red correspond to su302 

spaces of the input most important for a correct classification of each digit. The maps are he303 

normalized for each digit and presented in dB (20 log10 Pi/Pmax) for a sake of comparability betwe304 

digits. 305 

 306 

Figure 4 shows the canonical features obtained with Methods 2a) and 2b), with or without th307 

training set available. These canonical maps look different from the discriminative ones. Here, the 308 

maps are weighted averages of probing samples themselves, and not low-pass bubble masks, so fin309 

details are available. As a result, and as intended with a reverse correlation approach, the canonical 310 

maps are readily identifiable and visually resemble the average written digits’ representation. Such 311 

insight is perhaps not very surprising with simple digits, except perhaps for the ‘negative’ regions i312 

blue that further specify which features are canonically absent from a given digit. Again, Methods 2313 

and 2b) provide strongly correlated maps (r = .67 (SD = .18), df = 783, p < 10-3). It can nevertheless314 

be noted that Method 2b) tends to focus on the center of the input space. In particular, some border 315 

pixels were never associated with one or the other classification decision, leading to missing values316 

when computing d’. 317 
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 320 

Fig. 4. Canonical features maps for a CNN classifying handwritten digits. The maps show the d’ 321 

sensitivity index for each point of the input space, obtained with Method 2a) (left) and Method 2b) 322 

(right). The red portions of the maps indicate the input features most associated with a given class.323 

They visually resemble each digit, more or less blurred. The blue portions of the maps indicate the 324 

input features that are most reliably not present for a given class. 325 

 326 

2.2. Speech vs. music 327 

In this second example, we classified audio samples in a speech versus music task. We used the328 

GTZAN database composed of 132 excerpts of speech and music (Tzanetakis & Cook, 2002). The329 

database was preprocessed to create samples with a fixed duration of 5 seconds, leading to a datase330 

of 768 samples. Those samples were randomly separated into a training set (691 excerpts) and a tes331 

set (77 excerpts, 10% of the dataset). 332 

Following Patil et al. (2012), who performed an automatic classification of the musical timbre o333 

short audio samples, sounds were first processed by an auditory model (Chi et al., 2005). The idea i334 

to cast the input space into a representation that is interpretable in terms of auditory processing, 335 

unlike the raw waveform representation. Briefly, a filterbank corresponding to cochlear tonotopy is336 

initially applied, followed by a 2-D Fourier analysis of the resulting time-frequency representation.337 

The model output thus represents temporal modulations and spectral modulations contained in the 338
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input sound (Chi et al., 2005, Elliot & Theunissen, 2009). The 4-D resulting arrays, with dimensions 339 

of time, frequency, scale of spectral modulations, and rate of temporal modulation, are termed here 340 

Spectro-Temporal Modulation representations (STM). We averaged the time dimension over the 5s 341 

of each sample. Next, we applied a PCA to reduce dimensionality (30976 dimensions in our 342 

implementation: 128 frequency channels x 11 scales x 22 rates, reduced to150 dimensions to preserve 343 

98% of the variance).  344 

For classification, the output of the reduced PCA was fed to a Support Vector Machine (SVM) 345 

with a Radial Basis Function (RBF). All of these steps are identical to Patil et al. (2012), to which the 346 

reader is referred to for further details, as the specifics of the classifier are not critical to illustrate the 347 

probing method. Briefly, a grid search on the RBF was performed to determine the best set of 348 

parameters and the classifier accuracy was tested with a 10-fold cross-validation. We obtained an 349 

average classification accuracy, i.e. whether the classifier is classifying the STM of a sound to the 350 

correct music or speech class, of 94% (SD = 6%) with the 10-fold cross-validation and 98% on the 351 

test set. 352 

Figure 5 shows the discriminative feature maps for the speech versus music classification task. 353 

For each case, we used 691 probing samples and 30 bubbles with standard deviation of 10 Hz in the 354 

frequency dimension, 6 Hz in the rate dimension, and 3 cycles/octave in the scale dimension. As the 355 

task is a binary classification, the maps for speech and music are simply mirror images of each other. 356 

The discriminative regions of the auditory model STM representation appear to be mostly visible in 357 

the frequency dimension: speech can be best classified by looking at the input in a broad frequency 358 

range around 500 Hz, corresponding roughly to the position of the first formant in speech (Peterson 359 

& Barney, 1952). For the other dimensions, the classification depends on slow positive rates and low 360 

scales. In other words, the difference between speech and music was in the presence of slow 361 

modulations and broad spectral shapes for speech. Again, this matches prosodic and syllabic features 362 

of speech, together with the broad spectral shape of formants. By construction the two maps are 363 

complementary, but for music, a richness in spectrum, including high and low frequency regions, 364 

associated with fine spectral details (high scales) is characteristic of musical instruments (Elhilali, 365 

2019), which have been designed to go beyond the physical constraints imposed by voice production.  366 
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In the case of the Method 1b), with the training set unavailable, a first probing was attempted 367 

with a uniform white noise but failed to provide classification decisions sampling the two categorie368 

all noises were classified as music, a perhaps amusing finding which we will not develop here. The369 

uniform white noise was thus replaced by a pseudo random noise generated in a PCA-reduced 370 

representation obtained with the testing set. A whitened PCA was first applied to the testing set to 371 

reduce it to 40 dimensions and a uniform gaussian white noise was generated on the 40 dimensions372 

generate samples in the reduced space. Each random reduced sample was then transformed into the373 

original input space by applying the inverse PCA transformation. This procedure allowed to genera374 

noisy samples with distribution relevant regarding the representative set of data relevant to the 375 

classification task. The information obtained in the two cases then strongly correlate (r = .84, df = 376 

30974, p < 10-5). 377 

378 

Fig. 5. Discriminative maps for speech and music in the STM representation. The 4-D ST379 

representations are projected in the three dimensions (frequency, scale, rates), and expressed in d380 

Method 1a) (left) and method 1b) (right). The complete STM matrices are available in supplementa381 

Figure S1. Method 1a) uses the training set while Method 1b) uses pseudo random noise. The r382 

regions of each map correspond to the features necessary to categorize an audio sample in the giv383 

class. The blue regions correspond to less important features. As this is a binary classification ta384 

the speech and music masks are simply opposite versions of each other.  385 

 386 

Figure 6 shows the canonical feature maps for the speech versus music classification task. Compare387 
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the STM representation, or, similarly, they indicate the “average” speech and music sounds learnt b389 

the SVM. For speech, some formantic structure is visible on the frequency dimension, associated 390 

with low rates typical of prosodic modulations (middle panels). These formantic regions extend to 391 

higher scales (right panels), perhaps because formants are superimposed on a harmonic structure 392 

during vowel sounds. Conversely, musical sounds more typically contain high modulation rates and393 

spectral scales. These observations are consistent with previous analyses of STM representations 394 

(Elliott & Theunissen, 2009; Chi et al., 2005). These observations are consistent with previous 395 

analyses of STM representations (Elliott & Theunissen, 2009; Chi et al., 2005). Again, the canonica396 

features observed for speech and music are complementary by construction with our method. It 397 

should be noted that, as intuitively expected, canonical features depend on the acoustic characteristi398 

of speech and music, but they also depend on the task of the classifier. Probing a classifier trained t399 

discriminate speech from e.g. environmental sounds would likely provide different canonical featur400 

for speech. This result may seem like a limitation of the method, but it also highlights the way an 401 

automatic classifier performs a binary task. This may be an important difference to keep in mind 402 

when comparing classifiers with human perception, which has to perform many concurrent tasks in403 

parallel. Yet, “opportunistic features” that depend both on sensory information and the task at hand404 

have been suggested for auditory timbre recognition, a task not unlike the one probed here (Agus et405 

al., 2019), a task not unlike the one probed here. 406 

 407 

408 

t by 

to 

and 

ical 

istics 

d to 

tures 

 in 

nd 

 et 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.165688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.165688
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 6. Canonical STM representations for speech and music.  The d’ sensitivity index is displayed 409 

for projections of the 4-D representation. The complete STM matrices are illustrated in 410 

supplementary Figure S2. The red regions of the maps indicate features most often encountered 411 

within each category, whereas the blue regions indicate features most often not encountered within 412 

each category. 413 

3. Discussion 414 

4.1 Summary 415 

The method presented in this paper used a reverse correlation framework to visualize the input 416 

features discovered by an automatic classifier to reach its decisions. When the classifier is successful, 417 

such features should provide insights about the structure of the input dataset. Over two examples 418 

using different kinds of classifiers (a CNN and an SVM with RBF) and using different kinds of input 419 

representations (2-D visual images and 1-D audio samples converted to a 4-D auditory model), we 420 

illustrated how the method could highlight relevant aspects of a classifier’s operation. Moreover, by 421 

combining standard noise perturbation techniques with so-called bubbles (Gosselin & Shyns, 2002), 422 

we showed that the probing method can be focused either on discriminative features, related to the 423 

decision strategy of the classifier, or on canonical features, related to the output classes’ main 424 

characteristics.  425 

4.1 Benefits 426 

In the context of neuroscience and experimental psychology, there are benefits in using a 427 

reverse correlation framework to interpret classifiers, as a way to complement other more specialized 428 

machine-learning interpretation techniques (Zhou et al., 2016; Ribeiro et al., 2016; Petsiuk et al., 429 

2018; Borji & Lin, 2019; Xu et al., 2018). 430 

First and foremost, reverse correlation is a familiar tool in the field of neuroscience and 431 

experimental psychology. It has proved useful to gain insights about stimulus features relevant to 432 

neural activity, at the single neuron (Eggermont et al., 1983; Neri & Levi, 2006) or network level 433 

(Arnal et al., 2015; Adolphs et al., 2005; Ringach & Shapley, 2010), and to understand human 434 

perceptual decisions (Gosselin & Shyns, 2001; Venezia et al., 2016). Applying it to interpret 435 
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classifiers amounts to translating and applying a familiar toolbox to another, conceptually similar 436 

problem of characterizing a black-box system.  437 

Second, the method is by design fully agnostic by design. It operates on the input space of the 438 

classifier, whatever this space might be. It does not make assumptions on the classifier’s architecture 439 

or inner operations. Focusing on the input space rather than the classifier’s architecture is especially 440 

desirable in situations where the classifier is not the main interest of study, but rather, the structure of 441 

the input dataset is.  442 

Third, it can be applied to classifiers that have not been designed by the user, as it does not 443 

even require the availability of the training dataset. Access to labeled input data is helpful in 444 

improving the efficiency of the method, for instance by allowing to shape the perturbation noise, but 445 

this is a mild constraint: there are no interesting situations we can think of for which both the 446 

classifier and the type of data to classify would be unknown.  447 

Finally, the output of the method is a visualization (with statistical evaluation if required) in 448 

the input space. Such a representation should make intuitive sense to the user of the method, and the 449 

features discovered can be interpreted a posteriori in terms of attributes of the stimuli. If the 450 

representation does not make intuitive sense, then one possible benefit of the method is to help re-451 

cast the input space into a more meaningful representation, as was done here in the audio example for 452 

which the waveform samples were pre-processed with an auditory model. This idea is further detailed 453 

in the “Perspectives” subsection.   454 

4.2 Limitations 455 

There are also limitations associated to the use of a reverse correlation approach to interpret 456 

automatic classifiers. Broadly speaking, these limitations follow those already described for reverse 457 

correlation in neuroscience. 458 

First, reverse correlation is inspired from the analysis of linear systems, whereas machine-459 

learning classifiers often rely on a cascade of non-linear operations to achieve computational power. 460 

The issue of non-linearity is well-described already in the reverse correlation literature, and its 461 

consequences have been clearly described (Theunissen et al., 2000). There are extensions to the 462 

reverse correlation technique to describe lower-order non-linear interactions in the input space (Neri 463 
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& Heeger, 2002). Such extensions could be applied to the interpretation of classifier’s features. 464 

Interestingly, the reverse correlation approach bears some similarities with the “distillation” method 465 

from the machine learning literature (Hinton et al., 2015). Distillation consists in mimicking the 466 

behavior of a black-box classifier with an easily-interpretable classifier, such as a linear one (linear 467 

SVM, etc.). Both techniques can thus be viewed as attempting to find linear approximations of a 468 

classifier’s operations, but their precise relationship remain to be investigated. 469 

 Second, the method has a number of parameters the number and size of bubbles, the space to 470 

generate the probing noise with reduction dimension methods such as PCA when the training set is 471 

available, which are not algorithmically constrained. In the examples above, the parameter space was 472 

explored heuristically. One suggested heuristic was to try and cover the output classes in a balanced 473 

manner with the probing set. However, even though statistical tests of the resulting features are 474 

available, we do not provide any fitness criterion, i.e. a way to quantify the efficiency of the method 475 

for a given set of parameters, for the features obtained with the method. Rather, we would argue that 476 

the iterative process for parameter tuning can be part of the interpretation process since finding the 477 

right probing structure provides some information on the structure of the dataset. Also, assessing 478 

whether the discovered features make intuitive sense relies mostly on the knowledge and goals of the 479 

user. Thus, it may not be easily formalized into a fitness criterion. If more formally defined methods 480 

are needed, either from the outset or after a first exploration of the classifier with reverse correlation, 481 

other classifier-specific tools exist (e.g., Zhou et al., 2016; Ribeiro et al., 2016; Petsiuk et al., 2018). 482 

 Third, the method implicitly assumes that there are no invariances by translation or otherwise 483 

in the classifier’s algorithm. With reverse correlation, each point of the input space is treated 484 

independently of all others, so a feature discovered in one sub-part of the input space will not impact 485 

other, perhaps similar features in other sub-parts. This assumption is obviously falsified by CNN 486 

architectures, which are purposely designed to incorporate such invariances. In the CNN example 487 

illustrated here with digits recognition, this limitation was circumvented by the fact that all digits in 488 

the probing set were roughly spatially aligned. For the SVM on audio data, a time-averaging over the 489 

time dimension achieved a similar effect. Thus, a mitigation strategy is available: a rough alignment 490 

of the probing data (spatially or temporally) should be sufficient for the reverse correlation to 491 
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produce meaningful results. Another possible direction to address these invariance issues is to 492 

generate the probing noise in an appropriate space. Using a PCA partly achieves this. Finally, using 493 

another representation space with built-in invariances, e.g. by using wavelets transforms, can be 494 

considered. 495 

4.3 Perspectives 496 

The probing method is technically applicable to any classifier’s architecture with any kind of input 497 

data. It is thus beyond the scope of this final section to list all possible use cases in the context of 498 

neuroscience. We will simply provide a few suggestions, to illustrate the kind of problems that could 499 

benefit from the probing method.   500 

When studying perceptual decisions, one possible insight gained from interpreting a classifier 501 

is the exploration of the input representation fed to the classifier. The hypothesis is that, the more 502 

appropriate the representation, the more explainable the classifier should be. For instance, one could 503 

assume that the massively non-linear transformations of auditory and visual information that 504 

characterize perceptual systems serve to build a stimulus manifold within which perceptual 505 

boundaries are approximately linear (Georgopoulos et al., 1986; Jazayeri & Movshon, 2006; Kell et 506 

al., 2018). So, with the correct representation, a classifier modeling a perceptual decision process 507 

should be easily interpretable, or at least more easily interpretable than if the input representation was 508 

not reflecting perceptual processing. It is with this hypothesis in mind that the audio samples of the 509 

example illustrated above were first processed with an auditory model. Even though there are 510 

successful deep learning models operating on the raw audio waveforms (e.g. Wavenet, Oord et al., 511 

2006), it is not expected that interpreting them in terms of waveform features will be meaningful. For 512 

instance, inaudible phase shifts between frequency components in the input would impact the 513 

waveform representation, but should not change the classifier’s decision. An auditory model, in 514 

contrast, incorporates transforms inspired by the neurophysiology of the hearing system. If the 515 

features extracted resemble those available to a human observer, then they should be revealed when 516 

probing a classifier. In fact, the ease of interpreting a classifier feature could be a proxy to evaluate 517 

an input representation’s adequation to a perceptual task. 518 
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Another possible application is when building “ideal observer” models (Geisler, 2004). The 519 

idea of an ideal observer model is to compute the best theoretical performance on a task, given a set 520 

of assumptions (classically, endowing the ideal observer with unbiased decision criteria, perfect and 521 

unlimited memory, and so on). This upper performance boundary is then compared to the observed 522 

performance with human participants or neural recordings. When considering classification or 523 

discrimination tasks, and when a formal model of the ideal observer is unavailable, it can be of 524 

interest to build pseudo-ideal observer models with machine learning classifiers. The advantage of 525 

our probing method is then that the classifier’s strategy can be directly compared to a reverse 526 

correlation analysis of neural or psychophysical data, to ask whether the classifier and the 527 

experimental observer used the same decision features.  528 

Finally, the general benefits of interpreting classifiers also apply to the field of neuroscience. 529 

In a broad sense, probing is intended to help an expert making sense of a classifier’s strategy. If the 530 

features discovered through probing fit a theoretical model, this would reassure the expert that the 531 

performance relies on reasonable principles, which is especially important in clinical applications. In 532 

return, the expert’s intuition may also help improve the classifier, for instance by simplifying its input 533 

representation through pre-processing, and so hopefully making it less brittle to irrelevant variations 534 

in input that may have been picked up by overfitting during training (Goodfellow et al., 2015). The 535 

discriminative features could be particularly useful to reduce the complexity of a classifier. Based on 536 

the discriminative features map, it may be possible to select a subset of important and intelligible 537 

features, which can then be used to build a more computationally efficient classifier, for very large 538 

dataset and/or for real-time processing.   539 

4. Conclusions 540 

We presented a novel method to interpret machine-learning classifiers, with the aim that the method 541 

should be agnostic and well-suited to applications in the neuroscience domain. Based on the reverse 542 

correlation framework, the method uses stochastic perturbation of inputs to observe the classifier’s 543 

output. It then visualizes, in the input space, the discriminative and canonical features discovered by 544 

the classifier for each category. In theory the method can be applied to any kind of classifier, 545 

including deep neural networks, support vector machines, etc. It displays the same well-established 546 
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benefits and limitations as reverse correlation when applied to psychophysical or neural data. Our 547 

hope is that such a method can provide a simple and generic interface between neuroscientists and 548 

machine-learning tools. 549 

  550 
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Supplementary Materials 678 

Figure S1. Complete Spectro-Temporal Modulation representations discriminative maps, in dB, fo679 

speech vs. music classification task. 680 

681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 for 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2020. ; https://doi.org/10.1101/2020.06.22.165688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.22.165688
http://creativecommons.org/licenses/by-nd/4.0/


Figure S2. Complete Spectro-Temporal Modulation representations canonical maps (d’), for speec690 

vs. music classification task. 691 
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