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Abstract  21 

 22 

Anatomically and biophysically detailed data-driven neuronal models have become 23 

widely used tools for understanding and predicting the behavior and function of neurons. Due 24 

to the increasing availability of experimental data from anatomical and electrophysiological 25 

measurements as well as the growing number of computational and software tools that enable 26 

accurate neuronal modeling, there are now a large number of different models of many cell 27 

types available in the literature. These models were usually built to capture a few important or 28 

interesting properties of the given neuron type, and it is often unknown how they would 29 

behave outside their original context. In addition, there is currently no simple way of 30 

quantitatively comparing different models regarding how closely they match specific 31 

experimental observations. This limits the evaluation, re-use and further development of the 32 

existing models. Further, the development of new models could also be significantly 33 

facilitated by the ability to rapidly test the behavior of model candidates against the relevant 34 

collection of experimental data. We address these problems for the representative case of the 35 

CA1 pyramidal cell of the rat hippocampus by developing an open-source Python test suite, 36 

which makes it possible to automatically and systematically test multiple properties of models 37 

by making quantitative comparisons between the models and electrophysiological data. The 38 

tests cover various aspects of somatic behavior, and signal propagation and integration in 39 

apical dendrites. To demonstrate the utility of our approach, we applied our tests to compare 40 

the behavior of several different hippocampal CA1 pyramidal cell models from the ModelDB 41 

database against electrophysiological data available in the literature, and concluded that each 42 

of these models provides a good match to experimental results in some domains but not in 43 

others. We also show how we employed the test suite to aid the development of models within 44 
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the European Human Brain Project (HBP), and describe the integration of the tests into the 45 

validation framework developed in the HBP, with the aim of facilitating more reproducible 46 

and transparent model building in the neuroscience community. 47 

Author summary 48 

 49 

Anatomically and biophysically detailed neuronal models are useful tools in 50 

neuroscience because they allow the prediction of the behavior and the function of the studied 51 

cell type under circumstances that are hard to investigate experimentally. However, most 52 

detailed biophysical models have been built to capture a few selected properties of the real 53 

neuron, and it is often unknown how they would behave under different circumstances, or 54 

whether they can be used to successfully answer different scientific questions. To help the 55 

modeling community develop better neural models, and make the process of model building 56 

more reproducible and transparent, we developed a test suite that enables the comparison of 57 

the behavior of models of neurons in the rat hippocampus and their evaluation against 58 

experimental data. Applying our tests to several models available in the literature, we show 59 

that each model is able to capture some of the important properties of the real neuron but fails 60 

to match experimental data in other domains. We also use the test suite in the model 61 

development workflow of the European Human Brain Project to aid the construction of better 62 

models of hippocampal neurons and networks. 63 
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Introduction  64 

 65 

The construction and simulation of anatomically and biophysically detailed models is 66 

becoming a standard tool in neuroscience [1]. Such models, which typically employ the 67 

compartmental modeling approach and a Hodgkin-Huxley-type description of voltage-gated 68 

ion channels, are capable of providing fairly accurate models of single neurons [2–10] and 69 

(when complemented by appropriate models of synaptic interactions) even large-scale circuits  70 

[11–14]. However, building such detailed multi-compartmental models of neurons requires 71 

setting a large number of parameters (such as the densities of various ion channels in multiple 72 

neuronal compartments) that are often not directly constrained by the available experimental 73 

data. These parameters are typically tuned (either manually or using automated parameter-74 

search methods [9,15–17]) until the simulated physiological behavior of the model matches 75 

some pre-defined set of experimental observations. 76 

For an increasing number of cell types, the available experimental data already provide 77 

diverse constraints on the expected physiological behavior of the neuron under a variety of 78 

conditions. Based on various (typically small) subsets of the available constraints, a large 79 

number of different models of several cell types have been developed to investigate diverse 80 

aspects of single-cell behavior, and for inclusion in realistic circuit models. As an example, 81 

there are currently 131different models related to the hippocampal CA1 pyramidal cell (PC) 82 

in the ModelDB database [18]. However, even though these models are publicly available, it 83 

is still technically challenging to verify their behavior beyond the examples explicitly 84 

included with the model, and especially to test their behavior outside the context of the 85 

original study, or to compare it with the behavior of other models. This sparsity of 86 

information about the performance of detailed models may also be one reason why model re-87 
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use in the community is relatively limited, which decreases the chance of spotting errors in 88 

modeling studies, and may lead to an unnecessary replication of effort. 89 

A systematic comparison of existing models built in different laboratories requires the 90 

development of a comprehensive validation suite, a set of automated tests that quantitatively 91 

compare various aspects of model behavior with the corresponding experimental data. Such 92 

validation suites enable all modeling groups to evaluate their existing and newly developed 93 

models according to common, standardized criteria, thus facilitating model comparison and 94 

providing an objective measure of progress in matching relevant experimental observations. 95 

Applying automated tests also allows researchers to learn more about models published by 96 

other groups (beyond the results included in the papers) with relatively little effort, thus 97 

facilitating optimal model re-use and co-operative model development. In addition, 98 

systematic, automated testing is expected to speed up model development in general by 99 

allowing researchers to easily evaluate models in relation to the relevant experimental data 100 

after every iteration of model adjustment. Finally, a comprehensive evaluation of model 101 

behavior appears to be critical for models that are then expected to provide useful predictions 102 

in a new context. A prime example of this is detailed single cell models included in network 103 

models, where diverse aspects of cellular function such as synaptic integration, intracellular 104 

signal propagation, spike generation and adaptation mechanisms all contribute to the input-105 

output function of the neuron in the context of an active network. By comparing multiple 106 

different aspects of the behavior of the single cell model with experimental data, one can 107 

increase the chance of having a model that also behaves correctly within the network. The 108 

technical framework for developing automated test suites for models already exists [19], and 109 

is currently used by several groups to create a variety of tests for models of neural structure 110 

and function at different scales [20–24]. In the current study, our goal was to develop a 111 
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validation suite for the physiological behavior of one of the most studied cell types of the 112 

mammalian brain, the pyramidal cell in area CA1 of the rat hippocampus. 113 

CA1 pyramidal neurons display a large repertoire of nonlinear responses in all of their 114 

compartments (including the soma, axon, and various functionally distinct parts of the 115 

dendritic tree), which are experimentally well-characterized. In particular, there are detailed 116 

quantitative results available on the subthreshold and spiking voltage response to somatic 117 

current injections [3,25]; on the properties of the action potentials back-propagating from the 118 

soma into the dendrites [26–28], which is a basic measure of dendritic excitability; and on the 119 

characteristics of the spread [29] and non-linear integration of synaptically evoked signals in 120 

the dendrites, including the conditions necessary for the generation of dendritic spikes [30–121 

33].  122 

The test suite that we have developed allows the quantitative comparison of the 123 

behavior of anatomically and biophysically detailed models of CA1 pyramidal neurons with 124 

experimental data in all of these domains. In this paper, we first describe the implementation 125 

of the HippoUnit validation suite. Next, we show how we used this test suite to systematically 126 

compare existing models from six prominent publications from different laboratories. We 127 

then show an example of how the tests have been applied to aid the development of new 128 

models in the context of the European Human Brain Project (HBP). Finally, we describe the 129 

integration of our test suite into the general validation framework developed in the HBP. 130 

 131 

Methods 132 

Implementation of HippoUnit 133 

 134 
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HippoUnit is a Python test suite based on the SciUnit [19] framework, which is a 135 

Python package for testing scientific models, and during its implementation the NeuronUnit 136 

package [20] was taken into account as an example of how to use the SciUnit framework for 137 

testing neuronal models. In SciUnit tests usually four main classes are implemented: the test 138 

class, the model class, the capabilities class and the score class. HippoUnit is built in a way 139 

that keeps this structure. The key idea behind this structure is the decoupling of the model 140 

implementation from the test implementation by defining standardized interfaces 141 

(capabilities) between them, so that tests can easily be used with different models without 142 

being rewritten, and models can easily be adapted to fit the framework. 143 

Each test of HippoUnit is a separate Python class that, similarly to other SciUnit 144 

packages, can run simulations on the models to generate model predictions, which can be 145 

compared with experimental observations to yield the final score, provided that the model has 146 

the required capabilities implemented to mimic the appropriate experimental protocol and 147 

produce the same type of measurable output. All measured or calculated data that contribute 148 

to the final score (including the recorded voltage traces, the extracted features and the 149 

calculated feature scores) are saved in JSON or pickle files (or, in many cases, in both types 150 

of files). JSON files are human readable, and can be easily loaded into Python dictionaries. 151 

Data with a more complex structure are saved into pickle files. This makes it possible to 152 

easily write and read the data (for further processing or analysis) without changing its Python 153 

structure, no matter what type of object or variable it is. In addition to the JSON files a text 154 

file (log file) is also saved, that contains the final score and some useful information or notes 155 

specific to the given test and model. Furthermore, the recorded voltage traces, the extracted 156 

features and the calculated feature scores are also plotted for visualization.   157 

Similarly to many of the existing SciUnit packages the implementations of specific 158 

models are not part of the HippoUnit package itself. Instead, HippoUnit contains a general 159 
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ModelLoader class. This class is implemented in a way that it is able to load and deal with 160 

most types of models defined in the HOC language of the NEURON simulator (either as 161 

standalone HOC models or as HOC templates) [34]. It implements all model-related methods 162 

(capabilities) that are needed to simulate these kinds of neural models in order to generate the 163 

prediction without any further coding required from the user.  164 

For the smooth validation of the models developed using parameter optimization 165 

within the HBP there is a child class of the ModelLoader available in HippoUnit that is 166 

called ModelLoader_BPO. This class inherits most of the functions (especially the capability 167 

functions) from the ModelLoader class, but it implements additional functions that are able 168 

to automatically deal with the specific way in which information is represented and stored in 169 

these optimized models. The role of these functions is to gather all the information from the 170 

metadata and configuration files of the models that are needed to set the parameters required 171 

to load the models and run the simulations on them (such as path to the model files, name of 172 

the model template or the simulation temperature (the celsius variable of Neuron)). This 173 

enables the validation of these models without any manual intervention needed from the user. 174 

The section lists required by the tests of HippoUnit are also created automatically using the 175 

morphology files of these models (for details see the “Classify apical sections of pyramidal 176 

cells” subsection). For neural models developed using other software and methods, the user 177 

needs to implement the capabilities through which the tests of HippoUnit perform the 178 

simulations and recordings on the model. 179 

The capabilities are the interface between the tests and the models. The ModelLoader 180 

class inherits from the capabilities and must implement the methods of the capability. The test 181 

can only be run on a model if the necessary capability methods are implemented in the 182 
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ModelLoader. All communication between the test and the model happens through the 183 

capabilities.  184 

The methods of the score classes perform the quantitative comparison between the 185 

prediction and the observation, and return the score object containing the final score and some 186 

related data, such as the paths to the saved figure and data (JSON) files and the prediction and 187 

observation data. Although SciUnit and NeuronUnit have a number of different score types 188 

implemented, those typically compare a single prediction value to a single observation value, 189 

while the tests of HippoUnit typically extract several features from the model’s response to be 190 

compared with experimental data. Therefore, each test of HippoUnit has its own score class 191 

implemented that is designed to deal with the specific structure of the output prediction data 192 

and the corresponding observation data. For simplicity, we refer to the discrepancy between 193 

the target experimental data (observation) and the models’ behavior (prediction) with respect 194 

to a studied feature using the term feature score. In most cases, when the basic statistics (mean 195 

and standard deviation) of the experimental features (typically measured in several different 196 

cells of the same cell type) are available, feature scores are computed as the absolute 197 

difference between the feature value of the model and the experimental mean feature value, 198 

divided by the experimental standard deviation (Z-score) [35]. The final score of a given test 199 

achieved by a given model is given by the average (or, in some cases, the sum) of the feature 200 

scores for all the features evaluated by the test. 201 

 202 

Implementation of the tests of HippoUnit 203 

The Somatic Features Test 204 

 205 
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The Somatic Features Test uses the Electrophys Feature Extraction Library (eFEL) 206 

[36] to extract and evaluate the values of both subthreshold and suprathreshold (spiking) 207 

features from voltage traces that represent the response of the model to somatic current 208 

injections of different positive (depolarizing) and negative (hyperpolarizing) current 209 

amplitudes. Spiking features describe action potential shape (like AP width, AP rise/fall rate, 210 

AP amplitude, etc.) and timing (frequency, inter-spike intervals, time to first/last spike, etc.), 211 

while some passive features (such as the voltage base or the steady state voltage), and 212 

subthreshold features for negative current stimuli (voltage deflection, sag amplitude, etc.) are 213 

also examined.  214 

In this test step currents of varying amplitudes are injected into the soma of the model 215 

and the voltage response is recorded. The simulation protocol is set according to an input 216 

configuration JSON file, which contains all the current amplitudes, the delay and the duration 217 

of the stimuli, and the stimulation and recording positions. Simulations using different current 218 

amplitudes are run in parallel if this is supported by the computing environment. 219 

As the voltage responses of neurons to somatic current injections can strongly depend 220 

on the experimental method, and especially on the type of electrode used, target values for 221 

these features were extracted from two different datasets. One dataset was obtained from 222 

sharp electrode recordings from adult rat CA1 neurons (sharp electrode data set) [3], and the 223 

other dataset is from patch clamp recordings in rat CA1 pyramidal cells (data provided by 224 

Judit Makara (patch clamp dataset)). For both of these datasets we had access to the recorded 225 

voltage traces from multiple neurons, which made it possible to perform our own feature 226 

extraction using eFEL. This ensures that the features are interpreted and calculated the same 227 

way for both the experimental data and the models’ voltage response during the simulation. 228 

Furthermore, it allows a more thorough comparison against a large number of features 229 

extracted from experimental recordings yielded using the exact same protocol, which is 230 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.07.02.184333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184333
http://creativecommons.org/licenses/by/4.0/


11 

 

unlikely to be found in any paper of the available literature. However, to see how 231 

representative these datasets are of the literature as a whole we first compared some of the 232 

features extracted from these datasets to data available on Neuroelectro.org [37] and on 233 

Hippocampome.org [38]. The features we compared were the following: resting potential, 234 

voltage threshold, after-hyperpolarization (AHP) amplitudes (fast, slow), action potential 235 

width and sag ratio. Although these databases have mean and standard deviation values for 236 

these features that are calculated from measurements using different methods, protocols and 237 

from different animals, we found that most of the feature values for our two experimental 238 

datasets fall into the ranges declared as typical for CA1 PCs in the online databases. The only 239 

conspicuous exception is the fast AHP amplitude of the patch clamp dataset used in this 240 

study, which is 1.7 ± 1.5 mV, while the databases cite values between 6.8 and 11.64 mV. This 241 

deviation could possibly stem from a difference in the way that the fast AHP is measured. 242 

We also performed a more specific review of the relevant literature to compare the 243 

most important somatic features of the patch clamp dataset to results from available patch 244 

clamp recordings (Table 1). Our analysis confirmed that the values of several basic 245 

electrophysiological features such as the AP voltage threshold, the AP amplitude, the AP 246 

width, and the amplitude of the hyperpolarizing sag extracted from our patch clamp dataset 247 

fall into the range observed experimentally. We conclude that the patch clamp dataset is in 248 

good agreement with experimental observations available in the literature, and will be used as 249 

a representative example in this study. 250 

 251 

Feature 

(eFEL feature name) 

Value in literature Value in patch clamp dataset 

AP voltage threshold -46 - -53 mV [39–42] -51.13±0.97 mV (0.15 nA current 

step)  
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(AP_begin_voltage) -50.14±1.97 mV (0.2 nA current step) 

-49.36±2.02 mV (0.25 nA current 

step) 

AP amplitude 

(AP_amplitude_from_voltagebase) 

71 - 112 mV [39,42,43] 98.36±5.82 mV (0.15 nA current step) 

96.83±5.66 mV (0.2 nA current step) 

95.99±5.22 mV (0.25 nA current step) 

AP width at half amplitude 

(AP_duration_half_width) 

0.8 - 1.29 ms  [39,41–43] 1.23±0.096 ms (0.15 nA current step) 

1.25±0.11 ms (0.2 nA current step) 

1.32±0.086 ms (0.25 nA current step) 

sag ratio 

(sag_ratio2) 

0.84±0.02 [43], 

0.83±0.01 [44] 

0.79±0.023 (-0.05 nA current step) 

0.81±0.03 (-0.1 nA current step) 

0.81±0.027 (-0.15 nA current step) 

0.81±0.03 (-0.2 nA current step) 

0.80±0.03 (-0.25 nA current step) 

Table 1: Comparison of the most important somatic features extracted using eFEL from the patch clamp dataset 252 

(used as target data in the Somatic Features Test) to results from patch clamp recordings available in the 253 

literature. 254 

 255 

The observation data are loaded from a JSON file of a given format which contains 256 

the names of the features to be evaluated, the current amplitude for which the given feature is 257 

evaluated and the corresponding experimental mean and standard deviation values. The 258 

feature means and standard deviations are extracted using BluePyEfe [45] from a number of 259 

voltage traces recorded from several different cells. Its output can be converted to stimulus 260 

and feature JSON files used by HippoUnit using the script available here: 261 

https://github.com/sasaray/HippoUnit_demo/blob/master/target_features/Examples_on_creati262 

ng_JSON_files/Somatic_Features/convert_new_output_feature_data_for_valid.py. Setting the 263 

specify_data_set parameter it can be ensured that the test results against different 264 

experimental data sets are saved into different folders.  265 
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For certain features eFEL returns a vector as a result; in these cases, the feature value 266 

used by HippoUnit is the average of the elements of the vector. These are typically spiking 267 

features for which eFEL extracts a value corresponding to each spike fired. For features that 268 

use the ‘AP_begin_time’ or ‘AP_begin_voltage’ feature values for further calculations, we 269 

exclude the first element of the vector output before averaging because we discovered that 270 

these features are often incorrectly detected for the first action potential of a train. 271 

The score class of this test returns as the final score the average of Z-scores for the 272 

evaluated eFEL features achieved by the model. Those features that could not be evaluated 273 

(e.g., spiking features from voltage responses without any spikes) are listed in a log file to 274 

inform the user, and the number of successfully evaluated features out of the number of 275 

features attempted to be evaluated is also reported. 276 

 277 

The Depolarization Block Test 278 

 279 

This test aims to determine whether the model enters depolarization block in response 280 

to a prolonged, high intensity somatic current stimulus. For CA1 pyramidal cells, the test 281 

relies on experimental data from Bianchi et al. [25]. According to these data, CA1 PCs 282 

respond to somatic current injections of increasing intensity with an increasing number of 283 

action potentials until a certain threshold current intensity is reached. For current intensities 284 

higher than the threshold, the cell does not fire over the whole period of the stimulus; instead, 285 

firing stops after some action potentials, and the membrane potential is sustained at some 286 

constant depolarized level for the rest of the stimulus. This phenomenon is termed 287 

depolarization block [25].  288 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.07.02.184333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184333
http://creativecommons.org/licenses/by/4.0/


14 

 

This test uses the same capability class as the Somatic Features Test for injecting 289 

current and recording the somatic membrane potential (see the description above). Using this 290 

capability, the model is stimulated with 1000 ms long square current pulses increasing in 291 

amplitude from 0 to 1.6 nA in 0.05 nA steps, analogous to the experimental protocol. The 292 

stimuli of different amplitudes are run in parallel. Somatic spikes are detected and counted 293 

using eFEL [36]. 294 

From the somatic voltage responses of the model, the following features are evaluated. 295 

Ith is the threshold current to reach depolarization block; experimentally, this is both the 296 

amplitude of the current injection at which the cell exhibits the maximum number of spikes, 297 

and the highest stimulus amplitude that does not elicit depolarization block. In the test two 298 

separate features are evaluated for the model and compared to the experimental Ith: the current 299 

intensity for which the model fires the maximum number of action potentials (I_maxNumAP), 300 

and the current intensity one step before the model enters depolarization block 301 

(I_below_depol_block). If these two feature values are not equal, a penalty is added to the 302 

score. The model is defined to exhibit depolarization block if I_maxNumAP is not the highest 303 

amplitude tested, and if there exists a current intensity higher than I_maxNumAP, for which 304 

the model does not fire action potentials during the last 100 ms of its voltage response.  305 

In the experiment the Veq feature is extracted from the voltage response of the 306 

pyramidal cells to the current injection one step above Ith (or I_max_num_AP in the test). 307 

Both in the experiment and in this test this is calculated as the mean voltage over the last 100 308 

ms of the voltage trace. However, in the test, before calculating this value it is examined 309 

whether there are any action potentials during this period. The presence of spikes here means 310 

that the model did not enter depolarization block prior to this period. In these cases the test 311 

iterates further on the voltage traces corresponding to larger current steps to find if there is 312 

any where the model actually entered depolarization block; if an appropriate trace is found, 313 
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the value of Veq is extracted there. This trace is the response to the current intensity one step 314 

above I_below_depol_block. 315 

If the model does not enter depolarization block, a penalty is applied, and the final 316 

score gets the value of 100. Otherwise, the final score achieved by the model on this test is the 317 

average of the feature scores (Z-scores) for the features described above, plus an additional 318 

penalty if I_maxNumAP and I_below_depol_block differ. This penalty is 200 times the 319 

difference between the two current amplitude values (in pA – which in this case is 10 times 320 

the number of examined steps between them).   321 

 322 

The Back-propagating AP Test 323 

 324 

This test evaluates the strength of action potential back-propagation in the apical trunk 325 

at locations of different distances from the soma. The observation data for this test were 326 

yielded by the digitization of Figure 1B of [27], using the DigitizeIt software [46]. The values 327 

were then averaged over distances of 50, 150, 250, 350 ± 20 µm from the soma to get the 328 

mean and standard deviation of the features. The features tested here are the amplitudes of the 329 

first and last action potentials of a 15 Hz spike train, measured at the 4 different dendritic 330 

locations. 331 

The test automatically finds current amplitudes for which the soma fires, on average, 332 

between 10-20 Hz and chooses the amplitude that leads to firing nearest to 15 Hz. For this 333 

task, the following algorithm was implemented. Increasing current step stimuli of 0.0 - 1.0 nA 334 

amplitude with a step size of 0.1 nA are applied to the model and the number of spikes is 335 

counted for each resulting voltage trace. If spontaneous spiking occurs (i.e., if there are spikes 336 

even when no current is injected) or if the spiking rate does not reach 10 Hz even for the 337 
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highest amplitude, the test quits with an error message. Otherwise the amplitudes for which 338 

the soma fires between 10 and 20 Hz are appended to a list and (if the list is not empty) the 339 

one providing the spiking rate nearest to 15 Hz is chosen. If the list is empty because the 340 

spiking rate is smaller than 10 Hz for a step amplitude but higher than 20 Hz for the next step, 341 

a binary search method is used to find an appropriate amplitude in this range. 342 

This test uses a trunk section list (or generates one if the find_section_lists 343 

variable of the ModelLoader is set to True – see the section ‘Classifying the apical sections 344 

of pyramidal cells’ below) to automatically find the dendritic locations for the measurements. 345 

The desired distances of the locations from the soma and the distance tolerance are read from 346 

the input configuration file, and must agree with the distances and the tolerance over which 347 

the experimental data were averaged. All the trunk dendritic segments whose distance from 348 

the soma falls into one of the distance ranges are selected. The locations and also their 349 

distances are then returned in separate dictionaries.  350 

Then the soma is stimulated with a current injection of the previously chosen 351 

amplitude and the voltage response of the soma and the selected dendritic locations are 352 

recorded and returned. 353 

The test implements its own function to extract the amplitudes of back-propagating 354 

action potentials, but the method is based on eFEL features. This is needed because eFEL’s 355 

spike detection is based on a given threshold value for spike initiation, which may not be 356 

reached by the back-propagating signal at more distant regions. First the maximum 357 

depolarization of the first and the last action potentials are calculated. This is the maximum 358 

value of the voltage trace in a time interval around the somatic action potential, based on the 359 

start time of the spike (using the AP_begin_time feature of eFEL) and the inter-spike interval 360 

to the next spike recorded at the soma. Then the amplitudes are calculated as the difference 361 

between this maximum value and the voltage at the begin time of the spike (on the soma) 362 
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minus 1 ms (which is early enough not to include the rising phase of the spike, and late 363 

enough in the case of the last action potential not to include the afterhyperpolarization of the 364 

previous spike). 365 

To calculate the feature scores the amplitude values are first averaged over the 366 

distance ranges to be compared to the experimental data and get the feature Z-scores. The 367 

final score here is the average of the Z-scores achieved for the features of first and last action 368 

potential amplitudes at different dendritic distances. In the result it is also stated whether the 369 

model is more like a strongly or a weakly propagating cell in the experiment, where they 370 

found examples of both types [27]. 371 

 372 

The PSP Attenuation Test 373 

  374 

The PSP Attenuation test evaluates how much the post-synaptic potential attenuates as it 375 

propagates from different dendritic locations to the soma in CA1 pyramidal cell models. The 376 

observation data for this test were yielded by the digitization of Figure 1E and Figure 2B of 377 

Magee and Cook, 2000 [29] using the DigitizeIt software [46].  The somatic and dendritic 378 

depolarization values were then averaged over distances of 100, 200, 300 ± 50 µm from the 379 

soma and the soma/dendrite attenuation was calculated to get the mean and standard deviation 380 

of the attenuation features at the three different input distances. The digitized data and the 381 

script that calculates the feature means and standard deviations, and creates the JSON file are 382 

available here: 383 

https://github.com/sasaray/HippoUnit_demo/tree/master/target_features/Examples_on_creatin384 

g_JSON_files/Magee2000-PSP_att/. 385 
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In this test the apical trunk receives excitatory post-synaptic current (EPSC)-shaped 386 

current stimuli at locations of different distances from the soma. The maximum depolarization 387 

caused by the input is extracted at the soma and divided by the maximum depolarization at the 388 

location of the stimulus to get the soma/dendrite attenuation values that are then averaged in 389 

distance ranges of 100, 200, 300 ± 50 µm and compared to the experimental data. The 390 

distances and tolerance are defined in the configuration file and must agree with how the 391 

observation data were generated. 392 

 The test uses a trunk section list, which needs to be specified in the NEURON HOC 393 

model (or the test generates one if the find_section_lists variable of the ModelLoader 394 

is set to True – see the section ‘Classify apical sections of pyramidal cells’ below) to find the 395 

dendritic locations to be stimulated. Randomly selected dendritic locations are used because 396 

the distance ranges that are evaluated cover almost the whole length of the trunk of a 397 

pyramidal cell. The probability of selecting a given dendritic segment is set to be proportional 398 

to its length. The number of dendritic segments examined can be chosen by the user by setting 399 

the num_of_dend_locations argument of the test. The random seed (also an argument of 400 

the test) must be kept constant to make the selection reproducible. If a given segment is 401 

selected multiple times (or it is closer than 50 µm or further than 350 µm), a new random 402 

number is generated. If the number of locations to be selected is more than the number of 403 

trunk segments available in the model, all the segments are selected. 404 

The Exp2Syn synaptic model of NEURON with a previously calculated weight is used to 405 

stimulate the dendrite. The desired EPSC amplitude and time constants are given in the input 406 

configuration file according to the experimental protocol. To get the proper synaptic weight, 407 

first the stimulus is run with weight = 0. The last 10% of the trace is averaged to get the 408 

resting membrane potential (Vm). Then the synaptic weight required to induce EPSCs with 409 

the experimentally determined amplitude is calculated according to Equation 1:  410 
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(1) weight = - EPSC_amp / Vm  411 

where EPSC_amp is read from the config dictionary, and the synaptic reversal potential is 412 

assumed to be 0 mV. 413 

To get the somatic and dendritic maximum depolarization from the voltage traces, the 414 

baseline trace (weight = 0) is subtracted from the trace recorded in the presence of the input. 415 

To get the attenuation ratio the maximum value of the somatic depolarization is divided by the 416 

maximum value of the dendritic depolarization. 417 

To calculate the feature scores the soma/dendrite attenuation values are first averaged 418 

over the distance ranges to be compared to the experimental data to get the feature Z-scores. 419 

The final score is the average of the feature scores calculated at the different dendritic 420 

locations. 421 

 422 

The Oblique Integration Test 423 

 424 

This test evaluates the signal integration properties of radial oblique dendrites, 425 

determined by providing an increasing number of synchronous (0.1 ms between inputs) or 426 

asynchronous (2 ms between inputs) clustered synaptic inputs. The experimental mean and 427 

standard error (SE) of the features examined are available in the paper of Losonczy and 428 

Magee [33] and are read from a JSON file into the observation dictionary of the test. The SE 429 

values are then converted to standard deviation values. The following features are tested: 430 

voltage threshold for dendritic spike initiation (defined as the expected somatic depolarization at 431 

which a step-like increase in peak dV/dt occurs); proximal threshold (defined the same way as 432 

above, but including only those results in the statistics where the proximal part of the examined 433 

dendrite was stimulated); distal threshold; degree of nonlinearity at threshold; suprathreshold 434 
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degree of nonlinearity; peak derivative of somatic voltage at threshold; peak amplitude of somatic 435 

EPSP; time to peak of somatic EPSP; degree of nonlinearity in the case of asynchronous inputs. 436 

The test automatically selects a list of oblique dendrites that meet the criteria of the 437 

experimental protocol, based on a section list containing the oblique dendritic sections (this 438 

can either be provided by the HOC model, or generated automatically if the 439 

find_section_lists variable of the ModelLoader is set to True – see the section 440 

‘Classify apical sections of pyramidal cells’ below). For each selected oblique dendrite a 441 

proximal and a distal location is examined. The criteria for the selection of dendrites, which 442 

were also applied in the experiments, are the following. The selected oblique dendrites should 443 

be terminal dendrites (they have no child sections) and they should be at most 120 µm from 444 

the soma. This latter criterion can be changed by the user by changing the value of the 445 

ModelLoader’s max_dist_from_soma variable, and it can also increase automatically if 446 

needed. In particular, if no appropriate oblique is found up to the upper bound provided, the 447 

distance is increased iteratively by 15 µm, but not further than 190 µm. 448 

Then an increasing number of synaptic inputs are activated at the selected dendritic 449 

locations separately, while recording the local and somatic voltage response. HippoUnit 450 

provides a default synapse model to be used in the ObliqueIntegrationTest. If the 451 

AMPA_name, and NMDA_name variables are not set by the user, the default synapse is used. In 452 

this case the AMPA component of the synapse is given by the built-in Exp2Syn synapse of 453 

NEURON, while the NMDA component is defined in an NMODL (.mod) file which is part of 454 

the HippoUnit package. This NMDA receptor model uses a Jahr-Stevens voltage dependence 455 

[47] and rise and decay time constants of 3.3 and 102.38 ms, respectively. The time constant 456 

values used here are temperature- (Q10-) corrected values from [42]. Q10 values for the rise 457 

and decay time constants were 2.2 [48] and 1.7 [49], respectively. The model’s own AMPA 458 

and NMDA receptor models can also be used in this test if their NMODL files are available 459 
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and compiled among the other mechanisms of the model. In this case the AMPA_name, and 460 

NMDA_name variables need to be provided by the user. The time constants of the built-in 461 

Exp2Syn AMPA component and the AMPA/NMDA ratio can be adjusted by the user by 462 

setting the AMPA_tau1, AMPA_tau2 and AMPA_NMDA_ratio parameter of the 463 

ModelLoader. The default AMPA/NMDA ratio is 2.0 from [42], and the default 464 

AMPA_tau1 and AMPA_tau2 are 0.1 ms and 2.0 ms, respectively [29,30]. 465 

To test the Poirazi et al. 2003 model using its own receptor models, we also had to 466 

implement a modified version of the synapse functions of the ModelLoader that can deal 467 

with the different (pointer-based) implementation of synaptic activation in this model. For this 468 

purpose, a child class was implemented that inherits from the ModelLoader class. This 469 

modified version is not part of the official HippoUnit version, because this  older, more 470 

complicated implementation of synaptic models is not generally used anymore; however, this 471 

is a good example on how one can modify the capability methods of HippoUnit to match their 472 

own models or purposes. The code for this modified ModelLoader is available here: 473 

https://github.com/KaliLab/HippoUnit_demo/blob/master/ModelLoader_Poirazi_2003_CA1.474 

py. 475 

The synaptic weights for each selected dendritic location are automatically adjusted by 476 

the test using a binary search algorithm so that the threshold for dendritic spike generation is 5 477 

synchronous inputs – which was the average number of inputs that had to be activated by 478 

glutamate uncaging to evoke a dendritic spike in the experiments [33]. This search runs in 479 

parallel for all selected dendritic locations. The search interval of the binary search and the 480 

initial step size of the searching range can be adjusted by the user through the c_minmax and 481 

c_step_start variables of the ModelLoader. During the iterations of the algorithm the 482 

step size may decrease if needed; a lower threshold for the step size (c_step_stop variable 483 
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of the ModelLoader) must be set to avoid infinite looping. Those dendritic locations where 484 

this first dendritic spike generates a somatic action potential, or where no dendritic spike can 485 

be evoked, are excluded from further analysis. To let the user know, this information is 486 

displayed on the output and also printed into the log file saved by the test. Most of the features 487 

above are extracted at the threshold input level (5 inputs). 488 

The final score of this test is the average of the feature scores achieved by the model 489 

for the different features; however, a T-test analysis is also available as a separate score type 490 

for this test. 491 

 492 
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Parallel computing 493 

 494 

Most of the tests of HippoUnit require multiple simulations of the same model, either 495 

using stimuli of different intensities or at different locations in the cell. To run these 496 

simulations in parallel and save time, the Python multiprocessing.Pool module is used. 497 

The size of the pool can be set by the user. Moreover, all NEURON simulations are 498 

performed in multiprocessing pools to ensure that they run independently of each other, and to 499 

make it easy to erase the models after the process has finished. This is especially important in 500 

the case of HOC templates in order to avoid previously loaded templates running in the 501 

background and the occurrence of ‘Template cannot be redefined’ errors when the same 502 

model template is loaded again. 503 

 504 

Classifying the apical sections of pyramidal cells 505 

 506 

Some of the validation tests of HippoUnit require lists of sections belonging to the 507 

different dendritic types of the apical tree (main apical trunk, apical tuft dendrites, radial 508 

oblique dendrites). To classify the dendrites NeuroM [50] is used as a base package. NeuroM 509 

contains a script that, starting from the tuft (uppermost dendritic branches in Fig 1) endpoints, 510 

iterates down the tree to find a single common ancestor. This is considered as the apical point. 511 

The apical point is the upper end of the main apical dendrite (trunk), from where the tuft 512 

region arises. Every dendrite branching from the trunk below this point is considered an 513 

oblique dendrite. 514 

However, there are many CA1 pyramidal cell morphologies where the trunk bifurcates 515 

close to the soma to form two or even more branches. In these cases the method described 516 
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above finds this proximal bifurcation point as the apical point (see Fig 1A). To overcome this 517 

issue, we worked out and implemented a method to find multiple apical points by iterating the 518 

function provided by NeuroM. In particular, if the initial apical point is closer to the soma 519 

than a pre-defined threshold, the function is run again on subtrees of the apical tree where the 520 

root node of the subtree is the previously found apical point, to find apical points on those 521 

subtrees (see Fig 1B). When (possibly after multiple iterations) apical points that are far 522 

enough from the soma are found, NeuroM is used to iterate down from them on the parent 523 

sections, which will be the trunk sections (blue dots in Fig 1C). Iterating up, the tuft sections 524 

are found (green dots in Fig 1C), and the other descendants of the trunk sections are 525 

considered to be oblique dendrites (yellow dots in Fig 1C). Once all the sections are 526 

classified, their NeuroM coordinates are converted to NEURON section information for 527 

further use. 528 

 529 

 530 

Fig 1: Classifying the apical dendrites of pyramidal cells. Morphological reconstruction made within the HBP at 531 

University College London (UCL). The soma is marked in black, the red dendrites underneath are the basal 532 

dendrites, apical dendrites are colored purple. (A) The original method of NeuroM finds a single apical point 533 

which is actually a bifurcation of the trunk. (B) Further developing the method, multiple apical points can be 534 

found. (C) The apical dendritic sections are classified. Blue: trunk, yellow: oblique dendrites, green: tuft 535 

sections.   536 

 537 

We note that this function can only be used for hoc models that load their 538 

morphologies from a separate morphology file (e.g., ASC, SWC) as NeuroM can only deal 539 

with morphologies provided in these standard formats. For models with NEURON 540 
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morphologies implemented directly in the hoc language, the SectionLists required by a given 541 

test should be implemented within the model. 542 

 543 

Models from literature 544 

 545 

In this paper we demonstrate the utility of the HippoUnit validation test suite by 546 

applying its tests to validate and compare the behavior of several different detailed 547 

hippocampal CA1 pyramidal cell models available on ModelDB [18]. For this initial 548 

comparison we chose models published by several modeling groups worldwide that were 549 

originally developed for various purposes. The models compared were the following: the 550 

Golding et al., 2001 model [27] (ModelDB accession number: 64167), the Katz et al., 2009 551 

model [51] (ModelDB accession number: 127351), the Migliore et al., 2011 model [52] 552 

(ModelDB accession number: 138205), the Poirazi et al., 2003 model [6,53] (ModelDB 553 

accession number: 20212), the Bianchi et al., 2012 model [25] (ModelDB accession number: 554 

143719), and the Gómez González et al., 2011 [54]  model (ModelDB accession number: 555 

144450). 556 

Models from literature that are published on ModelDB typically implement their own 557 

simulations and plots to make it easier for users and readers to reproduce and visualize the 558 

results shown in the corresponding paper. Therefore, to be able to test the models described 559 

above using our test suite, we needed to create standalone versions of them. These standalone 560 

versions do not display any GUI, or contain any built-in simulations and run-time 561 

modifications, but otherwise their behavior should be identical to the published version of the 562 

models. We also added section lists of the radial oblique and the trunk dendritic sections to 563 

those models where this was not done yet, as some of the tests require these lists. To ensure 564 
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that the standalone versions have the same properties as the original models, we checked their 565 

parameters after running their built-in simulations (in case including any run-time 566 

modifications), and made sure they match the parameters of the standalone version. The 567 

modified models used for running validation tests are available in this GitHub repository: 568 

https://github.com/KaliLab/HippoUnit_demo. 569 

Results 570 

The HippoUnit validation suite 571 

 572 

HippoUnit (https://github.com/KaliLab/hippounit) is an open source test suite for the 573 

automatic and quantitative evaluation of the behavior of neural single cell models. The tests of 574 

HippoUnit automatically perform simulations that mimic common electrophysiological 575 

protocols on neuronal models to compare their behavior with quantitative experimental data 576 

using various feature-based error functions. Current validation tests cover somatic 577 

(subthreshold and spiking) behavior as well as signal propagation and integration in the 578 

dendrites. These tests were chosen because they collectively cover diverse functional aspects 579 

of cellular behavior that have been thoroughly investigated in experimental and modeling 580 

studies, and particularly because the necessary experimental data were available in sufficient 581 

quality and quantity. However, we note that the currently implemented tests, even in 582 

combination, probably do not fully constrain the behavior of the cell under all physiological 583 

conditions, and thus the test suite can be further improved by including additional tests and 584 

more experimental data. The tests were developed using data and models for rat hippocampal 585 

CA1 pyramidal cells. However, most of the tests are directly applicable to or can be adapted 586 
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for other cell types if the necessary experimental data are available; examples of this will be 587 

presented in later sections. 588 

 HippoUnit is implemented in the Python programming language, and is based on the 589 

SciUnit [19] framework for testing scientific models. The current version of HippoUnit is 590 

capable of handling single cell models implemented in the NEURON simulator, provided that 591 

they do not apply any runtime modification, do not have a built-in graphical user interface, 592 

and do not automatically perform simulations. Meeting these conditions may require some 593 

modifications in the published code of the model. Once such a “standalone” version of the 594 

model is available, the tests of HippoUnit can be run by adapting and using the example 595 

Jupyter notebooks described in S1 Appendix, without any further coding required from the 596 

user. In principle, neural models developed using other software tools can also be tested by 597 

HippoUnit; however, this requires the re-implementation by the user of the interface functions 598 

that allow HippoUnit to run the necessary simulations and record their output (see the 599 

Methods section for more details). 600 

In the current tests of HippoUnit, once all the necessary simulations have been 601 

performed and the responses of the model have been recorded, electrophysiological features 602 

are extracted from the voltage traces, and the discrepancy between the model’s behavior and 603 

the experiment is computed by comparing the feature values with those extracted from the 604 

experimental data (see Methods). Biological variability is taken into account by measuring the 605 

difference between the feature value for the model and the mean of the feature in the 606 

experiments in units of the standard deviation for that particular feature observed in the 607 

experiments. For simplicity, we refer to the result of this comparison as the feature score; 608 

however, we note that there are many possible sources of such discrepancy including, among 609 

others, experimental artefacts and noise, shortcomings of the models, and differences between 610 

the conditions assumed by the models and those in the actual experiments (see the Discussion 611 
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for more details). The final score of a given test achieved by a given model is given by the 612 

average (or, in some cases, the sum) of the feature scores for all the features evaluated by the 613 

test. 614 

Besides the final score, which is the basic output of all the tests, the tests of HippoUnit 615 

typically provide a number of other useful outputs (see Methods), including figures that 616 

visualize the model’s behavior through traces and plot the feature and feature score values 617 

compared to the experimental data. It is always strongly recommended to look at the traces 618 

and other figures to get a fuller picture of the model’s response to the stimuli, which helps 619 

with the correct interpretation of validation results. Such closer inspection also makes it 620 

possible to detect possible test failures, when the extraction of certain features does not work 621 

correctly for a given model. 622 

HippoUnit can also take advantage of the parallel execution capabilities of modern 623 

computers. When tests require multiple simulations of the same model using different settings 624 

(e.g., different stimulation intensities or different stimulus locations in the cell), these 625 

simulations are run in parallel, which can make the validation process substantially faster, 626 

depending on the available computing resources. 627 

One convenient way of running a test on a model is to use an interactive 628 

computational notebook, such as the Jupyter Notebook [55], which enables the combination 629 

of program codes to be run (we used Python code to access the functionality of HippoUnit), 630 

the resulting outputs (e.g. figures, tables, text) and commentary or explanatory text in a single 631 

document. Therefore, we demonstrate the usage of HippoUnit through this method (See S1 632 

Appendix and https://github.com/KaliLab/HippoUnit_demo). 633 

 634 
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Comparison of the behavior of rat hippocampal CA1 pyramidal cell models 635 

selected from the literature 636 

 637 

We selected six different publications containing models of hippocampal CA1 638 

pyramidal cells whose implementations for the NEURON simulator were available in the 639 

ModelDB database. Our aim was to compare the behavior of every model to the experimental 640 

target data using the tests of HippoUnit, which also allowed us to compare the models to each 641 

other, and to test their generalization performance in paradigms that they were not originally 642 

designed to capture. These models differ in their complexity regarding the number and types 643 

of ion channels that they contain, and they were built for different purposes. 644 

The Golding et al., 2001 model [27] was developed to show the dichotomy of the 645 

back-propagation efficacy and the amplitudes of the back-propagating action potentials at 646 

distal trunk regions in CA1 pyramidal cells and to make predictions on the possible causes of 647 

this behavior. It contains only the most important ion channels (Na, KDR, KA) needed to 648 

reproduce the generation and propagation of action potentials. [26] 649 

The Katz et al., 2009 model [51] is based on the Golding et al. 2001 model and was 650 

built to investigate the functional consequences of the distribution of strength and density of 651 

synapses on the apical dendrites that they observed experimentally, for the mode of dendritic 652 

integration. 653 

The Migliore et al., 2011 model [52] was used to study schizophrenic behavior. It is 654 

based on earlier models of the same modeling group, which were used to investigate the 655 

initiation and propagation of action potentials in oblique dendrites, and have been validated 656 

against different electrophysiological data. 657 
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The Poirazi et al., 2003 model [6,53] was designed to clarify the issues about the 658 

integrative properties of thin apical dendrites that may arise from the different and sometimes 659 

conflicting interpretations of available experimental data. This is a quite complex model in the 660 

sense that it contains a large number of different types of ion channels, whose properties were 661 

adjusted to fit in vitro experimental data, and it also contains four types of synaptic receptors. 662 

The Bianchi et al., 2012 model [25] was designed to investigate the mechanisms 663 

behind depolarization block observed experimentally in the somatic spiking behavior of CA1 664 

pyramidal cells. It was developed by combining and modifying the Shah et al., 2008 [56] and 665 

the Poirazi et al. 2003 models [6,53]. The former of these was developed to show the 666 

significance of axonal M-type potassium channels. 667 

The Gómez González et al., 2011 [54]  model is based on the Poirazi et al. 2003 model 668 

and it was modified to replicate the experimental data of  [33] on the nonlinear signal 669 

integration of radial oblique dendrites when the inputs arrive in a short time window.  670 

A common property of these models is that their parameters were set using manual 671 

procedures with the aim of reproducing the behavior of real CA1 PCs in one or a few specific 672 

paradigms. As some of them were built by modifying and further developing previous 673 

models, these share the same morphology (see Fig. 2). On the other hand, the model of 674 

Gómez González et al. 2011 was adjusted to 5 different morphologies, which were all tested. 675 

In the case of the Golding et al. 2001 model, we tested three different versions (shown in 676 

Figures 8A, 8B and 9A of the corresponding paper [27]) that differ in the distribution of the 677 

sodium and the A-type potassium channels, and therefore the back-propagation efficacy of the 678 

action potentials. The morphologies and characteristic voltage responses of all the models 679 

used in this comparison are displayed in Fig 2. 680 

 681 

 682 
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Fig 2: The morphologies of the different models tested and their voltage responses to a 400 ms somatic step 683 

current injection of 0.6 nA amplitude. (Some of the models share the same morphology, while the Gómez 684 

González et al. 2011 model was adjusted to five different morphologies.) 685 

 686 

Running the tests of HippoUnit on these models we took into account the original 687 

settings of the simulations of the models, and set the v_init (the initial voltage when the 688 

simulation starts), and the celsius (the temperature at which the simulation is done) 689 

variables accordingly. For the Bianchi et al 2012 model we used variable time step integration 690 

during all the simulations, as it was done in the original modeling study. For the other models 691 

a fixed time step were used (dt=0.025 ms). 692 

 693 

Somatic Features Test 694 

 695 

Using the Somatic Features Test of HippoUnit, we compared the behavior of the 696 

models to both patch clamp recordings (patch clamp dataset) and sharp electrode recordings 697 

(sharp electrode dataset). After performing a review of the relevant literature, we conclude 698 

that the patch clamp dataset is in good agreement with experimental observations available in 699 

the literature (see Table 1 in Methods), and will be used as a representative example in this 700 

study. 701 

The two datasets used in this study (sharp electrode dataset, patch clamp dataset) differ 702 

not only in the recording technique, but also in the simulation protocol. In the sharp electrode 703 

recordings, the cells received 400 ms-long depolarizing and hyperpolarizing current 704 

injections, using amplitudes of 0.2, 0.4, 0.6, 0.8 and 1.0 nA in both directions. In the patch 705 

clamp recordings, both the depolarizing and the hyperpolarizing current injections were 300 706 

ms long and 0.05, 0.1, 0.15, 0.2, 0.25 nA in amplitude. 707 
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As each of the tested models apparently used experimental data obtained from patch 708 

clamp recordings as a reference, here we show the detailed results of the test on the models 709 

when their output was compared to the features extracted from the patch clamp data (we will 710 

return to the comparison between the two datasets near the end of this section). During these 711 

recordings the cells were stimulated with relatively low amplitude current injections. Some of 712 

the examined models (Migliore et al. 2011, Gómez González et al. 2011 n125 morphology) 713 

did not fire even for the highest amplitude tested. Some other models started to fire for higher 714 

current intensities than it was observed experimentally. In these cases the features that 715 

describe action potential shape or timing properties cannot be evaluated for the given model 716 

(for the current amplitudes affected). Therefore, besides the final score achieved by the 717 

models on this test (the average Z-score for the successfully evaluated features – see Methods 718 

for details), we also consider the proportion of the successfully evaluated features as an 719 

important measure of how closely the model matches this specific experimental dataset (Fig 720 

4B). 721 

Fig 3 shows how the extracted feature values of the somatic response traces of the 722 

different models fit the experimental values. It is clear that the behavior of the different 723 

models is very diverse. Each model captures some of the experimental features but shows a 724 

larger discrepancy for others.  725 

 726 

 727 

Fig 3: Feature values from the Somatic Features Test of HippoUnit applied to several published models. 728 

Absolute feature values extracted (using the electrophys Feature Extraction Library (eFEL)) from the voltage 729 

responses of the models to somatic current injections of varying amplitude, compared to mean experimental 730 

values (black X) that were extracted from the patch clamp dataset. Black solid, horizontal lines indicate the 731 

experimental standard deviation. Colored solid, horizontal lines typically show the standard deviation of spiking 732 

features of models, where the feature value of each action potential in the voltage trace is extracted and 733 
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averaged. Feature names (y axis labels) are indicated as they are used in eFEL combined with the step current 734 

injection amplitude. Not all the evaluated features are shown here. (The (s) and (w) notations of the Golding et 735 

al. 2001 models in the legend indicate the strong and weak propagating versions of the model.) 736 

 737 

The resting membrane potential (voltage_base) for all of the models was apparently 738 

adjusted to a more hyperpolarized value than in the experimental recordings we used for our 739 

comparison, and most of the models also return to a lower voltage value after the step stimuli 740 

(steady_state_voltage). An exception is the Poirazi et al. 2003 model, where the decay time 741 

constant after the stimulus is unusually high (this feature is not included in Fig 3, but the slow 742 

decay can be seen in the example trace in Fig 2, and detailed data are available here: 743 

https://github.com/KaliLab/HippoUnit_demo). The voltage threshold for action potential 744 

generation (AP_begin_voltage) is lower than the experimental value for most of the models 745 

(that were able to generate action potentials in response to the examined current intensities), 746 

but it is higher than the experimental value for most versions of the Gómez González et al. 747 

2011 model. For negative current steps most of the models gets more hyperpolarized 748 

(voltage_deflection) (the most extreme is the Gómez González et al. 2011 model with the 749 

n129 morphology), while the Gómez González et al. 2011 model with the n125 morphology 750 

and the Migliore et al. 2011 model get less hyperpolarized than it was observed 751 

experimentally. The sag amplitudes are also quite high for the Gómez González et al. 2011 752 

n129, and n130 models, while the Katz et al. 2009, and all versions of the Golding et al. 2001 753 

models basically have no hyperpolarizing sag. 754 

 It is quite conspicuous how much the amplitude of the action potentials (APlast_amp, 755 

AP_amplitude, AP2_amp) differs in the Gómez González et al. 2011 models from the 756 

experimental values and from the other models as well. The Katz et al. 2009 and one of the 757 

versions (Fig 8A) of the Golding et al. 2001 model have slightly too high action potential 758 
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amplitudes, and these models have relatively small action potential width (AP_width). On the 759 

other hand, the rising phase (AP_rise_time, AP_rise_rate) of the Katz et al. 2009 model 760 

appears to be too slow. 761 

Looking at the inverse interspike interval (ISI) values, it can be seen that the 762 

experimental spike trains show adaptation in the ISIs, meaning that the first ISI is smaller (the 763 

inverse ISI is higher) than the last ISI for the same current injection amplitude. This behavior 764 

can be observed in the case of the Katz et al. 2009 model, three versions (n128, n129, n130 765 

morphology) of the Gómez González et al. 2011 model, but cannot really be seen in the 766 

Bianchi et al. 2011, the Poirazi et al. 2003 and the three versions of the Golding et al. 2001 767 

models. At first look it may seem contradictory that in the case of the Gómez González et al. 768 

2011 model version n129 morphology the spike counts are quite low, while the mean 769 

frequency and the inverse ISI values are high. This is because the soma of this model does not 770 

fire over the whole period of the stimulation, but starts firing at higher frequencies, then stops 771 

firing for rest of the stimulus (see Fig 2). The Katz et al. 2009 model fires quite a high number 772 

of action potentials (Spikecount) compared to the experimental data, at a high frequency.  773 

In the experimental recordings there is a delay before the first action potential is 774 

generated, which becomes shorter with increasing current intensity (indicated by the 775 

inv_time_to_first_spike feature that becomes larger with increasing input intensity). In most 776 

of the models this behavior can be observed, albeit to different degrees. The Katz et al. 2009 777 

model has the shortest delays (highest inv_time_to_first_spike values), but the effect is still 778 

visible. 779 

To quantify the difference between the experimental dataset and the simulated output 780 

of the models, these were compared using the feature-based error function (Z-Score) 781 

described above to calculate the feature score. Fig 4A shows the mean scores of the model 782 

features whose absolute values are illustrated in Fig 3 (averaged over the different current step 783 
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amplitudes examined). From this figure it is even more clearly visible that each model fits 784 

some experimental features well but does not capture others. For example, it is quite 785 

noticeable in Fig 4A that most of the versions of the Gómez González et al. 2011 model 786 

(greenish dots) perform well for features describing action potential timing (upper part of the 787 

figure, e.g., ISIs, mean_frequency, spikecount), but get higher feature scores for features of 788 

action potential shape (lower part of the figure, e.g., AP_rise_rate, AP_rise_time, 789 

AP_fall_rate, AP_fall_time, AP amplitudes). Conversely, the Katz et al. 2009 model achieved 790 

better scores for AP shape features than for features describing AP timing. It is also worth 791 

noting that none of the feature scores for the model of Migliore et al. 2011 was higher than 4; 792 

however, looking at Fig 4B it can be seen that less than half of the experimental features were 793 

successfully evaluated in this model, which is because it does not fire action potentials for the 794 

current injection amplitudes examined here.  795 

 796 

 797 

Fig 4: Evaluation of results from the Somatic Features Test of HippoUnit applied to published models.  (A) 798 

Mean feature scores (the difference between the model’s feature value and the experimental mean in units of the 799 

experimental SD) of the different models. Feature score values are averaged over the different input step 800 

amplitudes. (B) The bars represent the number of features that were attempted to be evaluated for the models 801 

(i.e., the number of features extracted from the experimental patch clamp dataset). The number of successfully 802 

evaluated features for the various models is shown in green, and the number of features that could not be 803 

evaluated for a particular model is shown in red. Features that are not evaluated successfully are most often 804 

spiking features at step amplitudes for which the tested model does not fire action potentials. 805 

 806 

Besides enabling the comparison of different models regarding how well they match a 807 

particular dataset, the tests of HippoUnit also allow one to determine the match between a 808 

particular model and several datasets of the same type. As experimental results can be heavily 809 
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influenced by recording conditions and protocols, and also depend on factors such as the 810 

strain, age, and sex of the animal, it is important to find out whether the same model can 811 

simultaneously capture the outcome of different experiments, and if not, how closely it is able 812 

to match the different datasets. As a practically relevant example, we looked at how well the 813 

various published models that we were testing captured a different experimental dataset that 814 

also contained current clamp recordings from rat CA1 PCs, but which was obtained using 815 

sharp electrodes rather than the whole-cell patch clamp technique [3]. We therefore evaluated 816 

all the models with the Somatic Features Test of HippoUnit using both datasets, and then 817 

compared the results. 818 

When we simply compared the raw outputs of the test for each model evaluated using 819 

the two different data sets (Fig 5A) we identified two factors that substantially bias the results. 820 

First, we found that the standard deviation values for the features extracted from the two 821 

datasets are very different in magnitude; more specifically, the patch clamp recording data set 822 

had much lower standard deviation values for most of the features. This results in relatively 823 

higher feature scores achieved by the models, as the difference of the model output from the 824 

experimental features is given in the unit of the experimental standard deviation. The other 825 

source of bias is that the two datasets were recorded not only using different recording 826 

methods – patch clamp and sharp electrode – but (partly as a consequence) also using 827 

different protocols (current amplitudes, current duration etc.), and therefore provide different 828 

sets of features. As an important example, voltage traces with and without action potentials 829 

clearly provide different types of features. Also note that the same electrophysiological 830 

parameter can often be extracted from multiple voltage traces, and these are all treated as 831 

separate features in the test, so a difference in the number of recorded traces automatically 832 

leads to a difference in the set of features. Consequently, the models are not compared to 833 

exactly the same set of features in the two cases. Mainly as a result of these two confounding 834 
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factors, comparison of the raw scores of the models for the two data sets (Fig 5A) appears to 835 

indicate that most models fit the dataset obtained from sharp electrode recordings better, even 836 

though these models were typically built mostly based on patch clamp data. 837 

 838 

 839 

Fig 5: Comparison of the final scores achieved by the different models on the Somatic Features Test against 840 

validation data from two different datasets (sharp electrode data, patch clamp data). Final scores are calculated as 841 

the average of all the feature scores. In the upper panel (A) the raw output of the tests is shown, while in the 842 

lower panel (B) the feature scores and the final scores have been recalculated using standardized standard 843 

deviation values. Numbers above each data point show the proportion of the successfully evaluated features 844 

compared to the number of features attempted to be evaluated (successfully extracted from the data set). Note 845 

that while in the recalculated final scores (B) only those eFEL features were taken into account that could be 846 

extracted from both datasets, they are extracted for different current step amplitudes, which accounts for the 847 

difference in the number of observation features for the two datasets. 848 

 849 

To overcome these issues and make unbiased comparisons of the models to the two 850 

datasets, the feature scores and the final scores were recalculated in the following way (Fig 851 

5B). The new feature scores for the two different data sets were calculated as the difference of 852 

the model’s feature value from the mean feature value of each dataset (as before), but divided 853 

by a common standard deviation value. This standardized SD value for each eFEL feature was 854 

the mean of the standard deviation values over the current steps in the patch clamp dataset 855 

(the results were qualitatively similar if we used the SD values from the sharp electrode 856 

dataset everywhere instead). Averaging the standard deviation values of the eFEL features 857 

over the current steps was required because the current step amplitudes were not the same in 858 

the two data sets, and we therefore needed to define SD values that were independent of the 859 

amplitude. To get rid of the second bias, only those eFEL features were used in the final score 860 
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recalculation that are present in both observations (sharp electrode and patch clamp datasets) 861 

for at least one current step amplitude.  (This change had the side effect of significantly 862 

decreasing the final score for the Poirazi et al. 2003 model because the feature 863 

decay_time_constant_after_stim was excluded here, as it could not be extracted from the 864 

sharp electrode data.) Now that the final scores are recalculated to get rid of most of the 865 

biasing factors, it becomes clear that the somatic behavior of every model fits the patch clamp 866 

data better (Fig 5B). 867 

It is worth noting that one biasing factor still remains in the last comparison: as it has 868 

already been mentioned, not all the observation features can be evaluated for each of the 869 

models, especially when they are compared to the patch clamp data set, which uses smaller 870 

currents. To allow the assessment of the potential effect of this issue, the proportion of the 871 

successfully evaluated features relative to the number of features attempted to be evaluated 872 

(successfully extracted from the data set) for each model is also shown in Fig 5 next to each 873 

data point. 874 

  875 

Depolarization Block Test 876 

 877 

In the Depolarization Block Test three features are evaluated. Two of them examine 878 

the threshold current intensity to reach depolarization block. The I_maxNumAP feature is the 879 

current intensity at which the model fires the maximum number of action potentials, and the 880 

I_below_depol_block feature is the current intensity one step before the model enters 881 

depolarization block. Both are compared to the experimental Ith feature because, in the 882 

experiment [25], the number of spikes increased monotonically with increasing current 883 

intensity up to the current amplitude where the cell entered depolarization block during the 884 
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stimulus, which led to a drop in the number of action potentials. By contrast, we experienced 885 

that some models started to fire fewer spikes for higher current intensities while still firing 886 

over the whole period of the current step stimulus, i.e., without entering depolarization block. 887 

Therefore, we introduced the two separate features for the threshold current. If these two 888 

feature values are not equal, a penalty is added to the score. The third evaluated feature is Veq, 889 

the equilibrium potential during the depolarization block, which is calculated as the average 890 

of the membrane potential over the last 100 ms of a current pulse with amplitude 50 pA above 891 

I_maxNumAP (or 50 pA above I_below_depol_block if its value is not equal to 892 

I_maxNumAP). Each model has a value for the I_maxNumAP feature, while those models that 893 

do not enter depolarization block are not supposed to have a value for the 894 

I_below_depol_block feature and the Veq feature. 895 

The results from applying the Depolarization Block Test to the models from ModelDB 896 

are shown in Fig 6. According to the test, four of the models entered depolarization block. 897 

However, by looking at the actual voltage traces provided by the test, it becomes apparent that 898 

only the Bianchi et al. 2011 model behaves correctly (which was developed to show this 899 

behavior). The other three models actually managed to “cheat” the test. 900 

 901 

 902 

Fig 6: Results from the Depolarization Block Test of HippoUnit applied to published models. (A) Number of 903 

APs fired by the models in response to 1 sec long somatic current injections of increasing intensity. (B) 904 

Depolarization block feature values extracted from the voltage responses of the models compared to the 905 

experimental observations. exp_Ith is the mean (SD is indicated with a solid line) of the experimentally observed 906 

threshold current amplitude to reach depolarization block. In the test two separate features are compared to the 907 

experimental threshold value: The I_maxNumAP feature is the current intensity at which the model fires the 908 

maximum number of action potentials, and the I_below_depol_block feature is the current intensity one step 909 

before the model enters depolarization block. According to the experimental observation, these two values are 910 
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supposed to be the same, but for models, they may differ, in which case a penalty is added to the final score (see 911 

the text for more details). The Veq is the equilibrium potential to which the somatic voltage settles after entering 912 

depolarization block.  (C) Voltage traces of different models that were recognized by the test as depolarization 913 

block. Note that only the Bianchi et al. 2012 model actually entered depolarization block, the others “cheated” 914 

the test (see the text for more details). 915 

 916 

In the case of the Katz et al. 2009 and the Golding et al. 2001 Fig 9B models, the APs 917 

get smaller and smaller with increasing stimulus amplitude until they get so small that they do 918 

not reach the threshold for action potential detection; therefore, these APs are not counted by 919 

the test and Veq is also calculated. The Gómez González et al. 2011 model adjusted to the 920 

n129 morphology does not fire during the whole period of the current stimulation for a wide 921 

range of current amplitudes (see Fig 2). Increasing the intensity of the current injection it fires 922 

an increasing number of spikes, but always stops after a while before the end of the stimulus. 923 

On the other hand, there is a certain current intensity after which the model starts to fire fewer 924 

action potentials, and which is thus detected as I_maxNumAP by the test. Because no action 925 

potentials can be detected during the last 100 ms of the somatic response one step above the 926 

detected “threshold” current intensity, the model is declared to have entered depolarization 927 

block, and a Veq value is also extracted.  928 

In principle, it would be desirable to modify the test so that it correctly rejects the 929 

three models above. However, the models described above shows so similar behavior to 930 

depolarization block that is hard to distinguish using automatic methods. Furthermore, we 931 

have made substantial efforts to make the test more general and applicable to a wide variety 932 

of models with different behavior, and we are concerned that defining and adding further 933 

criteria to the test to deal with these specific cases would be an ad hoc solution, and would 934 

possibly cause further ‘cheats’ when applied to other models with unexpected behavior. These 935 
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cases underline the importance of critically evaluating the full output (especially the figures of 936 

the recorded voltage traces) of the tests rather than blindly accepting the final scores provided. 937 

 938 

Back-propagating Action Potential Test 939 

 940 

This test first finds all the dendritic segments that belong to the main apical dendrite of 941 

the model and which are 50, 150, 250, 350 ± 20 µm from the soma, respectively. Then a train 942 

of action potentials of frequency around 15 Hz is triggered in the soma by injecting a step 943 

current of appropriate amplitude (as determined by the test), and the amplitudes of the first 944 

and last action potentials in the train are measured at the selected locations. In the Bianchi et 945 

al. 2012 and the Poirazi et al. 2003 models (which share the same morphology, see Fig 2) no 946 

suitable trunk locations could be found in the most proximal (50 ± 20 µm) and most distal 947 

(350 ± 20 µm) regions. This is because this morphology has quite long dendritic sections that 948 

are divided into a small number of segments. In particular, the first trunk section 949 

(apical_dendrite[0]) originates from the soma, is 102.66 µm long, and has only two segments. 950 

The center of one of them is 25.67 µm far from the soma, while the other is already 77 µm 951 

away from the soma. None of these segments belongs to the 50 ± 20 µm range, and therefore 952 

they are not selected by the test. The n123 morphology of the Gómez González et al. 2011 953 

model has the same shape (Fig 2), but in this case the segments are different, and therefore it 954 

does not share the same problem. 955 

At the remaining, successfully evaluated distance ranges in the apical trunk of the 956 

Bianchi et al. 2012 model, action potentials propagate very actively, barely attenuating. For 957 

the AP1_amp and APlast_amp features at these distances, this model has the highest feature 958 

score (Fig 7), while the Poirazi et al. 2003 model performs quite well. 959 
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 960 

 961 

Fig 7: Results from the Back-propagating Action Potential Test of HippoUnit applied to published models. (A) 962 

The amplitudes of the first back-propagating action potentials (in a train of spikes with frequency around 15 Hz 963 

evoked by somatic current injection) as a function of recording location distance from the soma. (B) Feature 964 

scores achieved by the different models on the Back-propagating AP Test. The amplitudes of the first and last 965 

back-propagating action potentials were averaged over the distance ranges of 50, 150, 250, 350 ± 20 µm and 966 

compared to the experimental features (see Methods for more details). 967 

 968 

The Golding et al. 2001 model was designed to investigate how the distribution of ion 969 

channels can affect the back-propagation efficacy in the trunk. The two versions of the 970 

Golding et al. 2001 model (“fig8A” and “fig9B” versions) which are supposed to be weakly 971 

propagating according to the corresponding paper [27], are also weakly propagating according 972 

to the test. However, the difference between their strongly and weakly propagating feature 973 

scores is not too large (Fig 7), which is probably caused by the much smaller standard 974 

deviation value of the experimental data for the weakly propagating case. Although the 975 

amplitudes of the first action potentials of these two models fit the experimental data 976 

relatively well, they start to decline slightly closer to the soma than it was observed 977 

experimentally, as the amplitudes are already very small at 250 ± 20 µm (Fig 7). (In Fig 7 the 978 

data corresponding to these two versions of the model are almost completely overlapping for 979 

more distal regions.) The amplitudes for the last action potential fit the data well, except in the 980 

most proximal regions (see the relatively high feature score in Fig 7 B or the detailed results 981 

here: https://github.com/KaliLab/HippoUnit_demo). For all versions of the Golding et al. 982 

2001 model, AP amplitudes are too high at the most proximal distance range. As for the 983 

strongly propagating version of the Golding et al. 2001 model (“fig8B” version), the 984 

amplitude of the first action potential is too high at the proximal locations, but further it fits 985 
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the data well. The amplitude of the last action potential remains too high even at more distal 986 

locations. It is worth noting that, in the corresponding paper [27], they only examined a single 987 

action potential triggered by a 5 ms long input in their simulations, and did not examine or 988 

compare to their data the properties of the last action potential in a longer spike train. Finally, 989 

we note that in all versions of the Golding et al. 2001 model a spike train with frequency 990 

around 23 Hz was evoked and examined as it turned out to be difficult to set the frequency 991 

closer to 15 Hz. 992 

The different versions of the Gómez González et al. 2011 model behave qualitatively 993 

similarly in this test, although there were smaller quantitative differences. In almost all 994 

versions the amplitudes of the first action potential in the dendrites are slightly too low at the 995 

most proximal locations but fit the experimental data better at further locations. The 996 

exceptions are the versions with the n128 and n129 morphologies, which have lower first 997 

action potential amplitudes at the furthest locations, but not low enough to be considered as 998 

weak propagating. The amplitudes for the last action potential are too high at the distal 999 

regions but fit better at the proximal ones. The only exception is the one with morphology 1000 

n129, where the last action potential attenuates more at further locations and fits the data 1001 

better.  1002 

In the case of the Katz et al. 2009 model, a spike train with frequency around 40 Hz 1003 

was examined, as the firing frequency increases so suddenly with increasing current intensity 1004 

in this model that no frequency closer to 15 Hz could be adjusted. In this model the last action 1005 

potential propagates too strongly, while the dendritic amplitudes for the first action potential 1006 

are close to the experimental values. 1007 

In the Migliore et al. 2011 model the amplitudes for the last action potential are too 1008 

high, while the amplitude of the first back-propagating action potential is too low at locations 1009 

in the 250 ± 20 µm and 350 ± 20 µm distance ranges. 1010 
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Finally, all the models that we examined were found to be strongly propagating by the 1011 

test, with the exception of those versions of the Golding et al. 2001 model that were explicitly 1012 

developed to be weakly propagating. 1013 

 1014 

PSP Attenuation Test 1015 

 1016 

In this test the extent of the attenuation of the amplitude of an excitatory post-synaptic 1017 

potential (EPSP) is examined as it propagates towards the soma from different input locations 1018 

in the apical trunk. The Katz et al. 2009, the Bianchi et al. 2012, and all versions of the 1019 

Golding et al. 2001 models perform quite well in this test. The various versions of the 1020 

Golding et al. 2001 model are almost identical in this respect, which is not surprising as they 1021 

differ only in the distribution of the sodium and A-type potassium channels. This shows that, 1022 

as we would expect, these properties do not have much effect on the propagation of relatively 1023 

low-amplitude signals such as unitary PSPs. Interestingly, the different versions of the Gómez 1024 

González et al. 2011 model, with different morphologies, behave quite differently, which 1025 

shows that this behavior can depend very much on the morphology of the dendritic tree. 1026 

 1027 

 1028 

Fig 8: Results from the PSP Attenuation Test of HippoUnit applied to published models. Soma/dendrite EPSP 1029 

attenuation as a function of the synaptic input distance from the soma in the different models. 1030 

 1031 

Oblique Integration Test 1032 

 1033 
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This test probes the integration properties of the radial oblique dendrites of CA1 1034 

pyramidal cell models. The test is based on the experimental results described in [33]. In this 1035 

study, the somatic voltage response was recorded while synaptic inputs in single oblique dendrites 1036 

were activated in different spatio-temporal combinations using glutamate uncaging. The main 1037 

finding was that a sufficiently high number of synchronously activated and spatially clustered 1038 

inputs produced a supralinear response consisting of a fast (Na) and a slow (NMDA) component, 1039 

while asynchronously activated inputs summed linearly or sublinearly. 1040 

This test selects all the radial oblique dendrites of the model that meet the 1041 

experimental criteria: they are terminal dendrites (they have no child sections) and are at most 1042 

120 µm from the soma. Then the selected dendrites are stimulated in a proximal and in a 1043 

distal region (separately) using an increasing number of clustered, synchronous or 1044 

asynchronous synaptic inputs to get the voltage responses of the model, and extract the 1045 

features of dendritic integration. The synaptic inputs are not unitary inputs, i.e., their strength 1046 

is not equivalent to the strength of one synapse in the real cell; instead, the strength is adjusted 1047 

in a way that 5 synchronous inputs are needed to trigger a dendritic action potential. The 1048 

intensity of the laser used for glutamate uncaging was set in a similar way in the experiments 1049 

[33]. Most of the features were extracted at this just-suprathreshold level of input. We noticed 1050 

that in some cases the strength of the synapse is not set correctly by the test; for example, it 1051 

may happen that an actual dendritic spike does not reach the spike detection threshold in 1052 

amplitude, or sometimes the EPSP may reach the threshold for spike detection without actual 1053 

spike generation. The user has the ability to set the threshold used by eFEL for spike 1054 

detection, but sometimes a single threshold may not work even for the different oblique 1055 

dendrites (and proximal and distal locations in the same dendrites) of a single model. For 1056 

consistency, we used the same spike detection threshold of -20 mV for all the models. 1057 
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The synaptic stimulus contains an AMPA and an NMDA receptor-mediated 1058 

component. As the default synapse, HippoUnit uses the Exp2Syn double exponential synapse 1059 

built into NEURON for the AMPA component, and its own built-in NMDA receptor model, 1060 

whose parameters were set according to experimental data from the literature (see the 1061 

Methods section for more details). In those models that originally do not have any synaptic 1062 

component (the Bianchi et al 2011 model and all versions of the Golding et al. 2001 model) 1063 

this default  synapse was used. Both the Katz et al. 2009 and the Migliore et al. 2011 models 1064 

used the Exp2Syn in their simulations, so in their case the time constants of this function were 1065 

set to the values used in the original publications. As these models did not contain NMDA 1066 

receptors, the default NMDA receptor model and the default AMPA/NMDA ratio of 1067 

HippoUnit were used. The Gómez González et al 2011 and the Poirazi et al. 2003 models 1068 

have their own AMPA and NMDA receptor models and their own AMPA/NMDA ratio 1069 

values to be tested with.  1070 

As shown by the averaged “measured EPSP vs expected EPSP” curves in Fig 9, all 1071 

three versions of the Golding et al. 2001 model have a jump in the amplitude of the somatic 1072 

response at the threshold input level, which is the result of the generation of dendritic spikes. 1073 

However, even these larger average responses do not reach the supralinear region, as it would 1074 

be expected according to the experimental observations [33]. The reason for this discrepancy 1075 

is that a dendritic spike was generated in the simulations in only a subset of the stimulated 1076 

dendrites; in the rest of the dendrites tested, the amplitude of the EPSPs went above the spike 1077 

detection threshold during the adjustment of the synaptic weight without actually triggering a 1078 

dendritic spike, which led to the corresponding synaptic strength being incorrectly set for that 1079 

particular dendrite. Averaging over the results for locations with and without dendritic spikes 1080 

led to an overall sublinear integration profile. 1081 

 1082 
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 1083 

Fig 9: Results from the Oblique Integration Test of HippoUnit applied to published models. (A) Comparison of 1084 

the responses of the models to experimental results (black X) according to features of dendritic integration. 1085 

Features values are given as mean and standard deviation, as several dendritic locations of each model are tested. 1086 

(B) The averaged input – output curves of all the dendritic locations examined. EPSP amplitudes are measured at 1087 

the soma. Dashed line shows linearity. In models whose curve goes above the dashed line, oblique dendrites 1088 

integrate synaptic inputs that are spatially and temporally clustered supralinearly. 1089 

 1090 

The Migliore et al. 2011 model performs quite well on this test. In this case, seven 1091 

dendrites could be tested out of the ten dendrites within the correct distance range because, in 1092 

the others, the dendritic spike at the threshold input level also elicited a somatic action 1093 

potential, and therefore these dendrites were excluded from further testing. 1094 

In the Katz et al. 2009 model all the selected dendritic locations could be tested, and in 1095 

most of them the synaptic strength could be adjusted appropriately. For a few dendrites, some 1096 

input levels higher than the threshold for dendritic spike generation also triggered somatic 1097 

action potentials. This effect causes the high supralinearity in the “measured EPSP vs 1098 

expected EPSP” curve in Fig 9, but has no effect on the extracted features. 1099 

In the Bianchi et al. 2012 model only one dendrite could be selected, in which very 1100 

high amplitude dendritic spikes were evoked by the synaptic inputs, making the signal 1101 

integration highly supralinear. 1102 

In the Poirazi et al. 2003 model also only one dendrite could be selected based on its 1103 

distance from the soma; furthermore, only the distal location could be tested even in this 1104 

dendrite, as at the proximal location the dendritic action potential at the threshold input level 1105 

generated a somatic action potential. However, at the distal location, the synaptic strength 1106 

could not be set correctly. For the synaptic strength chosen by the test, the actual threshold 1107 

input level where a dendritic spike is first generated is at 4 inputs, but this dendritic AP is too 1108 
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small in amplitude to be detected, and the response to 5 inputs is recognized as the first 1109 

dendritic spike instead. Therefore, the features that should be extracted at the threshold input 1110 

level are instead extracted from the voltage response to 5 inputs. In this model this results in a 1111 

reduced supralinearity value, as this feature is calculated one input level higher than the 1112 

actual threshold. In addition, for even higher input levels dendritic bursts can be observed, 1113 

which causes large supralinearity values in the “measured EPSP vs expected EPSP” curve in 1114 

Fig 9, but this does not affect the feature values. 1115 

Models from Gómez González et al. 2011 were expected to be particularly relevant for 1116 

this test, as these models were tuned to fit the same data set on which this test is based. 1117 

However, we encountered an important issue when comparing our test results for these 1118 

models to the results shown in the paper [54]. In particular, the paper clearly indicates which 1119 

dendrites were examined, and it is stated that those are at maximum 150 µm from the soma. 1120 

However, when we measured the distance of these locations from the soma by following the 1121 

path along the dendrites (as it is done by the test of HippoUnit), we often found it to be larger 1122 

than 150 µm. We note that when the distance was measured in 3D coordinates rather than 1123 

along the dendrites, all the dendrites used by Gómez González et al. 2011 appeared to be 1124 

within 150 µm of the soma, so we assume that this definition was used in the paper. As we 1125 

consider the path distance to be more meaningful than Euclidean distance in this context, and 1126 

this was also the criterion used in the experimental study, we consistently use path distance in 1127 

HippoUnit to find the relevant dendritic segments. Nevertheless, this difference in the 1128 

selection of dendrites should be kept in mind when the results of this validation for models of 1129 

Gómez González et al. 2011 are evaluated. 1130 

In two versions of the Gómez González et al. 2011 model (those that were adjusted to 1131 

the n123 and n125 morphologies) only one oblique dendrite matched the experimental criteria 1132 

and could therefore be selected, and these are not among those that were studied by the 1133 
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developers of the model. In each of these cases the dendritic spike at the proximal location at 1134 

the input threshold level triggered a somatic action potential, and therefore only the distal 1135 

location could be tested. In the case of the n125 morphology, the dendritic spikes that appear 1136 

first for just-suprathreshold input are so small in amplitude that they do not reach the spike 1137 

detection threshold (-20 mV), and are thus not detected. Therefore, the automatically adjusted 1138 

synaptic weight is larger than the appropriate value would be, which results in larger somatic 1139 

EPSPs than expected (see Fig 9). With this synaptic weight, the first dendritic spike and 1140 

therefore the jump to the supralinear region in the “measured EPSP vs expected EPSP” curve 1141 

is for 4 synaptic inputs instead of 5. This is also the case in one of the two selected dendrites 1142 

of the version of this model with the n128 morphology. Similarly to the Poirazi et al. 2003 1143 

model, this results in a lower degree of nonlinearity at threshold feature value, than it would 1144 

be if the feature were extracted at the actual threshold input level (4 inputs) instead of the one 1145 

which the test attempted to adjust (5 inputs). The suprathreshold nonlinearity feature has a 1146 

high value because at that input level (6 inputs), somatic action potentials are triggered. 1147 

In the version of the Gómez González et al. 2011 model that uses the n129 1148 

morphology, 10 oblique dendrites could be selected for testing (none of them is among those 1149 

that its developers used) but only 4 could be tested because, for the rest, the dendritic spike at 1150 

the threshold input level already elicits a somatic action potential. The synaptic weights 1151 

required to set the threshold input level to 5 are not found correctly in most cases; the actual 1152 

threshold input level is at 4 or 3. Suprathreshold nonlinearity is high, because at that input 1153 

level (6 inputs) somatic action potentials are triggered for some of the examined dendritic 1154 

locations. 1155 

The version of the Gómez González et al. 2011 model that uses the n130 morphology 1156 

achieves the best (lowest) final score on this test. In this model many oblique dendrites could 1157 

be selected and tested, including two (179, 189) that the developers used in their simulations 1158 
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[54]. In most cases the synaptic weights are nicely found to set the threshold input level to 5 1159 

synapses. For some dendrites there are somatic action potentials at higher input levels, but 1160 

that does not affect the features. 1161 

The value of the time to peak feature for each model is much smaller than the 1162 

experimental value (Fig 9). This is because in each of the models the maximum amplitude of 1163 

the somatic EPSP is determined by the fast component, caused by the appearance of the 1164 

dendritic sodium spikes, while in the experimental observation this is rather shaped by the 1165 

slow NMDA component following the sodium spike. 1166 

 1167 

Overall characterization and model comparison based on all tests of HippoUnit 1168 

 1169 

In summary, using HippoUnit, we compared the behavior of several hippocampal CA1 1170 

pyramidal cell models available on ModelDB in several distinct domains, and found that all of 1171 

these models match experimental results well in some domains (typically those that they were 1172 

originally built to capture) but fit the experimental observations less precisely in others. Fig 1173 

10 summarizes the final scores achieved by the different models on the various tests (lower 1174 

scores indicate a better match in all cases). 1175 

 1176 

 1177 

Fig 10: Normalized final scores achieved by the different published models on the various tests of HippoUnit. 1178 

The final scores of each test are normalized by dividing the scores of each model by the best achieved score on 1179 

the given test.  1180 

 1181 

 Perhaps a bit surprisingly, the different versions of the Golding et al. 2001 model 1182 

showed a good match to the experimental data in all of the tests (except for the Depolarization 1183 
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Block Test), even though these are the simplest ones among the models in the sense that they 1184 

contain the smallest number of different types of ion channels. On the other hand, these 1185 

models do not perform outstandingly well on the Back-propagating Action Potential Test, 1186 

although they were developed to study the mechanisms behind (the dichotomy of) action 1187 

potential back-propagation, which is evaluated by this test based on the data that were 1188 

published together with these models [27]. The most probable reason for this surprising 1189 

observation is that, in the original study, only a few features of the model’s response were 1190 

compared with the experimental results. HippoUnit tested the behavior of the model based on 1191 

a larger set of experimental features from the original study, and was therefore able to 1192 

uncover differences between the model’s response and the experimental data on features for 1193 

which the model was not evaluated in the source publication.  1194 

The Bianchi et al. 2012 model is the only one that can produce real depolarization 1195 

block within the range of input strengths examined by the corresponding test. The success of 1196 

this model in this test is not surprising because this is the only model that was tuned to 1197 

reproduce this behavior; on the other hand, the failure of the other models in this respect 1198 

clearly shows that proper depolarization block requires some combination of mechanisms that 1199 

are at least partially distinct from those that allow good performance in the other tests. The 1200 

Bianchi et al. 2012 model achieves a relatively high final score only on the Back-propagating 1201 

Action Potential Test, as action potentials seem to propagate too actively in its dendrites, 1202 

leading to high AP amplitudes even in more distal compartments. 1203 

The Gómez González et al. 2011 models were developed to capture the same 1204 

experimental observations on dendritic integration that are tested by the Oblique Integration 1205 

Test of HippoUnit, but, somewhat surprisingly, some of its versions achieved quite high 1206 

feature scores on this test, while others perform quite well. This is partly caused by the fact 1207 

that HippoUnit often selects different dendritic sections for testing from those that were 1208 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.07.02.184333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184333
http://creativecommons.org/licenses/by/4.0/


52 

 

studied by the developers of these models (see above for details). The output of HippoUnit 1209 

shows that the different oblique dendrites of these models can show quite diverse behavior, 1210 

and beyond those studied in the corresponding paper [54], other oblique dendrites do not 1211 

necessarily match the experimental observations. Some of its versions also perform 1212 

relatively poorly on the PSP-Attenuation Test, similar to the Migliore et al. 2011 and the 1213 

Poirazi et al. 2003 models. The Katz et al. 2009 model is not outstandingly good in any of the 1214 

tests, but still achieves relatively good final scores everywhere (although its apparent good 1215 

performance on the Depolarization Block Test is misleading - see detailed explanation above). 1216 

The model files that were used to test the models described above, the detailed 1217 

validation results (all the output files of HippoUnit), and the Jupyter Notebooks that show 1218 

how to run the tests of HippoUnit on these models are available in the following Github 1219 

repository: https://github.com/KaliLab/HippoUnit_demo. 1220 

 1221 

Application of HippoUnit to models built using automated parameter 1222 

optimization within the Human Brain Project   1223 

 1224 

Besides enabling a detailed comparison of published models, HippoUnit can also be 1225 

used to monitor the performance of new models at various stages of model development. 1226 

Here, we illustrate this by showing how we have used HippoUnit within the HBP to 1227 

systematically validate detailed multi-compartmental models of hippocampal neurons 1228 

developed using multi-objective parameter optimization methods implemented by the open 1229 

source Blue Brain Python Optimization Library (BluePyOpt [16]). To this end, we extended 1230 

HippoUnit to allow it to handle the output of optimization performed by BluePyOpt (see 1231 

Methods).  1232 
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Models of CA1 pyramidal cells were optimized using target feature data extracted 1233 

from the same sharp electrode dataset [3] that was also one of the datasets used by the 1234 

Somatic Features Test of HippoUnit. However, while during validation all the eFEL features 1235 

that could be successfully extracted from the data are considered, only a subset of these 1236 

features was used in the optimization (mostly those that describe the rate and timing of the 1237 

spikes; e.g., the different inter-spike interval (ISI), time to last/first spike, mean frequency 1238 

features). 1239 

In addition, sharp electrode measurements were also available for several types of 1240 

interneuron in the hippocampal CA1 region, and models of these interneurons were also 1241 

constructed using similar automated methods [3]. Using the appropriate observation file and 1242 

the stimulus file belonging to it, the Somatic Features Test of HippoUnit can also be applied 1243 

to these models to evaluate their somatic spiking features. The other tests of HippoUnit are 1244 

currently not applicable to interneurons, mostly due to the lack of appropriate target data. 1245 

We  applied the tests of HippoUnit to the version of the models published in [3], and 1246 

to a later version (v4) described in Ecker et al. (2020)[57], which was intended to further 1247 

improve the dendritic behavior of the models, as this is critical for their proper functioning in 1248 

the network. The two sets of models were created using the same morphology files and 1249 

similar optimization methods and protocols. These new optimizations differed mainly in the 1250 

allowed range for the density of the sodium channels in the dendrites. For the pyramidal cell 1251 

models a new feature was also introduced in the parameter optimization that constrains the 1252 

amplitudes of back-propagating action potentials in the main apical dendrite. The new 1253 

interneuron models also had an exponentially decreasing (rather than constant) density of Na 1254 

channels, and A-type K channels with more hyperpolarized activation in their dendrites. For 1255 

more details on the models, see the original publications ([3,57]). 1256 
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After running all the tests of HippoUnit on both sets of models generated by 1257 

BluePyOpt, we performed a comparison of the old [3] and the new versions of the models by 1258 

doing a statistical analysis of the final scores achieved by the models of the same cell type on 1259 

the different tests. In Fig 11 the median, the interquartile range and the full range of the final 1260 

scores achieved by the two versions of the model set are compared. According to the results 1261 

of the Wilcoxon signed-rank test the new version of the models achieved significantly better 1262 

scores on the Back-propagating Action Potential test (p = 0.0046), on the Oblique Integration 1263 

Test (p = 0.0033), and on the PSP Attenuation Test (p = 0.0107),  which  is the result of 1264 

reduced dendritic excitability. Moreover, in most of the other cases the behavior of the models 1265 

improved slightly (but not significantly) with the new version. Only in the case of the Somatic 1266 

Features test applied to bAC interneurons did the new models perform slightly worse (but still 1267 

quite well), and this difference was not significant (p = 0.75). 1268 

These results show the importance of model validation performed against 1269 

experimental findings, especially those not considered when building the model, in every 1270 

iteration during the process of model development. This approach can greatly facilitate the 1271 

construction of models that perform well in a variety of contexts, help avoid model 1272 

regression, and guide the model building process towards a more robust and general 1273 

implementation. 1274 

 1275 

 1276 

Fig 11: Employing the tests of HippoUnit to monitor the behavior of a set of detailed data-driven models of 1277 

hippocampal neurons at different stages of model development. Models of four different cell types (pyramidal 1278 

cells and continuous accommodating (int cAC), bursting accommodating (int bAC) and continuous non-1279 

accommodating (int cNAC) interneurons) of the hippocampal CA1 region were developed within the Human 1280 

Brain Project by automated optimization using BluePyOpt. The tests of HippoUnit were used to evaluate and 1281 

compare the behavior of the older (Migliore et al 2018) version and the new (v4) version of these models. The 1282 
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median, the interquartile range and the full range of the final scores achieved by the models of each cell type 1283 

were calculated and the results of the two versions of the model set are compared. Asterisks indicate significant 1284 

differences (*: p<0.05; **: p<0.01). 1285 

 1286 

Integration of HippoUnit into the Validation Framework and the Brain 1287 

Simulation Platform of the Human Brain Project 1288 

 1289 

The HBP is developing scientific infrastructure to facilitate advances in neuroscience, 1290 

medicine, and computing [58]. One component of this research infrastructure is the Brain 1291 

Simulation Platform (BSP) (https://bsp.humanbrainproject.eu), an online collaborative 1292 

platform that supports the construction and simulation of neural models at various scales. As 1293 

we argued above, systematic, automated validation of models is a critical prerequisite of 1294 

collaborative model development. Accordingly, the BSP includes a software framework for 1295 

quantitative model validation and testing that explicitly supports applying a given validation 1296 

test to different models and storing the results [59]. The framework consists of a web service, 1297 

and a set of test suites, which are Python modules based on the SciUnit package. As we 1298 

discussed earlier, SciUnit uses the concept of capabilities, which are standardized interfaces 1299 

between the models to be tested and the validation tests. By defining the capabilities to which 1300 

models must adhere, individual validation tests can be implemented independently of any 1301 

specific model and used to validate any compatible model despite differences in their internal 1302 

structures, the language and/or the simulator used. Each test must include a specification of 1303 

the required model capabilities, the location of the reference (experimental) dataset, and data 1304 

analysis code to transform the recorded variables (e.g., membrane potential) into feature 1305 

values that allow the simulation results to be directly and quantitatively compared to the 1306 

experimental data through statistical analysis. The web services framework [59] supports the 1307 
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management of models, tests, and validation results. It is accessible via web apps within the 1308 

HBP Collaboratory, and also through a Python client. The framework makes it possible to 1309 

permanently record, examine and reproduce validation results, and enables tracking the 1310 

evolution of models over time, as well as comparison against other models in the domain.  1311 

Every test of HippoUnit described in this paper has been individually registered in the 1312 

Validation Framework. The JSON files containing the target experimental data for each test 1313 

are stored (besides the HippoUnit_demo GitHub repository) in storage containers at the Swiss 1314 

National Supercomputing Centre (CSCS), where they are publicly available. The location of 1315 

the corresponding data file is associated with each registered test, so that the data are loaded 1316 

automatically when the test is run on a model via the Validation Framework. As the Somatic 1317 

Features Test of HippoUnit was used to compare models against five different data sets (data 1318 

from sharp electrode measurements in pyramidal cells and interneurons belonging to three 1319 

different electronic types, and data obtained from patch clamp recordings in pyramidal cells), 1320 

these are considered to be and have been registered as five separate tests in the Validation 1321 

Framework. 1322 

All the models that were tested and compared in this study (including the CA1 1323 

pyramidal cell models from the literature and the BluePyOpt optimized CA1 pyramidal cells 1324 

and interneurons of the HBP) have been registered and are available in the Model Catalog of 1325 

the Validation Framework with their locations in the CSCS storage linked to them. In addition 1326 

to the modifications that were needed to make the models compatible with testing with 1327 

HippoUnit (described in the section “Methods – Models from literature”), the versions of the 1328 

models uploaded to the CSCS container also contain an __init__.py file. This file 1329 

implements a python class that inherits all the functions of the ModelLoader class of 1330 

HippoUnit without modification. Its role is to make the validation of these models via the 1331 

Framework more straightforward by defining and setting the parameters of the ModelLoader 1332 
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class (such as the path to the HOC and NMODL files, the name of the section lists, etc.) that 1333 

otherwise need to be set after instantiating the ModelLoader (see the HippoUnit_demo 1334 

GitHub repository: 1335 

https://github.com/KaliLab/HippoUnit_demo/tree/master/jupyter_notebooks ). 1336 

The validation results discussed in this paper have also been registered in the 1337 

Validation Framework, with all their related files (output figures and JSON files) linked to 1338 

them. These can be accessed using the Model Validation app of the framework.  1339 

The Brain Simulation Platform of the HBP contains several online ‘Use Cases’, which 1340 

are available on the platform and help the users to try and use the various established 1341 

pipelines. The Use Case called ‘Hippocampus Single Cell Model Validation’ can be used to 1342 

apply the tests of HippoUnit to models that were built using automated parameter 1343 

optimization within the HBP.  1344 

The Brain Simulation Platform also hosts interactive “Live Paper” documents that 1345 

refer to published papers related to the models or software tools on the Platform. Live Papers 1346 

provide links that make it possible to visualize or download results and data discussed in the 1347 

respective paper, and even to run the associated simulations on the Platform. We have created 1348 

a Live Paper (https://humanbrainproject.github.io/hbp-bsp-live-1349 

papers/2020/saray_et_al_2020/saray_et_al_2020.html) showing the results of the study 1350 

presented in this paper in more detail. This interactive document provides links to all the 1351 

output figures and data files resulting from the validation of the models from literature 1352 

discussed here. This provides a more detailed insight into their behavior individually. 1353 

Moreover, as part of this Live Paper a HippoUnit Use Case is also available in the form of a 1354 

Jupyter Notebook, which guides the user through running the validation tests of HippoUnit on 1355 

the models from literature that are already registered in the Framework, and makes it possible 1356 

to reproduce the results presented here.  1357 
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Discussion 1358 

Applications of the HippoUnit test suite 1359 

 1360 

In this article, we have described the design, usage, and some initial applications of 1361 

HippoUnit, a software tool that enables the automated comparison of the physiological 1362 

properties of models of hippocampal neurons with the corresponding experimental results. 1363 

HippoUnit, together with its possible extensions and other similar tools, allows the rapid, 1364 

systematic evaluation and comparison of neuronal models in multiple domains. By providing 1365 

the software tools and examples for effective model validation, we hope to encourage the 1366 

modeling community to use more systematic testing during model development, with the aim 1367 

of making the process of model building more efficient, reproducible and transparent. 1368 

One important use case for the application of HippoUnit is the evaluation and 1369 

comparison of existing models. We demonstrated this by using HippoUnit to test and compare 1370 

the behavior of several models of CA1 pyramidal neurons available on ModelDB [18] in 1371 

several distinct domains against electrophysiological data available in the literature (or shared 1372 

by collaborators). Besides providing independent and standardized verification of the 1373 

behavior of the models, the results also allow researchers to judge which existing models 1374 

show a good match to the experimental data in the domains that they care about, and thus to 1375 

decide whether they could re-use one of the existing models in their own research. 1376 

HippoUnit is also a useful tool during model development. In a typical data-driven 1377 

modeling scenario, researchers decide which aspects of model behavior are relevant for them, 1378 

find experimental data that constrain these behaviors, then use some of these data to build the 1379 

model, and use the rest of the data to validate the model. HippoUnit and similar test suites 1380 

make it possible to define quantitative criteria for declaring a model valid (ideally before 1381 
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modeling starts), and to apply these criteria consistently throughout model development. We 1382 

demonstrated this approach through the example of detailed single cell models of CA1 1383 

pyramidal cells and interneurons optimized within the HBP. 1384 

Furthermore, several authors have argued for the benefits of creating “community 1385 

models” [7,60,61] through the iterative refinement of models in an open collaboration of 1386 

multiple research teams. Such consensus models would aim to capture a wide range of 1387 

experimental observations, and may be expected to generalize (within limits) to novel 1388 

modeling scenarios. A prerequisite for this type of collaborative model development is an 1389 

agreement on which experimental results will be used to constrain and validate the models. 1390 

Automated test suites provide the means to systematically check models with respect to all the 1391 

relevant experimental data, with the aim of tracking progress and avoiding “regression,” 1392 

whereby previously correct model behavior is corrupted by further tuning. 1393 

Finally, the tests of HippoUnit have been integrated into the recently developed 1394 

Validation Framework of the HBP, which makes it possible to collect neural models and 1395 

validation tests, and supports the application of the registered tests to the registered models. 1396 

Most importantly, it makes it possible to save the validation results and link them to the 1397 

models in the Model Catalog, making them publicly available and traceable for the modeling 1398 

community. 1399 

 1400 

Interpreting the results of HippoUnit 1401 

 1402 

It is important to emphasize that a high final score on a given validation test using a 1403 

particular experimental dataset does not mean that the model is not good enough or cannot be 1404 

useful for a variety of purposes (including the ones it was originally developed for). The 1405 
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discrepancy between the target data and the model’s behavior, as quantified by the validation 1406 

tests, may be due to several different reasons. First, all experimental data contain noise and 1407 

may have systematic biases associated with the experimental methods employed. Sometimes 1408 

the experimental protocol is not described in sufficient detail to allow its faithful reproduction 1409 

in the simulations. It may also occur that a model is based on experimental data that were 1410 

obtained under conditions that are substantially different from the conditions for the 1411 

measurement of the validation target dataset. Using different recording techniques, such as 1412 

sharp electrode or patch clamp recordings or the different circumstances of the experiments 1413 

(e.g., the strain, age, and sex of the animal, or the temperature during measurement) can 1414 

heavily affect the experimental results. Furthermore, the post-processing of the recorded 1415 

electrophysiological data can also alter the results. For these reasons, probably no single 1416 

model should be expected to achieve an arbitrarily low score on all of the validation tests 1417 

developed for a particular cell type. Keeping this in mind, it is important that the modelers 1418 

decide which properties of the cell type are relevant for them, and what experimental 1419 

conditions they aim to mimic. Validation results should be interpreted or taken into account 1420 

accordingly, and the tests themselves may need to be adapted. 1421 

The issue of neuronal variability also deserves consideration in this context. The 1422 

morphology, biophysical parameters, and physiological behavior of neurons is known to be 1423 

non-uniform, even within a single cell type, and this variability may be important for the 1424 

proper functioning and robustness of neural circuits[62–66]. Recent models of neuronal 1425 

networks have also started to take into account this variability [11,67,68]. The tests of 1426 

HippoUnit account for experimental variability by measuring the distance of the feature 1427 

values of the model from the experimental mean (the feature score) in units of the 1428 

experimental standard deviation. This means that any feature score less than about 1 actually 1429 

corresponds to behavior which may be considered “typical” in the experiments (within one 1430 
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standard deviation of the mean), and a feature score of 2 or 3 may still be considered 1431 

acceptable for any single model. In fact, even higher values of the feature score may 1432 

sometimes be consistent with the data if the experimental distribution is long-tailed rather 1433 

than normal. However, such high values of the feature score certainly deserve attention as 1434 

they signal a large deviation from the typical behavior observed in the experiments. 1435 

Furthermore, the acceptable feature score will generally depend on the goal of the 1436 

modeling study. In particular, a study which intends to construct and examine a single model 1437 

of typical experimental behavior should aim to keep all the relevant feature scores relatively 1438 

low. On the other hand, when modeling entire populations of neurons, one should be prepared 1439 

to accept a wider range of feature scores in some members of the model population, although 1440 

the majority of the cells (corresponding to typical members of the experimental population) 1441 

should still display relatively low scores. In fact, when modeling populations of neurons, one 1442 

would ideally aim to match the actual distribution of neuronal features (including the mean, 1443 

standard deviation, and possibly higher moments as well), and the distribution of feature 1444 

scores (and actual feature values) from the relevant tests of HippoUnit actually provides the 1445 

information that is necessary to compare the variability of the experimental and model cell 1446 

populations. 1447 

 1448 

Uniform model formats reduce the costs of validation 1449 

 1450 

Although HippoUnit is built in a way that its tests are, in principle, model-agnostic, so 1451 

that the implementation of the tests does not depend on model implementation, it still required 1452 

a considerable effort to create the standalone versions of the models from literature to be 1453 

tested, even though all of the selected models were developed for the NEURON simulator. 1454 
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This is because each model has a different file structure and internal logic that needs to be 1455 

understood in order to create an equivalent standalone version. When the section lists of the 1456 

main dendritic types do not exist, the user needs to create them by extensively analyzing the 1457 

morphology and even doing some coding. In order to reduce the costs of systematic 1458 

validation, models would need to be expressed in a format that is uniform and easy to test. As 1459 

HippoUnit already has its capability functions implemented in a way that it is able to handle 1460 

models developed in NEURON, the only requirement for such models is that they should 1461 

contain a HOC file that describes the morphology (including the section lists for the main 1462 

dendritic types of the dendritic tree) and all the biophysical parameters of the model, without 1463 

any additional simulations, GUIs or run-time modifications. Currently, such a standalone 1464 

version of the models is not made available routinely in publications or on-line databases, but 1465 

could be added by the creators of the models with relatively little effort. 1466 

On the other hand, applying the tests of HippoUnit to models built in other languages 1467 

requires the re-implementation of the capability functions that are responsible for running the 1468 

simulations on the model (see Methods). In order to save the user from this effort, it would be 1469 

useful to publish neuronal models in a standard and uniform format that is simulator 1470 

independent and allows general use in a variety of paradigms. This would allow an easier and 1471 

more transparent process of community model development and validation, as it avoids the 1472 

need of reimplementation of parts of software tools (such as validation suites), and the 1473 

creation of new, (potentially) non-traced software versions. This approach is already initiated 1474 

for neurons and neuronal networks by the developers of NeuroML [69], NineML [70], PyNN 1475 

[71], Sonata [72], and Brian [73]. Once a large set of models becomes available in these 1476 

standardized formats, it will be straightforward to extend HippoUnit (and other similar test 1477 

suites) to handle these models. 1478 

 1479 
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Extensibility of HippoUnit 1480 

 1481 

Although we were aiming to develop a test suite that is as comprehensive as possible, 1482 

and that captures the most typical and basic properties of the hippocampal CA1 pyramidal 1483 

cell, the list of features that can be tested by HippoUnit is far from complete. Upon 1484 

availability of the appropriate quantitative experimental data, new tests addressing additional 1485 

properties of the CA1 pyramidal cell could be included, for example, on the signal integration 1486 

of the basal or the more distal apical dendrites, or on action potential initiation and 1487 

propagation in the axon. Therefore, we implemented HippoUnit in a way that makes it 1488 

possible to extend it by adding new tests.  1489 

As HippoUnit is based on the SciUnit package [19] it inherits SciUnits’s modular 1490 

structure. This means that a test is usually composed of four main classes: the test class, the 1491 

model class, the capabilities class and the score class (as described in more detail in the 1492 

Methods section). Thanks to this structure it is easy to extend HippoUnit with new tests by 1493 

implementing them in new test classes and adding the capabilities and scores needed. The 1494 

methods of the new capabilities can be implemented in the ModelLoader class, which is a 1495 

generalized Model class for models built in the NEURON simulator, or in a newly created 1496 

Model class specific to the model to be tested. 1497 

Adding new tests to HippoUnit requires adding the corresponding target experimental 1498 

data as well in the form of a JSON file. The way the JSON files are created depends on the 1499 

nature and source of the experimental data.  In some cases the data may be explicitly provided 1500 

in the text of the papers (as for the Oblique Integration and the Depolarization Block tests), 1501 

therefore their JSON files are easy to make manually. Most typically, the data have to be 1502 

processed to get the desired feature mean and standard deviation values and create the JSON 1503 

file. In these cases it is worth writing a script that does this automatically. Some examples on 1504 
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how this was done for the current tests of HippoUnit are available here: 1505 

https://github.com/sasaray/HippoUnit_demo/tree/master/target_features/Examples_on_creatin1506 

g_JSON_files/.  1507 

As HippoUnit is open-source and is shared on GitHub, it is possible for other 1508 

developers, modelers or scientists to modify or extend the test suite working on their own 1509 

forks of the repository. If they would like to directly contribute to HippoUnit, a ‘pull request’ 1510 

can be created to the main repository. 1511 

 1512 

Generalization possibilities of the tests of HippoUnit 1513 

 1514 

In the current version of HippoUnit most of the validation tests can only be used to test 1515 

models of hippocampal CA1 pyramidal cells, as the observation data come from 1516 

electrophysiological measurements of this cell type and the tests were designed to follow the 1517 

experimental protocols of the papers from which these data derive. However, with small 1518 

modifications most of the tests can be used for other cell types, or with slightly different 1519 

stimulation protocols, if there are experimental data available for the features or properties 1520 

tested.  1521 

The Somatic Features Test can be used for any cell type and with any current step 1522 

injection protocol even in its current form using the appropriate data and configuration files.  1523 

These two files must be in agreement with each other; in particular, the configuration file 1524 

should contain the parameters of the step current protocols (delay, duration, amplitude) used 1525 

in the experiments from which the feature values in the data file derive. In this study this test 1526 

was used with two different experimental protocols (sharp electrode measurements and patch 1527 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.07.02.184333doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.02.184333
http://creativecommons.org/licenses/by/4.0/


65 

 

clamp recordings that used different current step amplitudes and durations), and for testing 1528 

four different cell types (hippocampal CA1 PC and interneurons). 1529 

In the current version of the Depolarization Block Test the properties of the stimulus 1530 

(delay, duration, amplitudes) are hard-coded to reproduce the experimental protocol used in a 1531 

study of CA1 PCs [25]. However, the test could be easily modified to read these parameters 1532 

from a configuration file like in the case of other tests, and then the test could be applied to 1533 

other cell types if data from similar experimental measurements are available. 1534 

As the Back-propagating AP Test examines the back-propagation efficacy of action 1535 

potentials in the main apical dendrite (trunk), it is mainly suitable for testing pyramidal cell 1536 

models; however, it can be used for PC models from other hippocampal or cortical  regions, 1537 

potentially using different distance ranges of the recording sites. If different distances are 1538 

used, the feature names (‘AP1_amp_X’ and ‘APlast_amp_X’, where X is the recording 1539 

distance) in the observation data file and the recording distances given in the stimuli file must 1540 

be in agreement. Furthermore, it would also be possible to set a section list of other dendritic 1541 

types instead of the trunk to be examined by the test. This way, models of other cell types 1542 

(with dendritic trees qualitatively different from those of PCs) could also be tested. The 1543 

frequency range of the spike train (10 – 20 Hz, preferring values closest to 15 Hz) is currently 1544 

hard-coded in the function that automatically finds the appropriate current amplitude, but the 1545 

implementation could be made more flexible in this case as well.  1546 

The PSP Attenuation Test is quite general.  Both the distances and tolerance values 1547 

that determine the stimulation locations on the dendrites and the properties of the synaptic 1548 

stimuli are given using the configuration file. Here again the feature names in the observation 1549 

data file (‘attenuation_soma/dend_x_um’, where x is the distance from the soma) must fit the 1550 

distances of the stimulation locations in the configuration file when one uses the tests with 1551 

data from a different cell type or experimental protocol. Similarly to the Back-propagating AP 1552 
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Test the PSP Attenuation Test also examines the main apical dendrite (trunk), but could be 1553 

altered to use section lists of other dendritic types. 1554 

The Oblique Integration Test is very specific to the experimental protocol of [33]. 1555 

There is no configuration file used here, but the synaptic parameters (of the ModelLoader 1556 

class) and the number of synapses to which the model should first generate a dendritic spike 1557 

(‘threshold_index’ parameter of the test class) can be adjusted by the user after instantiating 1558 

the ModelLoader and the test classes respectively. The time intervals between the inputs 1559 

(synchronous (0.1 ms), asynchronous (2.0 ms)) are currently hard-coded in the test.  1560 

HippoUnit has been used mainly to test models of rat hippocampal CA1 pyramidal 1561 

cells as described above. However, having the appropriate observation data, most of its tests 1562 

could easily be adapted to test models of different cell types, even in cases when the 1563 

experimental protocol is slightly different from the currently implemented ones. The extent to 1564 

which a test needs to be modified in order to test models of other cell types depends on how 1565 

much the behavior of the new cell type differs from the behavior of CA1 pyramidal cells, and 1566 

to what extent the protocol of the experiment differs from the ones we used as the bases of 1567 

comparison in the current study. 1568 
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