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Some population is made of n individuals that can be of P possible species (or types) at equilibrium. How are individuals scattered among types? We study two random scenarios of such species abundance distributions. In the first one, each species grows from independent founders according to a Galton-Watson branching process. When the number of founders P is either fixed or random (either Poisson or geometrically-distributed), a question raised is: given a population of n individuals as a whole, how does it split into the species types? This model is one pertaining to forests of Galton-Watson trees. A second scenario that we will address in a similar way deals with forests of increasing trees. Underlying this setup, the creation/annihilation of clusters (trees) is shown to result from a recursive nucleation/aggregation process as one additional individual is added to the total population.

Introduction and outline

In the following, we will make the following tacit identifications. A branching tree is understood as a branched population of individuals of a given type or species, at equilibrium. The type of a branching tree is the one carried by its founder. By equilibrium, we mean the steady state after all productive individuals in the tree have exhausted their lifetimes. The node of a tree is thus an individual of this population. An internal node is a node (individual) that was once productive. A leaf is a node (individual) that went sterile. The size of this tree (its total progeny) is the number of individuals (nodes) constituting this population at equilibrium. We shall consider both Galton-Watson trees [START_REF] Harris | The Theory of Branching Processes[END_REF]) and increasing trees [START_REF] Bergeron | Varieties of increasing trees[END_REF]) with zero or one lifetimes.

Central to our purpose are also forests of trees. The number of trees in a forest corresponds to the number of species in a population made of many species. Given a forest (population) with n nodes (individuals) in total at equilibrium, how many con-stitutive trees (species) is it made of and what are their sizes? We shall consider the cases when there are either a fixed number p of species or when this number is random, say P , with P either Poisson or geometrically distributed. In this manuscript, we shall consider both forests of Galton-Watson trees and forests of increasing trees. Species abundance distribution problems of a similar flavor have been addressed in [START_REF] Engen | On species frequency models[END_REF][START_REF] Engen | Stochastic Abundance Models[END_REF] We start with Galton-Watson trees with a single founder for which the probability generating function Φ (z) of the total progeny is given by a functional equation. We compute the probability mass function of its total progeny when the branching mechanism is either binomial, Poisson or negative binomial distributed. In the supercritical cases for which there is a chance to observe a giant tree, an expansion of the extinction probability can be derived from such considerations. When dealing with Galton-Watson trees forests with a fixed number p of trees, we compute the canonical species occupancy distributions (with or without repetitions) given n nodes in total in a forest with p trees. We show that these probability mass functions are explicit in the three examples discussed above, as well as the typical mass function of each species. For general Galton-Watson trees, only a large n asymptotic estimate of these probabilities is available, as a result of the probability generating function Φ (z) of the total progeny having generically a (branch point) power singularity of order -1/2: the probability generating function Φ (z) of the total progeny takes a finite value at its singularity branch point.

Then, we move to a grand canonical situation when the number of trees P is random, either (a) Poisson or (b) geometrically distributed. A key issue in this setup is the computation of the joint probability to observe a forest (population) with p trees (species) and n nodes (individuals) in total. This allows to compute the conditional probability to observe a forest made of P n trees, given it has n nodes in total.

We show that in the Poisson forest case (a), P n converges in distribution, in the large population regime n → ∞, to some P ∞ which is shifted Poisson distributed. The distribution of the number of size-m trees are also investigated in this limit.

When dealing with the geometric forest case (b), we show that a phase transition takes place in the following sense: in a subcritical regime, P n converges in distribution, as n → ∞, to some P ∞ which is shifted 'squared-geometric' distributed, whereas in a (super-) critical regime, n -1 P n converges almost surely, as n → ∞, to some fixed fraction. The origin of this critical behavior results from Φ (z) being finite at its singularity point.

In a second part of this manuscript, we address similar issues when the trees under concern are now random increasing trees. These are weighted random versions of enumerative increasing trees, first introduced in [START_REF] Bergeron | Varieties of increasing trees[END_REF]. Increasing trees are those labeled trees whose nodes are labeled in increasing order from root to leaves; being more constrained, they are less likely to be observed than their free Galton-Watson counterparts. The probability generating function Φ (z) of the total progeny in an increasing tree setup is now amenable to the solution of a nonlinear differential equation. We compute the probability mass function of its total progeny when the branching mechanism is either binomial, Poisson or negative binomial distributed, in which cases the nonlinear differential equation can be solved explicitly. In the first two cases, the (polynomial and exponential) branching mechanisms have no singularity at finite distance of the origin and this induces a power singularity of positive order in the first case and logarithmic singularity in the second case for Φ (z): the probability generating functions of the total progeny diverges at its induced singularity point located at some finite distance of the origin. In the third negative binomial case, the branching mechanism has a singularity at finite distance of the origin and this induces a power singularity of negative order for Φ (z): the probability generating function of the total progeny is finite at its induced singularity point. In the increasing tree setup, the type of the singularity of Φ (z) depends on the branching mechanism, in contrast with the universal behavior (with power singularity of order -1/2) observed for Galton-Watson trees.

When dealing with increasing trees forests with a fixed number p of trees, we can compute the large n canonical species occupancy distributions (with or without repetitions) given n nodes in total in a forest with p trees.

When dealing with random forests with P increasing trees, we show that the joint probabilities to observe a forest (population) with p trees (species) and n nodes (individuals) in total can be obtained by recurrence when considering the transition from n to n + 1. More specifically, suppose a given population of n individuals that are of p different types. A new individual pops in and either nucleates (forms a new species by itself) or aggregates q out of the p species to form a new population with n + 1 individuals and p -q + 1 species. This scenario of clusters formation indicates that the creation/deletion of clusters (trees) can be obtained from a recursive nucleation/aggregation model as one additional individual is added to the total population. It is specific to forests of increasing trees.

Due to the greatest variability of the singularity type of Φ (z) in the increasing tree context, we show that:

-for the binomial with degree d branching mechanism: the number P n of trees in a forest with n nodes in total grows like n 1/d in the Poisson forest case (a), whereas it always grows like n in the geometric forest case (b).

-for the Poisson branching mechanism: the number P n of trees in a forest with n nodes in total grows like log n in the Poisson forest case (a), whereas it always grows like n in the geometric forest case (b).

-for the negative binomial branching mechanism: in the Poisson case (a), P n converges in distribution, as n → ∞, to some P ∞ which is shifted Poisson distributed, whereas, when dealing with the geometric forest case (b), a phase transition takes place: in a subcritical regime, P n converges in distribution, as n → ∞, to some P ∞ which is shifted 'squared-geometric' distributed, whereas in a (super-) critical regime, n -1 P n converges almost surely, as n → ∞, to some fixed fraction. This critical behavior also results from Φ (z) being finite at its singularity point in this case.

The main constructive tools are Lagrange inversion formula and asymptotic singularity analysis of the coefficients of probability generating functions with powerlogarithmic singularities of given orders (see the short Appendix).

Forests of Galton-Watson trees

In a discrete Galton-Watson (GW) process, some founder gives birth to a random number M of offspring at the next generation, each daughter proceeding similarly independently of its sisters, and so on till some daughter is found sterile. Let then

E z M = φ (z) , (1) 
be the branching probability generating function (pgf) of this GW process with φ (0) = 0 (non-extinction possible). We assume φ (with φ (1) = 1) has convergence radius z + > 1 (possibly with z + = ∞) and we let µ = E (M ) = φ (1) < ∞ and σ 2 =Var(M ) < ∞. We also let π k = P (M = k). We avoid the trivial case where φ (z) is an affine function of z. Starting from a single founder, the birth and death process is iterated indefinitely, ending up in a population with a total random amount N (1) of descendants (the asymptotic total progeny of founder 1 at equilibrium). A productive individual in the tree will produce M > 0 offspring at each step, including itself, meaning that a productive individual passes to the next generation and generates M -1 daughters in such a reproduction event. If M = 1, the reproduction event is reduced to itself in a self-regeneration process. As a result, the only individuals that one 'sees' after the whole lifetime of the tree was exhausted are the leaves (corresponding to nodes at which the death event M = 0 takes place). Clearly then, denoting N m (1) the number of nodes of the tree with outdegree m, the number of leaves N 0 (1) with outdegree 0 obey

N 0 (1) = 1 + m≥1 (m -1) N m (1) , together with of course N (1) = m≥0 N m (1) .
2.1 GW tree with a single founder and the survival probability, [START_REF] Harris | The Theory of Branching Processes[END_REF] The GW process is subcritical if µ < 1, critical if µ = 1 and supercritical if µ > 1. As indicated above, we let N (1) be the asymptotic total progeny of a single founder at equilibrium. Then, with π n = P N (1) = n and E z N (1) = n≥1 π n z n , the pgf Φ (z) = E z N (1) obeys the functional equation of a Lagrangian distribution, see [START_REF] Consul | Lagrangian Probability Distributions[END_REF],

Φ (z) = zφ (Φ (z)) , with Φ (0) = 0. (2) 
We have Φ (1) = P N (1) < ∞ = ρ e , the extinction probability of N t (1). It obeys

ρ e = φ (ρ e ) . (3) 
with

ρ e = 1 if µ ≤ 1, ρ e = 1-ρ e > 0 if µ > 1. If µ < 1, m = EN (1) = 1/ (1 -µ) < ∞, otherwise if µ ≥ 1, m = ∞.
In the critical case when µ = 1, N (1) < ∞ with probability 1 but m = EN (1) = ∞ as a result of N (1) displaying heavy tails. In the supercritical case when µ > 1, m = ∞ because with some positive probability ρ e , the tree is a giant tree with infinitely many nodes or branches (one more node than branches in a tree corresponding to the root).

Whenever one deals with a supercritical situation with ρ e = Φ (1) < 1, defining the pgf of

N (1) = N (1) | N (1) < ∞ to be Φ (z) = Φ (z) -Φ (1) 1 -Φ (1) , we have Φ (z) = z φ Φ (z) and φ (z) = φ (z) -ρ e 1 -ρ e ,
where φ (z) is the modified subcritical branching mechanism obeying µ = φ (1) = φ (ρ e ) < 1. Conditioning a supercritical tree on being finite is amenable to a subcritical tree problem so with extinction probability 1. But this requires the computation of ρ e which can be quite involved in general. Indeed however (with [z n ] f (z) denoting the coefficient in front of z n in the power-series expansion of f (z) at 0), by Lagrange inversion formula

π n = [z n ] Φ (z) = P N (1) = n = 1 n z n-1 φ (z) n , (4) 
so that

ρ e = P N (1) < ∞ = n≥1 P N (1) = n = m≥0 1 m + 1 [z m ] φ (z) m+1 ,
is the power series expansion of the extinction probability ρ e in the supercritical case.

There is an estimate of ρ e when the GW process is nearly supercritical (µ slightly above 1). Let ρ e = 1 -ρ e be the survival probability and f (z) = φ (z) -z, with

f (1) = 0, f (1) = µ -1 and f (1) = E (M (M -1)) = σ 2 + µ 2 -µ ∼ µ∼1 + σ 2 .
We have

ρ e = φ (ρ e ) ⇔ f (1 -ρ e ) = 0. As a result of f (1 -x) ∼ f (1) -xf (1) + 1 2 x 2 f (1) ,
we get the small survival probability estimate ρ e ∼ 2 (µ -1) /σ 2 when the GW process is nearly supercritical. As a function of µ -1, ρ e is continuous at 0 (ρ e = 0 if µ -1 ≤ 0), but with a discontinuous slope. As µ → ∞ clearly ρ e → 1.

A full power-series expansion of ρ e in terms of µ -1 > 0 can also be obtained as follows: define φ (z) by φ (z) = 1 + µ (z -1) + φ (1 -z), so with φ (0) = 0. The equation ρ e = φ (ρ e ) becomes φ (ρ e ) ρ e = µ -1.

Lagrange inversion formula gives ρ e = n≥1 ρ n (µ -1) n with

ρ n = 1 n x n-1 φ (x) x 2 -n
.

Note ρ 1 = 2/φ (1) with φ (1) ∼ σ 2 when µ is slightly above 1. To the first order in µ -1, we recover ρ e ∼ 2 (µ -1) /σ 2 . The second-order coefficient is found to be

ρ 2 = 4/3 • φ (1) /φ (1) 3 .
Let us check these formulas on an explicit example. n+1) . Thus, consistently, ρ e = n≥1 ρ n (µ -1) n = 1 -1/µ and, owing to φ (1) = 2µ 2 and φ (1) = 6µ 3 ,

Example: If φ (z) = 1/ (1 + µ (1 -z)), with µ > 1, the fixed point ρ e = 1/µ is ex- plicitly found. Here φ (x) /x 2 = µ 2 / (1 + µx) with ρ n = µ -(
ρ 2 = µ -3 = 4/3 • φ (1) /φ (1) 3 .
2.2 GW tree with a fixed number p > 1 of founders: canonical species abundance distributions

Let N (p) = N ∞ (p) be now the total progeny of p independent founders, so with E z N (p) = Φ (z) p . We view the progenies of each of the p founders as the progenies of p distinct species. Let N n,p (1) , ..., N n,p (p) be the vector of the progenies given p distinct species and N (p) = n individuals in total. Then, with (n 1 , ..., n p ) positive integers summing to n,

P N n,p (1) = n 1 , ..., N n,p (p) = n p = p q=1 z nq q Φ (z q ) [z n ] Φ (z) p = p q=1 π nq P N (p) = n , (5) 
gives the joint species abundance distribution among types when n and p are fixed. This probability mass function is exchangeable. The typical one-dimensional marginal distribution in particular read (n 1 ∈ {1, ..., n -p + 1}):

P N n,p (1) = n 1 = [z n 1 ]Φ(z)[z n-n 1 ]Φ(z) p-1 [z n ]Φ(z) p = P(N (1)=n1)P(N (p-1)=n-n1) P(N (p)=n) , (6) 
clearly with E N n,p (1) = n/p.

A second important sampling formula is the following, dealing with repetitions: let (P n,p (m) ; m = 1, ..., n) be the number of species with m representatives in a population with total size n and p distinct species (the number of size-m trees). Then, for all p 1 , .., p n ≥ 0, nonnegative integers, obeying

n-(p-1) m=1 p m = p, n-(p-1) m=1
mp m = n (the number of such p's is the number of partitions of n into p summands),

P (P n,p (1) = p 1 , ..., P n,p (n) = p n ) = p p1•••pn n m=1 π pm m [z n ] Φ (z) p . (7) 
In all cases, we are left with the problem of computing, say the normalizing denominator of Equation ( 7), which can be obtained by Lagrange inversion formula as:

[z n ] Φ (z) p = P N (p) = n = p n z n-p φ (z) n for all n ≥ p. (8) 
Both abundance distributions (5) and ( 7) are explicit whenever one is able to compute

P N (p) = n = [z n ] Φ (z)
p for all n, p ≤ n, in particular π m = P N (1) = m = [z m ] Φ (z). This will be the case in the examples of the forthcoming Section.

Remark: Note in passing that P N (p) < ∞ = ρ e (p) = ρ p e . So P N (p) < ∞ = n≥p P N (p) = n = p m≥0 1 m + p [z m ] φ (z) m+p .
is the power series expansion of the extinction probability ρ e (p) of a population with p species in the supercritical case.

Three explicit examples

• Let M ∼bin(d, α), α ∈ (0, 1) and d integer ≥ 2, so with

φ (z) = (1 -α + αz) d , (9) 
with mean µ = dα. By Stirling formula, with n ≥ p, with

z c = (d-1) d-1 α(1-α) d-1 d d ≥ 1, P N (p) = n = p n z n-p φ (z) n = p n nd n -p α n-p (1 -α) n(d-1)+p ∼ 1 √ 2π p n 3/2 d -1 d -1/2 1 -α α (d -1) p z -n c ,
when p is fixed and n → ∞. We note z c = w (µ -1) /µ, where w

(x) = (1 + x/ (1 -d)) 1-d , w (x) ∼ 1 + x as x → 0 + , precising how z c depends on µ -1. The function z c (µ) at- tains its minimum 1 if µ = dα = 1 (α = 1/d). If µ = dα = 1 therefore (corresponding to the critical case) P N (p) = n ∼ n→∞ p 2π (1 -α) n -3/2 ,
a pure power law (with tail index 1/2) and with no geometric cutoff. The tail exponent being smaller than one, N (p) has no finite mean as expected. Note that this probability is proportional to p. Finally,

ρ e (p) = P N (p) < ∞ = n≥p P N (p) = n = n≥p p n nd n-p α n-p (1 -α) n(d-1)+p = p (1 -α) pd m≥0 1 m+p (m+p)d m α (1 -α) d-1 m ,
is the series expansion of the extinction probability. This probability is 1 if α = α c = 1/d. When α -α c is small and positive (the just supercritical case), with ρ e (p) = 1 -ρ e (p): ρ e (p) ∼ 2p (µ -1) /σ 2 . In the present case, ρ e (p) ∼ p 2d 2 d-1 (α -α c ) . Remarks:

(i) the latter model is related to the Flory-Stockmayer binomial model (randomly branched polymers with degree-(d + 1) functional monomers, see Flory (1941a), [START_REF] Flory | Molecular size distribution in three-dimensional polymers. II Trifunctional branching units[END_REF], if d = 2, [START_REF] Stockmayer | Theory of molecular size distribution and gel formation in branched chain polymers[END_REF] for any integer d and also [START_REF] Simkin | Re-inventing Willis[END_REF]): in this model with one founder p = 1, the Φ (z) obtained above from the bin(d, α) generating model φ is in fact the pgf of first generation polymers. Here, each monomer with d functional units (arms) is identified to a node of a Galton-Watson tree. Independently of one another, each of the d functional units has a probability α to be attached to a second generation functional unit and so on. At generation 0 however, a seed monomer with full d + 1 functional units gives birth to a random number (so with distribution bin(d + 1, α)) of first generation such polymers, all with pgf Φ (z). The true size of the Flory branched polymer has thus distribution given by the modified pgf

Φ (z) → z (1 -α + αΦ (z)) d+1 .
This translates the fact that the seed monomer can have up to d + 1 activated functional units whereas all its descendants only up to d, the first and subsequent generation trees growing away from the seed monomer, thereby presenting only d possible free arms. In the supercritical case with dα > 1, there is a positive probability that the Flory tree (polymer) is a giant one with infinitely many monomers (the gelation transition).

(ii) With Φ (z) solving Φ (z) = z (1 -α + αΦ (z)) d and defining Φ d (z) = Φ z d 1/d , we get that Φ d (z) solves Φ d (z) = z 1 -α + αΦ d (z) d = zφ d (Φ d (z)) , corresponding to the branching mechanism φ d (z) = 1 -α + αz d . So Φ d (z)
is the pgf of the total progeny, say N d (1), of a branching process whose offspring per capita is either d with probability α or 0 (with probability 1 -α), so all or nothing. We clearly have P N d (1) = n > 0 only for those n = md + 1, m ≥ 0 (the number of tree branches being multiple of d), so Φ d z 1/d is well-defined together with

Φ (z) = Φ d z 1/d d .
We can deduce the main properties of the new model generated by φ d from the previous one generated by the binomial φ.

• Poisson model: M ∼Poi(µ), mean µ > 0. This model occurs in the Press-Schechter description of gravitational clustering, [START_REF] Sheth | Galton-Watson branching processes and the growth of gravitational clustering[END_REF]. Consider now the branching mechanism

φ (z) = e -µ(1-z) . ( 10 
)
This pgf can be obtained while putting α = µ/d and letting d → ∞ in the binomial model φ (the Poisson limit of the binomial distribution). Here

[z n ] Φ (z) p = P N (p) = n = p n z n-p e -µn(1-z) = p n (µn) n-p (n -p)! e -µn ,
a Borel-Tanner distribution (Borel if p = 1); see [START_REF] Tanner | A derivation of the Borel distribution[END_REF]. By Stirling expansion, with n ≥ p:

P N (p) = n ∼ p √ 2π µ -p e µ-1 µ -n n -3/2 , which in the critical case µ = 1 reduces to P N (p) = n ∼ p √ 2π n -3/2 . We note z c = e µ-1 /µ = w (µ -1) /µ, where w (x) = e x , w (x) ∼ 1 + x as x → 0.
Remark: As an illustration of Equation ( 6) in this Poisson model context, with n 1 ∈ {1, ..., n -p + 1}:

P N n,p (1) = n 1 = [z n1 ] Φ (z) [z n-n1 ] Φ (z) p-1 [z n ] Φ (z) p = p -1 pn 1 n -p n 1 -1 n 1 n -n 1 n1-1 n -n 1 n n-p-1
, is the typical abundance distribution of species 1.

• Negative binomial model for M : Let (θ, 1/λ) be the shape and scale parameters of a Gamma random variable on the real half-line. Suppose M is now given as a Gamma

(θ, 1/λ)-Poisson mixture. With λ = α/β, θ > 0, α, β such that α + β = 1 and [θ] k = Γ (θ + k) /Γ (θ) = θ (θ + 1) ... (θ + k -1) φ (z) = (1 + λ (1 -z)) -θ = 1-αz β -θ π k = z k φ (z) = β θ [θ] k z k + /k! ∼ k→∞ β θ k θ-1 z k + /Γ (θ) , (11) 
where z + = 1/α. M has mean µ = θλ. When θ = 1, the mixing distribution is Exp(1/λ) distributed and φ (z) is the pgf of a geometric random variable with success parameter α.

By Stirling formula, with n ≥ p

P N (p) = n = p n [z n-p ] φ (z) n = p n β nθ α n-p [nθ] n-p (n-p)! ∼ p √ 2π (α (θ + 1)) -p θ+1 θ -1/2 θ θ αβ θ (θ+1) θ+1 -n n -3/2 . We note z c = θ θ / αβ θ (θ + 1) θ+1 = w (µ -1) /µ, where w (x) = (1 + x/ (θ + 1)) θ+1 , w (x) ∼ 1 + x as x → 0. If µ = θλ = θα/β = 1 (critical case) P N (p) = n ∼ n→∞ p 2π (1 + λ) n -3/2 ,
a pure power law with no geometric cutoff. A striking feature is that it has the same shape as in the binomial case, up to a constant. Consequently,

ρ e (p) = P N (p) < ∞ = n≥p P N (p) = n = p α p n≥p 1 n αβ θ n [nθ] n-p (n-p)! = pβ pθ m≥0 (αβ θ ) m m+p [nθ] m m! ,
is the series expansion of the extinction probability. This probability is

1 if θ = β/α (or α = 1/ (1 + θ)) showing that m≥0 z m m + p [nθ] m m! = 1 p (z (1 + θ)) p ,
if the latter series converges. Thus,

P N (p) < ∞ = 1 if θ ≤ β/α and if θ > β/α : P N (p) < ∞ = pβ pθ p αβ θ (1 + θ) p = (α (1 + θ)) -p = ρ e (p) . With θ c = β/α, if θ -θ c is small ρ e (p) = 1 -pα (θ -θ c ) + pO (θ -θ c ) 2 .
2.4 GW tree with a random number P of founders So far, we assumed that the number of species p was known. We shall now randomize p, so deal with a random number P of founders with pgf φ 0 (z) = E z P , a classical issue in the grand canonical ensemble, [START_REF] Demetrius | Statistical mechanics and population biology[END_REF]. We shall assume that P has a finite mean µ 0 .

Let then N =N ∞ (P ) be the total progeny of a population with P founders. We have

E z N = Ψ (z) = φ 0 (Φ (z)) and P (N < ∞) = φ 0 (ρ e ) . By Lagrange inversion formula, [z n ] Ψ (z) = P (N = n) = 1 n z n-1 φ 0 (z) φ (z) n . ( 12 
) With π 0 m = P (P = m), φ 0 (z) = m≥0 π 0 m z m entails φ 0 (z) = m≥1 mπ 0 m z m-1 = z -1 m≥1 mπ 0 m z m = µ 0 z -1 φ * 0 (z)
, where φ * 0 (z) is the pgf of a size-biased version P * of P : φ * 0 (z) = E z P * = zφ 0 (z) /µ 0 . We let π * m = mπ 0 m /µ 0 the probability system of P * ≥ 1. So P (N = 0) = π 0 0 and for

n ≥ 1 [z n ] Ψ (z) = P (N = n) = µ 0 n [z n ] (φ * 0 (z) φ (z) n ) .
Thus, as required, by the convolution formula and Equation ( 8),

P (N = n) = µ 0 n n p=1 π * p • z n-p φ (z) n = µ 0 n p=1 π * p p P N (p) = n = n p=1 π 0 p P N (p) = n .
2.5 General GW tree case: back to p = 1

The above three models for φ are some of the rare ones for which π n = P N (1) = n can be explicitly computed. However for a general (aperiodic and different from an affine function, see Remark below) φ obeying: φ has convergence radius z + > 1 (possibly z + = ∞) and π 0 > 0, a similar large n estimate can be obtained in general.

For such φ's indeed, the unique positive real root to the equation

φ (τ ) -τ φ (τ ) = 0, (13) 
exists, with

ρ e = 1 < τ < z + if µ < 1, τ = 1 if µ = 1 and ρ e < τ < 1 < z + if µ > 1.
[Remark: When φ (z) = α + αz is affine, the number τ below is rejected at ∞ and the following analysis of the corresponding Φ (z) is invalid. This case deserves a special treatment (see below) ].

The point (τ , φ (τ )) is indeed the tangency point to the curve φ (z) of a straight line passing through the origin (0, 0). Let then

z c = τ /φ (τ ) = 1/φ (τ ) ≥ 1. The searched Φ (z) solves ψ (Φ (z)) = z, where ψ (z) = z/φ (z) obeys ψ (τ ) = z c , ψ (τ ) = 0 and ψ (τ ) = -τ φ (τ ) φ(τ ) 2 < ∞. Thus, ψ (z) ∼ z c + 1 2 ψ (τ ) (z -τ ) 2 else z ∼ z c + 1 2 ψ (τ ) (Φ (z) -τ ) 2 (a branch-point singularity). It follows that Φ (z) displays a dominant power-singularity of order -1/2 at z c with Φ (z c ) = τ in the sense Φ (z) ∼ z→zc τ - 2φ (τ ) φ (τ ) (1 -z/z c ) 1/2 . ( 14 
)
By singularity analysis therefore (see [START_REF] Flajolet | Singularity analysis of generating functions[END_REF] and [START_REF] Flajolet | The average case analysis of algorithms: complex asymptotics and generating functions[END_REF] and the Appendix),

P N (1) = n = [z n ] Φ (z) ∼ n→∞ φ (τ ) 2πφ (τ ) n -3/2 z -n c , (15) 
to the dominant order in n. When µ = φ (1) → 1 (critical case) then both τ and z c → 1 and the above estimate boils down to a pure power-law with

[z n ] Φ (z) ∼ n→∞ 1 √ 2πφ (1)
n -3/2 . It can more precisely be checked that when

|µ -1| 1, z -1 c ∼ 1 -(µ -1) 2 .
Note finally that with F (λ) = log φ e -λ the log-Laplace transform of M , τ > 0 is also the solution to F (-log τ ) = 1.

A power-series expansion of τ and z c in terms of the variable µ -1 can formally be obtained. Define φ (z) by

φ (z) = 1 + µ (z -1) + φ (1 -z), so with φ (0) = 0. With τ = 1 -τ , the equation φ (τ ) -τ φ (τ ) = 0 giving τ becomes δ (τ ) = φ (τ ) + (1 -τ ) φ (τ ) = µ -1.
By Lagrange inversion formula, we get:

1/ τ = τ (µ -1) = n≥1 τ n (µ -1)
n , where

τ n = 1 n x n-1 δ (x) x -n . 2/ z c = 1/φ (1 -τ ) = z (τ ) = z c (µ -1) = n≥1 z n (µ -1)
n , where

z n = 1 n x n-1 z (x) δ (x) x -n
.

Example: Let us briefly work out the explicit geometric case, where φ (z) = β/ (1 -αz) , with convergence radius z + = 1/α. The rv M has mean µ = α/β and variance

σ 2 = α/β 2 = µ/β. If µ < 1 (α < 1/2) : ρ e = 1 < τ = 1/ (2α) < z + = 1/α. We have φ (τ ) = 2β and z c = 1/ (4αβ) > 1. Note z c < z + . If µ = 1 (α = 1/2) : ρ e = 1 = τ < z + = 2. We have φ (τ ) = 1 and z c = 1. If µ > 1 (α > 1/2) : ρ e = β/α < τ = 1/ (2α) < 1 < z + = 1/α < 2. We have φ (τ ) = 2β and z c = 1/ (4αβ) > 1. Note z c ≶ z + if α ≶ 3/4 and ρ e = 1/µ with ρ e ∼ 2 (µ -1) /σ 2 as µ → 1 + (α → (1/2) + ).
2.5.1 The pure power-law case (geometric tilting)

Define the tilted new pgf Φ c (z) = Φ (zz c ) /Φ (z c ) and let N c (1) be the random variable such that Φ c (z) = E z N c (1) . With φ c (z) = z c φ (τ z) /τ = φ (τ z) /φ (τ )
defining a new rescaled branching pgf, we have

Φ c (z) = zφ c (Φ c (z)) . (16) 
Thus, N c (1) is the tree size of a GW process with one single founder when the generating branching mechanism is φ c (z). We note φ c (1) = 1, φ c (1) = z c φ (τ ) = 1 (a critical case with extinction probability ρ e,c = 1, the smallest positive root of ρ e,c = φ c ρ e,c ) and the convergence radius of

φ c is z + /τ > 1. As a result, Φ c (z) ∼ z→1 1 -τ -1 2φ(τ ) φ (τ ) (1 -z) 1/2
, with singularity displaced to the left at 1, so that

P N c (1) = n = [z n ] Φ c (z) ∼ n→∞ τ -1 φ (τ ) 2πφ (τ ) n -3/2 . ( 17 
)
The geometric cutoff appearing in the probability mass of N (1) has been removed and we are left with a pure power-law case. This means that looking at the tree size pgf Φ c (z) generated by the critical branching mechanism φ c (z) = z c φ (τ z) /τ , Φ c (z) exhibits a power-singularity of order -1/2 at z c = 1 so that the new tree size probability mass has pure power-law tails of order 1/2. In particular E N c (1) = ∞. In the explicit geometric example above, where φ (z) = β/ (1 -αz), it can be checked that φ c (z) = 1/ (2 -z) ; when dealing with

φ (z) = (β/ (1 -αz)) θ , φ c (z) = (θ/ (θ + 1 -z)) θ .
Similarly, when dealing with the binomial pgf φ (z) =

(1

-α + αz) d , φ c (z) = (1 -1/d + z/d) d and when dealing with the Poisson pgf φ (z) = e -µ(1-z) , φ c (z) = e -(1-z) .
Binomial (polynomial) and Poisson (exponential) models are examples of φ having convergence radius z + = ∞. For the negative binomial model, φ exhibits a powersingularity of positive order θ > 0 at z + = 1/α with 1 < z + < ∞, so with φ (z + ) = ∞.

Here is now a family of φ's with a power-singularity of negative order -α, α ∈ (0, 1) . Let α, λ ∈ (0, 1) and z + > 1. Define the Sibuya pgf, see [START_REF] Sibuya | Generalized hypergeometric, digamma and trigamma distributions[END_REF],

h (z) = 1 -λ (1 -z/z + ) α and φ (z) = h (z) h (1) 
.

It can be checked that this φ is a proper pgf with convergence radius z + and which is finite at

z = z + > 1, with φ (z + ) = 1 h(1) > 1. Note that for k ≥ 1, π k = z k φ (z) = λ h (1) (-1) k-1 α k z k + ∼ k→∞ λα h (1) k -(α+1) z k + /Γ (1 -α) .
The latter singularity expansion of Φ applies to this branching mechanism φ as well.

Number of leaves (sterile individuals)

In the branching population models just discussed it is important to control the number of leaves in the GW tree with a single founder because leaves are nodes (individuals) of the tree (population) that gave birth to no offspring (the frontier of the tree as sterile individuals), so responsible of its extinction. Leaves are nodes with outdegree zero, so let N 0 (1) be the number of leaves in a GW tree with N (1) nodes.

With Φ (z 0 , z) = E z N 0 (1) 0 z N (1) the joint pgf of N 0 (1) , N (1) , clearly solves the functional equation

Φ (z 0 , z) = z (π 0 (z 0 -1) + φ (Φ (z 0 , z))) . (18) 
With

N 0 n (1) = N 0 (1) | N (1) = n, we have E z N 0 n (1) 0 = [z n ] Φ (z 0 , z) [z n ] Φ (1, z) ,
where Φ (1, z) = Φ (z). It is shown using this in [START_REF] Drmota | Random Trees: An Interplay between Combinatorics and Probability[END_REF], Th. 3.13, page 84) that, under our assumptions on φ,

1 n E N 0 n (1) → n→∞ m 0 = π0 φ(τ ) 1 n σ 2 N 0 n (1) → n→∞ σ 2 0 = π0 φ(τ ) - π 2 0 φ(τ ) 2 - π 2 0 τ 2 φ(τ ) 2 φ (τ ) N 0 n (1)-m0n σ0 √ n d → n→∞ N (0, 1) . ( 19 
)
As n → ∞, 1 n N 0 n (1) converges in probability to m 0 < 1, the asymptotic fraction of nodes in a size n tree which are leaves. For the geometrically generated tree with φ (z) = β/ (1 -αz), it can be checked that m 0 = 1/2, whereas for the Poisson generated tree with pgf φ (z) = e µ(z-1) , m 0 = e -1 . For the negative binomial tree generated by φ (z) = (β/ (1 -αz))

θ , m 0 = (θ/ (θ + 1)) θ and for the Flory tree generated by the pgf

φ (z) = (1 -α + αz) d , m 0 = ((d -1) /d) d .
Almost sure convergence and large deviations: The functional equation solving Φ (z 0 , z) may be put under the form

Φ (z 0 , z) = zφ z0 (Φ (z 0 , z)) ,
where φ z0 (z) = π 0 (z 0 -1) + φ (Φ (z 0 , z)), with z 0 viewed as a parameter. Let τ

(z 0 ) solve φ z0 (τ (z 0 )) -τ (z 0 ) φ z0 (τ (z 0 )) = 0, else π 0 (z 0 -1) + φ (τ (z 0 )) -τ (z 0 ) φ (τ (z 0 )) = 0 with τ (1) = τ . We have ([z n ] Φ (1, z)) 1/n → z c = 1/φ (τ ) and ([z n ] Φ (z 0 , z)) 1/n → z c (z 0 ) = 1/φ (τ (z 0 )), therefore E z N 0 n (1) 0 1/n = [z n ] Φ (z 0 , z) [z n ] Φ (1, z) 1/n → a (z 0 ) = φ (τ (1)) φ (τ (z 0 )) .
This shows by Gärtner-Ellis theorem [START_REF] Ellis | Entropy, Large Deviations and Statistical Mechanics[END_REF]), that, for all ρ ∈ (0, 1)

lim n→∞ 1 n log P 1 n N 0 n (1) → ρ = f (ρ) ,
where, with F (λ) = log a e -λ , f (ρ) = inf λ∈R (ρλ -F (λ)) < 0. The function f is the large deviation rate function, as the Legendre transform of the concave function F . The value of ρ for which f (ρ) = 0 is F (0). We conclude that as n → ∞

1 n N 0 n (1) a.s. → ρ * = F (0) . ( 20 
) Example: With φ (z) = β/ (1 -αz), τ (z 0 ) = z0- √ z0 α(z0-1) , so with 1/φ (τ (z 0 )) = 1 αβ ( √ z 0 + 1) -2 and 1/φ (τ (1)) = 1 4αβ , leading to α (z 0 ) = 4 √ z 0 + 1 -2 and F (λ) = log 4 -2 log 1 + e -λ/2 with F (0) = 1/2. So here 1 n N 0 n (1) 
a.s.

→ 1/2 (not only in probability). One can check

f (ρ) = -log 4 -2 (ρ log ρ + (1 -ρ) log (1 -ρ)) ,
is the Cramér's large deviation rate function for this example.

2.5.3 Forests of trees: back to a random number P of trees (species)

Let φ 0 (z) with µ 0 = φ 0 (1) < ∞ be such that Ψ (z) = φ 0 (Φ (z)) has itself a dominant power-singularity at z c of order -1/2, so with Ψ (z)

∼ z→zc φ 0 (τ )+φ 0 (τ ) 2φ(τ ) φ (τ ) (1 -z/z c ) 1/2 .
Then, with N the total number of nodes of the forest

P (N = n) = [z n ] Ψ (z) ∼ n→∞ φ 0 (τ ) φ (τ ) 2πφ (τ ) n -3/2 z -n c .
Note that z c = 1 when τ = 1 and φ (1) = 1 in which critical case [z n ] Ψ (z) ∼ n→∞ µ 0 1 2πφ (1) n -3/2 . For all branching mechanism φ with convergence radius z + > 1 and all φ 0 such that Ψ (z) = φ 0 (Φ (z)) still has a dominant singularity at z c , the law of the size N of the forest of trees has a power-law factor which is n -3/2 , so independent of the model's details (a universality property). Note that z c and the scaling constant in front of n -3/2 z -n c are model-dependent though, both requiring the computation of τ .

Random Poisson or geometric number of founders

Trees are the connected components of some forest. Let Ψ (z) = φ 0 (Φ (z)) , where φ 0 (z) is either (a): φ 0 (z) = e -µ 0 (1-z) (Poissonian forest) or (b): φ 0 (z) = β 0 / (1 -α 0 z) (geometric forest). In case (a), the total number of nodes (individuals) in the forest (population) has a compound Poisson (infinitely divisible) distribution, whereas in case (b) this number is compound geometric distributed (geometrically infinitely divisible). Geometrically infinitely divisible rvs form a subclass of infinitely divisible rvs, see [START_REF] Aly | On geometric infinite divisibility and stability[END_REF].

In the sequel we shall address the following problems under both (a) and (b) forest models:

-given a random forest withy n nodes in total (a population with n individuals in total), how many trees (species) is it made of? -given a random forest withy n nodes in total (a population with n individuals in total), what are the sizes of its constituting trees and how many trees (species) with given size (number of representatives) are they in the sample?

The answers to these questions follow from the computation of the joint probability P (N = n, P = p) to observe a forest (population) with p trees (species) and n nodes (individuals).

The numbers of trees in a random forest with n nodes

Let us distinguish the two cases.

Case (a). With Φ (z) = E z N (1) , (21) 
we let π • = (π n ) n≥1 , where π n = P N (1) = n . The total size N of the forest is

N = P (µ 0 ) p=1 N (p) (1) , (22) 
a compound Poisson random variable involving N (p) (1) iid copies of N (1). We have

Ψ (z) = E z N = e -µ 0 (1-Φ(z)) , (23) 
and

Ψ (z) = e -µ 0 (1-Φ(z)) = e -µ 0   1 + n≥1 σ n (µ 0 ) z n n!   , (24) 
which defines σ n (µ 0 ). In the development of Ψ (z), σ n (µ 0 ) is a degree-n polynomial in µ 0 with

[µ p 0 ] σ n (µ 0 ) = B n,p (c • ) = n! p! [z n ] Φ (z) p ,
known as the 'exponential' Bell polynomial in the variables c

• = •!π • . We have B n,p (c • ) = 0 if p > n.
With the boundary conditions

B n,0 (c • ) = B 0,p (c • ) = 0, n, p ≥ 1 and B 0,0 (c • ) = 1,
we get in particular

B n,1 (c • ) = c n = n!π n and B n,n (c • ) = c n 1 = π n 1 . ( 25 
)
We also have (see [START_REF] Comtet | Analyse Combinatoire. Tomes 1 et 2[END_REF] and [START_REF] Pitman | Combinatorial Stochastic Processes[END_REF]):

B n,p (c • ) = * Ω c• (p 1 , .., p n ) , p ≤ n,
where the latter star-sum is over the integers p 1 , .., p n ≥ 0 obeying

n m=1 p m = p, n m=1 mp m = n,
and

Ω c• (p 1 , .., p n ) = n! n m=1 c pm m p m !m! pm = n! n m=1 π pm m p m ! . (26) 
Clearly Ω c• (p 1 , .., p n ) are the Boltzmann weights of the forest configurations with n nodes in total, p constituting trees and p m trees of size m, m = 1, ..., n. We have

Ω c• (p 1 , .., p n ) = n! p! p p 1 • • • p n n m=1 π pm m .
and the (canonical) probabilities to observe such configurations are (note their multinomial character and see Equation ( 7))

Ω c• (p 1 , .., p n ) B n,p (c • ) = p p1•••pn n m=1 π pm m [z n ] Φ (z) p .
It also holds that

σ n (µ 0 ) = n p=1 B n,p (c • ) µ p 0 . (27) 
We thus have

P (N = n) = [z n ] Ψ (z) = e -µ 0 σ n (µ 0 ) P (P = p) = e -µ 0 µ p 0 /p! (Poisson (µ 0 ) ), (28) 
so that the joint probability of N and P reads

P (N = n, P = p) = e -µ 0 µ p 0 B n,p (c • ) /n!. ( 29 
)
It can be checked as required that:

P (N = n) = n p=1 P (N = n, P = p) = e -µ 0 n p=1 µ p 0 B n,p (c • ) /n! = e -µ 0 σ n (µ 0 ) /n! and P (P = p) = n≥p P (N = n, P = p) = e -µ 0 µ p 0 n≥p B n,p (c • ) /n! = e -µ 0 µ p 0 p! n≥p [z n ] Φ (z) p | z=1 = e -µ 0 µ p 0 p! Φ (1) p (Poisson (µ 0 ) ).
Concerning the conditional rvs P n = (P = p | N = n) and N p = (N = n | P = p)

P (P n = p) = µ p 0 Bn,p(c•) σn(µ 0 ) , p = 1, ..., n P (N p = n) = p!B n,p (c • ) /n!, n ≥ p, independent of µ 0 . ( 30 
)
From the definition of σ n (µ 0 ) in Equation ( 27), we obtain,

E z Pn = σ n (zµ 0 ) σ n (µ 0 ) and E z Np = Φ (z) p . (31) 
In particular N p is, as required, the sum of p iid rvs with common pgf Φ (z). We have

[z n ] Ψ (z) = e -µ 0 σ n (µ 0 ) /n! ∼ n→∞ φ 0 (τ ) φ (τ ) 2πφ (τ ) n -3/2 z -n c .
Owing to φ 0 (τ ) = µ 0 e µ 0 (τ -1) , then

σ n (µ 0 ) ∼ n!µ 0 e µ 0 τ φ(τ ) 2πφ (τ ) n -3/2 z -n c
and we conclude from Equation ( 31) that

E z Pn = σ n (zµ 0 ) σ n (µ 0 ) ∼ n→∞ ze -µ 0 τ (1-z) ,
the pgf of a shifted Poisson(µ 0 τ ) rv with mean µ 0 τ . Thus, given a Poissonian forest with N = n nodes, the number of GW trees P n of the forest obeys

P n d → n→∞ 1 + Poi (µ 0 τ ) . (32) 
Case (b). Assume φ 0 (z) = β 0 / (1 -α 0 z) (geometric), with µ 0 = α 0 /β 0 .

Proceeding similarly as in the Poisson case, we have Ψ (z) = β 0 1 + n≥1 σ n (α 0 ) z n n! , where σ n (α 0 ) = n p=1 p!B n,p (c • ) α p 0 . We find

P (N = n, P = p) = β 0 α p 0 B n,p (c • ) p!/n!. P (N = n) = β 0 σ n (α 0 ) /n! and P (P = p) = β 0 α p 0 , (33) 
leading to E z Pn = σn(zα0) σn(α0) . We have Ψ (z) = β 0 / (1 -α 0 Φ (z)) with a singularity at z c (α 0 ) uniquely defined by Φ (z c (α 0 )) = 1/α 0 .

Recalling Φ (z) has a singularity at z c = τ /φ (τ ) ≥ 1 with Φ (z c ) = τ , three cases arise:

-(subcritical) If z c (α 0 ) > z c , else 1/α 0 > τ , then the dominant singularity of Ψ (z) is still at z c , the singularity of Φ (z) . Then, [z n ] Ψ (z) = β 0 σ n (α 0 ) /n! ∼ n→∞ φ 0 (τ ) φ (τ ) 2πφ (τ ) n -3/2 z -n c .
Owing to φ 0 (τ ) = α 0 β 0 / (1 -α 0 τ ) 2 = φ 0 (α 0 , τ ), we conclude

E z Pn = σ n (zα 0 ) σ n (α 0 ) ∼ n→∞ φ 0 (α 0 z, τ ) φ 0 (α 0 , τ ) = z (1 -α 0 τ ) 2 (1 -α 0 τ z) 2 .
In the pgf at the right-hand-side the factor (1 -α 0 τ ) 2 / (1 -α 0 τ z) 2 is the pgf of the sum S of two independent geometric random variables with same mean α 0 τ / (1 -α 0 τ ). Thus, provided 1/α 0 > τ , given a geometric forest with N = n nodes, the number P n of its constituting trees obeys, after shifting by one:

P n d → n→∞ 1 + S. ( 34 
) -(supercritical) If z c (α 0 ) < z c , else 1/α 0 < τ , then the singularity of Ψ (z) is shifted to the left of z c , at z c (α 0 ), with Ψ (z) ∼ z→zc(α0) β 0 (1 -z/z c (α 0 )) -1
. The nature of the singularity of Ψ is dictated by that of φ 0 . Thus,

[z n ] Ψ (z) = β 0 σ n (α 0 ) /n! ∼ n→∞ β 0 z c (α 0 ) -n ,
and, with a α0 (z) = z c (α 0 ) /z c (zα 0 )

E z Pn = σ n (zα 0 ) σ n (α 0 ) ∼ n→∞ a α0 (z) n , else E z Pn 1/n → n→∞ a α0 (z)
. Thus, given a supercritical geometric forest with N = n nodes, the mean number of its constituting trees P n grows like n and

1 n P n a.s. → n→∞ p * , where p * = a α0 (1) . ( 35 
)
Note that z c (α 0 ) can in principle be obtained by Lagrange inversion formula as

z c (α 0 ) = n≥1 α -n 0 n z n-1 Φ (z) z -n
.

When α 0 crosses the critical value 1/τ (µ 0 > 1/ (τ -1)), there is a drastic qualitative change in the large n behavior of P n , which is reminiscent of a phase transition.

-(critical) In the critical case 1/α 0 = τ , the two singular expansions of Φ (z) and of φ 0 (z) at z c should be composed. With

φ 0 (z) = (1 -1/τ ) / (1 -z/τ ), and Φ (z) ∼ τ -2φ(τ ) φ (τ ) (1 -z/z c ) 1/2 , z c = τ /φ (τ ) = 1/ (α 0 φ (1/α 0 )) = z c (α 0 ), we get Ψ (z) ∼ (τ -1) φ (τ ) 2φ (τ ) (1 -z/z c ) -1/2 , and [z n ] Ψ (z) = β 0 σ n (α 0 ) /n! ∼ n→∞ (τ -1) φ (τ ) 2πφ(τ ) n -1/2 z -n c . Thus, E z Pn 1/n → n→∞ a (z) = zc(α0) zc(zα0) = zφ(1/(α0z)) φ(1/α0) .
An explicit example: Suppose φ (z) = π 0 +π 2 z 2 (the binary branching mechanism with π 0 + π 2 = 1). Then,

Φ (z) = 1 - √ 1 -4π 0 π 2 z 2 2π 2 z ,
with, for each n even, P N (1) = n = 0 and for each n = 2m + 1, odd:

[z n ] Φ (z) = P N (1) = n = 1 n z n-1 φ (z) n = 1 n π 0 π 2 n n-1 2 ( √ π 0 π 2 ) n .
The equation Φ (z c (α 0 )) = 1/α 0 yields

z c (α 0 ) = α 0 1 -π 0 (1 -α 2 0 )
.

On the other hand, τ = π 0 /π 2 leading to

z c = 1/ 2 √ π 0 π 2 . Here z c (α 0 ) > z c if and only if α 0 < π 2 /π 0 . -(supercritical) If z c (α 0 ) < z c (else α 0 > π 2 /π 0 ), then a α0 (z) = z c (α 0 ) z c (zα 0 ) = 1 -π 0 1 -(zα 0 ) 2 z (1 -π 0 (1 -α 2 0 )) , with a α0 (1) = π 0 α 2 0 -(1 -π 0 ) / 1 -π 0 1 -α 2 0 ∈ (0, 1). -(critical) If z c (α 0 ) = z c (else α 0 = π 2 /π 0 ), then a (z) = z c (α 0 ) z c (zα 0 ) = zφ (1/ (α 0 z)) φ (1/α 0 ) = z + z -1 2 = cosh (log z) .
2.6.2 Trees' sizes in a random forest with n nodes

Introduce Φ µ (z) = n≥1 µ n π n z n ,
where the µ n 's marks the size-n trees. Note Φ µ (z) = Φ (z) + n≥1 (µ n -1) π n z n .

Case (a).

As above, µ 0 will mark the number of trees in the forest.

With P = (P 1 , ..., P m , ...) the vector of size-m trees satisfying P = m≥1 P m and N = m≥1 mP m , we have,

Ψ (z, µ) = E z N µ P = e -µ 0 (1-Φµ(z)) , (36) 
and, upon introducing σ n (µ 0 , µ)

Ψ (z, µ) = e -µ 0   1 + n≥1 σ n (µ 0 , µ) z n n!   . ( 37 
)
Note that, as required:

If µ n = µ n , Φ µ (z) = Φ (µz) and Ψ (z, µ) = E z N µ m≥1 mPm = E (zµ) N . If µ n = µ, Φ µ (z) = µΦ (z) and Ψ (z, µ) = E z N µ m≥1 Pm = E z N µ P .
In the development of Ψ (z, µ), σ n (µ 0 , µ) is a degree-n polynomial in µ 0 with [µ p 0 ] σ n (µ 0 , µ) = B n,p ((µc) • ), the exponential Bell polynomial now in the variables

(µc) • = µ • •!π • = µ • c • with c • = (1c) • = •!π • .
We have B n,p ((µc) • ) = 0 if p > n and (see [START_REF] Comtet | Analyse Combinatoire. Tomes 1 et 2[END_REF] and [START_REF] Pitman | Combinatorial Stochastic Processes[END_REF]):

B n,p ((µc) • ) = * Ω (µc) • (p 1 , .., p n ) , p ≤ n,
where the latter star-sum is over the integers p 1 , .., p n ≥ 0 obeying

n m=1 p m = p, n m=1 mp m = n,
and

Ω (µc) • (p 1 , .., p n ) = n! n m=1 π pm m p m ! µ pm m . (38) 
Then,

σ n (µ 0 , µ) = n p=1 B n,p ((µc) • ) µ p 0 , ( 39 
)
where

B n,p ((µc) • ) = n! p! [z n ] Φ µ (z) p .
From the definition of σ n (µ 0 , µ) in Equation ( 39), with P n = (P 1 , ..., P n | N = n), we obtain,

E z Pn µ Pn = σ n (zµ 0 , µ) σ n (µ 0 , 1) and E µ Pn = σ n (µ 0 , µ) σ n (µ 0 , 1) . (40) 
Remark: Defining P n,p = (P 1 , ..., P n | N = n, P = p), the tree sizes when both n and p are held fixed

E µ Pn,p = [µ p 0 ] σ n (µ 0 , µ) [µ p 0 ] σ n (µ 0 , 1) = B n,p ((µc) • ) B n,p (c • ) , (41) 
consistently with Equation ( 7).

With

τ (µ) = τ + n≥1 (µ n -1) π n z n c , we have Φ µ (z) = Φ (z) + n≥1 (µ n -1) π n z n ∼ z→zc τ (µ) + φ (τ ) 2πφ (τ ) (1 -z/z c ) 1/2 , so that [z n ] Ψ (z, µ) = e -µ 0 σ n (µ 0 , µ) /n! ∼ n→∞ φ 0 (τ (µ)) φ (τ ) 2πφ (τ ) n -3/2 z -n c .
Owing to φ 0 (τ ) = µ 0 e µ 0 (τ -1) = φ 0 (µ 0 , τ ) and observing τ (1) = τ , we conclude

E z Pn µ Pn = σn(zµ 0 ,µ) σn(µ 0 ,1)
∼ n→∞ e µ 0 (z-1) φ 0 (zµ 0 ,τ (µ))

φ 0 (µ 0 τ ) = e µ 0 (z-1) µ 0 ze µ 0 z(τ (µ)-1)
µ 0 e µ 0 (τ (1)-1)

= ze µ 0 (zτ (µ)-τ ) = ze µ 0 τ (z-1) e µ 0 z(τ (µ)-τ ) = ze µ 0 τ (z-1) n m=1 e µ 0 z(µ m -1)πmz m c .

(42)

In particular (z = 1),

E µ Pn ∼ n m=1 e µ 0 (µ m -1)πmz m c and E µ Pn(m) m ∼ e -µ 0 πmz m c (1-µ m ) . (43) 
This means that given a Poissonian forest with N = n nodes, the numbers of its size-m trees P n (m), m = 1, ..., n, are asymptotically independent. Furthermore, for each m = 1, ..., n, P n (m) obeys

P n (m) d → n→∞ Poi (µ 0 π m z m c ) , (44) 
a Poisson rv with mean

λ m = µ 0 π m z m c . When m is large close to n, recalling π m = P N (1) = m ∼ m→∞ φ(τ ) 2πφ (τ ) m -3/2 z -m c
, the mean value λ m approaches

µ 0 φ(τ )
2πφ (τ ) m -3/2 so that the larger m, the smaller λ m . Of concrete interest is also the probability that there are no size-m trees in the Poissonian forest. This event occurs with probability exp (-µ 0 π m z m c ) and it approaches 1 when m is large close to n. Large size-m trees have a small average size λ m because with a large probability they are not there.

Case (b). Recalling Φ (z) has a singularity at z c = τ /φ (τ ) ≥ 1 with Φ (z c ) = τ , three cases arise:

-(subcritical) If z c (α 0 ) > z c , else 1/α 0 > τ , then the singularity of Ψ (z) is still at z c , the singularity of Φ (z) . Then, [z n ] Ψ (z, µ) = β 0 σ n (α 0 , µ) /n! ∼ n→∞ φ 0 (τ (µ)) φ (τ ) 2πφ (τ ) n -3/2 z -n c .
Owing to φ 0 (τ ) = α 0 β 0 / (1 -α 0 τ ) 2 = φ 0 (α 0 , τ ), we conclude

E z Pn µ Pn = σ n (zα 0 , µ) σ n (α 0 , 1) ∼ n→∞ φ 0 (zα 0 , τ (µ)) φ 0 (α 0 τ ) = z (1 -α 0 τ ) 2 (1 -α 0 zτ (µ)) 2 . Putting µ = 1, τ (µ) = τ which yields back E z Pn = z (1 -α 0 τ ) 2 / (1 -α 0 zτ ) 2 . Putting z = 1 and µ n = 1 except for µ m : E µ Pn(m) m ∼ (1 -α 0 τ ) 2 (1 -α 0 (τ + (µ m -1) π m z m c )) 2 = 1 1 + α0πmz m c 1-α0τ (1 -µ m ) 2 .
The pgf at the right-hand-side is the one of the sum S m of two independent geometric random variables with mean α 0 π m z m c / (1 -α 0 τ ). Thus, provided 1/α 0 > τ , given a geometric forest with N = n nodes, the number P n (m) of its size-m trees obeys:

P n (m) d → n→∞ S m . ( 45 
) Note that E µ Pn = n m=1 E µ Pn(m) m
so that the P n (m), m = 1, ..., n, are no longer asymptotically independent.

-(supercritical) With Φ µ (z) = Φ (z) + n≥1 (µ n -1) π n z n , we have Ψ (z, µ) = β 0 / (1 -α 0 Φ µ (z)) with a singularity at z c (α 0 , µ) uniquely defined by Φ µ (z c (α 0 , µ)) = 1/α 0 . Φ µ (z) has a singularity at z c ≥ 1 with Φ µ (z c ) = τ (µ) = τ + n≥1 (µ n -1) π n z n c < ∞. If z c (α 0 , µ) < z c , else 1/α 0 < τ (µ), then the singularity of Ψ (z, µ) is shifted to the left of z c , at z c (α 0 , µ), with Ψ (z, µ) ∼ β 0 (1 -z/z c (α 0 , µ))
-1 as z → z c (α 0 , µ). The nature of its singularity is dictated by that of φ 0 . Thus,

[z n ] Ψ (z, µ) = β 0 σ n (α 0 , µ) /n! ∼ n→∞ β 0 z c (α 0 , µ) -n ,
and, with a α0 (z, µ) = z c (α 0 , 1) /z c (zα 0 , µ)

E z Pn µ Pn = σ n (zα 0 , µ) σ n (α 0 , 1) ∼ n→∞ a α0 (z, µ) n . This means that E z Pn µ Pn 1/n → n→∞ a α0 (z, µ) and E µ Pn 1/n → n→∞ a α0 (µ) = z c (α 0 , 1) /z c (α 0 , µ).
Thus, given a supercritical geometric forest with N = n nodes, the numbers of its size-m trees P n = (P n (m) , m = 1, ..., n) grows like n and 1 n P n → n→∞ p * a.s., where p * = ∇ µ a α0 (1) .

Relation to enumerative combinatorics

In this Section, we emphasize that the probabilistic formulation of GW trees is intimately related to the one arising in enumerative combinatorics.

Let g (θ) = 1/ (1 -θ) and consider the solution of the functional equation

t (θ) = θg (t (θ)) , t (0) = 0, namely t (θ) = 1 - √ 1 -4θ /2. The numbers t n = n! [θ n ] t (θ) = n! n θ n-1 g (θ) n = (2n -2)! (n -1)! ,
constitute the number of all rooted plane (ordered) trees with n labeled nodes, known as Catalan numbers, [START_REF] Comtet | Analyse Combinatoire. Tomes 1 et 2[END_REF]).

Let g (θ) = 1 + k≥1 g k θ k , where g k ≥ 0 (and g k > 0 for at least some k ≥ 2) now constitute a system of weights. Consider now

t (θ) = θg (t (θ)) , t (0) = 0 with t (θ) = n≥1 t n n! θ n .
Let P n be the set of all rooted ordered trees with n labeled nodes. With N k (τ n ) the number of nodes in τ n ∈ P n with outdegree k, we now have

t n = n! [θ n ] t (θ) = τ n∈Pn n-1 k=0 g N k (τ n) k
.

For all θ such that t (θ) < ∞, with N (1) = |τ n |, we can define

P N (1) = n = θ n [θ n ] t (θ) n≥1 θ n [θ n ] t (θ) = θ n [θ n ] t (θ) t (θ) ,
the exponentially-tilted probability to draw a rooted ordered tree of size n. We have

Φ (z) = E z N (1) = n≥1 z n P N (1) = n = n≥1 z n θ n [θ n ] t (θ) t (θ) = t (θz) t (θ) ,
where Φ (z) (obeying Φ (1) = 1 as in a subcritical case) solves Φ (z) = zφ θ (Φ (z)) , Φ (0) = 0.

Here φ θ (z) = g (t (θ) z) /g (t (θ)) is a branching pgf for all values of θ for which g (t (θ)) = t (θ) /θ < ∞, coinciding with the ones for which t (θ) < ∞, namely θ ∈ (0, θ c ) , where θ c = inf (θ > 0 :

t (θ) = ∞) ≤ ∞. It has mean µ θ = φ θ (1) = t (θ) g (t (θ)) /g (t (θ)) = t log g (t) | t=t(θ) < 1. Note that m θ = Φ (1) = E N (1)
is the mean value of N (1) and there is a one-to-one Legendre-like correspondence between θ and m θ = 1/ (1 -µ θ ) > 0.

Remarks:

-It can be checked that the probability sequence π n = P N (1) = n minimizes the Kullback-Leibler divergence of θ n = [θ n ] t (θ) = t n /n! with respect to π n , viz

K ({π n } {θ n }) = n≥1 π n log π n θ n ,
under the constraints n≥1 π n = 1 and n≥1 nπ n = m. Indeed, using Lagrange multipliers

π n = t n θ n t (θ) ,
where θ and m are related by

m θ = θt (θ) /t (θ) = 1/ (1 -µ θ ) where µ θ = φ θ (1) = t (θ) g (t (θ)) /g (t (θ)) = θg (t (θ)) .
-So far we dealt with a single tree generating function t (θ). While considering the generating functions (a) e γt(θ)

(b) 1/ (1 -γt (θ)) ,
we deal with forests with γ marking the number of its constituting trees. In case (a) the labeled trees are unordered (indistinguishable) while in case (b) they are ordered (distinguishable). This is why in the probabilistic setup we considered (a) Poissonian forests and (b) geometric forests; see [START_REF] Sheth | Galton-Watson branching processes and the growth of gravitational clustering[END_REF] and [START_REF] Pitman | Enumerations of trees and forests related to branching processes and random walks[END_REF].

3 Forests of rooted labeled ordered and increasing trees

Combinatorial increasing trees

We start with the notion of increasing trees first introduced in [START_REF] Bergeron | Varieties of increasing trees[END_REF].

Let g (θ) = 1/ (1 -θ) and consider the solution to the ordinary differential equation

t (θ) = g (t (θ)) , t (0) = 0, namely t (θ) = 1 - √ 1 -2θ. The numbers t n = n! [θ n ] t (θ) = (2n -3)!! = 2 -(n-1) (2n -2)! (n -1)! ,
constitute the number of all rooted plane (ordered) increasing trees with n nodes as those trees whose nodes can be labeled in increasing order for all path from root to leaves, see [START_REF] Bergeron | Varieties of increasing trees[END_REF] and [START_REF] Drmota | Random Trees: An Interplay between Combinatorics and Probability[END_REF]. Due to the increasingness constraint, such trees are less numerous than the ones of simply generated trees (compare the latter numbers with the Catalan numbers).

Let g (θ) = 1 + k≥1 g k θ k , where g k ≥ 0 (and g k > 0 for at least some k ≥ 2) constitute a system of weights. Consider now

t (θ) = g (t (θ)) , t (0) = 0 with t (θ) = n≥1 t n n! θ n .
Let P n be the set of all rooted ordered and increasing trees with n nodes. With N k (τ n ) the number of nodes in τ n ∈ P n with outdegree k, we now have

t n = n! [θ n ] t (θ) = τ n ∈Pn n-1 k=0 g N k (τ n) k
.

For all θ < θ c such that t (θ) < ∞, with N (1) = |τ n |, we define

P N (1) = n = θ n [θ n ] t (θ) n≥1 θ n [θ n ] t (θ) = θ n [θ n ] t (θ) t (θ) ,
the exponentially-tilted probability to draw a rooted weighted ordered increasing tree of size n. We have

Φ (z) = E z N (1) = n≥1 z n P N (1) = n = n≥1 z n θ n [θ n ] t (θ) t (θ) = t (θz) t (θ) ,
where Φ (z) (obeying Φ (1) = 1) solves

Φ (z) = m θ φ θ (Φ (z)) , Φ (0) = 0.
Here m θ = θg (t (θ)) /t (θ) and φ θ (z) = g (t (θ) z) /g (t (θ)) is a pgf for all values of θ for which g (t (θ)) = t (θ) < ∞, coinciding with the ones for which t (θ) < ∞, namely θ ∈ (0, θ c ) , where θ c = inf (θ > 0 :

t (θ) = ∞) ≤ ∞. Note that m θ = Φ (1) = E N (1)
is the mean value of N (1) and there is a one-to-one Legendrelike correspondence between θ < θ c and m θ = θ log t (θ) > 0. Here also, π n = P N (1) = n minimizes the Kullback-Leibler divergence of θ n = [θ n ] t (θ) = t n /n! with respect to π n .

Random increasing trees

From now on, we will therefore consider the tree pgf Φ (z) solution to Φ (z) = mφ (Φ (z)) , with boundary conditions Φ (0) = 0 and Φ (1) = 1,

where φ (z) is any branching mechanism with finite mean µ = φ (1) > 0. Stated differently, the searched Φ (z) solves Φ (0) = 0 and

z = 1 m Φ(z) 0 dz φ (z ) , with m = 1 0 dz φ (z ) . ( 47 
)
We have Φ (1) = m 2 µ leading to

σ 2 N (1) = Φ (1) + Φ (1) -Φ (1) 2 = m (1 + m (µ -1)) > 0.
Note that µ > 1 entails σ 2 N (1) > E N (1) (overdispersion of the tree size N (1)), whereas µ < 1 entails σ 2 N (1) < E N (1) (underdispersion) and m < 1/ (1 -µ) .

In this setup, µ > 1 is not in contradiction with Φ (1) = 1 (the a.s. finiteness of the tree), so µ is no longer restricted to µ < 1 to produce a finite tree. In contrast with GW trees, random increasing trees with µ < ∞ go extinct with probability 1. Note also P N (1) = 1 = Φ (0) = mφ (Φ (0)) = mφ (0) = mπ 0 .

Three explicit examples

As in the GW setup, the increasing trees with binomial, Poisson and negative binomial generators can be explicitly solved.

• Binomial:

φ (z) = (α + αz) d , d ≥ 2 integer with µ = dα, α = 1 -α. With m = α -(d-1) -1 / (α (d -1)) = d((d/(d-µ)) d-1 -1) µ(d-1) Φ (z) = 1 α (1 + αm (d -1) (1 -z)) -1/(d-1) -α = α α 1 -αm (d -1) α d-1 z -1/(d-1) -1 = α α (1 -z/z c ) -1/(d-1) -1 .
It has a power-singularity of order 1/ (d -1) at

z c = 1/ αm (d -1) α d-1 = 1/ 1 -α d-1 > 1. Note Φ (z) → ∞ as z → z c . We have π n = P N (1) = n = α α [1/ (d -1)] n n! z -n c .
Thus, for large n,

[z n ] Φ (z) ∼ α αΓ (1/ (d -1)) n -(1-1/(d-1)) z -n c .
The exponent of the power-law factor is 1 -1/ (d -1).

Remark: The affine case with φ (z) = α + αz (binomial with d = 1), is also instructive. The pgf Φ (z) of increasing trees generated by this φ is

Φ (z) = α α (e mz -1) = α α α -z -1 ,
where m = -log α. It is the pgf of a Poisson(m) rv conditioned on being ≥ 1.

This branching mechanism (which was excluded for simply generated GW trees), would have led to Φ (z) = αz/ (1 -αz) in the GW setup; this is the pgf of a Geometric distribution with success probability α. It has no branch-point singularity.

•

Poisson: φ (z) = e -µ(1-z) , µ > 0. With m = (e µ -1) /µ, Φ (z) = 1 - 1 µ log (1 -µm (z -1)) = - 1 µ log 1 - µmz 1 + µm = - 1 µ log (1 -z/z c ) .
It has a pure logarithmic singularity at z

c = (1 + µm) /µm = 1/ (1 -e -µ ) > 1. Note Φ (z) → ∞ as z → z c . Thus, π n = [z n ] Φ (z) = µ -1 n -1 • z -n c , n ≥ 1,
The power order of the singularity is 0 and Φ (z) has a pure logarithmic singularity at z c of order 1. Note Φ (z c ) = ∞. * If φ is singular at z = z + , then Φ is singular at

z c = 1 m z+ 0 dz φ (z ) , (49) 
leading to

z c -z = 1 m z+ Φ(z) dz φ (z ) , with Φ (z c ) = z + . (50) 
Examples:

-(negative binomial): φ (z) = ((1 -αz) /β) -θ , for which z + = 1/α, consistently gives z c = 1/ 1 -β θ+1 and Φ (z) = z + -z + mz c (θ + 1) β θ z + 1/(θ+1) (1 -z/z c ) 1/(θ+1) ,
with a power-singularity of order -1/ (θ + 1) at z c and Φ (z c ) = z + < ∞ (Note that the order -1/2 found for generic Galton-Watson trees is obtained when θ = 1 only).

-

(Sibuya) When φ (z) = 2 -(2 -z), in the Sibuya class with z + = 2, with z c = 2 m 2 log 2 + √ 2 - √ 2 , Φ (z) = 2 -H mz c 2 (1 -z/z c ) 2 ,
where H is the inverse function of G (z) = -2 log (1 -z/2) -z. Thus, for some explicit constants C 1 , C 2 , to the dominant orders, Φ (z)

∼ z→zc 2 -C 1 (1 -z/z c ) - C 2 (1 -z/z c ) 3/2 . Thus, Φ (z) displays a power-singularity of order -1/2 at z c , lead- ing to [z n ] Φ (z) ≈ n -5/2 z n c . For Sibuya with α ∈ (0, 1), Φ (z) ∼ z→zc 2 -C 1 (1 -z/z c ) -C 2 (1 -z/z c ) 1+α , so Φ (z)
displays a power-singularity of order -α at z c and

[z n ] Φ (z) ≈ n -(α+1) z n c , else [z n ] Φ (z) ≈ n -(α+2) z n c .
Remark: When dealing with a forest of increasing trees with a fixed number p of trees, both abundance distributions ( 5) and ( 7) also hold and are explicit whenever one is able to compute We shall now consider the case with a random number P of trees, either Poisson or geometric.

P N (p) = n = [z n ] Φ (z) p for all n, p ≤ n, in particular π m = P N (1) = m = [z m ] Φ ( 

A recursive nucleation/aggregation model of trees creation/deletion

For random forests of increasing weighted trees with P trees, Equation ( 29) holds with c

• = •!π • and π • = [z • ] Φ (z)
, where Φ (z) now solves (46). It turns out however that these joint probabilities P (N = n, P = p) can be obtained by recurrence, suggesting that the creation/deletion of clusters (trees) can be obtained from a recursive nucleation/aggregation model as one individual is added.

Case (a). Random Poissonnian forest of increasing trees.

Ψ (z) = E z N = e -µ 0 (1-Φ(z)) = e -µ 0   1 + n≥1 σ n (µ 0 ) z n n!   , σ n (µ 0 ) = n p=1 B n,p (c • ) µ p 0 , P (N = n, P = p) = e -µ 0 µ p 0 B n,p (c • ) /n!. From Φ (z) = mφ (Φ (z)) we get that Σ (z) = e µ 0 Φ(z) obeys (recall π k = P (M = k)) Σ (z) = mµ 0 φ (Φ (z)) Σ (z) = mµ 0 k≥0 π k Φ (z) k Σ (z) = mµ 0 k≥0 π k ∂ (k) µ 0 Σ (z) . Thus, σ n+1 (µ 0 ) = mµ 0 k≥0 π k ∂ (k) µ 0 σ n (µ 0 ) .
With p = 1, ..., n + 1, we obtain the recurrence

B n+1,p (c • ) = n q=p-1 a q,p B n,q (c • ) with a q,p = m (q) p-1 π q-(p-1) ,
or equivalently,

(n + 1) P (N = n + 1, P = p) = n q=p-1 b q,p P (N = n, P = q) , (51) 
b q,p = a q,p µ p-q 0 = mµ p-q 0 (q) p-1 π q-(p-1) .

In particular,

P (N = n, P = n) = e -µ 0 µ n 0 B n,n (c • ) /n! = e -µ 0 (µ 0 π 1 ) n /n!, P (N = n, P = 1) = e -µ 0 B n,1 (c • ) /n! = e -µ 0 π n
are respectively the probabilities to observe a Poissonian forest with n singleton root trees and a Poissonian forest made of one single tree with n nodes.

The number b p-1,p / (n + 1) is the nucleation speciation probability, i.e. the probability that, when adding one individual or node (the transition n → n + 1), it forms a new cluster or species (as a singleton node tree) by itself. We have b p-1,p / (n + 1) = mµ 0 π 0 / (n + 1) , where we recognize the term π 1 = mπ 0 .

The numbers b q,p / (n + 1), q ≥ p, are the aggregation probabilities, i.e. the merging probability that this new individual will connect q -(p -1) clusters (trees), out of q possible, thereby ending up in the next step with a population made of p clusters (trees). Note that these aggregation probabilities are found to be proportional to π q-(p-1) , the probability that these q -(p -1) trees can have the new individual as a common ancestor. When an aggregation event takes places indeed, the new incoming individual n + 1 becomes the common root to the q -(p -1) trees that it aggregates (there are (q) p-1 ways to chose them), thereby forming a new unique tree. Note that for a population with n individuals (labeled 1 to n) that has been formed recursively in this way, the nodes of each tree of the forest are labeled in decreasing order from root to leaves; upon a circular permutation of the n nodes labels, they can equivalently be arranged in increasing order. a q,p B n,q (c • ) with a q,p = m (q) p-1 π q-(p-1) (n + 1) P (N = n + 1, P = p) = n q=p-1 b q,p P (N = n, P = q) .

(52) b q,p = a q,p p! q! α p-q 0 = mα p-q 0 p! q! (q) p-1 π q-(p-1) .

In particular, P (N = n, P = n) = β 0 α n 0 B n,n (c • ) = β 0 (α 0 π 1 ) n , P (N = n, P = 1) = β 0 α 0 B n,1 (c • ) /n! = β 0 α 0 π n are respectively the probabilities to have a geometric forest with n singleton trees and a geometric forest made of one single tree with n nodes.

Number of trees in forests of increasing trees with a large number of nodes

We now investigate the number of species in a random forest of increasing trees when the total population size n goes large in the three examples: binomial, Poisson and negative binomial. Both cases P Poisson and P geometric are discussed.

I. Binomial increasing trees examples.

Case (a). Poissonian forests.

-Take a binomial increasing tree example with d = 2. With z c = 1/α : Φ (z) = α α (1 -z/z c ) -1 -1 Ψ (z) = exp (-µ 0 (1 -Φ (z))) = e -µ 0 Σ (z) .

With K = µ 0 α/α, a saddle point analysis yields (see Flajolet andSedgewick (1994) p. 29 and[START_REF] Hwang | Théorèmes limites pour les structures combinatoires et les fonctions arithmétiques[END_REF] 

Conclusion

Let some population be made of n individuals that can be of P possible species (or types) at equilibrium. One question raised is: How are individuals scattered among types? In a first scenario for such species abundance distributions, each species grows from independent founders according to a Galton-Watson branching process. When the number of founders P is either fixed or random (either Poisson or geometricallydistributed), we address the above question. This model is one pertaining to forests of Galton-Watson trees. A second scenario that we will address in a similar way deals with forests of increasing trees. Underlying this setup, the creation/annihilation of clusters (trees) is shown to result from a recursive nucleation/aggregation process as one additional individual is added to the total population. To proceed, we use singularity analysis of generating functions.

  z), but now with the Φ (z) defined by (46). Large n estimates of [z n ] Φ (z) p can be found in the binomial, Poisson and negative binomial generators of increasing trees. For instance, Equation (41) involving Bell polynomials holds with c • = •!π • and π • = [z • ] Φ (z), explicit in the large n asymptotics for the three examples considered.

  Case (b). Random geometric forest of increasing trees.In this model, the trees are assumed distinguishable. Proceeding similarly, withφ 0 (z) = β 0 / (1 -α 0 z), with σ n (α 0 ) = n p=1 p!B n,p (c • ) α p 0 , we found P (N = n, P = p) = β 0 α p 0 B n,p (c • ) p!/n!. With p = 1, ..., n + 1 B n+1,p (c • ) = n q=p-1

  , Th. 36 p. 147)σ n (µ 0 ) = [z n ] Σ (z) ∼ e K/2 n -3/4 e 2 √ Kn 2 √ πK -1/4 z -n c . if d is any integer with d ≥ 2, the scaling factor in front of P n is n -1/d . Case (b). Geometric forests. With z c = 1/ 1 -α d-1 : Φ (z) = α α (1 -z/z c ) -1/(d-1) -1 Ψ (z) = β 0 / (1 -α 0 Φ (z)) = β 0 Σ (z) .The function Ψ (z) always has a simple pole at 1< z * (α 0 ) < z c with z * (α 0 ) = z c 1α 0 ) = [z n ] Σ (z) ∼ n→∞ -α 0 Φ (z * ) (1 -z/z * (α 0 )) -1 . and E z Pn 1/n = σ n (zα 0 ) σ n (α 0 ) increasing trees examples.Case (a). Poissonian forests.-Take a Poissonian increasing tree example. With z c = 1/ (1 -e -µ ) :Φ (z) = -1 µ log (1 -z/z c ) Ψ (z) = exp (-µ 0 (1 -Φ (z))) = e -µ 0 Σ (z) , where Σ (z) = (1 -z/z c ) -µ 0 /µ . We get σ n (µ 0 ) = [z n ] Σ (z) = [µ 0 /µ] n z -n c /n!., as a sum of independent Bernoulli rvs with success probabilities (µ 0 /µ) / (µ 0 /µ + m). By strong law of large numbers, almost surely,1 log n P n → n→∞ µ 0 /µ.(55)-if α = α 0 (critical case), thenΨ (z) = β 0 (1 -z/z c ) -1/(θ+1) = β 0 Σ (z) , showing that σ n (α 0 ) = [z n ] Σ (z) ∼ n→∞ n -(1-1/(θ+1)) z -n c /Γ (1/ (θ + 1)).In this case,z c = 1/ 1 -β θ+1 = 1/ 1 -(1 -α 0 ) θ+1 = z c (α 0 ) ,andE z Pn 1/n = σ n (zα 0 ) σ n (α 0 )
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a Fisher log-series probability mass function.

• Negative binomial: φ (z) = ((1 -αz) /β) -θ , θ > 0 with µ = θα/β. with m = θ+1) .

It has a power-singularity of order -1/ (θ + 1) at z c = 1/ αm (θ + 1)

n -(1+1/(θ+1)) z -n c .

When β approaches 0 (µ → ∞), z c , α → 1 and

a pure power-law.

The exponent of the power-law factor is model-dependent and universality of the power-law exponent 3/2 is lost: it is respectively 1 -1/ (d -1), 1 or 1 + 1/ (θ + 1) for the binomial, Poisson and negative binomial cases. These exponents are dictated by singularity analysis, namely: one minus the order of the power-singularity of Φ (z) at z c .

For increasing weighting trees whose pgfs obey Φ (z) = mφ (Φ (z)) , Φ (0) = 0, Φ (1) = 1, we have

Two cases arises: * If φ is entire, then Φ is singular at

giving the behavior of Φ (z) near z c . Here, Φ (z c ) = ∞. This behavior is explicit when 1/φ is integrable.

Examples:

-Binomial: φ (z) = (α + αz) d . Here, z c = 1/ 1 -α d-1 and Φ (z) has a powersingularity of order 1/ (d -1) with Φ (z c ) = ∞.

, where µ m marks the size-m trees. We have

= e (µ m -1)µ 0 πm showing that, given a forest with n nodes, the number of size-m trees P n (m) is Poisson distributed with mean

Case(b). Geometric forests.

.

and

III. Negative-binomial increasing trees examples.

Case (a). Poissonian forests.

-Take the negative-binomial increasing tree example. With z c = 1/ 1 -β θ+1 > 1:

We get Σ (z) = e µ 0 (1-1/α) e µ 0 /α(1-z/zc) 1/(θ+1) and

Therefore, Case (b). Geometric forests.

Because in this case Φ (z c ) = 1/α < ∞, three cases arise, reminiscent of a phase transition:

) and

where P ∞ is shifted squared-geometric distributed.

-(supercritical) if α < α 0 then Ψ (z) has a simple pole at 1 < z * (α 0 ) < z c with

Therefore,

almost surely.

Appendix (Singularity analysis)

We briefly recall a general transfer result of singularity analysis (see [START_REF] Flajolet | Singularity analysis of generating functions[END_REF]) for generating functions with power-logarithmic singularities of given orders a and b.

Let Φ (z) be any analytic function in the indented domain defined by

where z c , z 1 > z c , and η are positive real numbers. Assume that, with σ (x) = x a log b x , a and b any real number (respectively the power and logarithmic singularity exponents or orders of Φ at z c ), we have

for some real constants κ 1 and κ 2 . Then:

-if a / ∈ {0, -1, -2, ...} the coefficients in the expansion of Φ (z) satisfy

where Γ (a) is the Euler function. Φ (z) presents a power-logarithmic singularity at z = z c . If b = 0, Φ (z) presents a pure power singularity at z = z c of order a (with power exponent a).

-if a ∈ {0, -1, -2, ...}, the singularity z = z c is purely logarithmic and

involving the derivative of the reciprocal Euler function at a.

Thus, for power-logarithmic singularities with orders a and b, the asymptotics of the coefficients can be read from the singular behavior of the generating function under study.