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Abstract Primates are primarily visual animals and understanding how visual information is10

processed on its way to memory structures is crucial to the understanding of how memory-based11

visuospatial behavior is generated. Recent imaging data demonstrate the existence of12

scene-sensitive areas in the dorsal visual path that are likely to combine visual information from13

successive egocentric views, while behavioral evidence indicates the memory of surrounding visual14

space in extraretinal coordinates. The present work focuses on the computational nature of a15

panoramic representation that is proposed to link visual and mnemonic functions during natural16

behavior. In a spiking artificial neuron network model of the dorsal visual path it is shown how17

time-integration of spatial views can give rise to such a representation and how it can subsequently18

be used to perform memory-based spatial reorientation and visual search. More generally, the19

model predicts a common role of view-based allocentric memory storage in spatial and not-spatial20

mnemonic behaviors.21

22

Introduction23

Recent breathtaking advances in our understanding of rodent hippocampal memory system pave24

the way for elucidating the organization of human spatial memory (Burgess, 2014; Moser et al.,25

2017). One major difference between primates and rodents is the role of vision for behavior.26

Primates are much more visual animals than rodents and understanding the link between primate27

visual and medial temporal lobe (MTL) memory structures is an important and largely unexplored28

open question (Meister and Buffalo, 2016). Experimental evidence indicates the existence of29

functional and anatomical connections between these structures. Functional connections are30

demonstrated by two principal lines of studies. First, visual behavior is informed by memory as31

demonstrated by studies of novelty preference in both monkeys and humans (Wilson and Goldman-32

Rakic, 1994; Manns et al., 2000; Jutras and Buffalo, 2010a). In the novelty preference paradigm,33

the memory is assessed from looking time: well memorized stimuli are looked at less than novel34

ones. The specific role of MTL structures in this phenomenon is derived from results showing35

a decreased novelty preference after MTL lesions or in patients suffering from mild cognitive36

impairment or Alzheimer’s disease, often associated with MTL dysfunction (McKee and Squire,37

1993; Crutcher et al., 2009; Zola et al., 2013). In monkeys, restricted lesions of hippocampal and/or38
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parahippocampal cortices also decreased novelty preference (Zola et al., 2000; Pascalis et al., 2009;39

Bachevalier et al., 2015). Second, the link between visual and MTL structures is manifested in40

coherent neural activities in the two structures. For example, activity of single MTL neurons is41

modulated by visual saccades (Sobotka et al., 1997), the onset of visual stimuli strongly affects42

hippocampal neural responses (Jutras and Buffalo, 2010a) and hippocampal theta oscillations are43

reset by eye movements (Jutras and Buffalo, 2010b; Hoffman et al., 2013).44

Anatomical connections between visual and memory structures have recently been charac-45

terized in the novel framework of the occipital–parietal–MTL pathway of visuospatial processing46

(Kravitz et al., 2011). There are three principal stages of information processing in this pathway47

(Figure 1A). First, the occipito-parietal circuit processes visual information through visual areas48

V1-V6 an egocentric (retinal) frame of reference. Successive information processing in these areas49

is thought to extract visual features of increasing complexity, including motion and depth cues and50

relay this information to the parietal cortex. Second, a complex network of interconnected parietal51

structures relays highly-processed visual cues to support executive, motor and spatial-navigation52

functions. These structures include the medial, ventral and lateral intraparietal areas (MIP, VIP,53

LIP) strongly linked with eye movements processing; the middle temporal and medial superior54

temporal (MT, MST) thought to extract high-level visual motion cues; and the caudal part of the55

inferior parietal lobule (cIPL), the main relay stage on the way to the medial temporal lobe. The cIPL56

sends direct projections to the CA1 of the hippocampus as well as to the nearby parahippocampal57

cortex (PHC). In addition, it sends indirect projections to the same structures via the posterior58

cingulate cortex (PCC) and the retrosplenial cortex (RSC). Within this complex network, neurons59

at different neurobiological sites have been reported to code space in a world- or object-centred60

reference frames (Duhamel et al., 1997; Snyder et al., 1998; Chafee et al., 2007). Moreover, both61

PCC and RSC have been repeatedly linked to coordinate transformation between egocentric and al-62

locentric frames of reference (Vogt et al., 1992; Burgess, 2008; Epstein and Vass, 2014). Importantly,63

information processing in this pathway is strongly affected by directional information thought to64

be provided by a network of head-direction cells residing in several brain areas, including RSC65

(Taube, 2007). Finally, medial temporal lobe, and in particular the hippocampus, play a key role in66

constructing an allocentric representation of space in primates (Hori et al., 2003; Ekstrom et al.,67

2003).68

Given functional and anatomical connections between visual and memory structures, the ques-69

tion arises as to the nature of neuronal representations in the dorsal visual path. In addition to the70

well-established role of parieto-retrosplenial networks in coordinate transformations (Andersen71

et al., 1993; Snyder et al., 1998; Salinas and Abbott, 2001; Pouget et al., 2002; Byrne et al., 2007),72

a largely unexplored question concerns the existence of an extra-retinal neural map of the remem-73

bered visual space (Hayhoe et al., 2003; Tatler and Land, 2011; Land, 2014). That the task-related74

visual retinotopic space is remembered has been suggested by studies showing that when asking75

to recall a recent visual content, eye movements (on a blank screen) closely reflected spatial rela-76

tions of remembered images (Brandt and Stark, 1997; Johansson and Johansson, 2014). Moreover,77

preventing subjects from making eye movements decreased recall performance (Johansson and78

Johansson, 2014; Laeng et al., 2014). That not only the retinal egocentric space is remembered79

but also extra-retinal map of surrounding space is stored in memory is demonstrated in studies80

showing that during natural behavior human subjects direct saccades toward extra-retinal locations,81

suggesting that these locations are represented in memory, potentially in an allocentric frame82

of reference (Land et al., 1999; Hayhoe et al., 2003; Golomb et al., 2011; Melcher and Morrone,83

2015; Robertson et al., 2016). Even though suggested by the above studies, the nature of such an84

extra-retinal map and neural mechanisms underlying its construction and storage are currently85

unknown.86

The present modeling study addresses the question of how such an allocentric representation of87

surrounding visual space can be constructed and stored by the dorsal visual path –MTL networks.88

We propose that the existence of such a representation relies on short-term memory linking89
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Figure 1. Model. A. Dorsal visual pathway of visuospatial information processing in primates (see text for
details). B. Schematic representation of the model. Visual features present in the limited visual field constitute

the model input. The model network is composed of 6 modules: (1) Occipito-parietal (egocentric); (2)

Head-direction network; (3) Parieto-retrosplenial transformation network consists of the

coordinate-transformation network and the output layer, which encodes visual features in an allocentric

directional frame and spans 2�; (4) Hippocampus; (5) Reorientation network. Projections from the
occipito-parietal (visual) areas to the transformation network are topographic. Each head-direction cell activates

the corresponding layer of the transformation network. Projections from the different layers of the

transformation network to the parieto-retrosplenial output layer are also organized according to head direction:

any two layers project topographically to overlapping portions of the output population shifted according to

head direction. Synapses between the transformation network and the parietal output network are endowed

with short-term memory. Different hippocampal subpopulations project to different neurons in the

reorientation network, which in turn corrects head direction signal. Full arrows represent the flow of

information in the network. Open arrows represent direction signals in the head direction and reorientation

networks.

successive egocentric views and we study how the long-term memory of allocentric visual space can90

affect behavior in spatial and non-spatial experimental paradigms. In particular, our results suggest91

that allocentric memory effects during spatial reorientation and memory-based visual guidance92
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tasks can be explained by the existence of such a network.93

Methods94

The model is a spiking neuron network constructed to reflect information processing steps thought95

to be performed by successive stages of neuronal processing in the primate dorsal visual path96

described above (Figure 1A). To reflect in a simplified way the main processing stages in the pathway,97

our model of the dorsal pathway is composed of 5 main modules or subnetworks (Figure 1B). First,98

the module representing information processing in the occipito-parietal circuit essentially applies99

a set of Gabor-like orientation filters to the incoming visual images, a standard assumption for100

basic V1 processing. We do not model eye movements, and assume that a retinotopic visual101

representations obtained at the level of V1 has been remapped, by the time it arrives into the102

parietal cortex, to a head-fixed representation by taking into account eye position information103

(Duhamel et al., 1997; Snyder et al., 1998; Pouget et al., 2002). Even though gaze independent,104

this head-fixed representation is egocentric, or view-dependent, in the sense it depends on the105

position and orientation the modeled animal (i.e., its head) in space. Second, we model the106

directional sense by a network of cells whose activity is approximately Gaussian around their107

preferred orientations (Taube, 2007) and that is sending projections to the parietal cortex (Brotchie108

et al., 1995; Snyder et al., 1998). Third, both the activities of the egocentric network and the head109

direction signal converge onto the network modeling the role of the parieto-retrosplenial network in110

coordinate transformation. This transformation network uses head direction to convert egocentric111

visual representations into a head-orientation-independent, or world-fixed representation. This112

coordinate transformation is done essentially by the same mechanism as the retinotopic-to-head-113

fixed conversion mentioned above, but in contrast to previous models it does so using low-level114

topographic visual information. The resulting orientation-independent visual representation is115

often referred to as spatiotopic, or allocentric, since visual features are determined a world-fixed116

directional reference frame. Fourth, the allocentric output of the parieto-retrosplenial network117

arrives to the hippocampus, modeled by a network of cells that learn, by a competitive mechanism,118

allocentric visual patterns provided by the parietal network. As will be clear from the following, in the119

context of spatial navigation these cells can be considered as place cells, whereas in a non-spatial120

context they can be considered as representing memorised visual stimuli. Finally, the reorientation121

module associates allocentric memories with directional reference frame and feeds back to the122

head direction cells. The activity of this network represents the correction signal for self-orientation.123

When the memorized information corresponds to the newly arrived one, the correction signal is124

zero, whereas in the case of disorientation or in response to specific manipulations of visual cues, it125

can provide fast adjustment of the self-orientation signal. In the Results section we show that a126

similar reorientation mechanism can be responsible for behavioral decisions in spatial, as well as127

non-spatial tasks in primates.128

Occipito-parietal input circuit129

The occipito-parietal network is modeled by a single rectangular sheet of Nx ×Ny visual neurons,130

uniformly covering the visual field. In all simulations, except Simulation 6 below, the size of the131

visual field was limited to 160 × 100◦, approximately representing that of a primate. The activities of132

these visual neurons are computed in four steps. First, input images are convolved (using OpenCV133

filter2D() function) with Gabor filters of 4 different orientations (0, 90◦, 180◦, 270◦) at 2 spatial134

frequencies (0.5 cpd, 2.5 cpd), chosen so as to detect visual features in simulated experiments.135

Second, the 8 convolution images are discretized with Nx ×Ny grid, and the maximal response at136

each position is chosen, producing an array ofNxNy filter responses. These operations are assumed137

to roughly mimic retinotopic V1 processing (Heeger, 1992), transformed into a head-fixed reference138

frame using eye-position information. Third, the vector of filter activities at time t is normalized to139

have maximal value of unity. Fourth, a population of Nvis = NxNy Poisson neurons is created with140

mean rates given by the activity of the corresponding filters scaled by the constant maximal rate141
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Avis (see Table 1 for the values of all parameters in the model). For a Poisson neuron with rate r, the142

probability of emitting a spike during a small period of time �t is equal to r�t (Gerstner et al., 2014).143

Head direction144

The head direction network is composed of Nhd = 36 Poisson neurons organized in a circle, such145

that neurons’ preferred directions �k are uniformly distributed between 0 and 2�. The tuning curves146

of the modeled head-direction neurons are Gaussian with maximum rate Ahd and width �hd = 8◦.147

Thus, the rate of head-direction neuron k when the model animal’s head is oriented in the direction148

� is given by149

rhdk = Ahd exp

(

−
(� − �k)2

�2hd

)

(1)

Such a network generates a Gaussian activity profile centered around �. Our model does not150

explicitly implement a line attractor dynamics hypothesized to support head direction signal (Zhang,151

1996), but it is consistent with it. Head direction cells have been found in several brain areas152

in rodents and primates (see Taube, 2007, for review), and there is evidence that parietal cortex153

receives head direction signals (Brotchie et al., 1995).154

Parietal transformation network155

The parietal transformation network is inspired by previous models (Becker and Burgess, 2001;156

Byrne et al., 2007) but in contrast to them it operates directly on activities of the Gabor-like visual157

cells. The transformation of coordinates between the head-fixed and world-fixed coordinates158

is performed by multiple subpopulations of leaky integrate-and-fire (LIF) neurons organized as159

two-dimensional layers of neurons (see Figure 1). Neurons in each layer of the transformation160

network are in a one-to-one relationship with the visual population and so at each moment t each161

transformation layer receives a copy of the egocentric (head-fixed) visual input. Therefore, the162

number of neurons in each transformation layer is equal to Nvis. Apart from the visual input, the163

transformation network also receives input from the population of head direction cells. There164

is a topographic relationship between the sub-populations of the transformation network and165

different head directions: each head-direction cell sends excitatory projections to neurons only in166

one associated layer of the transformation network. Thus, input from head-direction cells strongly167

activates only a small subset of transformation layers which transmit visual information to the168

downstream population. More specifically, only the layers which are associated with head directions169

close to the actual orientation of the head are active. The number of layers in the transformation170

network is then equal to Nhd, giving the total number of neurons in the transformation network171

Ntrans = NvisNhd.172

Thus, in a k-th layer of the transformation network, the membrane potential vi(t) of the LIF173

neuron i in is governed by the following equation (omitting the layer index for clarity):174

�m
dvi
dt

= Vrest − vi + gexi (t)(Eex − vi) + g
in
i (t)(Ein − vi) + RmIext (2)

with the membrane time constant �m, resting potential Vrest , excitatory and inhibitory reversal175

potentials Eex and Ein, as well as the membrane resistance Rm. When the membrane potential176

reaches threshold Vth, the neuron fires an action potential. At the same time, vi is reset to Vreset177

and the neuron enters the absolute refractory period Δabs during which it cannot emit spikes. A178

constant external current Iext is added to each neuron to simulate baseline activity induced by other179

(unspecified) neurons from the network.180

The excitatory conductance in these neurons depends only on the visual input (and thus is inde-181

pendent from k). It is modeled as a combination of �-amino-3-hydroxy-5-methyl-4-isoxazolepropionic182

acid (AMPA) and N-methyl-d-aspartate (NMDA) receptor activation gexi = (1 − �)gampai + �gnmdai , that are183
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described by184

�ampa
dgampai

dt
= −gampai + �ampa

∑

j∈{vis}
wvis
ij sj(t) (3)

�nmda
dgnmdai

dt
= −gnmdai + gampai (4)

where the index j runs over input (visual) neurons connected to it, wvis
ij are the connection weights185

and sj(t) = 1 if a presynaptic spike arrives at time t and sj(t) = 0 otherwise. Constants �ampa and �nmda186

determine the time scales of receptor activation.187

In contrast, the inhibitory conductance depends only on the head-direction cells and ensures188

that a small subset of transformation layers (i.e. those associated with nearby head directions) are189

active. To implement it, we employ a simple scheme in which all transformation layer neurons are190

self-inhibitory, and this inhibition is counteracted by the excitatory input from the head-direction191

cells. Thus, the inhibitory conductance of the i-th neuron in the k-th layer is given by192

�gaba
dgini
dt

= −gini + Ginh + �gaba
∑

k∈{ℎd}
whd
ik sk(t) (5)

where Ginh is the constant maximum amount of self-inhibition and whd
ik are the synaptic weights193

of connections from the head-direction cells. In the current implementation, there is one-to-one194

correspondence between the head-direction cells and the layers of the transformation network, so195

wik = 1 only for associated head-direction cell �k and wik = 0 otherwise.196

All layers of the transformation network project to the parietal output population, which codes197

image features in an allocentric (world-fixed) directional frame. The parietal output population is198

represented by a two-dimensional neuronal sheet spanning 360 × 100◦, that is a full panoramic view.199

It is encoded by a grid of N allo
x ×N allo

y neurons. Each layer of the transformation network projects200

to a portion of the population according to the head direction associated with it associated with201

this layer (see Figure 1). Since any two nearby layers of the transformation network are associated202

with head directions shifted relative to each other by 360◦∕Nhd = 10◦, the overlap between their203

projections on the parietal output layer is 140◦.204

Thus, at each moment in time, a spiking representation of the current visual stream (i.e. a spiking205

copy of the visual input, gated by the head direction cells) arrives to the allocentric neurons spatially206

shifted according to the current head direction. For example, if two egocentric views (each spanning207

160◦) are observed at head directions −45◦ and 45◦ with respect to an arbitrary north direction,208

these two views arrive at the allocentric population spatially shifted relative to one another by 90◦,209

so that the activated neurons in the allocentric population span 230◦. To ensure that subsequent210

snapshots are accumulated in time (e.g. during head rotation), the synapses between neurons in211

the transformation layers and the allocentric population are endowed with short-term memory,212

implemented by a prolonged activation of NMDA receptors (Durstewitz et al., 2000). Such synapses213

result in a sustained activity of allocentric output neurons during a period of time sufficient for214

downstream plasticity mechanism to store information from accumulated snapshots.215

The membrane potential of the i-th neuron in the allocentric output population is governed by216

Equation 2 with the synaptic conductance terms determined as follows. First, the excitatory AMPA217

conductance is given by Equation 3 but with the input provided by transformation network neurons218

via weights wtrans
ij . Second, the NMDA conductance is described by Equation 4, but with the synaptic219

time scale increased by a factor of 6. This is done to ensure sustained activation of the output220

neurons upon changes in the visual input. Third, inhibitory input is set to zero for these neurons.221

Learning the weights in the transformation network222

The connection weights wvis
ij from the visual neurons to the parietal transformation cells and w

trans
ij223

from the parietal transformation cells to the parietal output neurons are assumed to be learned224

during development by a supervised mechanism, similar to the one proposed to occur during225
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sensory-motor transformation learning (Zipser and Andersen, 1988; Salinas and Abbott, 1995). In226

this models it is proposed that when an object is seen (i.e. its retinal position and an associated227

gaze direction are given), grasping the object by hand (that operates w.r.t. the body-fixed reference228

frame) provides a teaching signal to learn the coordinate transformation. A similar process is229

assumed to occur here, but instead of learning body-based coordinates using gaze direction, the230

model learns world-fixed coordinates using head direction.231

More specifically, synaptic weights in the coordinate-transformation network were set by the232

following procedure. First, the network was presented with an edge-like stimulus at a random233

orientation and at a randomly chosen location in the visual field. Second, upon the stimulus234

presentation, the head direction was fixed at a randomly chosen angle �. Third, neurons in the235

transformation layers associated with the chosen head direction were activated with the average236

firing rates equal to the rates of the corresponding visual neurons, while neurons in the parietal237

output layer were activated with the same average rates but shifted according to the chosen head238

direction (representing the teaching signal). Fourth, the synaptic weights in the network were set239

according to the Hebbian prescription:240

wvis
ij = rtransi rvisj (6)

wtrans
ij = rtransi ralloj (7)

where rvisi , r
trans
i and ralloi are themean firing rates of the corresponding visual neurons, transformation241

network neurons and parietal output neurons, respectively. Fifth, the weight vector of each neuron242

was normalized to have the unity norm. This procedure has been performed for edge-like stimuli243

at 4 different orientations (corresponding to 4 Gabor filter orientations), placed in the locations244

spanning the whole visual field and at head directions spanning 360◦. Synaptic weights (Equation 6-245

7) were fixed to the learned values prior to all the simulation presented here. No updates were246

performed on these weights during the simulations.247

Hippocampal neurons248

As a result of the upstream processing, neuronal input to the hippocampus represents visual249

features in an allocentric directional frame. Neurons in the parietal output population are connected250

in an all-to-all fashion to the population of modeled hippocampal cells and the connection weights251

that are updated during learning according to an spike-timing-dependent plasticity (STDP) rule252

below. In addition, lateral inhibition between hippocampal neurons ensures a soft winner-take-all253

dynamics, such that sufficiently different patterns in the visual input become associated with small254

distinct subpopulations of hippocampal neurons.255

Thus, the membrane equation of the i-th hippocampal neurons is given by Equation 2. The256

excitatory conductances are given by Equation 3-4, but with the input provided by the parietal257

output neurons via weights wallo
ij . Upon the initial entry to a novel environment these weights are258

initialized to small random values. During learning, the amount of synaptic modification induced by259

a single pair of pre- and post-synaptic spikes is given by260

dwallo
ij

dt
= Gmax

[

aprej si(t) − a
post
i sj(t)

]

(8)

where si(t) and sj(t) detect pre- and post-synaptic spikes, respectively, and261

daprej
dt

= −
aprej
�pre

+ A+sj(t)

daposti

dt
= −

aposti

�post
+ A−si(t)

(9)

The inhibitory conductance of the hippocampal neuron is governed by the following equation:262

�gaba
dgini
dt

= −gini + �gaba
∑

j∈{hpc}
winh
ij sj(t) (10)
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in which �gaba determines the time scale of synaptic inhibition as before, and the weights winh
ij = Winh263

are constant and ensure that each hippocampal neuron inhibits all other hippocampal neurons264

proportionally to its activity.265

The hippocampal circuit is complex and consists of several interconnected populations. In our266

simple model of hippocampal activity we consider only the first stage of hippocampal processing of267

visual information that is likely to be the CA1, which receives direct projections from the entorhinal268

cortex, an input gateway to the hippocampus.269

Reorientation network270

During one continuous experimental trial (e.g. an exploration trial in novel environment or an271

observation of a novel image on the screen), the reference frame for head direction is fixed and all272

processing operations in the network are performed with respect to the origin of this reference273

frame. In particular, an allocentric information stored by the hippocampus as a result of the trial274

can be correctly used for future action only if the origin of the reference frame is stored with it.275

Therefore, if in a subsequent trial, the actions to be performed require memory of the previous one,276

the network should be able to recover the original directional reference (this of course can happen277

only the visual information received at the start of the trial is considered familiar). Reorientation is278

the process by which the origin of the stored reference frame is recovered.279

Our model of this process rests on the assumption that it is automatic, fast, bottom-up, and280

does not require costly object/landmark processing. The support for this assumption comes from281

a large body of reorientation studies in many animal species including primates, showing that282

object identities are ignored during reorientation (Cheng and Newcombe, 2005). The conditions in283

which most of the reorientation studies were performed usually are such that there is no single284

conspicuous point-like cue in the environment that can be reliable associated with a reference285

direction. For example, in many studies the directional cues come from the geometric layout of the286

experimental room. Lesion studies in rats suggest that reorientation in such conditions requires287

an intact hippocampus (McGregor et al., 2004). Furthermore, we propose that this reorientation288

network is active all the time, in contrast to being consciously “turned on” when the animal “feels289

disoriented”. Therefore, we expect that its effects can be observed even when no specific disorien-290

tation procedure was performed. In particular, we suggest in the Results that a manipulation of291

objects on the screen can result in automatic corrections of directional sense that can be observed292

during visual search.293

The reorientation network in the model is organized similarly to the head-direction network and294

consists of Nre neurons with preferred positions uniformly distributed on a circle. Therefore, the295

difference between two nearby reorientation cells is Δ� = 2�∕Nre. The membrane potential of the296

i-th reorientation neuron is described by the LIF equation (Equation 2). Excitatory conductances297

are described by Equation 3-4 with the input to the neuron provided by hippocampal place cells via298

weights whpc
ij . There is no inhibition in the network, and so the inhibitory conductance is set to 0.299

The ability of the network to perform reorientation is determined by afferent connection weights300

from the hippocampal cells, which are determined as follows.301

Since all allocentric information learned during a trial is linked to the same directional frame, all302

hippocampal cells learned during the trial are connected to a single neuron of the reorientation303

network, the one with the preferred direction 0◦ (Figure 2). The connection weights between the304

hippocampal cells and the neuron are updated using STDP rule, Equation 8-9 (this is not essential305

for the model to work, so that setting the weights to a constant value will give similar results). Once306

the training trial is finished, Nre copies of the learned hippocampal population are created, each307

corresponding to a separate neuron in the reorientation network. In each copy, all cells have the308

same input and output weights as the corresponding cells in the original population, but their309

connection profile is different. In particular, the copy that corresponds to the reorientation neuron310

with preferred direction Δ� is connected to pre-synaptic cells are shifted by the same angle in the311

topographically-organized allocentric layer (Figure 2). In machine learning literature, this technique312
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is called “weight sharing” and it allows to achieve translation invariance for detection of objects in313

images. Here, we apply a similar technique in order to detect familiar snapshots and head direction314

associated with them.315

Figure 2. Implementation of the reorientation network. Top: the output population of the parieto-retrosplenial
network. Bottom: hippocampal cells. The population outlined by full lines is the original population learned

during training. As a result of learning, the hippocampal cell shown in orange is connected to the presynaptic

cells of the same color (connection weights not shown). All cells in the original population are connected to a

single cell (o◦) in the reorientation network (Right). The hippocampal populations outlined by dashed lines are
copies of the original population that implement weight sharing: the hippocampal cell shown in green (blue)

has the same connection weights as the orange cell, but it is connected to pre- and post-synaptic cells shifted by

Δ� (2Δ�). The number of copies of the original hippocampal population is the same as the number of neurons
in the reorientation network.

Suppose, for example, that as a result of learning during a trial, a hippocampal cell is associated316

with 4 presynaptic cells in the output layer of the transformation network (cells shown in orange in317

Figure 2). Suppose further that during an inter-trial interval the head direction network has drifted318

(or was externally manipulated), so that at the start of the new trial the internal sense of direction319

is off by 2Δ�. When the animal sees the same visual pattern again, it will be projected onto the320

allocentric layer shifted by the same amount (blue cells in Figure 2). This will in turn cause the321

hippocampal subpopulation that includes the blue cell to be most strongly active, such that the322

activity peak of the reorientation network signals the orientation error. The reorientation is then323

performed by readjusting the head direction network to minimize the reorientation error. In the324

current implementation this is done algorithmically by subtracting the error signal from the actual325

head direction, but it can also be implemented by attractor dynamics in the head direction layer.326

Simulation details327

The spiking artificial neural network model described above was implemented using Python 2.7328

and Brian 2 spiking neural network simulator (Stimberg et al., 2019). The time step for neuronal329

simulation was set to 1 ms, while the sampling rate of visual information was 10 Hz, according330

to the proposals relating oscillatory brain rhythms in the range 6–10 Hz to information sampling331

(Hasselmo et al., 2002; Busch and VanRullen, 2010). At the start of each simulation, the weights332

wallo
ij and w

hpc
ij were initialized to small random values (the other weights were trained as described333

earlier and fixed for all simulations), see Figure 1B. Parameters of the model are listed in Table 1,334

and the sections below provide additional details of all simulations.335

Simulation 1: Egocentric-allocentric transformation336

The first simulation was inspired by the study of Snyder et al. (1998), in which monkeys observed337

visual stimuli at identical retinal locations, but for different orientations of the head with respect338

to the world, in order to assess whether parietal neurons were modulated by the allocentric head339

direction. Thus, in this simulation, the head direction angle � was varied from −50◦ to 50◦ in 100340

sessions. For each trial of a session, the mean rates of the head-direction neurons were calculated341
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Parameter Value Description

Neuron numbers

Nx ×Ny 80 × 50 Parieto-occipital network size

Nhd 36 Head direction network size

N allo
x ×N allo

y 180 × 50 Parietal output layer size

Nre 36 Reorientation network size

Mean amplitudes in the input populations

Avis 100 Spikes/s., Maximum rate of the parieto-occiptal network

Ahd 100 Spikes/s., Maximum rate of the head-direction network

Parameters of the LIF model

Vrest -65 mV, Resting potential

Vth -55 mV, Spiking threshold

Vreset -65 mV, Reset potential

Eex 0 mV, Excitatory reversal potential

Ein -80 mV, Inhibitory reversal potential

Ein 250 mΩ, Membrane resistance
Δabs 1a−c , 2d ms, Absolute refractory period

� 0.9a,b, 0.3c,d Balance between AMPA and NMDA receptor

�ampa 5 ms, AMPA receptor time scale

�nmda 100a,c,d 600b ms, NMDA receptor time scale

�x 2.5 ms, NMDA receptor time scale

�m 10a,c,d , 20b ms, Membrane time scale

�gaba 10 ms, GABA receptor time scale

Iext 20a−c , 40d mA, External input current

Ginh 2 Self-inhibitory conductance

STDP

Gmax 0.05c , 0.1d Maximal weight change

A+ 0.005 Maximal potentiation amplitude

A− A+ x 1.05 Maximal depression amplitude

�pre 20 ms, Potentiation time scale

�post 15c , 17.5d ms, Depression time scale

Other parameters

�hd 8◦ Tuning curve width of head direction cells

Winh 1.0 Lateral inhibition weight in the hippocampal population

Table 1. Parameters of the model. a, Occipito-parietal circuit. b, Parieto-retrosplenial transformation network.
c, Hippocampus. d, Reorientation network.

according to Equation 1 and fixed for the rest of the trial. The stimulus (vertical black bar, width:342

10◦) was shifted horizontally across the midline of the visual field (160 × 100◦) from left to right in 1◦343

steps, such that it remained at each position for 100ms. The neuronal spikes were recorded from344

the occipito-parietal network, the parieto-retrosplenial transformation network and its output layer,345

for each stimulus position across 10 trials per session. Mean firing rates were then calculated from346

these data.347

Simulation 2: Accumulation of successive views using short-term synaptic memory348

The aim of the second simulation was to illustrate the synaptic mechanism for an integration of349

successive visual snapshots in time, instrumental for spatial coding. We model a monkey that350

remains in the same spatial location and turns its head from left to right. Thus, the model was351

presented with a set of 9 successive overlapping views (160×100◦) taken from a panoramic (360×100◦)352

image, 100ms per view. Initial head direction was arbitrarily set to 0◦.353
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Simulation 3: Encoding of allocentric visual information during spatial exploration354

In the third simulation we studied the role of temporal accumulation of visual information for355

spatial coding. The model ran through a square 3D environment (area: 10×10 m, wall height 6 m)for356

about 10 min so as to cover uniformly its area. The visual input was provided by a cylindrical camera357

(160 × 100◦) placed at the location of the model animal. At each spatial location 9 successive views of358

the environment were taken in different directions (as in the Simulation 2). The vector of mean firing359

rates of the occipito-parietal neurons at a single spatial location and orientation constituted the360

egocentric population vector. The mean firing rates of the the parieto-retrosplenial output neurons361

at each location constituted the allocentric population vector (this population vector is independent362

from orientation as a result of coordinate transformation). To compare spatial information content363

in the two populations, we first estimated intrinsic dimensionality of the two sets of population364

vectors. This was performed using two recent state-of-the art methods: DANCo (Ceruti et al., 2014),365

as implemented by the intrinsicDimension R package, and ID_fit (Granata and Carnevale, 2016).366

For both methods, the principal parameter affecting dimensionality estimation is the number of367

neighbors for each point in the set that is used to make local estimates of the manifold dimension.368

Second, we used two different methods to visualize the structure of the low-dimensional manifold:369

Isomap (Tenenbaum et al., 2000) and t-SNE (van der Maaten and Hinton, 2008). To extract principal370

axes of the manifold, we used PCA on the data points projected on two principal dimensions371

provided by the above methods. We chose the parameter values for which the visualized manifold372

best approximates the original space. We then determined a set of points (i.e. population vectors)373

that lie close to the principal axes of the manifold and visualized them in the original environment.374

If the manifold structure corresponds well to the spatial structure of the underlying environment,375

the principal axes of the manifold should lie close to the principal axes of the environment.376

Simulation 4: Visual responses of hippocampal neurons in an image memorization task377

This simulation was inspired by the study of Jutras and Buffalo (2010a) in which a large set of378

novel visual stimuli was presented to monkeys on a computer screen. Neuronal activity in the379

hippocampal formation in response to the visual stimuli was recorded. One of the results of380

this study suggested that hippocampal neurons encode stimulus novelty in their firing rates. To381

simulate this result, we presented to the model 100 novel stimuli randomly chosen from the dataset382

retrieved from http://www.vision.caltech.edu/Image_Datasets/Caltech101). The stimuli (resized to383

160 × 100 pixels) were shown to the model successively in one continuous session (500ms stimulus384

presentation time + 1000ms inter-trial interval with no stimuli) and the activities of the hippocampal385

neurons during learning were recorded.386

Simulation 5: Spatial reorientation387

In this simulation of the experiment of Gouteux et al. (2001), the testing room was a rectangular388

3D environment with area 20×10 m and wall height 6m. In the “No cues” task the only visual389

features in the room were provided by the outlines of the walls. In the other 3 tasks, a square390

visual cue was presented in the middle of one of the walls with the edge length equal to 1/6391

(small cue), 1/3 (medium cue) or 1/2 (large cue) of the environment width. Each task consisted392

of two phases, exploration and reorientation. During the exploration phase the modeled animal393

uniformly explored the environment, as in Simulation 3. The reorientation phase composedmultiple394

trials. At the beginning of each trial, the model was placed at one of spatial locations covering395

the environment in a uniform grid. At each of these locations, 9 successive views were taken.396

Reorientation performance was assessed in two ways: (i) only the first view at each location was397

used for reorientation; (ii) successive views accumulated over 60 successive positions were used for398

reorientation.399
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Simulation 6: Memory-based visual search400

In this simulation we used a dataset of visual images used in the study by Fiehler et al. (2014). This401

dataset consists of 18 image sets corresponding to 18 different arrangements of the same 6 objects402

(mug, plate, egg, jam, butter, espresso cooker). Each set includes a control image (all objects on the403

table in their initial positions) and images in which one of the objects is missing (target object) and404

one or more other objects displaced to the left or to the right. In the simulation we used only a405

subset of all images in a set that included either 1, 3 or 5 of the objects mentioned above displaced406

either to the left or to the right (referred to as “local” condition in Fiehler et al., 2014), giving rise407

to 6 experimental conditions. In each condition, there were 18 test images of displaced objects,408

plus the associated control images. Taking into account the distance between the animal and the409

screen as well as the size of the image (provided by Fiehler et al. (2014)), we calculated the size410

of the image in degrees of visual field. We then determined a rectangular portion of the image411

(30× 15◦) that included all objects in initial and displaced positions in all images. The contents of this412

area served as an input to the model. Thus, in this simulation the spatial resolution of the visual413

input was higher than in the previous simulations as the visual field of the model was smaller, but414

the size of the input network was kept the same.415

During each simulation trial, the image of objects in initial positions was first presented to the416

network during 2000 ms and stored by the hippocampal cells. The image of displaced objects (in417

one of the 6 conditions above) was subsequently presented to the network for the same amount of418

time and the orientation error was read out from the mean firing rates of the reorientation network.419

Results420

We first show that properties of neuronal firing along the simulated neural pathway from the421

visual cortex to the hippocampus reflect those of biological neurons along the pathway. We then422

demonstrate how backward projections from the hippocampus to the head direction network, can423

explain hippocampal influence on head direction during spatial reorientation and memory-based424

visual search.425

Visual and parietal model neurons encode sensory representations in distinct ref-426

erence frames427

We start with a characterization of modeled dorsal-visual path neurons in the case when a simulated428

animal is assumed to sit in front of a screen and is free to rotate its head (Duhamel et al., 1997;429

Snyder et al., 1998, for simplicity, we assume that rotation occurs only in the horizontal plane). The430

firing rate of occipito-parietal (input) neurons and the output parietal neurons as a function of the431

allocentric position of a visual stimulus (i.e. a vertical bar moving horizontally across the visual field)432

was measured for two different head directions (Figure 3A,B). For a neuron in the input population,433

a change in head direction induces the corresponding change of the receptive field of the neuron,434

since its receptive field shifts together with the head along the allocentric position axis (Figure 3C).435

In contrast, for a parietal output neuron, a change in head direction does not influence the position436

of its receptive field, which remains fixed in an allocentric frame (Figure 3D). To show that this is437

also true on the population level, we measured, for all visual input cells and all parietal output cells,438

the amount of shift in its receptive field position as a function of head direction shift, while the439

head was rotated from −50◦ to 50◦. For cells in the occipito-parietal visual area, the average linear440

slope of the dependence is close to 1, whereas in the allocentric parietal population the average441

slope is close to 0 (Figure 3E), meaning that these two populations encode the visual stimulus442

in the two different reference frames: head-fixed and world-fixed. These properties of model443

neurons reproduce well-known monkey data showing that different sub-populations of parietal444

cortex neurons encode visual features in the two reference frames (Duhamel et al., 1997; Snyder445

et al., 1998).446

The receptive fields of the intermediate neurons of the coordinate transformation network447
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Figure 3. Properties of neurons in the coordinate-transformation network. A. A schematic representation of
the receptive field of one input visual input neuron at two head directions (HD1 and HD2). The position of the

receptive field of the neuron is shown by the blue and red bar for HD1 and HD2, respectively. B. The population

activity of head direction cells in the model at 20◦ (HD1) and -20◦ (HD2). C. Tuning curves of an input visual

neuron (±SD) for the two head directions represented in B. D. Tuning curves of an allocentric output neuron for
the same head directions. E. Histograms show the distributions of the linear dependence slopes between the

shift in the receptive field position and the shift in head direction, for egocentric (in blue) and allocentric (in

orange) neuronal populations. F. Transformation network neurons are gain-modulated by head direction.

Stimulus tuning curves of the same neuron for three different head directions are shown.

exhibit gain modulation by head direction (Figure 3F), as do monkey parietal neurons (Snyder et al.,448

1998).The hypothesis of reference-frame conversion via gain modulation has been extensively449

studied in both experimental and theoretical work, in the context of sensory-motor coordination450

during vision-guided reaching (Avillac et al., 2005; Pouget and Sejnowski, 1997; Salinas and Abbott,451

2001). While coordinate-transformation processes involved in the two cases are conceptually452

similar, the underlying neuronal computations can differ substantially, because the former requires453

simultaneous remapping for the whole visual field, while the latter is limited to the computation of454

coordinates for a single target location (i.e. a representation of the point-like reaching target). This455

difference limits the use of noise-reducing attractor-like dynamics that is an essential component456

in point-based sensory-motor transformation models (Pouget et al., 2002), because in full-field457

transformation the information and noise are mixed together in a single visual input stream.458

Spatial coding using temporal accumulation of successive views459

Because of a limited view field, at each moment in time the simulated animal can directly observe460

only a restricted portion of visual environment (i.e. a visual snapshot, see Figure 4A,B). That these461

snapshot-like representations are represented in memory, has been demonstrated in a number of462

studies showing viewpoint-dependent memory representations (Diwadkar and McNamara, 1997;463

Christou and Bülthoff, 1999; Gaunet et al., 2001). Moreover, experimental evidence suggests that464

visual information can be accumulated from successive snapshots during e.g. head rotation, giving465

rise to a panoramic-like representation of the surrounding environment that can inform future466

goal-oriented behavior (Tatler et al., 2003; Oliva et al., 2004; Golomb et al., 2011; Robertson et al.,467

2016). A candidate neural mechanism for implementing such integration is short-term memory, i.e.468

the ability of a neuron to sustain stimulus-related activity for a short period of time (Goldman-Rakic,469
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1995). In our model, this is implemented by sustained firing via prolonged NMDA receptor activation470

(Figure 4C). Combined with STDP learning rule in the connections between the parietal output471

neurons and the hippocampus, this mechanism ensures that a time-integrated sequence of visual472

snapshots is stored in the synapses to hippocampal neurons. In particular, head rotation results in473

a temporarily activated panoramic representation in the population of output parietal neurons that474

project to CA1. STDP in these synapses ensures that these panoramic representations are stored in475

the synapses to downstream CA1 neurons (Figure 4D).476

Figure 4. Temporal accumulation of successive visual snapshots in the model. A. A panoramic image of an
environment superimposed with the visual field of the simulated animal (white rectangle). The white arrow

shows the direction of visual scan path. B. Several successive visual snapshots along the scan path shown in A

are represented by mean firing rates of the occipito-parietal (egocentric) network. C. An example of the

evolution of AMPA and NMDA receptor conductances of parieto-retrosplenial output neurons as a function of

time. Stimulus onset: t = 0, stimulus offset: t = 200ms (red line). D. Raster plot of spiking activities of the output
neurons showing short-term memory in this network. An input is presented at time 0 and is switched off at the

time shown by the red vertical line. The neurons remain active after stimulus offset due NMDA-receptor

mediated short-term memory. E. Synaptic weight matrix of a single hippocampal neuron after learning stores

the activity of the parieto-retrosplenial output layer accumulated over several successive snapshots shown in B.

A large amount of experimental evidence suggests that many animal species encode a geometric477

layout of the surrounding space (Cheng and Newcombe, 2005; O’Keefe and Burgess, 1996; Gouteux478

et al., 2001; Krupic et al., 2015; Keinath et al., 2017; Bécu et al., 2019). Computational models of479

spatial representation in rodents link this sensitivity to geometry with a postulated ability of the480

animal to estimate distances to surrounding walls (Hartley et al., 2000) or to observe panoramic481

visual snapshots of surrounding space (Cheung et al., 2008; Sheynikhovich et al., 2009), and rely on482

a wide rodent visual field ( 320◦). That the width of visual field plays a role in geometric processing483

in humans was demonstrated in the study by Sturz et al. (2013), in which limiting visual field to484

50◦ impaired performance in a geometry-dependent navigation task, compared to a control group.485

We thus studied whether activities of egocentric and allocentric neurons in the model encode486

information about the geometry of the environment and whether snapshot accumulation over time487

plays a role in this process.488

To do this, we run the model to uniformly explore a square environment and we stored popula-489

tion rate vectors of the egocentric-visual and allocentric-parietal populations at successive time490

points during exploration. More specifically, for the egocentric population, each population vector491

14 of 29

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2019. ; https://doi.org/10.1101/827667doi: bioRxiv preprint 

https://doi.org/10.1101/827667
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Figure 5. Representation of spatial relations by egocentric (occipito-parietal) and allocentric
(parieto-retrosplenial) visual neurons. A,B. Estimation of intrinsic dimensionality of the set of population vectors

in the egocentric (A) and allocentric (B) populations by two different state-of-the-art methods (DANCo and ID_fit).

C,D. Top: Projection of the population vector manifolds onto a two-dimensional plane using Isomap (left) and

t-SNE (right) algorithms. Color gradient from yellow to blue corresponds to the position at which the

corresponding population vector was observed, as shown in the Bottom row. Red dots show population vectors

that lie close to the principal axes of the 2D manifold of the principal space. C and D show population vectors of

the egocentric and allocentric neuronal populations, respectively. E. An example of the receptive field of one

hippocampal neuron after learning the environment before (left) and after (right) extension of the environment

along it horizontal axis. F. For the same neuron as in E, red dots show locations in the environment where this

neurons is winner in the WTA learning scheme.

corresponded to population activities evoked by the presentation of a single visual snapshot. In con-492

trast, for the allocentric population, each population vector corresponded to a panoramic snapshot493

obtained by accumulating several successive snapshots during head rotations (see Methods). The494

visual information content was identical in two sets of population vectors as they were collected495

during the same exploration trial. Population vectors in each set can be considered as data points in496

a high-dimensional space of corresponding neural activities. These points are expected to belong to497

a two-dimensional manifold in this space, since during exploration the model animal moves in a 2D498

spatial plane. The analysis of the intrinsic dimensionality of both sets indeed shows that it is about499

2 (Figure 5A,B). We then applied two different manifold visualisation techniques to see whether the500
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shape of manifold reflects the environment shape (see Methods). We found that when applied to501

population vectors of the egocentric population, the structure of the manifold did not reflect the502

layout of the environment (Figure 5C). In contrast, allocentric population activities reliably preserved503

geometric information in the spatial organization of the manifold (Figure 5D). Moreover principal504

axes of the manifold corresponded to the principal axes of the underlying environment only for505

the population vectors of the allocentric population (bottom row of Figure 5C,D). The extraction of506

principal axes of an experimental space has been proposed to underlie spatial decision making in507

several experimental paradigms, including data from humans (Gallistel, 1990; Cheng and Gallistel,508

2005; Sturz et al., 2011).509

STDP in the connections between the parietal and hippocampal neurons ensures that allocentric510

spatial views are stored in memory, while lateral inhibition in the hippocampal layer implements a511

competition such that different hippocampal cells become selective to different localized regions of512

the visuospatial manifold, which, by virtue of the coherent mapping on the real space, correspond513

to spatial receptive fields (Figure 5E). When the geometry of the environment is modified, but514

the memorised allocentric representation remains the same, modeled hippocampal cells express515

corresponding modifications of their receptive fields (Figure 5E,F), potentially providing a purely516

sensory basis for the effects of geometric manipulations observed in rats (O’Keefe and Burgess,517

1996) and humans (Hartley et al., 2004). These simulations show how the egocentric-allocentric518

conversion and short-term memory along the modeled dorsal visual pathway can be instrumental519

in structuring the hippocampal input according to the geometric properties of the surrounding520

space that were repeatedly shown to affect human navigation (Hermer and Spelke, 1994; Bécu521

et al., 2019).522

Visual responses of hippocampal neurons reflect learning of visual stimuli523

The hippocampal memory network is thought to support a large spectrum of memory-based524

behaviors, and therefore its basic properties should manifest themselves in situations other than525

navigation. In particular, plasticity and competition, which are proposed to mediate fast hippocam-526

pal learning of visual information in our model, occur not only during navigation but also in a527

passive image viewing paradigm. In the next simulation inspired by the experiment of Jutras and528

Buffalo (2010a) we used the stationary model to learn a set of 100 novel images presented in529

a quick succession (see Methods) and recorded activities of modeled hippocampal neurons. In530

response to the presented stimuli, some neurons increased their firing rates as a result of STDP531

(winning neurons), while the rest of the neurons were inhibited (Figure 6A). Even though only a532

few neurons won the competition for each particular stimulus, some neurons were selective to533

a larger number of stimuli than others (Figure 6C,D). Therefore, stimulus-averaged firing rates of534

different neurons expressed either a decrease in the average firing rate (for neurons that were535

never winners), no change in the average rate (for neurons that were winners for a relatively small536

number of stimuli), or an increase in the average rate (for neurons that were winners for a relatively537

high number of stimuli, Figure 6B). There was a larger number of neurons expressed decreased538

firing rates or no change, than those that increased their average rate (Figure 6D).539

Under the assumption that a novelty-detection mechanism (assumed to reside in the hippocam-540

pus or elsewhere, but not modeled here) prevents hippocampal firing in response to a repeated541

stimuli, these results are in accord with the data from a number of studies showing that different542

subsets of recorded hippocampal neurons either decreased, showed no changes, or increased their543

activity in response to the presentation of a novel stimulus (Jutras and Buffalo, 2010a; Rutishauser544

et al., 2006; Viskontas et al., 2006). In these studies of the role of novelty in hippocampal process-545

ing, stimulus-averaged elevation of neural activity was considered as an indication of an abstract546

(i.e. independent of stimulus identity) novelty processing in the hippocampus (Jutras and Buffalo,547

2010a; Rutishauser et al., 2006). It is unclear how such an abstract representation of novelty can548

be reconciled with the role of the hippocampus in navigation. In contrast, our simulation results549

suggest that elevation or depression of stimulus-averaged firing rate in a neuron may be related to550
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Figure 6. Visual responses of modeled hippocampal neurons. A. Spike raster plots for four example neurons in
response to presented visual stimuli. B. Stimulus-averaged firing rates of neurons in A (mean ± SEM shown in
red), compared to baseline firing rates (shown in blue). The dashed vertical line represents the stimulus onset.

C. Black dots correspond to winner neurons among all other neurons (vertical axis) for each of the presented

stimuli (horizontal axis). D. The histogram shows the distribution of neurons with respect to the number of

stimuli for which they are winners. E. An example of the weight matrix of a hippocampal neuron after learning.

the number of stimuli for which this neuron is winner.551

Top-down hippocampal input in spatial reorientation and memory-based search552

The population of the hippocampal neurons in the model represents the neural storage of (po-553

tentially highly processed) visual information aligned with an allocentric directional frame by the554

coordinate transformation network. In this section we show how this neural storage can affect two555

types of behavior: (i) determination of position and orientation when a disorientedmonkey is placed556

into a familiar environment (Gouteux et al., 2001); and (ii) memory-guided visual target search557

in an image viewing paradigm (Fiehler et al., 2014). While these two tasks may seem unrelated,558

we propose that the same neural process, namely a reorientation of the head-direction network559

based on the comparison between the newly obtained visual information and the contents of the560

hippocampal allocentric storage, underlies behavioral decisions in these tasks.561

Spatial reorientation562

In a series of reorientation experiments with monkeys, Gouteux et al. (2001) have shown that563

these animals relied on both the geometric information (given by the three-dimensional layout564

of the rectangular experimental space) and non-geometric cues (e.g., landmark objects placed565

near the walls or corners of the recording chamber). The authors paid specific attention to the566

influence of landmark size on reorientation behavior. When small objects were placed near one of567

the walls or in the corners of the room, the monkeys did not use these cues to reorient, and their568

search pattern was determined based only on the geometric information. Importantly, this was569
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not because the monkeys did not notice the landmarks, since they performed exploratory actions570

towards them (looked at or touched them). Once the landmark size was increased however, the571

monkeys successfully used them for reorientation independently of their location and number.572

Figure 7. Simulation of the reorientation experiment. A. The experimental environment was a rectangular
room (represented by the gray rectangle). The same reorientation simulation was run in four conditions: no

visual cues apart from walls of the room, or 1 visual cue at three different sizes (small, medium, large). B. Polar

plot of the mean activity of the reorientation network when the simulated animal was placed in various

locations in the room. Dots mark the preferred locations of the reorientation Nre neurons Colors from blue to

red represent 4 experimental conditions. C. Rows from top to bottom correspond to experimental conditions as

in A. Left: Reorientation maps show, for each location in the room, the reorientation error committed by the

model after seeing only the first visual snapshot from that location (at a randomly chosen head orientation).

The pixel color from black to white codes for the absolute value of the reorientation error from 0 to �. Right:
polar histograms of reorientation errors (±SD), averaged over 9 random orientations at each location. D. Bar
plot shows the distribution of the absolute reorientation errors (±SD) among the approximately correct
orientation (0-40◦), rotational error (140-180◦) and other directions. E,F. Reorientation error mean (E) and its

standard deviation (D) when progressively more snapshots were used for reorientation. Color code for D,E,F as

shown in B.

To simulate these data, we tested the model in four reorientation tasks in a virtual three-573

dimensional rectangular room. In these tasks, either no landmark cues were present in the574

room, or one visual landmark of three different sizes was placed in the middle of one of the575

walls (Figure 7A). Each task comprised an exploration phase, during which the model randomly576

explored the environment, and a reorientation phase. In the reorientation phase the model was577

initialized with a random heading direction and placed back into the environment learned during578

the exploration phase at a random location. The performance of the model was assessed from the579

accuracy of reorientation: we assume that the animal will navigate to the correct corner if it has580

correctly estimated its initial heading, whereas it will make a navigation error if the reorientation581

error is high.582

Once the information from the initial view reached the hippocampus upon the reentry to the583

environment, the activity of the reorientation network signalled the orientation error (Figure 7B).584

This error represented the discrepancy between the initial heading direction and the heading585

direction most consistent with the allocentric information stored in the projections from the place586
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cells to the reorientation network. The asymmetric shape of the polar plot reflects the influence of587

the environment’s geometric layout on reorientation: for the no-cue condition, the network activity588

peaked at the correct (0◦) and its rotationally opposite (180◦) orientations with an identical average589

amplitude. When the visual cue was present, its size determined the difference between the activity590

peaks. Therefore, when reorientation was performed from different locations in the environment591

(based only on the first view taken), the accuracy, measured as the percentage of locations with a592

correctly determined orientation, was about 50% in the no-cue condition and raised to about 77%593

in the large-cue condition (Figure 7C, left column). Reorientation maps (Figure 7C, right column)594

suggest that depending on the position of the orienting cue in the room, some locations in the595

environment provide better visual information for reorientation than others (shown by white areas596

in the maps). The histograms of orientation errors (Figure 7C, right column, and Figure 7D) show597

that, on average, a larger visual landmark provides a much better reorienting cue than a small one,598

for which a similar number of correct decisions and rotational errors was observed (Figure 7D). This599

is due to the fact that orientation is determined essentially by comparing the egocentric view from600

the initial position with allocentric views stored in synaptic memory, without any explicit landmark601

identification process. Therefore, influence of small visual cues becomes negligible with respect to602

gross visual features of the surrounding space (corners, shapes of the walls, etc.). These results603

are consistent with the hypothesis that reorientation is a fast, bottom-up process based on low-604

level visual information (Sheynikhovich et al., 2009). Learning landmark identities and their spatial605

relation to goals can be added by subsequent learning, but may not be taken into account unless606

their are sufficiently salient compared to other (e.g. geometric) cues present in the environment607

(Cheng, 1986).608

So far the reorientation performance was assessed based only on the first view taken. The609

reorientation performance is likely to increase if the animal is allowed to accumulated visual610

information from successive views taken in the same location at different orientations or at different611

locations, e.g. during initial movements through the environment. This is what happens in the612

model, since increasing the number of snapshots that are used for reorientation improved its613

accuracy (Figure 7E,F). In this case we placed the simulated animal at 60 successive positions, while614

at each position the animal rotated its head to obtain a corresponding panoramic view. The activity615

of the reorientation network was calculated as a sum of its activities after each successive view.616

When a large cue was present, the simulated animal obtained an accurate orientation estimate617

after visiting about 10 successive locations. In contrast, the mean error and standard deviation of618

reorientation were decreasing much slower for smaller sized landmarks. Thus, our model describes619

a neural mechanism for spatial reorientation which relies on an allocentric visual information stored620

in the hippocampal network. This allocentric information feeds into a head-direction-like network,621

assumed to reside in the retrosplenial cortex, that signals reorientation error and affect the sense of622

direction via its input to the head-direction system if the brain (Taube, 2007). In addition to providing623

a mechanistic basis for the reorientation process, which is a necessary part of navigational behavior624

and whose existence is assumed (either implicitly or explicitly) in a number of computational models625

of navigation, this model proposes how reorientation can be performed continuously, i.e. during626

ongoing spatial behavior.627

Memory-based visual search628

To illustrate a potential role of the stored hippocampal representation in memory-based visual629

tasks, we simulated the study of Fiehler et al. (2014). In this study, head-fixed human subjects630

remembered a visual scene with 6 objects on a table, presented on a computer screen (Figure 8A,631

top). This encoding phase was followed by 2-s. delay (uniform gray image), and then the subjects632

were presented with a modified scene in which one of the objects was missing (the target object)633

and either 1, 3 or 5 other objects displaced horizontally (Figure 8A, bottom). The subjects were634

required to point to the remembered location of the missing object. If the subjects had used635

only an egocentric information (i.e. remembered object position with respect to the head), then636
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their performance would have been independent from the displaced objects. The results of this637

experiment demonstrated in contrast that pointing performance was influenced by the non-target638

objects, such that shifting a higher number of them induced a larger pointing error. Even though the639

pointing error was always made in the direction of the object displacement in the image, the size of640

the error only partially accounted for the veridical displacement of the objects. These data suggest641

that human subjects combine allocentric (i.e. based on the information from the environment, in642

this case represented by the visual features associates with displaced objects) and egocentric (i.e.643

based on the memory of an egocentric location of the target object) information during memory-644

based search (Fiehler et al., 2014). The neural mechanism of this allocentric correction of the645

egocentric memory is unknown.646

Figure 8. A. An example of the remembered (top) and test (bottom) images. In this example, the target object
is the egg and 5 non-target objects were shifted to the right in the test image, compared to the encoded image.

The white rectangle denotes the part of the image that was provided as input to the network. It corresponds to

the part of the image most fixated by the subjects in the experiment. B. Mean firing rates of the egocentric

neurons in the model for the encoded and test images shown in A. C. Orientation errors induced in the model

by the presentation of the test images with 1 (top), 3 (middle) and 5 (bottom) displaced objects. Horizontal

position of each dot corresponds to the maximal activity peak of the reorientation network. Different dots

represent different sets of objects in the image dataset. Leftward and rightward displacements are shown in

red and green, respectively. Crosses mark the mean displacement value per group. Random jitter along the

vertical axis is added for clarity.

We hypothesized that the influence of allocentric image information observed in this experiment647

arises as a result of a slight misorientation of the head direction network due to the apparent shift648

of visual features caused by the object displacement in the attended area of the image. In order649

to demonstrate this effect, we first presented to the model an image of a control scene with all 6650

objects (see Figure 8A, top, for an example). We used, with permission, the same image data set that651

was used in the experimental study. As input to the network we only used the part of the image near652

the objects, because in the experiment is was fixated most of the time and because of the evidence653

that displacement of objects outside of this area had no influence on reaching performance (Fiehler654

et al., 2014). The network converted the visual input of the egocentric layer (Figure 8B) to an655

allocentric representation according to the actual head direction (set to 0◦), which was stored in the656

synapses between the parieto-retrosplenial output cells and hippocampal cells as before. In this657

simulation we ignored competition effects, since it was not required to remember multiple images.658

Second, after the first scene was learned, an image of the scene with one object missing and either659

1, 3 or 5 objects displaced (see Figure 8B, bottom) was presented to themodel. The orientation error660

caused by the object displacement can then be read directly from the activity of the reorientation661

network (Figure 8C). As in the experiment, the number of displaced objects affected the amount of662
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allocentric correction. Since in the test images the displaced objects correspond only to a subset of663

all visual features, the mean correction only partially account for the object displacement. Thus,664

as in the case of spatial reorientation, the influence of the allocentric information (in this case665

represented by low-level features of the presented image) is caused by the comparison between666

the stored allocentric and incoming allocentric views, and the resulting activity of the reorientation667

network that calibrates the head direction signal.668

Discussion669

The presented model focuses on the dorsal visual pathway for information processing, generally670

thought to provide contextual or “where” information to memory structures in the MTL, by con-671

trast to the ventral pathway mediating the processing of object/item representations or “what”672

information (Goodale and Milner, 1992; Kravitz et al., 2011). The two pathways converge to the673

hippocampus where both types of information are combined to form the episodic memories. Out-674

puts of hippocampal processing go back to neocortical areas from which the input was originated.675

In both spatial (e.g. spontaneous novelty exploration) and non-spatial (recollection/familiarity)676

experimental paradigms the dorsal pathway has been implicated in the recollection of contextual677

information (e.g. the scene or location where an item was observed) and not in remembering the678

object identity (see Eichenbaum et al., 2007, for review). These proposals go in line with general679

properties of neural activities along the dorsal pathway such as PHC and RCS. In particular, fMRI680

studies that both RSC and PHC are activated by scene processing, with a part of PHC responding681

equally strongly to images of spatial layouts with or without objects (Epstein and Kanwisher, 1998;682

Epstein, 2008). RSC was shown to be more strongly implicated in recollection than familiarity (Ep-683

stein, 2008) and is proposed to play a specific role in encoding spatial and directional characteristic684

of landmarks and their stability independent of their identity (Mitchell et al., 2018).685

In the present work, the selectivity to scenes and spatial layouts, as opposed to objects, during686

spatial navigation is modeled simply as sensitivity to views (i.e. the total contents of the animal’s687

visual field at one moment in time, usually acquired across multiple fixations, potentially associated688

with accompanying head movements in natural conditions). Indeed, spatial layout information689

is often available from a low-frequency representation of a view (Kauffmann et al., 2015, but see690

Rajimehr et al., 2011), whereas object representations take up a much smaller portion of a view691

and usually require high-spatial frequency analysis at a localized part of the image during visual692

fixation. In our simple model, we represented the contents of a view by a retinotopic-like grid of693

orientation-sensitive filter responses at just a few spatial frequencies, but a much more complex694

visual processing can be “inserted” between our input visual layer and the parietal transformation695

circuit (involving e.g., extraction of salience maps, depth processing, contour extraction, etc). The696

coordinate-transformation circuit and the rest of themodel are agnostic about the nature of features697

provided to them as input, as long as these features are given in a retinotopic-like head-fixed frame698

and take up the whole visual field. This last requirement excludes object processing, assumed699

to be done in parallel in the ventral stream, since object representations are view-independent700

and assume translation invariance over the visual field (Serre et al., 2005). The relative (i.e. size701

dependent) sensitivity to objects in our model (see “Spatial reorientation”) arises from the fact that702

large, distal and stable objects (or landmarks) that make up a large portion of a view are considered703

as part of the layout, and not as identified objects/landmarks. In contrast, relatively small objects,704

landmarks, or a high-frequency contents of other small localized portions of a view exert contribute705

only weakly to the overall visual representation. Indeed, they are often overshadowed by gross706

visual features present in views, such as corners, walls, and other large-scale visual structures707

during comparison of new and remembered view-based representations (Bécu et al., 2019).708

Ourmodel can thus be considered as amodel of encoding of contextual information, as opposed709

to object-related one, and the notion of context is well defined: it is the visual information present710

in the set of topographically-organized features present in a set of views (that could comprise only711

one element) and stored in memory after the acquisition phase of a task. This notion of context can712
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be extended to a non-spatial setting (see “Memory-based visual search”): topographically-organized713

image features present in attended part of the screen and stored in memory provide contextual714

information with respect to any object-related information stored from the scene (such as the715

identities of the objects in this experiment). In the absence of reliable object-related information716

(such as the missing target object), contextual information can be used to drive behavior. The717

important piece of information that is present in topographic representation of a scene, but is absent718

in object-related memory, is spatial location. Indeed, one can assign position information within the719

topographic representation of a view (with respect to an allocentric directional frame, or with respect720

to the other features in the view). Therefore, (allocentric) view-based contextual representations721

can serve as a basis for remembering spatial and directional characteristics of objects or landmarks722

independent of their identity. Spatial locations in such a contextual representation can serve as723

“place holders” for specific object/landmark information extracted and stored in the ventral visual724

stream, or as “pointers” to this information. Such a notion of contextual information is well in line725

with proposed role of the PHC and RSC in landmark processing (Epstein, 2008;Mitchell et al., 2018).726

While the existence of view-based representations in human spatial memory is well established727

(Shelton and McNamara, 1997; Diwadkar and McNamara, 1997; Christou and Bülthoff, 1999; Gar-728

soffky et al., 2002; Burgess, 2006), the existence of a spatiotopic representation of the surrounding729

visual space is more controversial. Some proposals reject the existence of such a representation730

(O’Regan, 1992), some suggest that only a limited number attended features survive beyond one731

fixation (Rensink, 2000), and some suggest that a feature-rich representation is constructed by732

accumulating information over time (see Tatler and Land, 2011, for review). For example, some733

experimental evidence in favor of the latter view comes from studies showing that visual search734

can be directed to remembered locations in a panoramic scenes and that visual saccades can be735

programmed to reach previously observed targets outside of the current viewfield (Land et al.,736

1999; Oliva et al., 2004). These and similar data suggest the existence of a quasi-panoramic repre-737

sentation of surrounding visual cues, accessible for the planning of eye movements, i.e. most likely738

topographic with respect to the visual space (Golomb et al., 2011; Park et al., 2007; Melcher and739

Morrone, 2015; Robertson et al., 2016). While both egocentric and allocentric representations are740

stored in memory, they are converted to an egocentric frame whenever possible (Chen et al., 2011).741

By linking such a panoramic representation with its potential utility for spatial memory and the well742

known role of the MTL in the storage of allocentric memories, we postulated the existence of an743

allocentric, visually topographic representation of the surrounding space in the parieto-retrosplenial744

circuit.745

Whereas the allocentric representation in our model is purely visual, the possibility that it could746

be multisensory can not be excluded (Newell et al., 2005). Loomis et al., 2013 defined a similar747

representation of surrounding 3D space as a “spatial image” with the following properties: (i) it can748

be updated during movement with the eye closed; (ii) it exists in all directions; (iii) the information749

from all sensory modalities converge onto a common, “amodal”, spatial image. While our model750

is directly consistent with the second property, the third one can be implemented by converting751

spatial locations of egocentric sensory signals at different modalities (e.g. haptic or auditory) into752

the common allocentric framework. These locations (or placeholders) can then be linked to the753

detailed representations of sensory experience in sensory-specific areas of the cortex, similarly754

to the putative links between landmark locations and their high-frequency contents discussed755

above. The first property can be assured by backward projections from the hippocampus to the756

allocentric layer (not included in the model), by a mechanism previously proposed to support757

spatial imagery (Byrne et al., 2007). One obvious candidate for the potential biological locus of758

the panoramic visual representation is the PPC, since spatiotopic neuronal receptive fields were759

observed in this area (Snyder et al., 1998; Fairhall et al., 2017). The parahippocampal place area, a760

scene-selective subdivision of the PHC, while not sensitive to the images of the same scene from761

different viewpoints (Epstein, 2008), can integrate visual information across saccades to form a762

representation of a larger scene (Golomb et al., 2011). Finally, RSC and occipital place area were763
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recently shown to mediate the memory of panoramic visual representations (Robertson et al.,764

2016).765

There are two key differences between our model and a previous influential model of spatial766

memory and imagery (Becker and Burgess, 2001; Byrne et al., 2007, see also Bicanski and Burgess,767

2016). First, our model postulates the existence of a quasi-panoramic representation of surrounding768

visual space, in topographic visual coordinates, as emerging experimental evidence suggests769

(Melcher and Morrone, 2015; Robertson et al., 2016). We propose that such a representation (i) is770

accumulated from successive views using short-term memory; (ii) can be used for planning of eye771

movements during natural behavior; (iii) serves for the storage of object/landmark position and772

orientation information. In our model, the reference frame for this panoramic representation is773

allocentric, and only a portion of it, corresponding to the current view field, is explicitly converted774

to an egocentric visual representation (equivalent to the “parietal window” of Byrne et al., 2007).775

Second, our model proposes a mechanism of fast bottom-up view-based reorientation of the776

head direction system that was either absent (Byrne et al., 2007) or relied on the presence of777

conspicuous landmarks linked directly to head direction cells (Bicanski and Burgess, 2016). A778

number of reorientation studies mentioned earlier suggest that this neural process is independent779

from landmark identities and can be performed in the absence of point-like landmarks. The780

mechanism we use relies on weight sharing and as such is not, at its present implementation,781

biologically realistic. The concept of weight sharing has been critical for recent successes of782

brain-inspired neural networks and is widely used in models of biological networks of visual783

processing (e.g. Serre et al., 2005; Masquelier and Thorpe, 2007; Bartunov et al., 2018). One784

possible implementation of our proposed reorientation mechanism would require mental rotation785

of the stored allocentric representations, while freezing the actual egocentric view in the input layer.786

Such an implementation would make the model significantly more complex, without changing the787

underlying computation.788

To summarize, the model presented in this work explored the nature of visual representa-789

tions in the parietal-medial temporal pathway for visuospatial processing and contributed to the790

open question of the link between visual and memory structures in primates. It proposes that791

a single, potentially multisensory, representation of surrounding environment is constructed by792

time-integrated sensory snapshots. This putative representation provides a 3D coordinate space793

within which positions of localized sensory events can be encoded and which can serve as basis for794

eye-movement generation in natural conditions. This model thus provides a conceptual framework795

for linking oculomotor behavior, visual and spatial memory.796
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