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We classify the possible closures of leaves of the isoperiodic foliation defined on the Hodge bundle over the moduli space of genus g ≥ 2 curves and prove that the foliation is ergodic on those sets. The results derive from the connectedness properties of the fibers of the period map defined on the Torelli cover of the moduli space. Some consequences on the topology of Hurwitz spaces of primitive branched coverings over elliptic curves are also obtained.

1. Introduction 1.1. Overview. Let ΩM g be the moduli space of abelian differentials on compact genus g ≥ 2 smooth curves. The period of an element (C, ω) ∈ ΩM g is the element of H 1 (C, C) Hom(H 1 (C, Z), C) that is defined by [START_REF] Francaviglia | Abikoff Degenerating families of Riemann surfaces[END_REF] Per(C, ω)

: γ ∈ H 1 (C, Z) → γ ω ∈ C.
The periods of an abelian differential do not allow to recover the abelian differential itself, even infinitesimally. Actually, it is always possible to find non trivial isoperiodic deformations of a given abelian differential, namely an immersed complex submanifold L ⊂ ΩM g such that the period of a form (C, ω) ∈ L is a locally constant function, when we use the local identifications of the H * (C, C)'s given by the Gauss-Manin connection. For instance, if f t : C t → C is a continuous family of degree d branched coverings over C depending on the parameter t, the period map of the family ω t = f * t ω is locally constant. The case g = 2 is instructive: every genus two curve is a double cover of P 1 ramified over six distinct points, say 0, 1, ∞, x 1 , x 2 , x 3 . An abelian differential on such a curve can be written as the hyperelliptic integrand (ax + b)dx

x(x -1)(x -x 1 )(x -x 2 )(x -x 3 ) .

Picard-Fuchs theory (see [17, p.60] for details) tells us that isoperiodic deformations on ΩM 2 are integral curves of the following vector field

(2)

j x j (1 -x j ) ax j + b ∂ ∂x j - 1 2 ∂ ∂a - 1 2 1 + j b(x j -1) ax j + b ∂ ∂b .
Apart from the invariant closed subsets characterized by topological properties of the set of periods, there is an interesting family of closed invariant sets for the isoperiodic foliation in genus two called the Hilbert modular invariant manifolds, introduced by Calta in [START_REF] Calta | Veech surfaces and complete periodicity in genus two[END_REF] and

McMullen in [START_REF] Mcmullen | Dynamics of SL2(R) over moduli space in genus two[END_REF][START_REF] Mcmullen | Foliations of Hilbert Modular Surfaces[END_REF]. The set of curves of genus two whose Jacobian has real multiplication by a quadratic order of discriminant D is a Hilbert modular surface X D , and a remarkable fact is that the subset of the Hodge bundle ΩX D over X D consisting of eigenforms for the complex multiplication is invariant by the isoperiodic foliation.

In any genus, the collection of all maximal isoperiodic deformations defines a holomorphic foliation F g of Ω * M g , called the isoperiodic foliation 1 (see [START_REF] Movasati | On elliptic modular foliations[END_REF] for further examples). It has dimension 2g -3, and it is also algebraic: its leaves are solutions of a system of algebraic equations analogous to [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF] with respect to the Deligne-Mumford algebraic structure on moduli space. It admits a real analytic global first integral defined by the volume of the flat metric induced by the abelian differential. Complex multiplication on the forms induces isomorphisms between the restrictions of the foliation to the volume levels.

It turns out that the restriction of F g to the volume levels carries a transverse structure modelled on the homogeneous space [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] Sp(2g, R)/U, with U = I 2 × Sp(2g -2, R)

with changes of coordinates acting by right multiplications by the elements of the lattice Sp(2g, Z). There are some well known examples of closed invariant sets for the given restriction and an integer d ≥ 2: the moduli spaces H g,d ⊂ ΩM g of forms that are pull-back of elliptic differentials by primitive branched coverings of degree d. The set H g,d is saturated by the isoperiodic foliation and each leaf there is algebraic.

The main goal of this paper is to investigate the topological properties of the isoperiodic foliation, and derive some dynamical consequences: we prove that any dynamical property satisfied by the action of the lattice Sp(2g, Z) on the homogeneous space (3) can be transferred to a property satisfied by the isoperiodic foliation. This fact is what we call the transfer principle. Using Ratner's theory, it allows to describe explicitely the closure of each leaf and prove that it is a real analytic subset. We also obtain the ergodicity of the isoperiodic foliation on these sets, a fact that has been proven independently by Hamenstädt in [START_REF] Hamenstädt | Dynamical properties of the absolute period foliation[END_REF].

The proof of the transfer principle is achieved by studying the topological properties of the fibers of the period map defined on the moduli space of homologically marked genus g curves, with values in the affine space C 2g : we prove that all the fibers that do not correspond to leaves in H g,2 with g ≥ 4 are connected. This result provides a solution to a problem posed by McMullen in [46, p. 2282] for genus g ≥ 4. The main idea of the proof of the connectedness of the fibers is to show that any form can be deformed continuously and isoperiodically to a stable form on a nodal curve, and then connect all possible stable forms obtained in this way using an inductive argument on the genus. As for fibers formed by branched double coverings over an elliptic differential, we generalize an invariant described by Arnold [START_REF] Arnold | A remark on the branching of hyperelliptic integrals as functions of the parameters[END_REF] for branched double coverings over the Riemann sphere (i.e. hyperelliptic loci) to prove they are disconnected when the genus is at least five.

Statement of results.

A homologically marked genus g curve is a couple (C, m), where C is a genus g curve and m : Z 2g → H 1 (C, Z) is a symplectic identification. The moduli space of marked genus g curves is a covering S g of M g called the Torelli covering, we denote by ΩS g the pull-back of the Hodge bundle on S g . We analyze the topological properties of the period 1 In the literature, this foliation is also called the kernel foliation, or the absolute period foliation.

map

Per g : ΩS g → H g ∪ 0 where H g ⊂ Hom(Z 2g , C) denotes the open subset formed by periods of non zero abelian differentials on a homologically marked genus g curve. The isoperiodic foliation lifts to a foliation of ΩS g whose leaves are the connected components of the level sets of the period map.

Definition 1.1 (Primitive degree). Given p ∈ Hom(Z 2g , C) we define

• its volume as vol(p) = (p) • (p), the symplectic product on Hom(Z 2g , R) • its primitive degree, denoted deg(p) as ∞ if Λ = p(Z 2g ) ⊂ C is non-discrete and as

deg(p) = vol(p) vol(C/Λ) if Λ ⊂ C is discrete.
When p ∈ Hom(Z 2g , C) is the period of some non-zero abelian differential ω on a homologically marked smooth curve (C, m), vol(p) corresponds to its volume i 2 ω ∧ ω too, and is therefore positive. When the periods of the form define a lattice Λ ⊂ C, the number deg(p) corresponds to the topological degree of the primitive branched covering C → C/Λ defined by integration of the form. It is therefore a positive integer and it can be equal to one only if C has genus one.

Our main result is Theorem 1.2. For g ≥ 2, the fibers of the period map Per g over points of primitive degree at least three are connected.

Its proof, whose structure is detailed in section 1.3, will take up most of the paper.

Regarding the fibers of Per g over points of primitive degree two, it was already known that they are connected for g = 2, 3 (see [START_REF] Mcmullen | Moduli spaces of isoperiodic forms on Riemann surfaces[END_REF]). We suspect that the equivalent statement is still true in genus four, but we were not able to prove it. Nevertheless, in higher genera we prove Theorem 1.3. If g ≥ 5, the fibers of Per g over points of primitive degree two are disconnected.

Theorem 1.3 is proved using an adaptation of a method due to Arnold [START_REF] Arnold | A remark on the branching of hyperelliptic integrals as functions of the parameters[END_REF] based on an invariant associated to branched double coverings. It enabled him to prove that the symplectic representation π 1 (H g,2 (P 1 )) → Sp(2g, Z), induced by the natural inclusion H g,2 (P 1 ) → M g of the Hurwitz space H g,2 (P 1 ) of genus g branched double coverings over the Riemann sphere, is not onto for g ≥ 3. In our case the invariant will be extended to branched double coverings over an elliptic curve.

The connectedness of the fibers of the lift of Per g to the universal cover of ΩM g fails in general. For example, in genus g = 3 the fibers of Per 3 over points of primitive degree two are biholomorphic to Siegel space S 2 , hence simply connected. Therefore there are infinitely many components of the lift of such a fiber to the universal cover of ΩM 3 . In genus g = 2, the generating family of π 1 (M 2 ) given by Mess in [START_REF] Mess | The Torelli groups for genus 2 and 3 surfaces[END_REF] allows to prove that the lift of the generic fiber is disconnected (see Corollary 6.20). In both cases the proof relies on the fact that the projection of the isoperiodic sets to Siegel space via the Torelli map, do not accumulate on some of the boundary components of Torelli space.

A first application of these results concerns the topology of Hurwitz spaces of branched coverings over elliptic curves. Recall that a branched covering is said to be primitive if it induces a surjection at the fundamental group level. The connectedness of the moduli space of genus g > 1 primitive branched coverings of degree d over an elliptic curve was proven by Berstein and Edmonds (see [START_REF] Berstein | On the classification of generic branched coverings of surfaces[END_REF]). Our method allows to retrieve this result, and to get some new information on the fundamental group of these moduli spaces whenever d > 2:

Corollary 1.4. Let H g,d (E) be the Hurwitz space of degree d and genus g ≥ 2 primitive branched coverings over the elliptic curve E. Let p : H 1 (Σ g ) H 1 (E) be the homology map of any of its elements. For d ≥ 3 the homomorphism

(4) π 1 (H g,d (C/Λ)) → Stab(p) ⊂ Sp(2g, Z) is onto.
This result is in fact more general: the fundamental group of the leaves of the isoperiodic foliation that correspond to a period p ∈ H g when deg(p) = 2 surjects onto Stab(p) ⊂ Sp(2g, Z). It is an immediate consequence of Theorem 1.2 (see Remark 2.7).

Let us mention that, by analogy with the fact that the level sets of the period map might be disconnected in the universal cover of ΩM g , the morphism from the fundamental group of a leaf to π 1 (ΩM g ) -which is isomorphic to the mapping class group-has an image that might be strictly contained in the stabilizer in of its corresponding period. This is precisely what happens in genus two (see Corollary 6.20).

Another application of Theorem 1.2, which was our original motivation, is that it allows to transfer dynamical properties of the action of Sp(2g, Z) on H g ∩ {p ∈ C 2g : deg(p) ≥ 3} to properties satisfied by the isoperiodic foliation on the moduli space of abelian differentials. Indeed, Theorem 1.2 is equivalent to the fact that every Sp(2g, Z)-invariant subset A ⊂ H g ∩ {p ∈ C 2g : deg(p) ≥ 3} corresponds to an F g -saturated subset [START_REF] Bainbridge | Euler characteristics of Teichmüller curves in genus two[END_REF] B = π(Per -1 g (A)) ⊂ ΩM g \ {degree two coverings over elliptic differentials}, and the correspondence A → B defined in (5) constitutes a bijection. Using Ratner's theory, we get the following Theorem 1.5 (Dynamics of isoperiodic foliations). Let g > 2 and (C, ω) ∈ Ω * M g of volume V = i 2 ω ∧ ω and Λ the closure of the image of its periods. Then the closure of the leaf L(C, ω) passing through (C, ω) is, up to the action of GL(2, R)

• (Λ is discrete) the component of Hurwitz space consisting of genus g primitive branched coverings over (C/Λ, dz) of volume V . • (Λ is R+iZ) the set of abelian differentials with periods contained in Λ, with primitive imaginary part, and with volume V , • (Λ = C) the subset of ΩM g consisting of abelian differentials of volume V , If g = 2 the same statement holds, with an extra possibility occurring when ω is an eigenform for real multiplication by a real quadratic order o D of discriminant D > 0. In this case the closure is the Hilbert modular invariant submanifold ΩX D .

Moreover, the restriction of F g to any of these real analytic subsets of ΩM g is ergodic with respect to the Lebesgue class.

Note in particular that this result classifies the algebraic leaves of the isoperiodic foliation: the only closed leaves correspond to Hurwitz spaces and they are known to be algebraic. 1.3. Strategy of the proof of Theorem 1.2. The proof follows by induction on the genus. At each step of the induction we use three main steps that constitute a general method of proving the connectedness of a set:

1. Construct a bordification. Embed the set in some larger space that we call bordification. Typically it is the closure of the set in some other space.

2. Connectedness of the bordification.

3. Taking out the added points does not disconnect the bordification.

Four different choices of bordifications for this program will be run along the proof of Theorem 1.2 depending on the genus and properties of the period map p:

The period map Per g (sometimes also referred to as Per) can be extended to the bordification of ΩS g ⊂ ΩS c g of marked stable forms on curves of compact type as a holomorphic map. In [START_REF] Mcmullen | Moduli spaces of isoperiodic forms on Riemann surfaces[END_REF], McMullen gave a description of the fibers of this extension (which constitutes Step 1. of a first bordification of the fibers of Per g ). In the coordinates given by Jacobian matrices of the underlying curves, namely in Siegel space, they are linear slices of the Schottky locus (the set of Jacobian matrices) with a Siegel space of co-genus one. In genus two and three, this observation is very powerful, since the Schottky locus is the whole of Siegel space. The given slice is therefore connected (Step 2.). The only slices that are strictly contained in the boundary correspond to degree one periods (they occur on nodal curves with a non-zero elliptic differential and a zero form elsewhere). For other degrees, the added points form a divisor in the slice, and the complement is still connected (Step 3.) En passant this gives a proof of Haupt's theorem in genus g = 2, 3, see [START_REF] Haupt | Ein Satz über die Abelschen integrale I[END_REF], namely that an element in Hom(Z 2g , C) is the period of an abelian differential on a homologically marked genus g curve if and only if its volume is positive and its primitive degree is at least two. In the sequel we will refer to these latter conditions as Haupt conditions. In higher genera, the Schottky locus is an analytic subset of higher codimension, that is far from being completely understood. The connectedness of the slice (Step 2.) seems out of reach via this method. The possible presence of singularities of this intersection would also add difficulties to prove (Step 3.): the simplest singularities of curves (nodes) already disconnect the curve locally.

For general g ≥ 4 we apply the inductive hypothesis. If p ∈ H g is injective, the program works with the bordification of the fiber Per -1 (p) formed by its closure in the space ΩS c g . The extension of the period map is a holomorphic submersion around any stable form without zero components, and the local fibers are transverse to each (smooth) boundary component.

Step 3. of the program is guaranteed: the boundary of Per -1 (p) forms a normal crossing divisor in the (smooth) bordification. The connectedness of the bordification (Step 2.) will be proven in two sub-steps:

2.1. Degeneration. Any form of period p on a smooth curve can be continuously and isoperiodically deformed to pinch a simple closed curve (necessarily of zero period). In the limit we find a stable form on a nodal curve.

Since p is injective, the only possibility is that the pinched curve is homologically trivial, therefore separating. The deformation is achieved by using Schiffer variations applied to pairs of saddle connections of the translation structure underlying a holomorphic one-form (see Proposition 5.5).

2.2 Connectedness of the boundary of Per -1 (p). We consider the dual graph of irreducible components of the (normal crossing) boundary divisor. The inductive hypothesis allows to transform the problem to a purely algebraic problem on p when g ≥ 4 and p is injective: each irreducible component corresponds to a splitting V ⊕ V ⊥ with 0 < vol(p |V ) < vol(p). Two such components have a common point in the closure if there is a decomposition with three factors whose sum of positive volumes is vol(p), and shares one factor with each initial decomposition.

In the case g ≥ 4 and non-injective p ∈ H g the degeneration property 2.1 is still valid. However, there are several difficulties that arise. In this case it could happen that the pinched curve represents a non-trivial class in ker p, in which case we get a stable form on a nodal curve with a non-separating node (which is not of compact type). However the limit form has no zero components and zero residues at the node.

It is natural to consider the bordification formed by the closure of the fiber Per -1 (p) in ΩS g ⊂ ΩS g , the so called augmented Torelli space, associated to the Torelli cover of the Deligne-Mumford (orbifold) compactification M g of M g . The main disadvantage is that this space is no longer a complex manifold (nor orbifold) around stable forms over a curve with a non-separating node (i.e. curves of non-compact type). The projection to M g is a local infinite branched covering, branching over the boundary. To analyze the closure of Per -1 (p) we try, as in the case of compact type, to understand the extension of the period map to those points. Here we fall in another pathology of yet different nature: the period map cannot be extended (even continuously) to the neighbourhood of such a point. Fortunately it has a continuous extension along a subvariety containing Per -1 (p). At points without zero components, the local fibers of this extension have the property that the boundary points do not locally separate the local fiber in several components (see Proposition 3.30 which allows to deduce Step 3 of the program). This property fails in general if we analyze the local fiber at a point with a zero component, even in most cases of compact type. It is mainly for this reason that, instead of considering the bordification as the closure of Per -1 (p) in ΩS g we will consider its closure in the subset Ω * 0 S g of forms with zero residues at the nodes and without zero components. The boundary of Per -1 (p) in this case is no longer an analytic set, but it is still stratified. Each such stratum is obtained by isoperiodic sets of forms of lower genus with marked points, at which they are attached. The dual graph of the stratification can still be considered. We will identify some boundary strata with precisely one node that are connected by using the inductive hypothesis of Theorem 1.2. The whole boundary is proven to be connected by showing that the dual graph of the strata is connected. This depends on the algebraic properties satisfied by the period map of stable forms with several nodes.

The fourth version of the program is run to identify connected isoperiodic boundary strata of forms on stable curves of genus g with one non-separating node. After normalization of the node, they can be interpreted as isoperiodic sets in the Hodge bundle ΩS g-1,2 on the Torelli cover of the moduli space of genus g -1 curves with two marked points. Two such forms are isoperiodic in this space if for all cycles in the relative homology with two marked points the integration coincides. A basis of this relative homology group is given by a basis of closed cycles and a relative cycle joining the two marked points. In practice, we need to show that the intersection Y p of the fiber over p ∈ H g-1 of the composition [START_REF] Bainbridge | Haupts theorem for strata of abelian differentials[END_REF] ΩS g-1,2 → ΩS g-1

Per g-1 -→ H g-1
with a fiber of a holomorphic function h : ΩS g-1,2 → C given by integration on a relative cycle, is connected. If the spaces were projective varieties and h algebraic, Lefschetz hyperplane section theorem would solve the issue. In the present context, a transcendental version of Lefschetz theorem proven by Simpson in [START_REF] Simpson | Lefschetz theorems for the integral leaves of a holomorphic one-form[END_REF] for functions defined by integration can be applied to show that the intersection of the fiber of the holomorphic extension of h to the bordification ΩS c g-1,2 -of stable forms over curves of compact type of genus g -1 and two marked points-with the fiber of the extended forgetful map ΩS c g-1,2 → ΩS c g-1 over a point in ΩS g-1 is (a possibly nodal) connected analytic curve whose eventual nodes lie in the boundary. At a node of this curve, one of its components is contained in the boundary, and the other in Y p . Each node corresponds to a stable form of compact type, having a zero component of genus zero with the two marked points, and glued to a genus g -1 abelian differential at one of its zeros. It is remarkable that there are examples where taking out the components of the boundary we get a disconnected curve. In particular, this implies that some of the intersections of fibers of the first arrow of ( 6) with fibers of h are not connected. Nevertheless the union of all of them will be proven to be connected as follows:

Step 1: Consider X p formed by the intersection of the fiber over p of

ΩS c g-1,2 → ΩS c g-1 → H g-1
with the extended fiber of h.

Step 2: Whenever deg(p) ≥ 3, the inductive hypothesis, Simpson's result and some complex analytic geometry show that X p is connected.

Step 3: The closure Y p ⊂ X p of Y p is a smooth manifold, and Y p \ Y p is a divisor in it. On the other hand the condition deg(p) ≥ 3 also implies that the intersection of Y p with each component of X p \ Y p is connected. This means that taking out one by one the (disjoint) components in X p \ Y p of X p does not separate the space in several connected components. Inductively we deduce that Y p is connected, as desired.

The description of the singularities of X p already shows that the extension of the period map can have singularities at stable forms with zero components. 1.4. Notes and references. Our strategy for the proof of the connectedness of the boundary of a fiber of Per works for g ≥ 4 but leads to difficult algebraic problems due to Haupt's conditions when g = 2, 3. The description of the fibers as slices of Schottky space in those cases, which was observed by McMullen in [START_REF] Mcmullen | Moduli spaces of isoperiodic forms on Riemann surfaces[END_REF], is crucial for the inductive argument to work.

The same type of difficulties were already present in the characterization of periods of holomorphic forms on Riemann surfaces by Otto Haupt in [START_REF] Haupt | Ein Satz über die Abelschen integrale I[END_REF], namely that those are the periods satisfying Haupt's conditions. Most of his work boiled down to treat the arithmetic involved in the genus two case, caused by forms belonging to the Hilbert modular invariant manifolds X D described above. From the point of view of slices of Schottky loci, the proof of Haupt consists in finding, by elementary algebraic methods, a boundary point in the slice and then apply a surgery. We actually provide a simpler proof of the result of Otto Haupt, which only differs by the remark that the genus two case can be treated using the Torelli map. Torelli's result (in [START_REF] Sulle | [END_REF]) was published two years before his death, in 1913, shortly before the outbrake of World War One. We wonder whether Haupt was aware of Torelli's results.

An alternative proof of the result of Otto Haupt with techniques that were completely out of reach at his time was given by Misha Kapovich in [START_REF] Kapovich | Periods of abelian differentials and dynamics[END_REF]. Rather surprisingly, it relies on Ergodic and Ratner's theory.

The main observation of Kapovich is that the set of periods of holomorphic one forms on homologically marked Riemann surfaces is invariant by the action of the integral symplectic group. Its action on the period domain is homogeneous and can be studied through Ratner theory. Our approach pushes the analysis of the period map a bit further to allow to transfer properties of the action to properties of the foliation induced by the map.

At around the time our transfer principle was announced, Hamenstädt proved the ergodicity of the isoperiodic foliation, with a different method. Her work is published in [START_REF] Hamenstädt | Dynamical properties of the absolute period foliation[END_REF]. She announced analogous results for the intersection of the foliation with connected components of strata of abelian differentials having a simple zero.

The problem of connectedness of isoperiodic sets has been considered by several authors. Martin Schmoll established in [START_REF] Schmoll | Spaces of elliptic differentials[END_REF], among other things, connectedness of moduli spaces of degree d covering of a given elliptic curve.

Remark that the same statement fails at the level of the Torelli covering for genus at least five and degree two, as stated in Theorem 2.3. We realized this fact after having prepublished a first version of our work on the arXiv, stating erronously that those fibers were also connected. Their disconnectedness can be established by generalizing to the context of moduli spaces of double coverings over an elliptic curve a famous work of Arnold, who observed that the inclusion of the hyperelliptic locus in the moduli space of genus g ≥ 3 curves is not surjective (to the integral symplectic group) at the homological level. See [START_REF] Arnold | A remark on the branching of hyperelliptic integrals as functions of the parameters[END_REF].

Fortunately, this exception did not fraud the whole (inductive!) argument, and constitute the single exception of disconnected isoperiodic moduli spaces of abelian differentials. The down side is that it added some extra difficulties to deal with. This constitutes our main result.

A problem that arises naturally is the description of the connected components of the intersection of the fibers of Per with the other strata and more generally the affine invariant manifolds that have been brought to light in the work of Eskin and Mirzakhani [START_REF] Eskin | Invariant and stationary measures for the action on Moduli space[END_REF]. Kontsevich and Zorich gave a description of the connected components of strata of abelian differentials without any condition on the periods in [START_REF] Kontsevich | Connected components of the moduli spaces of Abelian differentials with prescribed singularities[END_REF]; they found cases with up to three components. A direct application of our theorem shows that for generic period, the isoperiodic sets in the stratum will have several components too. Another extreme example of disconnected isoperiodic set: the intersection of a leaf of the isoperiodic foliation corresponding to non-discrete periods with the minimal stratum forms an infinite discrete set. Such phenomena were studied by McMullen in the genus two case [START_REF] Mcmullen | Moduli spaces of isoperiodic forms on Riemann surfaces[END_REF].

The analogous approach using a transfer principle for studying the dynamical properties of the isoperiodic foliation on strata can a priori be considered. There have been recent advances in this direction that point towards understanding the dynamical properties that could eventually be transferred: firstly that of determining the image of each stratum by the period map, and secondly that of determining the monodromy representation, i.e. the image of the symplectic representation of a connected component of a stratum. Concerning the first, a clear obstruction in the case of elements of H g,d is that the order at each branch point cannot be bigger than d -1. In recent preprints [START_REF] Bainbridge | Haupts theorem for strata of abelian differentials[END_REF], [START_REF] Fils | Periods of abelian differentials with prescribed singularities[END_REF] the authors show that, together with the positive volume condition, these are the only obstructions to realizing the periods in the stratum. For the second, the monodromy in some connected components of strata has been computed in recent works of Hamenstädt [START_REF] Hamenstädt | Quotients of the orbifold fundamental group of strata of abelian differentials[END_REF][START_REF] Hamenstädt | On the orbifold fundamental group of the odd component of the stratum H[END_REF] and Calderon and Salter [START_REF] Calderon | Relative homological representations of framed mapping class groups, to appear[END_REF][START_REF] Calderon | Connected components of strata of Abelian differentials over Teichmüller space Comment[END_REF]. Nevertheless, we point out that the techniques developed in this article do not seem to be enough to compute the connected components of the fibers of the period map on a stratum. For the time being it is unclear whether the transfer of properties to the isoperiodic foliation on a stratum can be carried.

Some interesting recent works have established similar dynamical properties for the isoperiodic foliations on strata and respectively on affine manifolds. The first contribution is by Hooper-Weiss in [START_REF] Hooper | Rel leaves of the ArnouxYoccoz surfaces[END_REF]; they show that the leaf of the isoperiodic foliation of the Arnoux-Yoccoz surface contained in the stratum H(g -1, g -1) is dense. We have been aware recently that K. Winsor has proven that in case g = 3 such a leaf has inifinite genus. Also, Ygouf has given an interesting criterion enabling to decide if leaves of isoperiodic foliation are dense in certain affine invariant manifolds of rank one. The rank has been defined in the context of affine manifolds by Wright as half of the codimension of the isoperiodic foliation [START_REF] Wright | Cylinder deformations in orbit closures of translation surfaces[END_REF].

We get a nice description of the isoperiodic foliation in the Hilbert invariant submanifolds ΩX D of F 2 after taking projectivisation. The foliation corresponds to the horizontal foliation of the uniformization of X D by the product H×H of two copies of the upper-half plane in C (see [START_REF] Mcmullen | Foliations of Hilbert Modular Surfaces[END_REF]). In that paper McMullen describes precisely the GL + (2, R)-action after projectivization, and finds some very interesting real analytic foliations by Riemann surfaces on X D , that are not transversely holomorphic.

It follows from works of Calta (in [START_REF] Calta | Veech surfaces and complete periodicity in genus two[END_REF]) and McMullen (in [START_REF] Mcmullen | Foliations of Hilbert Modular Surfaces[END_REF]) that the union of leaves of F 2 intersecting a closed GL + (2, R) -orbit in the minimal stratum H(2) has interestingly the structure of a closed analytic subset in the generic stratum H(1, 1). In the problem paper [START_REF] Hubert | Problems on billiards, flat surfaces and translation surfaces, in Problems on mapping class groups and related topics[END_REF], Problem 12, the authors ask to what extent this phenomenon is general. Our theorem shows that in the generic stratum it holds only for the closed leaves. The question remains completely open in the other strata. 1.5. Organization of the paper. In section 2 we give the proof of the results that do not need the bordification of spaces, and Theorem 1.5 as a consequence of Theorem 1.2. In section 3 we develop the theory and local properties of augmented Torelli spaces and the extension of the period map in the setting of stable forms with some marked points (to be able to cover all the cases above). In section 4 we relate the connectedness of the fibers of Per g with that of the fibers of the period map on ΩS g,n with n = 1, 2. In section 5 we prove, by using Schiffer variations, that the chosen bordification adds points to any component of a fiber of the period map on ΩS g . In section 7 we prove that, if Theorem 1.2 is true for all genera up to some g -1 ≥ 3, then the boundary of Per -1 (p) over a homomorphism p ∈ H g of primitive degree at least three is connected. Along the way, in section 6 we analyze isoperiodic sets with one node and give a proof of Haupt's theorem. In the Appendix I (Section 8 we collect the relevant proofs of the dynamical properties in [START_REF] Kapovich | Periods of abelian differentials and dynamics[END_REF] and extend it to the case of genus two. In Appendix II we give the proofs of technical algebraic results needed along the paper. For the convenience of the reader we have included a list of notations in section 10. 1.6. Acknowledgements. We warmly thank the referee that reported our paper in the first place for the careful reading and useful comments. They led us to a correct statement and proof of the Transfer Principle theorem, and the statement on the exceptional disconnected fibers. We also thank U. Hamenstädt, P. Hubert, M. Kapovich, E. Lanneau, F. Loray, D. Margalit, M. Möller, G. Mondello, H. Movasati, A. Putman and A. Wright for useful conversations. This paper was partially supported by the France-Brazil agreement in Mathematics. G. Calsamiglia was partially supported by Faperj/CNPq/CAPES/Mathamsud/Cofecub and B. Deroin by ANR project LAMBDA ANR-13-BS01-0002. It was mainly developed at Universidade Federal Fluminense, IMPA, ENS/Paris, U. Cergy-Pontoise, UPMC, and Università de Bologna, to whom we thank the nice working conditions provided.

2. Proofs of results that do not depend on the extension of the period map 2.1. Torelli map and period fibers. Fix a reference closed connected and oriented surface Σ g of genus g with n ≥ 0 ordered marked points Σ g,n = (Σ g , q 1 , . . . , q n ). A homotopical marking of a smooth genus g compact complex curve C with n pairwise distinct ordered marked points, P = (p 1 , . . . , p n ) is a homeomorphism f : Σ g,n → (C, P ) sending q i to p i . Two such markings f, f of (C, P ) and (C , P ) are equivalent if there exists a biholomorphism ϕ : (C, P ) → (C , P ) such that ϕ • f is isotopic to f . The Teichmüller space T g,n = T(Σ g,n ) for (g, n) satisfying k = 3g -3 + n > 0 is the set of equivalence classes of homotopically marked genus g smooth complex curves with n ordered distinct points endowed with the Teichmüller topology, i.e. the weakest topology for which the length function associated to a homotopy class of closed curve on Σ g,n is continuous. A point in T g,n will be denoted by

[f : Σ g,n → (C, P )].
The mapping class group of Σ g,n is the group Mod(Σ g,n ) of isotopy classes of orientation preserving diffeomorphisms that fix each marked point. It acts on T g,n by precomposition on the marking.

Bers ([11], Section 16) showed that whenever k > 0, the space T g,n can be embedded in C k as a bounded open domain, inheriting a complex structure. Following Ahlfors [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF], this complex structure is the only over the given topology for which the coordinate functions of the period matrices of curves depend holomorphically on the curve. In more detail, given a symplectic basis a 1 , b 1 , . . . , a g , b g of H 1 (Σ g , Z) (i.e. the only non-zero products of the cycles are a i • b i = 1 and b i • a i = -1) we can choose, for each marked curve f : Σ g,n → (C, P ) of genus g the unique basis ω 1 , . . . , ω g of Ω(C) such that

f * a i ω j = δ ij .
The maps τ ij : T g,n → C defined by [START_REF] Farb | A primer on Mapping Class groups[END_REF] τ

ij [f : Σ g,n → (C, P )] = f * b i ω j
are well defined and holomorphic. Let S g denote the Siegel space of genus g, i.e. the set of symmetric g × g matrices with complex entries whose imaginary part is positive definite. Riemann showed that the squared matrix of functions (τ ij ) defines a holomorphic map T g,n → S g that is invariant by the action of the Torelli group I g,n , kernel of the representation

Mod(Σ g,n ) → Aut(H 1 (Σ g , q 1 , . . . , q n , Z)).
It induces the Torelli map on the Torelli space S g,n := T g,n /I g,n , (8) S g,n → S g .

In the case of n = 0 it was shown to be injective by Torelli( [START_REF] Sulle | [END_REF]). Each point in S g,n is characterized by a triple (C, P, f * ) where f * is the isomorphism induced by f in homology. Therefore we will denote a point in S g,n simply as (C, p 1 , . . . , p n , m) where m : H 1 (Σ g , q 1 , . . . , q n , Z) → H 1 (C, p 1 , . . . , p n , Z) is an isomorphism. The quotient T g,n /Mod(Σ g,n ) is the moduli space M g,n of genus g curves with n marked points and the holomorphic structure induces an orbifold structure on M g,n . The Hodge bundle is a holomorphic vector bundle ΩM g,n → M g,n whose fiber over a point (C, P ) is the set of abelian differentials ω ∈ Ω(C). It can be pulled back to a holomorphic bundle ΩS g,n → S g,n .

Definition 2.1. The period map on ΩS g,n is the holomorphic map Per g,n : ΩS g,n → Hom(H 1 (Σ g , q 1 , . . . , q n , Z), C)

defined by Per g,n (C, p 1 , . . . , p n , m, ω) = {γ → m(γ) ω}.
When n = 0 we write Per g = Per g,0 .

When there is no risk of confusion we omit all subindices and write Per.

For instance given a homomorphism p : H 1 (Σ g , q 1 , . . . , q n , Z) → C we denote Per -1 (p) the fiber of Per g,n over p.

Multiplying forms by a constant induces a biholomorphism between fibers of Per g,n .

In the case n = 0 the properties of the Torelli map and of the intersection form in H 1 (Σ g , Z) have a nice consequence: Theorem 2.2. [START_REF] Mcmullen | Moduli spaces of isoperiodic forms on Riemann surfaces[END_REF] Let g ≥ 2 and p : H 1 (Σ g , Z) → C be a homomorphism with vol(p) > 0. Then Per -1 g (p) is biholomorphic to the intersection of a linear Siegel space S g-1 ⊂ S g and the image of the Torelli map -the so-called Schottky locus.-Proof. We take the choices and notations of the definition of [START_REF] Farb | A primer on Mapping Class groups[END_REF]. Let (C, m, ω) ∈ Per -1 (p). Its expression in the chosen basis reads ω = p(a 1 )ω 1 +. . .+p(a g )ω g and the following equations are satisfied: [START_REF] Bers | Spaces of degenerating Riemann surfaces, Discontinuous groups and Riemann surfaces[END_REF] m ij = τ ij (C, m) for i, j = 1, . . . , g

p(b i ) = p(a 1 )m i1 + . . . + p(a g )m ig for i = 1, . . . , g.

A point Z = (m ij ) ∈ S g that satisfies ( 9) is said to belong to the Schottky locus in S g . If it furthermore satisfies [START_REF] Bers | Deformations and moduli of Riemann surfaces with nodes and signatures[END_REF], then ω := p(a j )ω j is the unique abelian differential on (C, m) having periods p. This proves that Per -1 (p) is biholomorphic to the intersection of the Schottky locus with the set of solutions of [START_REF] Bers | Deformations and moduli of Riemann surfaces with nodes and signatures[END_REF].

It remains to show that the condition vol(p) > 0 implies that the set of all solutions Z = (m ij ) ∈ S g of ( 10) (that we call the set of matrices that admit p as a period) is biholomorphic to S g-1 . Up to multiplying all forms in Per -1 (p) by a constant we can suppose that all forms have volume one, i.e. vol(p) = 1.

The symplectic automorphism group of H 1 (Σ g , R) acts on Siegel space (by changing the marking) . Direct calculation shows that, writing T ∈ Sp(2g, R) in the basis {a i , b i } as block g × g real matrices with two lines A, B and C, D the action is defined by

Z = T Z = (AZ + B)(CZ + D) -1 . Moreover denoting p R : H 1 (Σ g , R) → C the natural extension of p : H 1 (Σ g , Z)) → C, the given action preserves the condition p R is a period of the matrix. By definition, (p R ) • (p R ) = (p) • (p) = vol(p) = 1.
On the other hand, by duality there exist elements a

1 , b 1 ∈ H 1 (Σ g , R) such that a 1 • b 1 = 1, a * 1 = p R and b * 1 = p R . Now, ker p R = ker (p R ) ∩ ker p R and contains the rank 2g -2 symplectic orthogonal of Ra 1 ⊕ Rb 1 .
We deduce ker p is symplectic of rank 2g -2. Choose a symplectic basis a 2 , b 2 , . . . , a g , b g of ker p R . The matrix in Siegel space associated to the real basis {a i , b i } has two diagonal blocks: 1 ∈ C and a matrix in S g-1 . Every such matrix admits p R as period, trivially. Therefore the set of solutions of ( 10) is also a linear Siegel subspace S g-1 ⊂ S g . Theorem 2.3. Let g = 2, 3 and p ∈ H 1 (Σ g , C) with vol(p) > 0 and deg(p) > 1. Then Per -1 (p) is non-empty and connected.

Proof. The Schottky locus is Zariski dense in S g for g = 2, 3. Its complement corresponds to period matrices of curves of compact type. By Theorem 2.2 we have that Per -1 (p) is biholomorphic to a Zariski open set of S g-1 , hence connected. Suppose Per -1 (p) is empty. Then, the linear subspace of Theorem 2.2 is completely contained in the complement of the Schottky locus. The same construction of forms of the proof of Theorem 2.2 (solutions of ( 9) and ( 10)) can be carried on Jacobians of curves of compact type to construct stable forms of periods p.

From a stable form of compact type that has no zero component we can obtain a form on a smooth curve having the same periods. Indeed by taking parallel slits instead of points to glue the different components we smoothen the curve, without changing the period map.

If g = 2, the curve has two components of genus one and we know that one of the components of the form is zero. This implies deg(p) = 1. A contradiction.

If g = 3 the curve has either a part of genus two and a part of genus one or three parts of genus one and the stable form is zero in one of the parts. If it it is zero on a genus two part, it implies deg(p) = 1, contrary to assumption. If it is zero in just one part of genus one we can suppose that we have a form ω = 0 on a smooth curve of genus two. It has at least one zero z 1 . Consider the local map z → z z 1 ω and the pre-image γ of a small segment [0, ε]. It is a path with distinct endpoints satisfying γ ω = 0. Gluing the endpoints produces a stable form on a curve that is not of compact type. If we take parallel slits at the endpoints instead, the gluing produces a stable form on a smooth curve of genus three. Marking the curve appropriately we obtain that its period is p . A contradiction.

For g ≥ 4 the image of the Torelli map is an analytic set of positive codimension (as an easy dimension count shows) and determining it is known as the Schottky problem. In fact, as stated in Theorem 1.3, there are some of the intersections given by Theorem 2.2 that will not be connected. As for the non-emptiness of the fiber of Per over points of positive volume and primitive degree at least two, we will show inductively that they can be realized as period of a stable form without zero components as in the proof of Theorem 2.3 and apply the surgeries. These surgeries will be extensively developed in Section 5 to produce continuous isoperiodic deformations of stable forms.

Strata and isoperiodic foliations.

It is well known that the spaces ΩM g,n and ΩS g,n are stratified. Two points (C, P, ω), (C , P , ω ) lie in the same stratum if there exists a homeomorphism (C, P ) → (C , P ) sending the zero divisor (ω) to the zero divisor (ω ). In other words, each marked point is sent to a marked point, each zero to a zero, and the orders of the zeros are preserved. The generic stratum Ω SZ S g,n is formed by forms with (2g -2) simple zeros, none of which is a marked point. The minimal stratum ΩS g,n (2g -2) is formed by abelian differentials with a single zero (at some marked point if there are any). Veech ([61]) and Masur ([45]) showed that there are local holomorphic coordinates defined on the stratum of a point (C, P, ω), with coordinates in Hom(H 1 (C, Z(ω) ∪ P, Z), C), defined by integration. As a consequence, the period map restricted to any stratum is a linear projection in the coordinates, and is therefore submersive and open. This implies that the fibers of the map Per g,n are regular and transverse to all strata different from the generic stratum. In particular, in restriction to ΩS g,n (2g -2), the map Per g,n is a local biholomorphism. On the other hand it also proves that the restriction of the map Per g,n to each stratum of stable forms defines a regular holomorphic foliation of codimension 2g.

The natural action of Mod(Σ g,n ) on ΩS g,n preserves each stratum, and the map map Per g,n is equivariant with respect to the corresponding action on Hom(H 1 (Σ g , q 1 , . . . , q n ; Z), C).

Definition 2.4. The regular foliation induced by Per g,n on ΩS g,n (and its restriction to each stratum) descends to ΩM g,n as a regular holomorphic foliation called the isoperiodic foliation and denoted F g,n (or F g = F g,0 when there are no marked points).

If L ⊂ ΩM g is the leaf of F g corresponding to the periods p ∈ H g , the restriction of the Torelli cover to the fiber [START_REF]Bers Finite dimensional Teichmüller spaces and generalizations[END_REF] Per -1 (p) → L is a Galois covering. We can give some information about the covering group. As observed by Arnold, see [START_REF] Arnold | A remark on the branching of hyperelliptic integrals as functions of the parameters[END_REF], the map π * :

H 1 (C \ C(π), Z/2Z) → H 1 (E \ V C(π), Z/2Z
) extends as a homomorphism [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF] Π :

H 1 (C, Z/2Z) → H 1 (E \ V C(π), Z/2Z).
This is due to the fact that any cycle turning once around a critical point of π is mapped to a cycle turning twice around a critical value of π. The image of Π is the kernel of the monodromy representation ε : H 1 (E \ V C(π 0 ), Z/2Z) → Z/2Z of the covering π.

To define an invariant that does not depend on the choices made so far, we need to choose a reference for the homology and the critical values. Fix a reference subset V C 0 ⊂ E of cardinality 2g -2. There exists a homeomorphism ϕ of E sending V C(π) to V C 0 , that is homotopic to the identity. Two such choices differ by post-composition by an element of the braid group of the pair (E, V C 0 ). We define Arnold's invariant of (C, m, ω) as the map

Ar(C, m, ω) := ϕ * • Π • m ∈ Hom(H 1 (Σ g , Z/2Z), H 1 (E \ V C 0 , Z/2Z))/G, where ϕ * : H 1 (E \ V C(π), Z/2Z) → H 1 (E \ V C 0 , Z/2Z
) is the natural map induced by ϕ, and where G ⊂ Aut(H 1 (E \ V C 0 , Z/2Z)) is the image of the natural representation of the braid group of the pair (E, V C 0 ) in the homology group

H 1 (E \ V C 0 , Z/2Z), acting on Hom(H 1 (Σ g , Z/2Z), H 1 (E \ V C 0 , Z/2Z
)) by post-composition. By construction the Arnold invariant is constant on every connected component of Per -1 (p).

The group Aut(H 1 (Σ g , Z/2Z)) of linear automorphisms preserving the symplectic structure acts on the set Hom(H 1 (Σ g , Z/2Z), H 1 (E \ V C 0 , Z/2Z))/G by precomposition. Remark that, if the image of the stabilizer of p in Aut(H 1 (Σ g , Z)) by the mod 2 reduction homomorphism

Aut(H 1 (Σ g , Z)) → Aut(H 1 (Σ g , Z/2Z))
does not stabilize the Arnold invariant of an element, it means that there are at least two values of the invariant in the orbit. We will compare the sizes of the stabilizer and the image to conclude. Lemma 2.8. For any (C, m, ω) ∈ Per -1 (p) the stabilizer of Ar(C, m, ω) in Aut(H 1 (Σ g , Z/2Z)) has order at most 2 4g-5 (2g -2)!, i.e.

|Stab Aut(H 1 (Σg,Z/2Z)) (Ar(C, m, ω))| ≤ 2 4g-5 (2g -2)!
Proof. Let ϕ be a homeomorphism of E sending V C(π) to V C 0 , that is homotopic to the identity, and define

A := ϕ * • Π • m, where ϕ * : H 1 (E \ V C(π); Z/2Z) → H 1 (E \ V C 0 , Z/2Z)
is the map induced by ϕ on homology. The Arnold's invariant is the class of A modulo post composition by an element of G. We need to count the number of elements M ∈ Aut(H 1 (Σ g , Z/2Z)) such that there exists an element g ∈ G satisfying

A • M = g • A.
The map g preserves the image of A, and g| Im(A) is determined by M . So we have a well-defined representation

ρ : Stab Aut(H 1 (Σg,Z/2Z)) (A) → End(Im(A)) given by ρ(M ) := g| Im(A) .
To bound the cardinality of Stab Aut(H 1 (Σg,Z/2Z)) (A) we proceed to bound the cardinality of the image and kernel of ρ.

To bound the cardinality of the image of ρ, let us analyze the action of G on H 1 (E \ V C 0 , Z/2Z). Consider the natural map i * : H 1 (E \ V C 0 , Z/2Z) → H 1 (E, Z/2Z) given by the inclusion. Its kernel can be identified with the space (⊕ v∈CV 0 (Z/2Z)v) /(Z/2Z)σ, with σ = v∈CV 0 v, where v ∈ CV 0 corresponds to the cycle turning once around v. We have the exact sequence [START_REF] Calsamiglia | Branched projective structures with Fuchsian holonomy[END_REF] 0

→ (⊕ v∈CV 0 (Z/2Z)v) /(Z/2Z)σ → H 1 (E \ V C 0 , Z/2Z) i * → H 1 (E, Z/2Z) → 0.
The group G preserves ker i * and acts on it by permutations. Moreover, it acts trivially on the quotient H 1 (E \ V C 0 , Z/2Z)/ ker i * H 1 (E, Z/2Z) because any element of the braid group is isotopic to the identity once marked points are forgotten.

Since the image of Π is the kernel of the monodromy representation of the branched covering π : C → E, the subspace Im(A) ⊂ H 1 (E \V C 0 , Z/2Z) is a hyperplane, whose intersection with ker i * is the (2g-4)-dimensional vector space ker i * ∩(Im(A))

⊕ v∈CV(π) (Z/2Z)v even /(Z/2Z)σ (i.e. the formal sums of an even number of critical values of π). Moreover, i * (Im(A)) = H 1 (E, Z/2Z). So the exact sequence (13) induces an exact sequence

(14) 0 → (⊕ v∈CV 0 (Z/2Z)v) even /(Z/2Z)σ → Im(A) i * → H 1 (E, Z/2Z) → 0.,
which is invariant by ρ, the action of this latter on the left-hand module being made by permutations.

Since the group of automorphisms of the exact sequence [START_REF] Calderon | Relative homological representations of framed mapping class groups, to appear[END_REF] acting on its left hand side by permutations has cardinality at most (2g -2)! × 2 2(2g-4) , we get the bound [START_REF] Calderon | Connected components of strata of Abelian differentials over Teichmüller space Comment[END_REF] |Im(ρ 4) .

)| ≤ (2g -2)! × 2 2(2g-
Let us now bound the number of elements of the kernel of ρ. Let M ∈ ker(ρ), which means that A • M = A. Write M = I + ψ where ψ : H 1 (Σ g , Z/2Z) → ker(A).

Claim: the kernel of A is a two-dimensional isotropic subspace of H 1 (Σ g , Z/2Z).

Proof of the claim. From [START_REF] Berstein | On the classification of generic branched coverings of surfaces[END_REF] we deduce that, up to composition by homeomorphisms in source and target, there is only one double branched covering from a genus g closed oriented connected surface to E. It is therefore sufficient to verify the statement on an example that we depict in Figure 1.

180 • a g b g a g-1 b g-1 Figure 1.
Example of double cover with bi-dimensional isotropic ker A First we construct a 2 : 1 branched covering π : Σ → P 1 on a connected closed oriented surface of genus g-2, whose associated Arnold's map A :

H 1 (Σ , Z/2Z) → H 1 (P 1 \V C(π ), Z/2Z)
is injective. Let z 1 , z 2 , . . . , z 2g-3 , z 2g-2 ∈ P 1 be distinct points in the Riemann sphere, and let I 0 , . . . , I g-2 ⊂ P 1 be pairwise disjoint segments, such that ∂I k = {z 2k+1 , z 2k+2 }. Slit two copies of P 1 \ (∪ k I k ) and glue them together by the usual rule: the right side of I k in one copy is glued to the left side of I k in the second, and vice versa. We get a branched double cover π : Σ → P 1 whose critical values are the z k 's. We let α 1 , . . . , α g-2 be simple closed curves that are boundaries of small neighborhoods of the I k 's. Let {J k } k=1,...,g-2 be a disjoint family of embedded segments in the Riemann sphere, the boundary of J k intersecting the union ∪I l only in its extremities z 2k and z 2k+1 . We denote by β k the boundary of a small neighborhood of J k . The curves α 1 , β 1 , . . . , α g-2 , β g-2 lift to curves a 1 , b 1 , . . . , a g-2 , b g-2 ⊂ Σ forming a symplectic basis of Σ . Notice that the homology of P 1 \ {z 1 , . . . , z 2g-2 } with coefficients in Z/2Z is generated by the cycles associated to small simple closed curves c k turning around z k , the only relation being that the sum of these cycles is zero. By construction we have A (a k ) = c 2k+1 + c 2k+2 and A (b k ) = c 2k + c 2k+1 . From this we easily prove that A is injective. Now, take an open disc ∆ in the Riemann sphere that contains the union of the intervals I k and J k , and the curves α k , β k , c k , for k = 1, . . . , g. The surface Σ \ (π ) -1 (∆) is a union of two discs corresponding to lifts of P 1 \ ∆. Consider a torus E, and an embedding i : ∆ → E. Attach to (π ) -1 (∆) two copies of E \i(∆) along the identification of their boundaries given by the maps i and π. We get a surface Σ of genus g, and a branched covering π : Σ → E defined by π in (π ) -1 (∆) and by the natural identification of the two components of Σ \ (π ) -1 (∆) with E \ i(∆). Denoting by α, β ⊂ E oriented simple closed curves that do not intersect i(∆) and that form a symplectic basis of H 1 (E, Z), we let a g-1 , b g-1 ⊂ Σ and a g , b g ⊂ Σ the corresponding cycles in the two copies of E \ i(∆). We denote by a 1 , b 1 , . . . , a g-2 , b g-2 ⊂ Σ the simple closed curves equal to the curves a 1 , b 1 , . . . , a g-2 , b g-2 in (π ) -1 (∆). The cycles a 1 , b 1 , . . . , a g , b g in H 1 (Σ, Z/2Z) form a symplectic basis, and we have

A(a k ) = c 2k+1 + c 2k+2 , A(b k ) = c 2k + c 2k+1 if k ≤ g -2 and A(a g-1 ) = A(a g ) = a, A(b g-1 ) = A(b g ) = b,
where, in these formula, we denote by c k = i(c k ). The kernel of A is then the space generated by a g-1 -a g and b g-1 -b g , which is isotropic modulo 2. The claim follows.

Since M is symplectic and ker A isotropic of dimension two, ψ satisfies ψ + ψ * = 0, and induces an anti-symmetric map H 1 (Σ g , Z/2Z)/ker(A) ⊥ → ker(A) (here the anti-symmetric character is relative to the natural duality between ker(A) and H 1 (Σ g , Z/2Z)/ker(A) ⊥ given by the intersection form). Since ker(A) is two dimensional, there is a 3-dimensional space of such maps ψ over Z/2Z. In particular, we have [START_REF] Calta | Veech surfaces and complete periodicity in genus two[END_REF] |ker(ρ)| ≤ 2 3 .

The lemma follows immediately from bounds [START_REF] Calderon | Connected components of strata of Abelian differentials over Teichmüller space Comment[END_REF] and [START_REF] Calta | Veech surfaces and complete periodicity in genus two[END_REF].

We denote by p [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF] the reduction of p modulo two, namely the map

(17) p[2] : H 1 (Σ g , Z/2Z) → Im(p)/2Im(p) H 1 (E, Z/2Z).
More geometrically, for an element (C, m, ω) ∈ Per -1 (p), we have p

[2] = i * • ϕ * • Π • m, where i * : H 1 (E \ V C 0 , Z/2Z) → H 1 (E, Z/2Z
) is the map induced by inclusion.

To conclude the proof of Theorem 1.3, we use an algebraic result whose proof can be found in Appendix II (see section 9). Lemma 2.9. If g ≥ 3, the image of the mod 2 reduction map

Stab Aut(H 1 (Σg,Z)) (p) → Aut(H 1 (Σ g , Z/2Z)) is Stab Aut(H 1 (Σg,Z/2Z)) (p[2]). Its cardinality is 2 2g-2 × 2 2g-3 × (2 2g-4 -1) × 2 2g-5 × . . . × (2 2 - 1) × 2.
The combination of Lemma 2.8 and Lemma 2.9 show that Arnold's invariant takes at least

2 2g-2 × 2 2g-3 × (2 2g-4 -1) × 2 2g-5 × . . . × (2 2 -1) × 2 2 4g-5 (2g -2)!
distinct values on any orbit of Stab Aut(H 1 (Σg,Z)) (p) in Per -1 (p). This number is strictly larger than 1 if g ≥ 5, hence the proof of Theorem 1.3 is complete.

In the case of genus g = 4, a more detailed study allows to show that the Arnold's invariant takes only one value on the isoperiodic spaces of degree two (and actually, realizes another instance of the exceptional isomorphism between Sp(4, Z/2Z) and S 6 ). It is plausible that these isoperiodic sets are connected indeed, but we could not prove it by using this invariant.

2.4. Dynamics of the action of Sp(2g, Z) on H g . In this subsection, we state the extension of the analysis of the linear action of Γ = Sp(2g, Z) on the set of periods of positive volume, that were presented by Kapovich in [START_REF] Kapovich | Periods of abelian differentials and dynamics[END_REF] for the cases g ≥ 3 to the case of genus g = 2. For the sake of completeness we include the proof in Appendix I (see section 8). This will enable us to derive Theorem 1.5 from Theorem 1.2.

The closure of the orbit of a period p depends heavily on the rationality properties of the real two dimensional symplectic subspace

(18) W = R p + R p ⊂ R 2g
defined over smaller fields. Except for the case where W is defined over a quadratic field and W σ = W ⊥ for the Galois involution, the different cases can be characterized by the dimension of the maximal subspace of W defined over the rationals. This dimension can also be detected by the topological properties of the closure of the Z-submodule Λ(p) of C generated by the entries of p ∈ C 2g . It is two if Λ(p) is discrete, one if it is isomorphic to R + iZ and zero if it is dense. Notice that this submodule is invariant under the action of Γ on X. The different possibilities in Theorem 1.5 arise from this analysis at the level of this submodule. We resume the analysis in the following Proposition 2.10. Assume g > 2. For any p ∈ C 2g of positive volume, we have the trichotomy for W = R p + R p

• W is defined over Q. In this case, Λ(p) is discrete and either p is the period of a finite branched covering of the elliptic differential (C/Λ(p), dz) or it is a collapse of g -1 handles. The set Γ • p is the set of periods q ∈ C 2g of volume V (q) = V (p) such that Λ(q) = Λ(p). • W is not rational but contains a rational line. In this case, up to the action of GL(2, R), the set Λ(p) is R + iZ, and Γ • p is the set of periods q ∈ C 2g of volume V (q) = V (p) whose imaginary part are integer valued and primitive.

• W does not contain any rational subspace of positive dimension. In this case, Λ(p) = C, and Γ • p is the set of periods q ∈ C 2g such that V (q) = V (p). In genus g = 2, there is another possibility:

• W is defined over a quadratic field K, and W ⊥ = W σ , where σ is the Galois involution of K. In this case Γ • p is the set of periods q which differ from p by post-composition by an element of GL(2, R), and by pre-composition by an element of Sp(4, Z).

In any case, the action of Γ is ergodic in Γ • p.

2.5. Proof of (Theorem 1.2) g ⇒(Theorem 1.5) g . We suppose that we know that Theorem 1.2 is true for some genus g ≥ 2 and hence invariant sets of the isoperiodic foliation F g := F g,0 correspond to invariant sets of the Sp(2g, Z) action on H g . We want to deduce Theorem 1.5 for genus g. For the sake of simplicity we omit the sub-index of Per g,0 and write Per.

The closure L of the leaf L = L(C, ω) of F g through (C, ω) ∈ ΩM g is a closed F g -invariant set. By the Transfer principle (see Theorem 1.2), after choosing a marking m of C, it corresponds to the projection from ΩS g to ΩM g of all marked abelian differentials having periods in the closure of the Sp(2g, Z)-orbit of p = Per(C, m, ω) ∈ H g . The final ergoditicy part of the statement of Theorem 1.5 follows from the final statement in Proposition 2.10.

Case 1 : If ω is a genus two eigenform for real multiplication by a real quadratic order o D of discriminant D > 0. Then the closure of L is one of the Hilbert modular manifolds ΩX D (see [START_REF] Calta | Veech surfaces and complete periodicity in genus two[END_REF] or [START_REF] Mcmullen | Dynamics of SL2(R) over moduli space in genus two[END_REF]). As shown in [48, Case 3. of Theorem 5.1] this case occurs if and only if p has the properties described in the last possibility of Proposition 2. [START_REF] Bers | Deformations and moduli of Riemann surfaces with nodes and signatures[END_REF].

In what follows we suppose that p does not satisfy the last condition of Proposition 2.10. The other possibilities can be characterized in terms of the closure of Λ(p) in C: In particular this provides an alternative proof of the connectedness of the Hurwitz space of primitive branched coverings over C/Λ(p) of volume V (see [START_REF] Berstein | On the classification of generic branched coverings of surfaces[END_REF] for the original proof).

Case 3 : Λ(p) is neither discrete nor dense in C. Then its closure is an infinite union of parallel real lines and we fall in the second case of Proposition 2.10. The conclusion is that in the closure L we find all pairs (C , ω ) of volume V whose periods belong to Λ(p) and contain elements in every real line where Λ(p) is dense.

Case 4 : Λ(p) is dense in C. We fall in the third case of Proposition 2.10. In L we find all pairs (C , ω ) of volume V .

2.6. Remark on the transfer principle on strata. The generic stratum is the complement of an analytic subset, and therefore its intersection with each fiber of Per g has the same number of connected components as the whole fiber. We can thus apply the Transfer principle to the generic stratum as well. On the other strata, the question seems to be much more delicate (see the discussion in section 1.4). At the other extreme, on the minimal stratum, the isoperiodic foliation has dimension zero, so we cannot expect to transfer dynamical properties of the symplectic group on the period domain to dynamical properties of the isoperiodic foliation. We even show here that Proposition 2.11. The intersection of a fiber of Per g with the minimal stratum is infinite discrete.

The connectedness of the intersection of the fibers of Per g with the connected components of all other strata remains open.

Proof. The restriction of the map Per g to the minimal stratum is a local diffeomorphism onto an open set in H g . Hence its fibers are discrete. Let (C, m, ω) ∈ ΩS g be a point in the minimal stratum and p = Per(C, m, ω). Remark that the image of Aut(C, ω)

→ Sp(H 1 (C, Z)) is a finite subgroup G.Therefore the group Stab(C, m, ω) = {M ∈ Sp(H 1 (Σ g , Z)) : (C, m • M, ω) is equivalent to (C, m, ω)} is finite.
If p has discrete image, then Stab Sp(H 1 (Σg,Z)) (p) is infinite and contains G. Hence there is an infinite number of points in the orbit of (C, m, ω) under this group. All of them lie in Per -1 (p), so the result follows in this case.

Next suppose p has non-discrete image. By Proposition 2.10 there exists an infinite sequence of M n ∈ Sp(H 1 (Σ g , Z)) such that p n = p • M n is a sequence of pairwise distinct points converging to p in H g . Up to taking a subsequence, these points correspond to points (C n , m n , ω n ) in the minimal stratum via Per g , that project to an infinite family of pairwise distinct points

(C n , ω n ) ∈ ΩM g . By construction, all points (C n , m n • M -1
n , ω n ) belong to the intersection of Per -1 (p) with the minimal stratum and are pairwise distinct in ΩS g . 2.7. Monodromy of zeros along a fiber of Per g,n in the generic stratum. Definition 2.12. Given a connected component K of the intersection of a fiber of Per g,n with a stratum of ΩS g,n having l distinct zeros, define the monodromy group of zeros associated to K as the conjugacy class of the image group G K of the representation π 1 (K, (C 0 , P 0 , m 0 , ω 0 )) → S l that associates to each loop in K the permutation induced on the zero set z 1 , . . . , z l of ω 0 .

Our main interest will be the monodromy group of the zeros in the generic stratum. Recall that it is a Zariski open set in the fiber of the isoperiodic map and is therefore connected if and only if the fiber is. Turning around the divisors associated to other strata in the fiber already produces some monodromy of the zeros: Lemma 2.13. Let g ≥ 2 and L be a connected component of a fiber of Per g,n . Suppose it contains a point whose zero divisor is d 1 p 1 + . . . + d l p l . Then, the monodromy group of the zeros in the generic stratum L SZ of L, contains all transpositions of pairs of elements that belong to the same part of a partition

Z 1 • • • Z l of the set of 2g -2 elements with |Z i | = d i .
Before we proceed to the proof we recall the interpretation of an element (C, p 1 , . . . , p n , ω) in ΩM g as a branched projective structure (see [START_REF] Calsamiglia | Branched projective structures with Fuchsian holonomy[END_REF] for more details), or, more precisely, a branched translation structure. Indeed, around any point q ∈ C we can define a local branched covering of degree ord q (ω) by φ q (z) = z q ω. At the intersection of domains of two such branched coverings differ by a translation, and therefore define a branched atlas on the topological curve C with transitions in the set of translations (which are actually holomorphic). The branch points correspond to the zeros of the form. Reciprocally, if we are given an atlas {D q , φ q } on a compact topological surface of genus g of (topological) branched coverings φ q : D q → C with a finite number of branch points whose transition maps are translations, it defines a complex structure on the surface and the form defined locally by ω := dφ q is globally defined. In section 5.1 we will exploit this interpretation further. For the moment we will use it to deform a given point without changing the corresponding periods by changing a given atlas locally around a branched point.

Proof of Lemma 2.13: Let (C, r 1 , . . . , r n , m, ω) be the point satisfying (ω) 0 = d 1 p 1 +. . .+d l p l . If all d i = 1 there is nothing to prove. Otherwise, L SZ is the complement of a normal crossing divisor in L (see section 2.2). Choose a local chart φ i : D i → C of degree d i + 1 of the translation structure of ω around p i . We can suppose that none of the zeros of ω is a marked point r i and take discs D i not containing any marked point.

Recall from the appendix in [START_REF] Calsamiglia | Branched projective structures with Fuchsian holonomy[END_REF] that we can construct a germ of continuous map

H(φ 1 ) × • • • × H(φ d l ), (φ 1 , . . . , φ l ) → (L, ω)
where each H(φ i ) is a Hurwitz space of coverings of degree d i over a disc φ i (D i ) up to an equivalence in the boundary that allows to glue each element with the translation surface defined by ω on C \ (∪D i ) to obtain a branched translation structure on a closed marked surface of genus g. Since we can keep the marked points and a marking of the homology by avoiding the discs D i , the gluing preserves all integrals over cycles of H 1 (Σ g , q 1 , . . . , q n ; Z). By [START_REF] Calsamiglia | Branched projective structures with Fuchsian holonomy[END_REF][Lemma A7, p. 439], each H(φ i ) can be parametrized by the space of polynomials

P a (z) = z d i + a d i -1 z d i -1 + . . . + a 0 with
a j = 0 having critical values in the unit disc. The point with all coordinates a j = 0 corresponds to the initial point. Any choice on each Hurwitz space of a point that has d i distinct critical values {v 1 , . . . , v d i } (therefore determining simple critical points on some set Z i ) has as image in L a point with simple zeros. On the other hand, the set of critical values determines the values of the a i 's in the parameter space. Choose one such point (C 0 , ω 0 ) ∈ L SZ . Since the germ of D d i \ {(z 1 , . . . , z d i ) : with z j = z k for some j = k} at the origin is connected, there exists a path in it joining (v 1 , . . . , v d i ) to any point obtained by permuting the order of the coordinates. Such a path will determine a closed path in the parameter space whose image in L SZ will permute the zeros of ω 0 in each part Z i as desired.

Lemma 2.14. Let g ≥ 3 and p ∈ H g such that Per -1 (p) is connected. Then, the monodromy group of the zeros in the generic stratum of

Per -1 (p) is S 2g-2 if deg(p) ≥ 3 and trivial if deg(p) = 2.
Proof. Assume first that p has infinite primitive degree, or equivalently non discrete image. In this case we claim there exists a form in Per -1 (p) in the minimal stratum, namely having a unique zero of multiplicity 2g -2. From Lemma 2.13 we deduce that the whole group S 2g-2 is in the image of the representation. To prove the claim, observe that up to the action of the group GL + (2, R), we can assume that the closure of the orbit of p under the action of the group Aut(H 1 (Σ g , Z)) contains the set P of all periods q : H 1 (Σ g , Z) → R + iZ of volume vol(q) = vol(p) (see Proposition 2.10). Since the period map restricted to the minimal stratum is a local biholomophism (see subsection 2.2), its image is an open set. It therefore contains points with discrete values in Q + iQ that necessarily have finite degree. Up to the action of GL(2, R) we can find one whose periods lie in P . Moreover, there is a neighborhood of P in Hom(H 1 (Σ g , Z), C) which consist of periods of forms in the minimal stratum. In particular, the orbit of p under Aut(H 1 (Σ g , Z)) intersects this neighborhood, and thus p itself is the period of a form in the generic stratum. Hence the result follows in the case deg(p) = ∞.

Assume now that deg(p) < ∞. In this case, consider the map R : 

Per -1 (p) → H g,d ( 
U → H g,d (E) DC with group Aut(H 1 (Σ g , Z)).
In particular, the monodromy group H of the zeros of a form in U is a normal subgroup of the group G of permutations of the critical values of a branched covering of H g,d (E) DC . It is well-known that this later group G is the whole symmetric group, but by lack of references we reproduce a proof in the following paragraph. With this at hand it suffices to observe that if deg(p) ≥ 3, and g ≥ 3, there exists a form in Per -1 (p) having a multiple zero to conclude H = G. By the first item of Proposition 2.10, or equivalently Lemma 8.1, it suffices to prove the existence of primitive genus g and degree d branched covering over E, branched over a set {e 1 , . . . , e 2g-3 } of 2g -3 elements with transitive monodromy representation π 1 (E \ {e 1 , . . . , e 2g-3 }) → S d taking one of the peripherals to a cycle of order three and every other peripheral to a transposition. This is certainly possible if d ≥ 3 and 2g -3 ≥ 2, i.e. g ≥ 3. Hence, the group H contains a transposition. Being normal in G S 2g-2 , it is necessarily the whole S 2g-2 .

It remains to prove that the representation of permutations of the critical values

π 1 (H g,d (E) DC ) → S 2g-2
is onto. Let c : E → E be a non ramified cyclic d : 1 covering of E. We denote by τ ∈ Aut(E ) a generator of the Galois group of c. Denote by s 1 , . . . , s g-1 be smooth curves in E , diffeomorphic to closed intervals, such that all the intervals c(s 1 ), . . . , c(s g-1 ) are disjoint.

In particular all curves in the family s 1 , . . . , s g-1 , τ (s 1 ), . . . , τ (s g-1 ) are disjoint. Slit E along all the curves of this later family, and glue the right side of s k to the left side of τ (s k ), and vice versa, for every k = 1, . . . , g -1. We obtain a Riemann surface C of genus g, on which the map c induces a well-defined degree d branched covering r : C → E, which is primitive.

Observe that the critical values of r are the extremities of the curves c(s k ) for k = 1, . . . , g -1.

Denote by ι k , e k these extremities. Observe that moving the curve s k without touching the other curves, and returning back to the same curve s k but with opposite orientation, we return back to the same branched covering of E, and the permutation on the critical points is the transposition exchanging ι k and e k . Now, given k, l, move s k in such a way that it does not touch any other s h , apart at the very end of the movement where the two points ι k and e l coincide. At this moment, we construct an element of H g,d (E) having a critical point of multiplicity two, above the point ι k = e l . Turning around this point in H g,d (E) DC will have the effect of transposing the two critical values ι k and e l , while letting the other fixed. The set of permutations constructed in this way generate the whole symmetric group of the set {ι 1 , e 1 , . . . , ι g-1 , e g-1 }.

It remains to prove the last statement, namely that if p has primitive degree two, the monodromy of the zeros on Per -1 (p) is trivial. Remark that all forms in that set have simple zeros. We can use done using the invariant of Arnold's introduced in the proof of Theorem 1.3. Consider the (locally flat) fiber bundle E → Per -1 (p) by Z/2Z-vector spaces, whose fiber over an element (C, m, ω) is the Z/2Z vector space generated by the zeros of ω, the only relation being that the sum of all zeros is trivial. Since the number of zeros of ω is 2g -2 ≥ 4, we need to prove that the monodromy of E is trivial when the primitive degree of p is equal to two.

The fiber bundle E embeds naturally in the locally flat Z/2Z-vector bundle G over Per -1 (p) whose fiber over a point (C, m, ω) is the space H 1 (E \ VC(π), Z/2Z); the embedding sends a zero of ω to the peripheral cycle turning around its π-image in E.

Fiberwise, the family of maps Π • m, where (C, m, ω) varies in Per -1 (p) and Π is the map [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF], induce a map from the constant bundle H 1 (Σ g , Z/2Z) over Per -1 (p) to the bundle G. The image of the constant subbundle Ker(p [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF]) ⊂ H 1 (Σ g , Z/2Z) over Per -1 (p) (recall that p [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF] is the reduction of p modulo two, see ( 17)) fall inside the subbundle E of G. Moreover, it consists fiberwise of the subspaces of formal sums of an even number of peripheral cycles in

H 1 (E \ VC(π), Z/2Z).
We infer that the monodromy of E acts trivially on this subspace. Since a permutation of a set of at least three elements is determined by its action on the subsets of an even number of elements, we are done.

Augmented Torelli space and the extension of the period map

In this section we review the topological and analytical properties of moduli spaces of curves and some of their coverings and (partial) bordifications. We will adopt the analytic point of view first developed by Abikoff in [START_REF] Francaviglia | Abikoff Degenerating families of Riemann surfaces[END_REF]. It is based on the Augmented Teichmüller space (see [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF][START_REF]Bers Finite dimensional Teichmüller spaces and generalizations[END_REF][START_REF] Bers | Spaces of degenerating Riemann surfaces, Discontinuous groups and Riemann surfaces[END_REF][START_REF] Bers | Deformations and moduli of Riemann surfaces with nodes and signatures[END_REF][START_REF] Gerritzen | The extended Schottky space[END_REF][START_REF] Harris | Moduli of curves[END_REF][START_REF] Herrlich | The extended Teichmüller space[END_REF][START_REF] Hubbard | An analytic construction of the Deligne-Mumford compactification of the moduli space of curves[END_REF][START_REF] Masur | Extension of the Weil-Petersson metric to the boundary of Teichmüller space[END_REF][START_REF] Wolf | Real analytic structures on the moduli space of curves[END_REF][START_REF] Wolpert | Geometry of the Weil-Petersson completion of Teichmüller space[END_REF][START_REF] Wolpert | Families of Riemann surfaces and Weil-Petersson geometry[END_REF][START_REF] Yamada | On the geometry of Weil-Petersson completion of Teichmüller spaces[END_REF] for details and further references). We will also analyze the extension of the period map to the boundary points lying in the closure of fibers of Per g,n 3.1. Marked stable curves. Definition 3.1. A connected complex curve C with n marked distinct points r 1 , . . . , r n ∈ C is said to be stable if its singularities are nodes and do not coincide with any of the marked points, and the closure C i of each component of C * := C \ Sing(C), called a part of C, has a group of automorphisms that fix the marked points and the boundary points that is finite. The normalization of C is the smooth curve Ĉ = C i . A stable curve C is said of compact type if every node separates C in two components. Otherwise C is said to be of non-compact type.

The arithmetic genus of a stable curve is g = h 1 (C, O). When C has δ nodes and its normalization has ν components of genera g 1 , . . . , g ν , the arithmetic genus satisfies (see [START_REF] Harris | Moduli of curves[END_REF]

[p. 48]) g = ν i=1 (g i -1) + δ + 1
As in section 2.1, for g, n ≥ 0 we fix a reference surface with marked points Σ g,n = (Σ g , q 1 , . . . , q n ): a closed connected oriented surface Σ g of genus g with a set of n distinct ordered marked points Q = (q 1 , . . . , q n ) ∈ Σ g . When n = 0 we omit the subindex and write Σ g = Σ g,0 .

Definition 3.2. A homotopical marking (or sometimes a collapse) of a connected genus g stable curve C with n ordered pairwise distinct marked points R = (r 1 , . . . , r n ) ∈ C * is a continuous surjection f : Σ g,n → (C, r 1 , . . . , r n ) such that f (q i ) = r i , the preimage of each node is a simple closed curve on Σ g \ Q and on each component of Σ g \ f -1 (N ) where N is the set of nodes, the map f is a homeomorphism onto a part of C that preserves the orientation.

When C is non-singular a collapse is a homeomorphism and the definition coincides with the one given in subsection 2.1. Definition 3.3. A homotopically marked stable curve with n marked points is a marked stable curve (C, r 1 , . . . , r n ) together with a homotopical marking f :

(Σ g , Q) → (C, R). Two ho- motopically marked stable curves f i : (Σ g , Q) → (C i , R i ) for i = 1, 2 are said to be equivalent if there exists a conformal isomorphism g : C 1 → C 2 such that g •f 1 is homotopic to f 2 relative to Q. The class of a Σ g,n marked stable curve will be denoted by [f : Σ g,n → (C, r 1 , . . . , r n )]. Remark 3.4. If ∆ : Σ g,n → Σ g,n is a Dehn twist around a curve in Σ g that is collapsed by the marking f 1 : (Σ g , Q) → (C, R) to a point, then (C, R) marked by f 1 • ∆ is equivalent to the same curve marked by f 1 .
3.2. Augmented Teichmüller space and its stratification. Definition 3.5. The augmented Teichmüller space T g,n is the set of all homotopically marked stable genus g curves with n marked points up to equivalence.

The Teichmüller space T g,n is the subset of T g,n formed by curves without nodes. Its complement, denoted by ∂T g,n = T g,n \ T g,n is called the boundary. Given a subset C of T g,n its boundary is defined as ∂C := C ∩ ∂T g,n .

Definition 3.6. A curve system c = c i in Σ g,n = (Σ g , q 1 , . . . , q n ) is a disjoint collection of simple closed curves c i on Σ g \ {q 1 , . . . , q n } none of which is isotopic to any other, to a point or to a cylinder in Σ g \ {q 1 , . . . , q n }. To a curve system c we can associate the subset B c ⊂ ∂T g of the boundary consisting of homotopically marked stable curves topologically equivalent to a collapse Σ g → Σ g /c obtained by identifying each curve in c to a point. Given a curve system c, for each component Σ i of Σ g \ c we define (Σ g i , Q i ) to be the closed surface of genus g i with a set of marked points Q i obtained by collapsing each boundary component of Σ i to a (marked) point and keeping the marked points of Σ g lying on Σ i in Q i . As we will see in subsection 3.7 there is a natural identification

(19) B c ∼ = Π i T g i ,n i .
The boundary ∂T g,n is the disjoint union of all boundary strata c B c where c varies in the set of nonempty curve systems. T g,n corresponds to the empty curve system. Each stratum B c has a topology and complex structure given by the bijection [START_REF] Dynkin | Maximal subgroups of the classical groups[END_REF]. All the curves that appear in a stratum have the same number of separating and non-separating nodes. When all the nodes are non-separating we say that the stratum is of compact type.

Given a simple closed curve c ⊂ Σ g,n we denote by

D c = c ⊂c B c
the union of all strata that collapse c to a node.

3.3. Topology on T g,n . For a detailed description of the topology we refer to [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF][pp. 485-493] and references therein. The restriction of the given topology to T g,n produces the so-called conformal topology. Abikoff showed (in [START_REF] Francaviglia | Abikoff Degenerating families of Riemann surfaces[END_REF][Theorem 1]) that this topology is equivalent to the Teichmüller topology introduced in subsection 2.1.

The restriction of the topology to the boundary set B c corresponding to a curve system c is equivalent to the product topology obtained from [START_REF] Dynkin | Maximal subgroups of the classical groups[END_REF].

The topology is not locally compact around any boundary point. Indeed, if U is a neighbourhood of a point in B c , the action of the Dehn twist ∆ a : Σ g → Σ g around a simple closed curve a ∈ c fixes all the points in U for which the marking collapses a to a point, but has infinite orbits at any other point in U . Therefore, there is no manifold structure in T g,n compatible with the given topology. Definition 3.7. Given a curve system c the distinguished neighbourhood of the stratum B c is the set

U c = c ⊂c B c .

3.4.

Complex structure and Deligne-Mumford compactification. The mapping class group of Σ g,n , i.e. the group Mod(Σ g,n ) of isotopy classes of orientation preserving diffeomorphisms that fix each marked point, acts on T g,n by homeomorphisms that preserve the stratification and are holomorphic in restriction to any stratum. The action is defined by pre-composition on the marking. The quotient

M g,n = T g,n /Mod(Σ g,n )
is a compact topological space. It can be endowed with a complex orbifold structure. Consider a curve system c and define Γ c the abelian group generated by Dehn twists around the curves in c. Following [START_REF]Bers Finite dimensional Teichmüller spaces and generalizations[END_REF], the quotient U c /Γ c is equivalent to a bounded domain in C 3g-3 . Under this equivalence, each stratum B c associated to a simple closed curve c ⊂ c has image contained in a regular divisor D c . These divisors intersect normally and their intersections define the other different strata: the stratum associated to c ⊂ c is the intersection of all the divisors associated to the simple curves in c . The complement of this divisor is the stratum B ∅ = T g,n formed by smooth marked curves.

The union of all natural maps U c /Γ c → M g,n induce a system of (orbifold) charts with holomorphic transition maps on M g,n .

Hubbard and Koch proved in [START_REF] Hubbard | An analytic construction of the Deligne-Mumford compactification of the moduli space of curves[END_REF] that this orbifold is equivalent to the compactification of the moduli space of Riemann surfaces M g,n = T g,n /Mod(Σ g,n ) of Deligne and Mumford (see [START_REF] Deligne | The irreducibility of the space of curves of given genus[END_REF]). The boundary ∂M g,n = M g,n \ M g,n is a normal crossing divisor each of whose components correspond to the image of one of the D c 's of T g,n in the quotient M g,n .

3.5. Torelli covering of M g,n . The map induced in homology by an element of Mod(Σ g,n ) provides an exact sequence

0 → I g,n → Mod(Σ g,n ) → Aut(H 1 (Σ g , q 1 , . . . , q n ; Z))
where I g,n is the Torelli group of Σ g,n formed by isotopy classes of diffeomorphisms that act trivially on relative homology. The Augmented Torelli space is the quotient

S g,n = T g,n /I g,n .
Again, S g,n contains the Torelli space S g,n = T g,n /I g,n as a proper set. Its boundary is the set ∂S g,n = S g,n \ S g,n . Two strata B c and B c lie on the same class if and only if there exists an element in the Torelli group that sends the curve system c to the curve system c . Therefore, the boundary is the disjoint union

∂S g,n = c =∅ B c
where c runs over all equivalence classes of non-empty curve systems c under the action of the Torelli group I g,n . Given a simple closed curve c 1 , there might be distinct strata in the boundary component D c 1 of T g,n that are identified in the quotient. For instance, suppose c 2 is a non-separating curve determining the same homology class as c 1 but distinct homotopy classes in Σ g,0 . By [START_REF] Farb | A primer on Mapping Class groups[END_REF][Section 1.3] there exists an element φ in the Torelli group I g,0 sending c 2 to c 1 . The two curve systems c = c 1 c 2 and c = φ(c) = c 1 φ(c 1 ) are equivalent and define two distinct strata contained in D c 1 provided φ(c 1 ) and c 2 define distinct isotopy classes in Σ g,0 .

The complex structure in restriction to the stratum B c induces a complex structure on B c . However, the action of the Dehn twist around a non-separating simple closed curve of class a ∈ H 1 (Σ g ) on homology is the non-trivial isomorphism δ a :

H 1 (Σ g , Z) → H 1 (Σ g , Z) given by δ a (b) = b + (a • b)a,
so the topology of S g,n is still non-locally compact around points having a non-separating node. Therefore, S g,n does not admit a compatible complex structure.

Following the same ideas and notations of the case of augmented Teichmüller space, we will still denote the preferred neighbourhood of a stratum B c by

U c = c ⊂c B c .
On U c /Γ c the local picture to bear in mind is the same as before: the closure of a stratum B c given by a single simple closed curve c forms an irreducible divisor D c , and these divisors intersect normally. Strata with k curves correspond to the intersection locus of k local components of those divisors. The continuous quotient map

S g,n → M g,n
is a covering map in the complement of the boundary. It extends as a local homeomorphism to any point of compact type. Around a point of non-compact type it extends as an infinite branched covering.

3.6. Torelli map and extension of the complex structure. The holomorphic structure of M g,n can be pulled back to the open dense subset S c g,n of marked curves of compact type in in S g,n . The Torelli map, which is a natural extension of the map defined by the period matrices of Subsection 2.1, is then holomorphic with respect to this structure.

We review the definition of the Torelli map on T c g . Given a symplectic basis a 1 , b 1 , . . . , a g , b g of H 1 (Σ g ) we can choose, for each marked curve of compact type f : Σ g → C of genus g, the unique basis ω 1 , . . . , ω g of Ω(C) such tat

f * a i ω j = δ ij .
The functions τ ij : T c → C defined by

τ ij ([f : Σ g → C]) = f * b i ω j
are the coordinate functions of the induced Torelli map into Siegel space S c g → S g extending ( 8) holomorphically. For g ≥ 3 the extended Torelli map has fibers of positive dimension over boundary points. Its image is the so-called Schottky locus, an analytic set that has positive codimension as soon as g ≥ 4.

Remark 3.8. In genus g = 2 the added points S c 2 \ S 2 correspond to products of two marked elliptic curves. The extension of the Torelli map [START_REF] Berstein | On the classification of generic branched coverings of surfaces[END_REF] in this case is a biholomorphism (see [START_REF] Mess | The Torelli groups for genus 2 and 3 surfaces[END_REF]).

3.7.

Attaching and forgetful maps on augmented Torelli spaces. It is well known that attaching maps, i.e. identification of distinct marked points, define holomorphic maps at the level of moduli spaces. The same is true for forgetful maps, i.e. forgetting part of the marked points induces a holomorphic map between moduli spaces. In this subsection we will see how these maps can be defined at the level of augmented Teichmüller and Torelli spaces.

Let φ : Σ g,n → Σ g,n /c be the collapse of a simple closed curve c in Σ g,n \ {q 1 , . . . , q n }. We will define an attaching map associated to φ.

If c is a separating curve, the surface Σ g,n \ c has two components, each with a boundary component. Collapsing each boundary component to a new marked point produces two surfaces with marked points Σ g 1 ,n 1 and Σ g 2 ,n 2 where g 1 + g 2 = g, n 1 + n 2 -2 = n and the new points are named q n 1 and q n 2 respectively. The attaching map

A φ : T g 1 ,n 1 × T g 2 ,n 2 → T g,n
is defined by the isotopy class of the composition (f 1 ∨f 2 )•φ where f i : Σ g i ,n i → (C i , r 1 1 , . . . , r 1 n i ) is a representative of its class in T g i ,n i and f 1 ∨f 2 denotes the map Σ g,n /c → (C 1 ∨C 2 , q 1 , . . . , q n ) by collapsing c to the new node q n 1 = q n 2 of C 1 ∨ C 2 and applying the corresponding f i in each part of the complement of the node.

Remark 3.9. The isomorphism [START_REF] Dynkin | Maximal subgroups of the classical groups[END_REF] is realized by attaching maps Lemma 3.10. The map A φ induces a well defined continuous attaching map

S g 1 ,n 1 × S g 2 ,n 2 → S g,n .
Proof. Remark that φ allows to define a map

ρ φ : I g 1 ,n 1 × I g 2 ,n 2 → I g,n
between Torelli groups. Indeed, every pair (ψ 1 , ψ 2 ) ∈ I g 1 ,n 1 × I g 2 ,n 2 defines an automorphism ψ c of Σ g,n /c that acts trivially on its relative homology (with n marked points). We need to lift the element to an element ψ ∈ I g,n . The lift via φ is a well defined map Σ g,n \ c → Σ g,n \ c.

Up to changing ψ i s in the neighbourhood of the points q n 1 and q n 2 homotopically, we can guarantee that there exists an extension ψ = ρ(ψ 1 , ψ 2 ) of the lift to Σ g,n that fixes c pointwise.

By construction the map A φ is equivariant with respect to ρ and therefore induces the desired map S g 1 ,n 1 × S g 2 ,n 2 → S g,n .

If c is non-separating, then Σ g,n \ c is connected and has two boundary curves. Collapsing each boundary curve to a new marked point produces a surface of genus g -1 with n + 2 marked points that we denote Σ g-1,n+2 . The new points will be denoted q n+1 , q n+2 . Remark that Σ g,n /c can be identified with Σ g-1,n+2 /q n+1 ∼ q n+2 . The attaching map is

A φ : T g-1,n+2 → T g,n
defined by (∨f ) • φ where ∨f : Σ g,n /c → (∨C, r 1 , . . . , r n ) is the map induced by a marking f : Σ g-1,n+2 → (C, r 1 , . . . , r n+1 , r n+2 ) on the stable curve ∨C (that has an extra non-separating node, compared to C) obtained by identifying r n+1 and r n+2 in C.

Lemma 3.11. The map A φ induces a continuous attaching map

S g-1,n+2 → S g,n .
Proof. As before φ induces a homomorphism between the relevant Torelli groups

ρ φ : I g-1,n+2 → I g,n
and A φ is ρ φ equivariant by construction.

To construct ρ φ , suppose ψ : Σ g-1,n+2 → Σ g-1,n+2 represents an element in I g-1,n+2 . Then ψ induces an automorphism of Σ g-1,n+2 /q n+1 ∼ q n+2 . The equivalence between this space and Σ g,n /c provides an automorphism of Σ g,n /c that can be lifted to Σ g,n \ c via φ. Up to changing the initial ψ homotopically in a small neighbourhood of the points q n+1 and q n+2 we can suppose that the lift extends to an automorphism ρ φ (ψ) : Σ g,n → Σ g,n that fixes c pointwise. The action of ρ(ψ) in H 1 (Σ g , {q 1 , . . . , q n }; Z) is trivial by construction and therefore ρ φ (ψ) ∈ I ,g,n .

As for forgetful maps, given an inclusion φ : Σ g,n → Σ g,n+1 of the marked points, we can define its associated forgetful map [START_REF] Edmonds | Deformation of maps to branched coverings in dimension two[END_REF] T g,n+1 → T g,n sending the class of f : Σ g,n+1 → (C, r 1 , . . . , r n+1 ) to the stabilization of f • φ, i.e. if the component of C that contains the forgotten point has an infinite group of automorphisms after deleting the point, we collapse the component of source and target to a point. Again we have Lemma 3.12. The map φ induces a continuous forgetful map S g,n+1 → S g,n .

Proof. In this case, φ induces an inclusion ρ φ : I g,n+1 → I g,n since any diffeomorphism that fixes n + 1 points fixes any of the n points that correspond to the image by φ of the n marked points of Σ g,n . The map ( 20) is ρ φ -equivariant by construction.

3.8. Homological invariants of curve systems under the Torelli group. In this section we give a homological characterization of some curve systems that are equivalent under the Torelli group. Given an element [f : Σ g,n → (C, r 1 , . . . , r n )] ∈ S g,n we can associate a surjective homomorphism f * : H 1 (Σ g , q 1 , . . . , q n ; Z) → H 1 (C, r 1 , . . . , r n ; Z).

When ker f * = 0, any element φ ∈ Mod(Σ g,n ) such that (f • φ) * = f * satisfies φ * = Id.
Therefore f * determines the Torelli class of the marking f . In particular this is the case when each node of C is separating. When there is at most one node that is non-separating we have a similar result: Lemma 3.13. Let f : Σ g → C be a homotopical marking that pinches a simple closed, nonseparating curve γ and some separating simple closed curves. Let φ ∈ Mod(Σ g,0 ) such that

(f • φ) * = f * : H 1 (Σ g ; Z) → H 1 (C, Z).
Then, up to Dehn twists along γ, φ * = id, that is to say, it belongs to the Torelli group of Σ g .

Proof. Set a = [γ], then ker f * = Za. Fix a = a 1 , b 1 , a 2 , b 2 . . . a g , b g a symplectic basis of H 1 (Σ g ). Since f * • φ * = f * we have f * (φ * -id) = 0. Therefore ψ = φ * -id is a morphism from H 1 (Σ g , Z) to ker f * = Za. So we have ψ(b i ) = λ i a 1 , ψ(a i ) = µ i a 1 for some λ i , µ i ∈ Z.
From the fact that φ is symplectic, we deduce µ i = 0 for all i and λ i = 0 for all i = 1.

(δ i1 = a i • b 1 = φ(a i ) • φ(b 1 ) = δ i1 + µ i and 0 = b i • b 1 = φ(b i ) • φ(b 1 ) = λ i ).
Up to Dehn twist along γ we may assume λ 1 = 0, so ψ = 0 and φ * = id, that is to say φ ∈ I g,0 is a Torelli mapping class.

An equivalent statement fails in general for curves C with more than two non-separating nodes. Indeed, suppose f is a marking that collapses two elements a 1 and a 2 of a symplectic basis a 1 , b 1 , a 2 , b 2 , a 3 , b 3 , . . . a g , b g of H 1 (Σ g ). Define a morphism ψ : H 1 (Σ g ) → ker f * by ψ(b 1 ) = a 2 and ψ(b 2 ) = a 1 and ψ(a i ) = ψ(b j ) = 0 for all i ≥ 1 and for all j > 2. Then Id + ψ ∈ Sp(2g, Z) and it is induced by a mapping class φ ∈ Mod(Σ g ). By construction f * = f * • φ * but φ is not in the Torelli group, nor is a product of twists along loops whose class belong to ker f * = Za 1 ⊕ Za 2 (because δ na 1 +ma 2 (b 1 ) = b 1 + na 1 so all such twists leave < a 1 , b 1 > invariant, and φ does not). Definition 3.14. A homological marking of a stable curve with n marked points (C, r 1 , . . . , r n ) is a surjective homomorphism m : H 1 (Σ g , q 1 , . . . , q n ; Z) → H 1 (C, r 1 , . . . , r n ; Z).

The data (C, r 1 , . . . , r n , m) will be referred to as a homologically marked curve. Remark 3.15. Given a homologically marked curve (C, r 1 , . . . , r n , m) there is always a family of points in S g,n inducing the same (C, r 1 , . . . , r n , m). When rank(ker m) ≤ 1 there is only one point in the family.

In particular there is an identification of Torelli classes of simple closed curves in Σ g,0 and homological markings. We will next give a homological characterization of those classes that relies on the properties of H 1 (Σ g , Z) and the Torelli group of Σ g (without marked points).

First we recall some concepts of homology theory. The intersection of two elements a, b ∈ H 1 (Σ g , Z) is denoted by a • b and the associated intersection form defines an integral unimodular symplectic structure on H 1 (Σ g ) := H 1 (Σ g , Z). Two submodules of a unimodular symplectic module M are said to be orthogonal if the intersection of any element of one of them with an element of the other is zero. Given a submodule N ⊂ M we denote by N ⊥ ⊂ M the orthogonal submodule of N in M , that is, the set of elements in M that have zero intersection with all elements of N . Definition 3.16. A submodule N of a unimodular symplectic module M is said to be symplectic if the symplectic form of M restricted to N is still unimodular. A splitting

M = N 1 ⊕ • • • ⊕ N k into pairwise orthogonal submodules is said to be symplectic if every N i is a symplectic submodule. Definition 3.17. A submodule N of a Z-module M is primitive if whenever zm ∈ M for some m ∈ M and z ∈ Z then also m ∈ N . Let c be a simple closed curve in Σ g . If it is non-separating, it determines a primitive class [c] ∈ H 1 (Σ g ).
If it is separating, the induced homology class is trivial and carries no interesting information. However, c splits Σ g in two parts, and these induce a symplectic splitting of H 1 (Σ g ) that characterizes the Torelli class of the curve in the following sense: We can use this information to codify the different boundary strata of the augmented Torelli space without marked points S g formed by curves with one node. A separating node on a homologically marked stable curve (C, m) induces a non-trivial symplectic splitting V ⊕ V ⊥ of H 1 (Σ g ). A non-separating node induces a cyclic non-trivial primitive submodule Za of ker m ⊂ H 1 (Σ g ). Definition 3.20. Two marked nodal curves (C i , m i ) for i = 1, 2 of genus g are said to share a separating node if for each i = 1, 2 there exists a separating node r i ∈ C i that induces the same splitting V ⊕ V ⊥ of H 1 (Σ g ) up to the order of the factors. Equivalently, we say that they share a non-separating node if there exist non-separating nodes r i ∈ C i whose associated cyclic primitive submodules of H 1 (Σ g ) coincide.

For our purposes it will be useful to have such a characterization when there are genus zero components with two marked points. Lemma 3.21. Let c be an isotopy class of separating simple closed curve in Σ g,2 that splits Σ g into a disc containing both marked points and a genus g component without marked points. Then, c defines a unique class β c ∈ H 1 (Σ g , q 1 , q 2 ; Z) represented by a cycle in the disc such that ∂β c = q 2 -q 1 . Two such curves c, c are equivalent under the Torelli group I g,2 if and only if β c = β c .

Proof. If c and c are equivalent by an element of the Torelli group it is obvious that β c is the image of β c and since the action is trivial in homology we have β c = β c .

Suppose β c = β c . Let D and D be the open discs bounded by representatives of c and c respectively. Find an orientation preserving diffeomorphism φ : Σ g → Σ g such that φ(c) = c , φ(D) = D and φ 1 (q i ) = q i . By definition the map φ * induced by φ in H 1 (Σ g , q 1 , q 2 , C) satisfies φ * (β c ) = β c . We will show that up to pre-composition of φ with an diffeomorphims ψ that fixes the closure of D pointwise, we can suppose that (φ•ψ) * fixes every class in the homology group. Indeed, the restriction of φ * to the image of the natural inclusion 0 → H 1 (Σ g , Z) → H 1 (Σ g , q 1 , q 2 , Z) defines an element in the group Aut(H 1 (Σ g , Z)). On the other hand, the action of the mapping class group of orientation preserving isotopy classes of diffeomorphisms of Σ g \ D that fix the boundary pointwise, provides a map Mod(Σ g \ D) → Aut(H 1 (Σ g , Z)) that is surjective (see [START_REF] Putman | Cutting and pasting in the Torelli group[END_REF] for details). Hence, there exists a ψ : Σ g → Σ g that is the identity on D, such that

ψ * = (φ * |H 1 (Σg) ) -1 and ψ * (β c ) = β c . By construction (φ • ψ) * = Id and φ • ψ(c) = c .
Corollary 3.22. The set {β ∈ H 1 (Σ g , q 1 , q 2 ; Z) : ∂β = q 2 -q 1 } is in 1-1 correspondence with Torelli classes of curve systems defined by a simple closed curve in Σ g,2 that bounds a disc containing both marked points.

3.9. Stable forms on a stable curve. Definition 3.23. Let C be a stable nodal curve. A stable one-form on C is a section of its dualizing sheaf. In other words, a holomorphic 1-form on C * that has at worst simple poles at the nodes and satisfies that the sums of the residues of the branches meeting at each node is zero. Ω(C) denotes the space of stable forms on C. A stable one form will be sometimes referred to as an abelian differential.

By Riemann Roch's Theorem, the space of meromorphic 1-forms on a compact connected genus g Riemann surface X with at most simple poles at k > 0 marked points has dimension k + g -1. If we apply this to each part of a connected stable nodal curve C of genus g, we deduce that the dimension of the complex vector space Ω(C) is g (see [START_REF] Harris | Moduli of curves[END_REF][p.82]) Remark that the restriction of a stable form ω ∈ Ω(C) to a component C i of the normalization of C can be the zero form. If this is the case we say that ω has a zero component. Definition 3.24. Given a stable curve C we denote

• Ω * (C) ⊂ Ω(C) the set of stable forms without zero components.

• Ω 0 (C) ⊂ Ω(C) the vector subspace of stable forms with zero residue at any node

• Ω * 0 (C) = Ω * (C) ∩ Ω 0 (C)
the set of stable forms without zero components, and whose residues at the nodes are zero.

If C is of compact type, then by the residue theorem applied to each part of C, all residues of all branches at the nodes have to be zero, so Ω 0

(C) = Ω(C). If C 1 , • • • , C k are
the distinct parts of C, a stable form in Ω(C) will be written as ω 1 ∨ . . . ∨ ω k where each ω i ∈ Ω(C i ) and the ∨ indicates that we glue them at the points corresponding to the nodes of C. Definition 3.25. The order of a stable form (C, ω) at a node q is defined to be ord q (ω) = 2 + ord q (ω 1 ) + ord q (ω 2 )

where ω i denotes the restriction of ω to a branch of C through q.

Note that the order of the node cannot be 1 and ord q (ω) ≥ 0 for any point q ∈ C. Given a stable form ω ∈ Ω * (C) of genus g we define its associated divisor (ω) = q∈C ord q (ω)q whose primitive degree satisfies

deg(ω) = q∈C ord q (ω) = 2g -2.
The support is a disjoint union of the zeros Z(ω) and the nodes N (ω) of ω. As a consequence any stable curve C with more than g -1 nodes has empty Ω * 0 (C).

3.10. Stable one forms and singular translation structures. On each component C i where a stable form (C, ω) is not identically zero it defines naturally a singular translation structure. Indeed, around a point q ∈ C * i we can locally define a holomorphic function φ q (z) = z q ω that is a branched covering of degree ord q (ω) + 1, ramified over 0 if the degree is at least two. At the intersection of domains two such maps φ q and φ p satisfy

φ p = φ q + const.
Reciprocally if we are given a cover U α of a compact (possibly disconnected) topological surface Σ, and finite branched coverings φ α : U α → V α ⊂ C satisfying φ α = φ β + const at the intersections U α ∩ U β , we can define a complex structure on Σ by declaring that the φ α 's are holomorphic. The abelian differential ω defined locally by dφ α is well defined on the obtained Riemann surface Ĉ. By identifying pairs of points in Ĉ, we obtain all nodal curves C that are normalized by Ĉ.

3.11. Singular flat metric and geodesic foliations. Denote by Z(ω)∪N (ω) the support of zeros and nodes of the divisor (ω) = q∈C ord q (ω)q of a stable form (C, ω) having components (C i , ω C i ). Any object invariant by translations in C can be pulled back to

C * i \Z(ω C i )∪N (ω C i ) with singularities at the points of Z(ω) ∪ N (ω).
In particular the pull back of the flat metric in C produces a a singular flat metric on any non-zero component (C i , ω i ) defined by ω ⊗ ω. At a branch C i of C around a point q ∈ C i of non-negative order for the restriction ω |C i , the metric is equivalent to a standard conical point of angle 2π(ord q (ω C i ) + 1). Around a point with non-zero residue a ∈ C * , the metric is a semi-infinite cylinder equivalent to one of the ends of C * /aZ. The volume of a stable form ω ∈ Ω(C) is defined as

(21) vol(ω) = i 2 C ω ∧ ω.
In particular, 0 ≤ vol(ω) ≤ ∞ and it is finite if and only if all the residues of ω at the nodes of C are zero. If vol(ω) = 0 then ω is the zero form.

The oriented geodesic directional foliation of C given by an angle θ ∈ S 1 is also invariant by translations, so we can also lift it to a singular oriented directional foliation G θ on C i . Its leaves are geodesics for the metric induced by the form ω. At a zero q of ω C i the foliation has Figure 2. A saddle point of a directional foliation at a zero of order two a saddle with 2(ord q (ω C i ) + 1) separatrices, that alternatively enter and leave the singularity by forming an angle of π (see Figure 2). At any other point the foliation is regular.

Some subsets of stable forms where these geometric objects encode important information will be of special importance for us and we introduce appropriate notation. Definition 3.26. Given a family C of (marked or unmarked) stable curves, we define

• Ω 0 C ⊂ ΩC to be the set of stable forms over curves in C whose residues at all nodes are zero (or equivalently the volume of the underlying metric is finite) and • Ω * 0 C ⊂ Ω 0 C the set of stable forms over curves in C that have no zero components and zero residue at all nodes (or equivalently the underlying metric has finite volume and isolated singularities) 3.12. The Hodge bundle over the Deligne-Mumford compactification of M g,n . Recall (see [START_REF] Harris | Moduli of curves[END_REF], Chapter 4) that over the Deligne-Mumford compactification M g,n we can define the universal curve bundle

C g,n → M g,n
which is a holomorphic map between compact complex orbifolds whose fiber over the point (C, r 1 , . . . , r n ) ∈ M g,n is biholomorphic to the curve with marked points (C, r 1 , . . . , r n ). The cotangent bundle to this fibration is well defined on the complement of the set of nodes. It extends as a line bundle L to the whole universal curve , called the relative cotangent bundle. A section of the restriction L |C corresponds precisely to a stable form on C. The constancy of the dimension of this space of sections implies that the sheaf obtained by pushing it forward to M g,n is locally free of rank g (see [START_REF] Hartshorne | Algebraic Geometry[END_REF][Exercise 5.8]). Thus it defines a holomorphic vector bundle π : ΩM g,n → M g,n called the Hodge bundle. The fiber of π over a point (C, r 1 , . . . , r n ) ∈ M g,n corresponds precisely to the set of stable forms Ω(C). When n = 0, the Hodge bundle trivializes over any of the preferred neighbourhoods U = U c /Γ c . A choice of a Lagrangian Λ ⊂ H 1 (Σ g ) containing all the classes induced by the curves in the curve system c allows to define a trivialization

ΩU U × Hom(Λ, C)
The boundary of ΩM g,n is the set of stable forms over stable curves with marked points lying the boundary ∂M g,n .

The pull back of the compactified Hodge bundle ΩM g,n → M g,n by the map T g,n → M g,n defines the (topological) complex vector bundle ΩT g,n → T g,n of homotopically marked stable forms of genus g with n marked points. An element in ΩT g,n is a pair ([f : Σ g,n → (C, r 1 , . . . , r n )], ω) where [f : Σ g,n → (C, r 1 , . . . , r n )] ∈ T g,n and ω ∈ Ω(C). The Torelli group I g,n acts on the bundle ΩT g,n → T g,n . The quotient defines a bundle ΩS g,n → S g,n . These will be referred to as the Hodge bundle over augmented Teichmüller or augmented Torelli space, depending on the case.

Their boundaries are, by definition, the preimage of the boundary of ΩM g by the corresponding projection,i.e. the stable forms over curves with some node.

Given a collection of (marked or unmarked) stable curves C we define ΩC to be the set of stable forms over C, with the induced topology in the corresponding vector bundle of forms.

Given a subset of some space of forms L ⊂ ΩC we denote by ∂L the intersection of L with the boundary points. With he complex structure in each stratum B c , ΩB c is a holomorphic vector bundle over B c . We will refer to it as a boundary stratum. Definition 3.27. A homologically marked stable form of genus g ≥ 0 with n marked points is a tuple (C, r 1 , . . . , r n , m, ω) ∈ ΩS g,n where ω is a stable one-form on a homologically marked stable curve (C, r 1 , . . . , r n , m) of genus g with n marked points. By abuse of language we say that ω pinches a ∈ H 1 (Σ g , q 1 , . . . , q n , Z) \ 0 if a is primitive and m(a) = 0. We say that (C, r 1 , . . . , r n , m, ω) belongs to the boundary if C has some node.

3.13.

Attaching and forgetful maps on Hodge bundles. The continuous attaching maps defined at the level of marked curves in subsection 3.7 can be lifted to attaching maps on the corresponding Hodge bundles.

In particular, using Lemmas 3.10 and 3.11 the attaching maps can be lifted as continuous maps to the corresponding Hodge bundles:

(22) ΩS g 1 ,n 1 × ΩS g 2 ,n 2 → ΩS g 1 +g 2 ,n 1 +n 2 -2 and (23) ΩS g-1,n+2 → ΩS g,n
by simply considering the stable form over the image curve that coincides with the given restriction on each part. The image will only contain forms with zero residue at the node produced by the attaching map. More generally, we can use attaching maps and the the biholomorphism [START_REF] Dynkin | Maximal subgroups of the classical groups[END_REF] to define, via the attaching maps a decomposition of forms with zero residues on a stratum B c of T g,n :

(24)

Ω 0 B c ∼ = Π i ΩT g i ,n i
On the other hand we can also lift the forgetful maps defined by Lemma 3.12 to the Hodge bundle. To construct the natural lift ΩS g,n → ΩS g,n-1 it suffices to restrict the form to the image curve. Remark that on the eventually contracted components after forgetting the point the form is of genus zero and uniquely determined by the value of one of the residues.

3.14. Sub-stratification of Hodge bundles and period coordinates on strata. The Hodge bundle over M g,n is stratified by the topological properties of the zero divisor and polar set of the forms. Two elements in ΩM g,n are said to belong to the same stratum if there exists a homeomorphism between the underlying marked curves preserving the following data of the forms:

(1) zero components (2) nodes with non-zero residue (3) the associated zero divisor on each non-zero component In particular, if an element has a zero of order k at a marked point, then any element in its stratum will have a zero at of order k at a marked point. The same happens with poles with zero residue: if the restriction of the form to one of the branches has a zero of order k, then any form in its stratum will have this property on the corresponding branch of a node.

This stratification can be lifted to ΩS g,n and ΩT g,n . It is a substratification of the stratification induced by B c on T g,n . The generic stratum in ΩB c is the only substratum that is open in ΩB c , and it is Zariski open too. Indeed, the union of all other substrata in ΩB c form an analytic subset of ΩB c . A substratum in ΩB c is minimal if it has minimal dimension among substrata of ΩB c . In particular, the generic stratum in ΩB ∅ = ΩT g,n is the stratum having only simple zeros at unmarked points and is also dense in ΩT g,n . The minimal stratum in ΩT g,n is formed by forms with a single zero of order 2g -2 at some marked point (for n ≥ 1).

The restriction of an isomorphism of type ( 24) to all possible products of substrata of ΩT g i ,n i describe all the diferent substrata of forms with zero residues in Ω 0 B c . Let us define local holomorphic coordinates on them.

The zero substratum of ΩM g,n is isomorphic to M g,n . On the other hand, Veech [START_REF] Veech | Moduli spaces of quadratic differentials[END_REF] and Masur in [START_REF] Masur | Interval exchange transformations and measured foliations[END_REF] proved that local holomorphic coordinates can be given in any substratum R of ΩM g,n around a point (C, P, ω) with ω = 0. They are defined by integration of the form on cycles in H 1 (C, Z(ω) ∪ P ; Z) and therefore lie in the vector space H 1 (C, Z(ω) ∪ P, C). These endow the stratum with the structure of a complex manifold compatible with the one induced by the complex structure of ΩT g,n .

We conclude from the equivalence [START_REF] Gerritzen | The extended Schottky space[END_REF] and the description of strata, on smooth curves, that the substratum of stable forms containing a point (C, P, f, ω) ∈ Ω * 0 T g,n without zero components and with zero residues at the nodes is locally isomorphic to the product i

H 1 C i , (Z(ω) ∪ N (C) ∪ P ) ∩ C i , C
where each C i corresponds to a connected component of the normalization of C and N (C) is the union of all points of points of attaching in the components C i to obtain C. These local coordinates will be referred to as period coordinates on the substratum.

3.15.

Periods of marked stable forms with zero residues at the nodes. A stable form on (C, r 1 , . . . , r n ) is holomorphic on C * and can thus be integrated along paths in C * . For closed paths the value of the integral does only depend on the homology class in H 1 (C * , r 1 , . . . , r n ; Z) and it is called the period of the class. If the residues at nodes are all zero, we can also integrate along paths passing through the nodes, and the integral along a closed path depends only on its class in H 1 (C, Z).

For any marked stable form ([f : Σ g,n → (C, r 1 , . . . , r n )], ω) ∈ Ω 0 T g,n of genus g with n marked points and zero residues at the nodes we have a well defined notion of period homomorphism

Per([f : Σ g,n → (C, r 1 , . . . , r n )], ω) : H 1 (Σ g , q 1 , . . . , q n ; Z) → C defined by (25) Per([f : Σ g,n → (C, r 1 , . . . , r n )], ω)(γ) = f * (γ)
ω for γ ∈ H 1 (Σ g , q 1 , . . . , q n ; Z).

Since the period homomorphism depends only on the homological marking induced by the homotopical marking, we can also define the period on a homologically marked stable curve (C, r 1 , . . . , r n , m, ω) with marked points by {γ → m(γ) ω}. Any homologically non-trivial curve a in Σ g pinched by the marking, i.e. belonging to Ker(f * ), also belongs to the kernel of the period homomorphism. Remark that if the period homomorphism is injective then the marking is an isomorphism, and thus the curve C must be of compact type.

Definition 3.28. The period map associated to (Σ g , q 1 , . . . , q n ) is the map

Ω 0 T g,n → H 1 (Σ g , q 1 , . . . , q n , C)
that associates to any stable form with zero residues marked by (Σ g , q 1 , . . . , q n ), its period homomorphism. It is invariant by the Torelli group I g,n action and descends to the quotient Per g,n : Ω 0 S g,n → H 1 (Σ g , q 1 , . . . , q n , C).

One of the difficulties that we will encounter is related to the fact that the domain of definition of the period map is neither open nor closed. It is a union of substrata of stable forms. It contains the (dense) open subset of stable forms on smooth curves, but in the boundary components we need to restrict to the closed set of strata that have no residues at the nodes. The following notation will be useful to abridge notations. Definition 3.29. Given a homomorphism p : H 1 (Σ g , q 1 , . . . , q n ; Z) → C and a family C ⊂ Ω 0 S g,n we denote by C(p) the subset of marked stable forms in C having period homomorphism p, i.e. the intersection of the fiber Per -1 g,n (p) with the set C.

3.16.

Local structure of the fibers of the period map. In this subsection we prove that around a boundary point of compact type, the fibers of Per g,n and its intersection with the boundary are analytic sets and describe them whenever there are no zero components. Around points of non-compact type with no zero components they share many topological properties with analytic sets.

Proposition 3.30. Consider ([f 0 : Σ g,n → (C 0 , P 0 )], ω 0 ) ∈ Ω 0 T g,n and ΩU c its preferred neighbourhood. Denote m 0 := f 0 * : H 1 (Σ g , q 1 , . . . , q n ; Z) → H 1 (C 0 , P 0 ; Z) and define H as the germ of the zero set of the map ΩU c → Hom(ker m 0 , C) defined by integration. It is a union of local fibers of the period map.

(1) if C 0 is of compact type, the period map is holomorphic on H = ΩU c .

(2) if C 0 is not of compact type, then H/Γ c is a proper holomorphic submanifold of Ω 0 (U c /Γ c ) and the period map induces a holomorphic map Ω 0 (H/Γ c ) → H 1 (C 0 , P 0 , C).

In either case, if the form ω 0 has no zero components, the holomorphic map thus defined is submersive, even by restricting it to the substratum containing (C 0 , ω 0 ).

Proof. We first need a lemma about the holomorphicity of integration over a cycle:

Lemma 3.31. Let U c /Γ c → U ⊂ M g,n be a (orbifold) chart around a point (C 0 , P 0 ) ∈ M g,n
and γ be a path in Σ g \ c. Then, the map ΩU c → C defined by

([f : Σ g,n → (C, P )], ω) → f * (γ)
ω induces a well defined holomorphic map on ΩU ⊂ ΩM g,n .

Proof. The function is well defined on U c /Γ c because γ does not intersect any of the simple closed curves in c. It is holomorphic outside the boundary and bounded in the neighbourhood of every boundary point, hence holomorphic by Riemann extension Theorem.

Remark first that there is a non-trivial exact sequence (26) 0 → Hom(H 1 (C 0 , P 0 ; Z), C) → Hom(H 1 (Σ g , q 1 , . . . , q n ; Z), C) → Hom(ker m 0 , C) → 0 induced by that defined by the marking

0 → ker m 0 → H 1 (Σ g , q 1 , . . . , q n ; Z) → H 1 (C 0 , P 0 ; Z) → 0.
The map ΩU c → Hom(ker m 0 , C) given by ([f : Σ g,n → (C, r 1 , . . . , r n )], ω) → {c → f * (c) ω} is well defined and invariant by the action of Γ c on ΩU c . Lemma 3.31 implies that it induces a holomorphic map [START_REF] Hamenstädt | Dynamical properties of the absolute period foliation[END_REF] h : Ω(U c /Γ c ) → Hom(ker m 0 , C).

We claim that h is submersive at [f 0 : Σ g,n → (C 0 , P 0 )]. In fact, its restriction to the Hodge bundle fiber ΩC 0 is already submersive. It associates to each node, the value of its residue. It is therefore linear. The kernel of this restriction is precisely Ω 0 C 0 , the space of stable forms with zero residues on C 0 . Let C 1 , . . . , C l be the components of the normalization of C 0 and define N (C i ) ⊂ C i the points corresponding to the nodes of C 0 . The restriction of any stable form in ΩC 0 to the component C i is a meromorphic form with at worst simple poles on N (C i ).

It satisfies the residue theorem. On the other hand, by Riemann-Roch theorem applied to C i with i ≥ 1 if we denote m i = |N (C i )| and g i = g(C i ) the genus of C i we get

(1) the space M i of meromorphic forms on C i that have at worst simple poles at the marked points has dimension g i + m i -1 and (2) the space ΩC i of holomorphic forms on C i has dimension g i .

Denote L i ⊂ C m i the codimension one space defined by x 1 + . . . + x m i = 0. By the previous dimension calculations, the sequence 0

→ ΩC i → M i → L i → 0 is exact. Recall that m i = 2m where m denotes the number of nodes of C 0 . Consider L ⊂ C 2m the codimension l subspace L 1 ⊕ • • • ⊕ L l .
The sequence

(28) 0 → Ω 0 C 0 → M 1 ⊕ • • • ⊕ M l → L → 0
is still exact. A necesssary and sufficient condition for an element of M 1 ⊕ • • • ⊕ M l to define a form in ΩC 0 is that the residues at the points that are attached to produce a node in C 0 have opposite sign. This corresponds to cutting L with m linear equations of type x i -x j = 0 in C 2m where m is the number of nodes of C 0 . When we intersect m -1 of those with L, we easily obtain the last of such equations. In fact, the dimension of the intersection is 2m -l -(m -1) = m -l + 1. The points in this intersection are in one to one correspondence with elements in Hom(ker m 0 , C). Indeed, the non-separating curves in c generate ker m 0 , and the only relations they have to satisfy are the relations given by the fact that some sums of the generators are boundaries of components. This relations coincide with those defining the relevant subspace of L. On the other hand the exactness of ( 28) tells us that we can find a form in ΩC 0 with any given residue homomorphism ker m 0 → C. This proves that h |ΩC 0 is surjective. Since it is linear it is also submersive, and so are h and the restriction of h to each boundary component containing (C 0 , m 0 , ω 0 ). The levels of h are regular subvarieties transverse to each boundary component and invariant by Per. The zero level set

H = {([f : Σ g,n → (C, P )], ω) ∈ ΩU c : f * (c) ω = 0 ∀c ∈ ker m 0 }
contains the marked stable form ([f 0 : Σ g,n → (C 0 , P 0 )], ω 0 ) and is invariant under the action of Γ c . By the exact sequence [START_REF] Gromov | Rigid transformations groups[END_REF], the restriction of the period map to H can be thought as a map H → H 1 (C 0 , C) that is invariant by Γ c . The induced map

h 2 : H/Γ c → Hom(H 1 (C 0 , P 0 ; Z), C) is holomorphic.
This proves that the fibers of the period map in Ω 0 S g,n are preimages under the branched covering ΩU c → Ω(U c /Γ c ) of analytic sets.

It remains to prove that h 2 is submersive in restriction to the substratum R containing ([f 0 : Σ g,n → (C 0 , P 0 )], ω 0 ) whenever ω 0 has no zero components.

Recall that C 1 , . . . , C l denote the components of the normalization of C 0 and define

• ω i the restriction of ω 0 to C i • g i = g(C i ) the genus of C i • P i = (P ∩ C i ) ∪ N (C i ) ∪ Z(ω 0i ))
The local coordinates in the substratum R i of the stable form (C i , P i , ω i ). The latter are given by vectors in W i = H 1 (C i , P i , C).

By using the attaching maps used to obtain C 0 from C 1 , . . . , C l we define a surjective holomorphic map

W 1 ⊕ • • • ⊕ W l → R.
If we prove that the composition of this map with the period map h 2 is submersive onto H 1 (C 0 , C) we will be done. The said composition is a map

W 1 ⊕ • • • ⊕ W l → Hom(H 1 (C 0 , P 0 , Z), C) that factors through W 1 ⊕ • • • ⊕ W l where W i = H 1 (C i , N (C i ), C). Both maps W 1 ⊕ • • • ⊕ W l → W 1 ⊕ • • • ⊕ W l and W 1 ⊕ • • • ⊕ W l → Hom(H 1 (C 0 , P 0 ; Z), C) are obviously submersive.
The relevant topological properties of the fibers around the boundary are the subject of Corollary 3.32. If L is a germ of local fiber of the period map at a point in Ω * 0 S g,n , then L, ∂L, L \ ∂L and (L \ ∂L) ∩ Ω SZ S g,n are non-empty and connected.

Proof. The set L/Γ c is a regular leaf of a holomorphic foliation, hence connected. Its intersection with the boundary forms a divisor E in the leaf. Therefore L/Γ c -E is connected.

The transitivity of the monodromy of the cover π : L \ ∂L → L/Γ c -E and the connectedness of the target space implies that L \ ∂L is connected. The restriction of π to the open set (L \ ∂L) ∩ Ω SZ S g,n is a covering onto a Zariski open set in L/Γ c -E. The monodromy group of this restriction is the same of that of π, and we conclude that (L \ ∂L) ∩ Ω SZ S g,n is connected.

Corollary 3.32 gives a description of the local fiber of the period map at any point in Ω * 0 S g . An important property is that it has only one local irreducible component that is not contained in the boundary and boundary points do not locally separate it. This might fail at other points: as we will see in next section, there are smooth local fibers that are completely contained in the boundary, or even points where the fibers have several local components that are only connected by boundary points. It is for this reason that we will work with the bordification Ω * 0 S g of ΩS g and define Definition 3.33. The period map on Ω * 0 S g will be denoted by Per g . The period map on ΩS g will be denoted by Per g . When there is no risk of confusion we omit the subindex and write Per and Per respectively.

Corollary 3.34. The period map Per g,n induces a regular holomorphic foliation F g,n on the moduli space Ω * M c g,n of stable forms without zero components on curves of compact type called the isoperiodic foliation. It is transverse to all boundary components and to the substratum passing through the point. Its restriction to Ω * M g,n will be denoted by F g,n .

Proof. Proposition 3.30 guarantees that the restriction of the map Per g,n to Ω 0 S c g,n is holomorphic. Since it is submersive in restriction to the substratum of any point in Ω * 0 S g,n , it is also submersive in restriction to any local smooth subvariety of ΩS g,n that contains the given substratum. This implies that it defines a regular foliation around those points. On the other hand Per g,n is equivariant with respect to the natural action of Mod(Σ g,n ) on source and target. Hence the underlying foliation is well defined in the quotient.

Remark 3.35. The isoperiodic foliation F g,n extends to the whole space ΩM g,n as a singular holomorphic foliation. In fact, the zero section of the Hodge bundle is part of the singular set of this foliation, as are the points of non-compact type in Ω * 0 M g,n , and most strata with zero components (see Remark 4.7 for an example). To construct the extension isoperiodic foliation to the missing strata (those with non-zero residue at the nodes) we need to define the notion of isoperiodic family of meromorphic forms on smooth curves. This subject will be developed in a forthcoming paper.

Detecting components of isoperiodic forms with one node

Attaching maps have nice relations with respect to the fibers of period maps. For instance, the restriction of a map of type [START_REF] Eskin | Invariant and stationary measures for the action on Moduli space[END_REF] with n 1 = n 2 = 1 to a product of fibers produces a map

ΩS g 1 ,1 (p 1 ) × ΩS g 2 ,1 (p 2 ) → ΩS g 1 +g 2 ,0
whose image points have one node and constant periods p that can be decomposed as p 1 ⊕ p 2 . Equivalently, the restriction of a map of type [START_REF] Farb | Margalit A primer on mapping class groups[END_REF] with n = 0 to a fiber ΩS g-1,2 (p) has its image in the set of forms with a unique non-separating node in a fiber of the period map in ΩS g,0 . In fact these maps provide parametrizations of the components of the intersections of fibers of Per with some boundary stratum ΩB c of stable forms with one node.

4.1.

Relating fibers of Per g with those of Per g,1 and Per g,2 . Forgetful maps restricted to isoperiodic sets provide a fibration that can be exploited to relate their components. Recall that the relative homology long exact sequence gives a natural injection 0 → H 1 (Σ g , Z) → H 1 (Σ g , q 1 , . . . , q n ; Z). Theorem 4.1. Let g ≥ 1, n ∈ {1, 2}, p : H 1 (Σ g , q 1 , q n ; Z) → C a homomorphism such that 0 = p 0 = p |H 1 (Σ g,0 ,Z) satisfies ΩS g,0 (p 0 ) is non-empty and connected. Then, (1) If n = 1 the set ΩS g,1 (p) is non-empty and connected.

(2) If n = 2 and deg p 0 ≥ 3 then ΩS g,2 (p) is non-empty and connected.

Proof. Consider the following composition of forgetful maps described in subsection 3.13 where we forget all marked points : For : ΩS g,n → ΩS g,0 .

By construction it sends fibers of the period map on Ω 0 S g,n to fibers of the period map on Ω 0 S g,0 . In particular the image of the regular submanifold Ω 0 S g,n (p) of the period fiber over p under For is For ΩS g,n (p) = ΩS g,0 (p 0 ), a holomorphic manifold that is connected by hypothesis. The proof of both items of the proposition relies on an analysis of the intersection of the (whole) period fiber over p with the the fibration defined by the forgetful map over a Zariski open set of ΩS g,0 (p 0 ). In the case n = 2 and ker p = 0 this intersection is singular and contains points of the boundary. A careful analysis will be needed to prove that removing them does not separate this intersection in two components. The reader is invited to recall our general strategy to establish connectedness of isoperiodic sets described in subsection 1.3.

(1) In the case n = 1 the map For has a very simple structure. First remark that all the underlying curves in a fiber of For over a point (C, m 0 , ω 0 ) ∈ ΩS g,0 are smooth, since removing the only marked point cannot turn a stable curve into a non-stable curve. Secondly, following Remark 3.15 we just need to check the different homological markings whose restriction to H 1 (Σ g,0 , Z) coincide with m 0 . The natural equality H 1 (Σ g,1 , q 1 ; Z) = H 1 (Σ g,0 , Z) tells us that there is only one such choice. These two properties imply that over the connected set ΩS g,0 (p 0 ) the map For is fiber biholomorphic to the universal curve bundle CΩS g,0 (p 0 ) → ΩS g,0 (p 0 ). Therefore For -1 (ΩS g,0 (p 0 )) is connected. On the other hand, the identification of the homology groups implies that the period map is constant equal to p 0 on this latter set, and therefore ΩS g,1 (p) = For -1 (ΩS g,0 (p 0 )).

(2) Suppose n = 2. This is a more complicated case that will take up the rest of this section. A result from complex analytic geometry will be very helpful in our context. Lemma 4.2. Let X be a (possibly singular) analytic space. Suppose f : X → B is a holomorphic map such that

• B is connected and smooth, • f is onto, • the fibers of f are connected,
• every fiber of f contains a point lying in the regular part of X at which f is a submersion, Then, the space X is connected.

Proof. Each connected component of X is a union of (connected) fibers of f . The last assumption shows that the image of such a component by f in B is an open subset of B. Hence, since B is connected, there can be at most one connected component and we are done.

Let (C 0 , m 0 , ω 0 ) ∈ ΩS g,0 and consider the fiber For -1 (C 0 , m 0 , ω 0 ). If (C, r 1 , r 2 , m, ω) is a point in this fiber, there are two possibilities for (C, r 1 , r 2 ): either C is regular and equal to C 0 and r 1 = r 2 are distinct points in C 0 , or C is singular. The only possibility for C to be nodal, stable and have stabilization C 0 is that

(29) (C, r 1 , r 2 ) = (C 0 , q) ∨ q=∞ (CP 1 , 0, 1, ∞) for some q ∈ C 0
Remark that in any case they correspond to curves of compact type, so the restriction of ω to the rational component is holomorphic, hence the zero form. In other words

(30) ω = ω 0 ∨ 0 on (C 0 , q) ∨ q=∞ (CP 1 , 0, 1, ∞).
This implies also that for any class β ∈ H 1 (Σ g,2 , q 1 .q 2 ; Z) such that ∂β = q 2 -q 1 , we have

m(β) ω ∈ m 0 (γ) ω : γ ∈ H 1 (Σ g , Z)
and if m(β) is the class in the spherical component, the integral is zero.

Therefore the fiber For -1 (C 0 , m 0 , ω 0 ) is isomorphic to an abelian cover π : C 0 × C 0 → C 0 × C 0 of the connected compact complex surface C 0 × C 0 , hence a connected surface.

Fix a class β ∈ H 1 (Σ g,2 , q 1 , q 2 ; Z) satisfying ∂β = q 2 -q 1 and define (31)

h 0 : For -1 (C 0 , m 0 , ω 0 ) → C by (C, r 1 , r 2 , m, ω) → m(β)
ω.

The following lemma will be useful in the sequel, and describes the image of h 0 .

Lemma 4.3. Let (C, ω) be a non-zero abelian differential on a smooth curve of genus g ≥ 1.

For any z ∈ C there is an immersed arc δ in C so that δ ω = z. Moreover, if g ≥ 2, the arc δ can be chosen to be embedded with distinct endpoints.

Proof. Let C be the universal cover of C and ω the lift of ω to C. The map I : C → C defined by x → x x 0 ω is holomorphic, non-constant and equivariant with respect to the action of π 1 (C) on C by translations under elements of Λ = { γ ω : γ ∈ π 1 (C)}. The image of I is therefore open and invariant by Λ. We claim that the image is C. Indeed, if Λ is dense we are done . If Λ is discrete, it is a lattice and the map I induces a branched covering C → C/Λ onto a torus. The equivariance then tells us that the image of I is the universal cover C of the torus. The only other possibility is that the closure of Λ ⊂ C is isomorphic to R × Z. Up to post-composing I with a real linear map we can suppose that Λ = R + Zi. The imaginary part I induces a surjective map C → R/Z. Therefore the image of I covers a neighbourhood U of the imaginary axis. The Λ invariant set containing U is then C.

Let z ∈ C be the chosen point. By the surjectivity of I, there exists an immersed arc δ in C, starting from x 0 , such that δ ω = z. If g ≥ 2 we can require x 0 to be a zero of ω. In this case the map I is a branched covering of degree > 1 near x 0 . Thus, if the endpoints of both δ coincide with x 0 , we can move them a little so that δ ω does not change and they become distinct. Now, since δ is an arc, via an homotopy relative to endpoints we can eliminate all self-intersections so that δ becomes embedded.

If (C 0 , m 0 , ω 0 ) ∈ ΩS g,0 (p 0 ), the level set of h 0 over z 0 = p(β 0 ) ∈ C corresponds precisely to points of period p in the fiber For -1 (C 0 , m 0 , ω 0 ). If r 1 = r 2 the point belongs to ΩS g,2 (p). If r 1 = r 2 then the point belongs to the boundary. This shows already that the set ΩS g,2 (p) is non-empty. Now, the crucial property is that h 0 is a primitive of a holomorphic 1-form, namely π * (pr * 2 ω 0 -pr * 1 ω 0 ) where pr i : C × C → C denotes the projection onto the i-th factor. Next lemma shows that the fibers of h 0 are connected provided the form has simple zeros: Remark 4.5. The same statement is also valid in the case ω has multiple zeros, but we have chosen not to include it to avoid long arguments that are not relevant for the proof of the proposition. [START_REF] Hartshorne | Algebraic Geometry[END_REF] the intersection of G -1 (z 0 ) with the boundary is a union of copies of the curve C 0 . The only points where a component of the fiber of (31) outside the boundary can cut one of those boundary components are points of the form (x 0 , x 0 ) where x 0 ∈ C 0 is a zero of the form ω 0 . In all other cases, G -1 (z 0 ) is disjoint from all lifts of the diagonal and therefore the corresponding fiber of h 0 does not cut the boundary.

Remark 4.6. If z 0 ∈ { γ ω ∈ C : γ ∈ H 1 (Σ g , Z)} then the fiber G -1 (z 0 ) contains lifts of the diagonal {(r 1 , r 2 ) ∈ C × C : r 1 = r 2 }. If G = h 0 as in
Proof. By [58, Theorem 1] either the fibers of G are connected or there is an algebraic curve E, a holomorphic 1-form β on E, and a morphism f : Y → E with connected fibers such that f * β = pr * 2 ω -pr * 1 ω. Therefore, we only need to show that under our hypotheses, the fibers of G are also connected in the second case.

Remark that the set of zeros of the form dg is an isolated set (it is the double cartesian product of the zeros of ω). If the form β had some zero, then f * β would have a divisor in its support. Hence the form β has no zeros, and E is forced to have genus one. Thus E is an elliptic curve C/Λ where Λ is a lattice in C. Denote by λ : E → E a universal covering map and remark that the integration of β induces an isomorphism E → C. In particular its fibers are connected.

To deduce the connectedness of the fibers of G from the connectedness of those of the map f , we will need to introduce an intermediate covering of Y by taking the fibered product of f and λ. Namely, let

Y = {(q 1 , q 2 , ζ) ∈ C × C × E : f (q 1 , q 2 ) = λ(ζ)}.
The obvious projections of Y to C × C and E make the following diagram commutative

Y f / / π E λ Y f / / E
By construction a fiber of f is biholomorphic to a fiber of f and is thus connected. It remains to check that the lift of a fiber of f to the universal cover Y is still connected. For this aim it is enough to prove that the inclusion map induces a surjection π 1 ( f -1 (ζ)) π 1 ( Y ) at the fundamental group level.

Remark the following facts:

(1) as a consequence of the finitude of the zeros of dg, the critical points and the critical values of f form discrete sets in the corresponding spaces; (2) f is a locally trivial fibration around any regular fibre;

(3) for any loop γ in Y that avoids the critical fibers, f • γ is homotopic to a finite concatenation of small loops around critical values via a homotopy that avoids critical values.

We claim that any class in π 1 ( Y ) can be represented by a loop in a regular fiber. Indeed, denote by U a small neighbourhood of the discrete set of critical points and V a neighbourhood of the discrete set of critical values of f . Any class in π 1 ( Ŷ ) has a representative loop in

Y \ (U ∩ f -1 (V )). A simple loop in Y \ (U ∩ f -1 (V )
) around one of the singular fibers can be homotoped in Y \ (U ∩ f -1 (V )) to a loop in the fibre. Facts ( 2) and ( 3) then show that all the same is true for any loop in Y \ (U ∩ f -1 (V )). In the case of a fibre f -1 (ζ) with some critical point, we appeal to the theory of Lefschetz fibrations. Since the zeros of ω are simple, by appropriately choosing local coordinates at such a point we have that dG = z 1 dz 1 -z 2 dz 2 which has local first integral G(z 1 , z 2 ) = z 2 1 -z 2 2 . Thus G and also f are Lefschetz fibrations around the singular fibres. By adapting the argument [START_REF] Voisin | Hodge Theory and Complex Algebraic Geometry II[END_REF] [Theorem 2, p. 42] we can show that the homotopy type of the fibred neighbourhood of the singular fibre is that of a regular fibre to which we have glued 2-discs along the vanishing cycles (whose intersection in the regular fibre is always zero). In particular, the inclusion f -1 (ζ) → Y still induces a surjection at the fundamental group level.

Recall that analytic submanifolds of codimension at least one cannot separate a connected regular holomorphic manifold into several components, so the connectedness of ΩS g,n (p) (resp. ΩS g,0 (p 0 )) is equivalent to that of the Zariski open subset Ω SZ S g,n (p) (resp. Ω SZ S g,0 (p 0 )) formed by forms whose zeros are simple (in other words, have 2g -2 different zeros)

We are ready to prove item (2) of Theorem 4.1:

Case 1: Suppose ker p = 0. Consider X = Ω SZ S g,2 (p) and f := For |X : X → Ω SZ S g,0 (p 0 )

If a fiber of f contains a point in the boundary, it implies, thanks to Remark 4.6, that ker p = 0. Therefore, the intersection of a fiber of For over a point in ΩS g,0 (p 0 ) with the fiber of h 0 does not cut the boundary of ΩS g,2 . The fiber of f coincides with that of h 0 and is connected by Lemma 4.4. On the other hand ΩS g,0 (p 0 ) is connected by hypothesis and f is submersive at all points. By Lemma 4.2 we deduce that X is connected. Remark that in this case deg p 0 = ∞, since ker p 0 = 0. Case 2: Suppose ker p = 0. In this case the intersection of the fiber of the forgetful map For with a fiber of h 0 may contain points of the boundary as those in [START_REF] Harris | Moduli of curves[END_REF]. It is not clear that the connectedness of this intersection is preserved when taking out the points of the boundary. Indeed, regarding the fiber of For as a covering of C × C, the fiber of h 0 there, describes a divisor that contains some components that project to the diagonal in C × C (which correspond to boundary points, see Remark 4.6). When we take out all the lifts of the diagonal, it might well be that the set is no longer connected. To overcome this difficulty, we will use the global properties of Ω SZ S g,0 (p 0 ) (see Lemma 2.14) to analyze the forgetful map over this set and deduce that taking out all points of the boundary does not alter the connectedness property.

Remark that U = For -1 (Ω SZ S g,0

) is an open subset of the open complex manifold ΩS c g,2 of stable forms on marked curves of compact type of ΩS g,2 and is therefore a complex manifold too. By [START_REF] Harris | Moduli of curves[END_REF], [START_REF] Hamenstädt | On the orbifold fundamental group of the odd component of the stratum H[END_REF] and the structure of the boundary components of S g,2 described in Corollary 3.22 the set U can be described as the open set Ω SZ Z of the Hodge bundle over a bordification Z of S g,2 , namely:

(32) Z := S g,2 β B β
where β ranges over all the relative homology classes β ∈ H 1 (Σ g-1 , q 1 , q 2 ; Z) having boundary ∂β = q 2 -q 1 , and B β is the boundary stratum of S g-1,2 consisting of Torelli classes of homologically marked stable curves (C, 0, 1, m) as in [START_REF] Harris | Moduli of curves[END_REF] and m(β) is the unique homology class between 0 and 1 contained in the spherical component. Define the analytic set in U = Ω SZ Z formed by isoperiodic stable forms of period p:

X := Ω SZ Z(p) = Ω SZ S g,2 (p) β:∂β=q 2 -q 1 Ω SZ B β (p)
Remark 4.7. As was already said in Remark 4.6 there are points of Ω SZ B β (p) that do not lie in the closure of Ω SZ S g,2 (p). They correspond to points of type [START_REF] Harris | Moduli of curves[END_REF] where q is not a zero of the form ω 0 . At the points where q is a zero of ω 0 we find two components crossing normally. These examples show that the isoperiodic foliation does not extend as a regular foliation to the complex manifold ΩS c g,2 .

Let us summarize the relevant properties of X that we will prove in the sequel:

(1) If ΩS g,0 (p 0 ) is connected, then X is connected;

(2) The singularities of X are locally isomorphic to the product of an ordinary double point on a curve by a non singular space. Precisely one of the two local irreducible components is contained in Ω SZ S g,2 (p) and the other is contained in the boundary.

In particular, if the closure of Ω SZ S g,2 (p) in X is connected, then so is Ω SZ S g,2 (p). (3) If ΩS g,0 (p 0 ) is connected and deg(p 0 ) ≥ 3, then each irreducible component of X \ ΩS g,s (p) intersects the closure of ΩS g,2 (p) in X on a (maybe empty) connected set.

Notice these properties of X imply that Ω SZ S g,2 (p) ⊂ X is connected. Indeed, properties (1) and [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF] show that the closure of Ω SZ S g,2 (p) in X is connected (by taking out all boundary points that do not belong to the closure). Property (2) then allows to conclude.

The connectedness of X follows from Lemma 4.2 applied to the restriction of the forgetful map f : For |X : X → Ω SZ S g,0 (p 0 ) as in Case 1.

Let us prove property [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF]. First remark that using [START_REF] Harris | Moduli of curves[END_REF] we have that the attaching map ( 33)

Ω SZ S g,1 × ΩS 0,3 → Ω SZ B β
is an isomorphism between Ω SZ S g,1 and Ω SZ B β that sends fibers of the period map to fibers of the period map. Fix a class β ∈ H 1 (Σ g,2 , q 1 , q 2 ; Z) satisfying ∂β = q 2 -q 1 and define

(34) h : U → C by (C, r 1 , r 2 , m, ω) → m(β) ω.
By Lemma 3.31 it is a holomorphic function whose level sets are invariant by the isoperiodic foliation. We will focus on the fiber of h over z 0 = p(β). One of the main difficulties is that it contains components that are properly contained in the boundary.

Let H = h -1 (0). It contains the boundary component ΩB β because the form is zero on β for all elements there.

Suppose we have a point in Ω SZ B β of the form in equation [START_REF] Harris | Moduli of curves[END_REF].

• If q is not a zero of ω 0 , then by Remark 4.6, the intersection of H with each fiber of For in the neighbourhood of the point, contains only the points of the boundary. Therefore the germ of H at the given point is contained in the boundary. • If q is a zero of ω 0 , also by Remark 4.6, there is another component of H passing through the point and cutting ΩS g,2 . In fact the intersection of H with the fiber of For at the point is a pair of transverse regular discs, one of which belongs to the boundary and the other not. We can give an alternative definition to the component leaving the boundary: consider a sufficiently small neighbourhood V of ω 0 ∈ Ω SZ S g,1 and denote Σ ⊂ V the substratum where the marked point coincides with a zero of the form. It is a divisor in V containing ω 0 . Construct a holomorphic map

ϕ : V \ Σ → Ω SZ S g,2 ∩ H
as follows: given (C, r 1 , m 1 , ω) ∈ V \ Σ there is a zero of ω that corresponds to q and is very close to the marked point r 1 satisfying ω(r 1 ) = 0. Choose a short path γ 1 between that zero of ω and r 1 and consider its only twin path γ 2 starting at the (simple) zero and ending at a point r 2 . The homology class of the path joining r 1 to r 2 in the image of the twin paths γ 1 and γ 2 has zero integral by construction, and does not depend on the choice of the (short) path γ 1 . Define ϕ(C, r 1 , m 1 , ω) = (C, r 1 , r 2 , m, ω) where m(β) is the constructed homology class joining r 1 and r 2 . The map ϕ preserves the fibers of the corresponding period maps and is surjective onto W ∩ Ω SZ S g,2 ∩ H where W a neighbourhood of the initial point in U . The map ϕ is also bounded, so it extends holomorphically to Σ sending Σ to W ∩ ΩB β . The extension of ϕ sends period fibers to period fibers by construction.

We deduce that the singular set of the period map in Ω SZ B β is precisely the image of the substratum Ω SZ,1 S g,1 ⊂ Ω SZ S g,1 of marked forms for which the marked point is a zero of the form, under the attaching map [START_REF] Herrlich | The extended Teichmüller space[END_REF] (that coincides with the image of the same set by the local maps ϕ!). By Proposition 3.30 the isoperiodic foliation in Ω SZ S g,1 is regular and transverse to Ω SZ,1 S g,1 . Since both maps send isoperiodic sets to isoperiodic sets, the local structure of the fibers is as described in (2).

To prove (3), remark first that the irreducible components of X \ Ω SZ S g,2 (p) are contained in [START_REF] Hubbard | An analytic construction of the Deligne-Mumford compactification of the moduli space of curves[END_REF] β∈ker p,∂β=q 2 -q 1 Ω SZ B β (p).

Each nonempty Ω SZ B β (p) is isomorphic to the set Ω SZ S g,1 (p 0 ) via the attaching map [START_REF] Herrlich | The extended Teichmüller space[END_REF]. By the case n = 1 of this proposition, Ω SZ S g,1 (p 0 ) is a connected set. Therefore, each of the parts of the disjoint union [START_REF] Hubbard | An analytic construction of the Deligne-Mumford compactification of the moduli space of curves[END_REF] represents an irreducible component of X \ Ω SZ S g,2 (p). To finish the proof of (3) it suffices to show that the substratum Ω SZ,1 S g,1 (p 0 ) is connected. This set can be interpreted as the multi-section described by the set of 2g -2 simple zeros on each fiber of the universal curve bundle

CΩ SZ S g,0 (p 0 ) → Ω SZ S g,0 (p 0 ).
Since Ω SZ S g,0 (p 0 ) is connected and deg p 0 ≥ 3, we deduce from Lemma 2.14 that this multisection is connected, thus showing property (3). Remark 4.8. If 3 ≤ g ≤ 4 is the highest genus where there exists p 0 ∈ H g satisfying both that deg(p 0 ) = 2 and ΩS g,0 (p 0 ) is connected, the constructed analytic set X will be connected, but the closure of Ω SZ S g,2 (p) will not be connected. Indeed, in this case, the representation of the fundamental group of Ω SZ S g,0 (p 0 ) in the symmetric group in 2g -2 elements is trivial (see Lemma 2.14). This avoids having a path contained in the boundary of Ω SZ S g,2 (p) joining the stable forms ω 0 ∨ q 1 =∞ 0 and ω 0 ∨ q 2 =∞ 0 for distinct zeros q 1 and q 2 of ω 0 . However, a priori, it could be possible that Ω SZ S g,2 (p) is still connected. As we will see in next chapters, this would imply that there are fibers ΩS g+1,0 (p) over points p ∈ H g+1 of primitive degree deg(p) = 2 that are connected, which is not the case for the choice of g (see Theorem 1.3). 4.2. Some connected components of isoperiodic sets on curves with one node. Proposition 4.9. Let g ≥ 2, p ∈ H 1 (Σ g , C), and c be a Torelli class of a simple separating curve in Σ g such that

Ω * B c (p) is non empty. Let H 1 (Σ g , Z) = V 1 ⊕ V 2 the
symplectic decomposition associated to c and denote p i = p V i . Suppose that, after a symplectic identification of V i with H 1 (Σ g i , Z) for corresponding g i 's, the set

ΩS g i (p i ) is connected for i = 1, 2. Then, Ω * 0 B c (p) is connected as well.
Proof. First remark that p i = 0 and ΩS g i ,0 (p i ) is non-empty, since the restriction of an element ) is non-empty and connected. Then, Ω 0 B c (p) is connected as well.

(C 1 ∨ C 2 , m, ω 1 ∨ ω 2 ) ∈ Ω * B c (p) to a part (C i , m |V i , ω i )
Proof. Take a representative of c and introduce the closed connected oriented topological surface Σ g-1 with two marked points q 1 = q 2 ∈ Σ g-1 defined by cutting Σ g along c and identifying each component of the geometric completion to a point, one defining the point q 1 and the other the point q 2 . Notice that we have a natural isomorphism

(36) H 1 (Σ g-1 , q 1 , q 2 ; Z) H 1 (Σ g , Z)/Z[c],
where [c] denotes the homology class of c. The inclusion H 1 (Σ g-1 , Z) → H 1 (Σ g-1 , q 1 , q 2 ; Z) coming from the long exact sequence of relative homology translates under the isomorphism (36

) into the inclusion [c] ⊥ /Z[c] → H 1 (Σ g , Z)/Z[c].
Since [c] belongs to the kernel of p : H 1 (Σ g , Z) → C, this latter defines a period p rel : H 1 (Σ g-1 , q 1 , q 2 ; Z) → C. The attaching map that identifies the two marked points provides an isomorphism Ω 0 B c (p) ΩS g-1,2 (p rel ). Now, the restricition (p rel ) 0 of p rel to H 1 (Σ g-1 , Z) coincides with p [c] up to the given identification. In particular deg((p rel ) 0 ) ≥ 3 and ΩS g-1,0 ((p rel ) 0 ) is (non-emtpy and) connected. By Theorem 4.1 applied to p rel we deduce that ΩS g-1,2 (p rel ) is connected. This is the last statement in this paper, where spaces with some marked points are needed. From now on all maps Per and Per refer to period maps on curves without marked points.

Surgeries on stable forms and models of degeneracy

In this section we recall a surgery called Schiffer variation, that allows to construct paths in any fiber of Per by deforming continuously the underlying branched translation structure. We use them mainly to find boundary points that have zero residues and no zero components in the closure of any connected component of a fiber of Per.

Schiffer variations on stable forms.

A Schiffer variation is a continuous deformation of stable forms with some branch point or node. It can be best described in terms of the associated translation structures. The surgery changes the translation structure associated to a form on some small neighbourhood in the surface without changing it on the complement. By taking representatives of the cycles in the homology group that avoid that open set, it is easy to see that the period maps before and after the surgery coincide. There are several instances of the surgery that produce differences on the underlying surface and the translation structure. For instance it allows to deform the projective structure without varying the orders and number of zeros and nodes. It also allows to split a multiple branch point into simpler branch points; at last it allows to produce a smooth surface with several branch points from a node. The surgery operation is invertible (the surgery is actually involutive under suitable restrictions) so the inverse operations can be used to join branch points and to produce nodal curves. They were first considered by Schiffer in [START_REF] Schiffer | A method of variation within the family of simple functions[END_REF]. A detailed discussion of Schiffer variations on projective structures the can be found in [START_REF] Calsamiglia | Branched projective structures with Fuchsian holonomy[END_REF]. We will introduce it only for the case of branched translation structures and will use them to prove that any abelian differential on a smooth curve can be joined to an abelian differential on a stable curve with some node by a sequence of such surgeries.

Let (C 0 , m 0 , ω 0 ) be a marked abelian differential on a nodal curve C 0 and q be point where 0 < ord q (ω 0 ) < ∞. Remark that the chart φ = φ q defined by ω 0 around q can be analytically continued along any path in C 0 . Let γ 1 and γ 2 be two embedded paths in C 0 starting at q parametrized by [0, 1] whose images do not intersect outside the endpoints. For our purposes it is important to stress that both endpoints can coincide with each other, and/or with the starting point. We say that γ 1 and γ 2 are twin paths if none passes through two distinct nodes and the continuation φ i of φ along γ i satisfies that

φ 1 • γ 1 (t) = φ 2 • γ 2 (t) ∈ C for all t and t → φ i • γ i (t) is a simple path in C.
Since the chart φ q is a branched covering of degree ord q (ω 0 ) + 1 each path starting at q has ord q (ω 0 ) candidates to be its twin paths. Remark that the restriction of a pair of twin paths parametrized by [0, 1] to some sub-interval [0, t 0 ] is still a pair of twin paths.

Given a pair of twin paths γ 1 , γ 2 in C 0 , we can use the equivalence between abelian differentials and atlases formed by branched coverings over open sets in C and with transitions in the set of translations z → z + const to produce a new abelian differential ω 1 by cutting and pasting the twin paths as follows. Let U 0 be a small neighbourhood of γ 1 ∪ γ 2 where the φ i 's are defined. Cut U 0 along the segments γ 1 and γ 2 and glue the boundary on the left (resp. on the right) of γ 1 to the boundary on the right (resp. on the left) of γ 2 by identifying points that have the same image for φ i (see Figure 3). The fact that none of the twins passes through distinct nodes implies that at any point m, the new germ (V, m) of singular surface has the property that V \ m has one or two components. This implies that the new singular surface has only regular points and nodes. Let U 1 be the set of points obtained from U 0 after the gluing. The new nodal surface is equipped with a family of local branched coverings. Indeed, on the complement of U 1 we consider the family of branched coverings given by integrating ω. On U 1 we consider the branched covering defined by the φ i 's after the new identification. This family of branched coverings is translation invariant and defines a stable form ω 1 on some stable curve C 1 , that has a non-zero component whenever the component has points belonging to U 1 . The number of points where the local covering has degree at least two is finite. The order of ω 1 at a point that has not been glued is the same as in ω 0 . The zeros or nodes of ω 1 that lie on the glued points, can only appear at points corresponding to endpoints of the twin paths, or to zeros of ω 0 lying on the twins. By construction, the total order of the zero divisor of ω 1 on U 1 is the same as that of ω 0 on U 0 . Therefore, the genus of C 1 is the same as the genus of C 0 .

Remark that the twin paths γ 1 , γ 2 that we cut in ω 0 produce a pair of paths in C 1 . After inverting their orientation we get a pair of twin paths γ1 , γ2 for ω 1 . Cutting and pasting the twin paths γ1 , γ2 in ω 1 we obtain (C 0 , m 0 , ω 0 ) back. Therefore the inverse surgery is naturally defined in the same manner. We will use this inversion of surgery especially when the base point of the twin paths is a node.

Suppose γ 1 , γ 2 are twin paths of a stable form ω 0 starting at a point q and ending at points q 1 and q 2 respectively. Suppose that only the starting point and endpoints can be zeros or nodes of ω 0 . We are going to describe the structure of the twin paths γ1 , γ2 of the form ω 1 in some cases. Denote by q the starting point of γi and qi the final endpoint of γi .

Example 1: Suppose q, q 1 and q 2 are pairwise distinct points and q 1 and q 2 lie in the same component of C * 0 . Then the same is true for q, q1 and q2 (see Figure 3). ord q(ω 1 ) + 1 = (ord q 1 (ω 0 ) + 1) + (ord q 2 (ω 0 ) + 1); ord q (ω 0 ) + 1 = (ord q1 (ω 1 ) + 1) + (ord q2 (ω 1 ) + 1).

By taking appropriate combinations of twins and zeros we can do several types of changes to the zero divisor. For instance, if q is a simple zero and q 1 , q 2 are regular points, the surgery simply changes the position of the simple zero. We can also split a multiple zero, meaning that two or three zeros of ω 1 are produced from a single zero of ω 0 . It suffices to take any pair of twins starting at that zero with distinct endpoints. The inverse operation of the latter will be referred to as joining two or three different zeros in one zero. This is the case, for instance, when two twins leaving a simple zero have distinct endpoints and at least one of them is a zero.

Example 2: Suppose that γ 1 and γ 2 leave q following different branches of C 0 at q. Then q is a node and there are three interesting sub-cases that will be referred to as smoothing of a node:

(1) If q 1 , q 2 and q are pairwise distinct, then q1 = q2 = q, none of them is a node, and they are zeros of ω 1 . Each γi joins the same pair of distinct zeros of ω 1 (see Figure 4). (2) If q 1 = q = q 2 and γ 1 does not come back to q through a different branch of C 0 , then q is not a node of ω 1 and q = q1 = q2 , i.e. both γ1 and γ2 are closed loops based at a zero of ω 1 (see Figure 5). Moreover, by considering the intersection of the twins with a neighbourhood of q we observe that among the oriented segments there are two consecutive segments in the cyclic order with the same sign (either both enter or both leave the singularity).

Figure 5. γ 1 is a closed path that leaves and arrives to the node through one of the branches. After the surgery, there is no node, and a couple of closed twin paths based at a zero q.

(3) If q 1 = q = q 2 and γ 1 returns to q through the other branch of the node, then the conclusion is the same as in case ( 2). The only difference with that case is that the cyclic order changes (see Figure 6). The inverse surgeries of those examples allow to construct stable forms on nodal curves starting from certain stable forms on smooth curves. For future reference we state: Lemma 5.1. If a pair of twin paths based at a zero share starting point and endpoint then either the cut and paste surgery produces a stable form with an additional node, or both start and endpoint coincide, and in the cyclic order at that point, any pair of consecutive oriented segments of the twins have opposite sign.

Proof. The cases with a node correspond to the inverse surgeries of the smoothing of a node (Example 2). The last case described in the lemma does not produce a node, since the base point obtained after the surgery does not separate the germ of surface in two connected components.

The surgery can be generalized to families of twin paths. We call a family of paths Γ = {γ 1 , . . . , γ k } a family of twin paths for a form ω 0 if every pair forms a pair of twin paths for ω 0 . The cut and paste surgery associated to the family Γ cuts each γ i producing two sides of each cut, and glues each to its adjacent twin side. When all points in the paths are regular except for the initial point, that is a zero of order k -1, the surgery moves the zero of the form, in the sense that the order of the zero of ω 1 does not change. We can use the families of twins to join zeros of any order: Lemma 5.2. Let Γ = {γ 1 , . . . , γ k } be a family of twin paths starting at a zero of order k -1 of a stable form ω 0 . Suppose that all points in the paths are regular except for their common starting point and the endpoint of γ 1 , that is a zero of ω 0 distinct from the starting point. Then the form ω 1 obtained from the cut and paste surgery associated to Γ has less zeros than ω 0 (See Figure 7) Since the restriction of a family of twin paths parametrized by [0, 1] to some interval starting at time zero is still a family of twin paths, the previous construction gives a stable form for each t ∈ [0, 1]. We thus obtain a parametrized family {(C t , ω t )} t∈[0,1] of stable forms. Moreover, at any t ∈ (0, 1) there are two natural families of twin paths on (C t , ω t ). On the one hand there is the family that inverts the surgery from (C 0 , ω 0 ) to (C t , ω t ); on the other, there is the family of twin paths that correspond to the segments of the original twin paths parametrized by [t, 1]. The cut and paste surgery applied to the latter family of twin paths on (C t , ω t ) produces the same stable form (C 1 , ω 1 ). With this descritption at hand, items (ii) and (iii) of Example 2 are just a concatenation of Example 1 and the inverse of item (i) in Example 2. To compare the periods of the constructed stable forms we need to produce a (homological) marking m t on each C t , starting from a marking m 0 on C 0 . It suffices to do that under the hypothesis of Example 1 and of the inverse of item (i) in Example 2.

In the case of Example 1 (see Figure 3), the neighbourhood U 0 of the twins γ 1 ∪ γ 2 can be taken as a topological disc. By construction there is a natural identification between C 0 \ U 0 and C 1 \ U 1 . The map ∂U 0 → ∂U 1 has a unique extension up to isotopy to a homeomorphism U 0 → U 1 . The gluing of those two identifications produces a homeomorphism C 0 → C 1 that induces, by postcomposing it at the homology to m 0 , a marking m 1 on C 1 . With this marking it is readily verified that Per(C 0 , m 0 , ω 0 ) = Per(C 1 , m 1 , ω 1 ).

In the case of the inverse of item (i) in Example 2, we have the couple of twins γ1 , γ2 that join two distinct zeros of a stable form (C 1 , ω 1 ) on a smooth curve C 1 (the component they belong to). The neighbourhood U 1 is the annulus depicted in Figure 4 surrounding the twins. The neighbourhood U 0 is a neighbourhood of the node that contains both twins γ 0 ∪ γ 1 . There is a natural identification C 1 \ U 1 → C 0 \ U 0 . Each boundary component of U 1 is sent to the boundary of a disc contained in one of the branches of the node, giving an orientation preserving homeomorphism ∂U 1 → ∂U 0 . By arguing as before with each side of the pair of twins, up to isotopy there is a unique collapse U 1 → U 0 that sends the twins to the node and has the given values on the boundary. If there is a marking m 1 on C 1 , it can be postcomposed to the action of the collapse C 1 → C 0 on homology, giving a homological marking m 0 of C 0 . Again, the equality Per(C 0 , m 0 , ω 0 ) = Per(C 1 , m 1 , ω 1 ) is easily verified.

With the given markings the parametrized family produces a map [0, 1] → ΩS g whose composition with the projection ΩS g → S g to the space of marked curves t → (C t , m t ) ∈ S g is continuous by construction. On the other hand we claim that there exists a local trivialization of the fiber bundle ΩS g → S g around the point (C t , m t ) where isoperiodic sets are contained in the constant sections of the local trivialization. Indeed, ker m t is isotropic and we can find a symplectic basis {a i , b i : i = 1, . . . , g} of H 1 (Σ g ) such that ker m t is contained in the Lagrangian generated by a 1 , . . . , a g . The map Ψ : ΩU → U × C g defined by

Ψ(C, m, ω) = ((C, m), m(a 1 ) ω, . . . , m(ag) ω)
is continuous thanks to Lemma 3.31. It preserves the fibers and it is also linear in restriction to each fiber. This restriction is injective since every form satisfying Ψ(C, m, ω) = (C, m, 0, . . . , 0) has zero residues at all non-separating nodes, hence at all nodes. In section 6.1 we will see that the condition implies that vol ω = 0 and this volume is also the sum vol(ω i ) where vol(ω i ) denotes the (positive) volume of the restriction ω i of ω to the part C i of C. Hence vol(ω i ) = 0 for all i. However a holomorphic form ω i on a smooth curve C i has zero volume if and only if it is the zero form. Hence, the only possibility is that ω is zero everywhere. The map Ψ is therefore a trivialization of the bundle ΩU → U . In this local trivialization the fibers of Per are contained in the constant horizontal sections, which are continuous. Hence, the map [0, 1] → ΩS g is continuous. The same argument works for a family of twin paths. Definition 5.3. Let Γ = {γ 1 , . . . , γ k } be a family of twin paths for (C 0 , m 0 , ω 0 ) parametrized by t ∈ [0, 1] and set p = Per(C 0 , m 0 , ω 0 ). The Schiffer variation along Γ is the continuous path [START_REF] Johnson | Conjugacy relations in subgroups of the mappingclass group and a group-theoretic description of the Rochlin invariant[END_REF] t

→ (C t , m t , ω t ) ∈ Per -1 (p)
where (C t , m t , ω t ) is obtained from (C 0 , m 0 , ω 0 ) by cutting and pasting the family of twins {γ 1|[0,t] , . . . , γ k|[0,t] }.

In the case of translation structures there is naturally a distinguished family of twin paths, namely those that have image in straight lines in C. This produces a sub-family of paths in the fibers of Per. However, connectedness by paths in either of the families is equivalent to connectedness in the case of fibers of Per. The advantage of using straight paths is that the candidates to twins are invariant of the associated directional foliation. This allows to have some control on the embedding/intersection properties. In particular, a pair of geodesic segments of leaves of one of the directional foliations leaving the same singularity and having the same length, form a pair of twin paths. Let us analyze with more detail the oriented directional foliations. 5.2. Periodic annuli. The dynamics of each oriented directional foliation G θ induced by an abelian differential ω without residues or zero components on a smooth curve C is well known. Indeed, by Maier's Theorem (see [START_REF] Maier | Trajectories on the closed orientable surfaces[END_REF] or [START_REF] Strebel | Quadratic differentials. Ergebnisse der Mathematik[END_REF]) there exist a finite number of saddle connections, that is, leaves γ 1 , . . . , γ n such that each γ i converges to some singular point in the positive direction and to some singular point in the opposite direction. Each component of C \ ∪γ i is saturated by F and is either a periodic annulus, i.e. an annulus formed of closed leaves/geodesics, or minimal , i.e. each leaf in the component is dense in the component.

The length of all leaves in a periodic annulus is the same and coincides with the length of each of its boundary components. We orient each boundary component with the orientation of the foliation (not that induced by the orientation of the annulus). We call b + the boundary component that has the annulus to its right, and b -the boundary component that has the annulus on its left. Each boundary component of the annulus is identified with an ordered cycle of saddle connections (γ ± 1 , . . . , γ ± k ) each starting at the singular point where the former ended. The angle that a saddle connection forms with the following is of π to the corresponding side (right for b + , left for b -). Thus the intersection of the annulus with a neighbourhood of a zero of the abelian differential is a (possibly empty) family of sectors of angle π.

We recall an important existence result:

Theorem 5.4 (Masur, [START_REF] Masur | Closed trajectories for quadratic differentials with an application to billiards[END_REF]). For any non-zero abelian differential on a smooth curve there exists a periodic annulus.

5.3.

Degeneracy. We will use Schiffer variations to show the following Proposition 5.5. Every connected component of a fiber of Per intersects the boundary.

Proof. Let (C, m, ω) ∈ ΩS g . We will apply Schiffer variations to connect it to a point in ΩS g having a configuration of twin paths as in the first alternative of Lemma 5.1: two twin paths joining the same pair of zeros with a pair of non-alternating signs whenever the zeros coincide. In fact the twins that we will find are geodesic saddle connections. The application of the Lemma then allows to connect the latter to a point in the boundary via the associated Schiffer variations. Since Schiffer variations are paths in the fibers of Per, the proposition follows. First we will treat three cases where the boundary of some periodic annulus for ω provides the twins. Denote by b + and b -the boundary components of some periodic annulus A of ω.

Case 1: If b + and b -are closed saddle connections at a zero q of ω, meaning that each is formed by a single saddle connection starting and ending at q. Then they cannot both coincide. Indeed, if they did, the surface would have genus one, which is not the case. Therefore they are different and the extension of the chart of ω at q along the saddle connections sends each of them to a segments of oriented straight line of the same length and direction. This implies that they form a pair of twin paths for ω. To be able to apply Lemma 5.1 it remains to check that there is a consecutive pair of separatrices at q with the same sign. Since the annulus lies to the right of b + and to the left of b -the pair of twin segments leaving the singularity are consecutive in the cyclic order and we conclude.

Case 2: Suppose one of the saddle connections of b + is closed, and coincides with one of the saddle connections of b -. Call the saddle connection γ. In this case we can find another periodic annulus satisfying the conditions of Case 1. Think of the universal cover of A as an infinite horizontal band A ⊂ C. In each boundary component of A we have copies of γ and they all point in the same direction (see Figure 8). Choose a copy on each boundary component of the band, and draw the parallel geodesics (straight lines) in the band joining corresponding points in the chosen copies of γ. By construction, for the foliation given by the direction of the geodesics we get a periodic annulus in ω whose boundary components are each formed by one closed saddle connection, as in Case 1. -only pass through one zero q of ω, and at least one of them is formed by two saddle connections. The only case that is left is the case where none of the saddle connections of b + and b -coincide. We focus on the distribution of π-sectors described by the annulus at the zero q (see Figure 9). The π-sectors corresponding to the boundary of A at the saddle q are coloured black if they correspond to sectors of b -and light grey if they correspond to sectors of b + . Consecutive sectors of distinct colour have an even number of white π-sectors between them. If they are coloured the same there is an uneven number of white sectors between them. Some of the π-sectors correspond to b + and some to b -. Draw them in two different colors, say black and grey. By hypothesis the intersections of the closures of any two such sectors are empty, since otherwise we would be in Case 2. In the cyclic order at q there is a pair of such π-sectors of distinct color that are consecutive (among the coloured sectors).

Between two such consecutive sectors of different colours there is necessarily an even number number of uncoloured π-sectors. Hence, up to changing the orientation of the directional foliation if needed, we can consider that the consecutive saddle connections γ + and γ -that lie consecutively in boundaries of those two sectors of different colors both leave the singularity. If the lengths of γ + and γ -coincide, they are twin paths satisfying all the conditions of the first alternative of Lemma 5.1. Otherwise, we consider the shortest among γ + and γ -and its twin path starting along the other. The Schiffer variation along this pair of twin paths produces a form that has a periodic annulus as in Case 2.

This said we proceed to prove the Proposition by induction on the number of zeros of the form.

Suppose first that ω has one zero. Then all the saddle connections appearing in the boundary of a periodic annulus start and end at the zero. Therefore we fall in one of Cases 1,2 or 3 described above and we are done.

Suppose that we have proved the Lemma for all marked forms with n zeros and let us prove it for a form ω with n + 1 zeros on a smooth curve C.

Let z 1 , . . . , z n+1 be the zeros of ω. Up to moving them via Schiffer variations we can suppose that the number

d min = min j =k {dist(z j , z k )}
is realized by a single pair of zeros, say z 1 , z 2 . We can further move the point z 2 to guarantee that

z 2 z 1 ω is not in the countable set { a ω ∈ C : a ∈ H 1 (C)}.
Consider one of the geodesics γ 1 between z 1 and z 2 that realizes the distance between them. It is a saddle connection. If the zero z 1 has order k there are k + 1 oriented geodesics leaving z 1 in the same direction as γ 1 . We extend each until distance d min . By construction they do not pass through zeros of ω, except for (maybe) at their endpoint, where they can only reach z 2 . Indeed, if either reached z j with j = 2 one of the conditions of the definition of z 1 , z 2 would be violated.

If one of the twins ends at z 2 we are done by Lemma 5.1. Otherwise the family of twin paths satisfies the hypothesis of Lemma 5.2. We use the Lemma to connect ω to a form with less zeros. The inductive hypothesis then concludes the proof.

For future reference we state Corollary 5.6. Let p : H 1 (Σ g ) → C be a homomorphism. Then there exists an abelian differential (C, m, ω) on a smooth curve C satisfying p = Per(C, m, ω) if and only if the same is true for some stable form without zero components defined on a singular curve.

Proof. Suppose first that there exists a marked abelian differential (C, m, ω) on a smooth curve C satisfying Per(C, m, ω) = p. Then Proposition 5.5 implies that there also exists an abelian differential on a marked stable curve with a node, having periods p. For the converse, suppose that there exists a point in ∂Per -1 (p). By smoothening the nodes isoperiodically we obtain a form on a smooth curve. Alternatively, we can argue by Corollary 3.32: the local fiber L of Per around this point satisfies that L\∂L is nonempty. A point in the latter set provides a marked abelian differential on a smooth curve with period homomorphism given by p.

6. Isoperiodic sets on curves with one node 6.1. The image of the period map Per g,0 . Recall from subsection 3.11 that a stable form (C, ω) induces a flat singular metric ω ⊗ ω on C * with volume

vol(ω) = i 2 C ω ∧ ω.
In particular, 0 ≤ vol(ω) ≤ ∞ and it is finite if and only if all the residues of ω at the nodes of C are zero. If vol(ω) = 0 then ω is the zero form.

A second fact more directly related with periods is that whenever ω has no zero components on C, and the set of periods Λ = { a ω ∈ C : a ∈ H 1 (C)} is a lattice in C, integration along paths produces a branched covering [START_REF] Kapovich | Periods of abelian differentials and dynamics[END_REF] π : C → C/Λ whose primitive degree satisfies deg(π) = vol(ω) vol(C/Λ) .

In particular if the genus of C is at least 2, deg(π) > 1. Now, by Riemann's relations, the volume of ω can be calculated by using the periods of ω. Indeed, for any symplectic basis

{a 1 , b 1 , . . . , a g , b g } of H 1 (C) we have (39) vol(ω) = ω ∧ ω = i 2 C ω ∧ω = i 2 g j=1 a j ω b j ω - a j ω b j ω = j ( a j ω b j ω))
The positivity of both terms implies that if the periods of a form are discrete, they cannot be contained in a real line and thus define a lattice. We extend the definitions of volume and degree to homomorphisms on symplectic modules: • Define the primitive degree of p, denoted deg(p) as ∞ if p(M ) is non-discrete and as

deg(p) = vol(p) vol(C/p(M )) if p(M ) ⊂ C is discrete.
For any symplectic submodule V ⊂ M we denote vol p (V ) := vol(p |V )

Remark that if 0 < deg(p) < ∞, the kernel of p has necessarily co-rank two. If (C, m, ω) is a homologically marked stable form with zero residues and no zero components on a marked stable curve (C, m), then the homomorphism p = Per(C, m, ω) ∈ H 1 (Σ g , C) has the following properties:

(H 1 ) vol(p) > 0 and (H 2 ) If g ≥ 2 , deg(p) > 1.
Haupt proved in [START_REF] Haupt | Ein Satz über die Abelschen integrale I[END_REF] that conditions (H 1 ) and (H 2 ) are in fact also sufficient for a homomorphism p : H 1 (Σ g ) → C to be the period of a non-zero abelian differential on a smooth curve. For genera g = 2, 3 we have already given an argument in Theorem 2.3. We will give an alternative proof of this theorem in 6.6.

If we allow the non-zero form to have some zero components, there is a case where (H 2 ) is not satisfied: when there is a single non-zero component and it has genus one. 6.2. Haupt homomorphisms. Condition (H 2 ) of a homomorphism has other equivalent statements that will be useful, and show that the said exception is unique: Proposition 6.2. Let M be a unimodular symplectic module of rank 2g and p : M → C be a homomorphism. Suppose vol(p) > 0 and Λ = p(M ) ⊂ C discrete. Then the following are equivalent:

(1) vol(p) ≤ vol(C/Λ); (2) deg(p) = 1; (3) ker p is a symplectic submodule of M (of rank 2g -2).
Proof. First remark that by virtue of equation [START_REF] Kontsevich | Connected components of the moduli spaces of Abelian differentials with prescribed singularities[END_REF] we have vol(p) ∈ Z vol(C/Λ). If we assume (1) then the positivity of vol(p) implies [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF]. Obviously (2) implies [START_REF] Francaviglia | Abikoff Degenerating families of Riemann surfaces[END_REF]. For the proof of ( 2) ⇒ (3), we can normalize p by post-composing it by a real linear map to suppose that Λ = Z 2 ⊂ C. The kernels before and after this composition coincide. Up to taking a symplectic basis of M , we have p : Z 2g → Z 2 ⊂ C a homomorphism of positive volume. Then vol(p) = p 1 • p 2 where p = (p 1 , p 2 ) and p i ∈ (Z 2g ) * . On the other hand ker p = ker p 1 ∩ ker p 2 . Now, the dual of p i is an element u i ∈ Z 2g and we have the equality

p 1 • p 2 = u 1 • u 2 . If vol(p) = vol(C/Z 2 ) = 1, then u 1 , u 2 generate
a symplectic submodule of rank two. Its orthogonal is a symplectic submodule of rank 2g -2 that coincides with ker p.

Next suppose (3) and let us prove [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF]. Recall that ker p has rank 2g -2. Since ker p is a symplectic unimodular submodule of M we can take a symplectic basis a 1 , b 1 , . . . , a g-1 , b g-1 of ker p and complete it to a symplectic basis of M by adding a g , b g . Apply Riemann's relations to deduce that 0 < vol(p) = (p(a g )p(b g )). This implies that p(a g ) and p(b g ) generate a lattice; since they also generate Λ, we have vol(p) = vol(C/Λ). Definition 6.3. Let M be a unimodular symplectic module of rank 2g and p : M → C be a homomorphism. We say that p is a Haupt homomorphism if vol(p) > 0 and either g = 1 (and deg p = 1) or g ≥ 2 and deg(p) > 1. The set of Haupt homomorphisms in H 1 (Σ g , C) = Hom(H 1 (Σ g ), C) will be denoted by H g . Corollary 6.4. A homomorphism p : M → C on a unimodular module of rank 2g with vol(p) > 0 is not Haupt if and only if g ≥ 2 and ker p is a symplectic module of rank 2g -2. 6.3. Homological invariants of isoperiodic boundary components. The image of the extended period map Per g is contained in H g ∪ 0. The fundamental remark for the proof of Theorem 1.2 is related to the fact that the normalization of some node of a form in Ω * 0 S g is again a collection of forms in some Ω * 0 S h with h < g. The periods of those forms are intimately related and are subject to satisfy Haupt's conditions. In more detail: Suppose c is a simple closed curve in Σ g that is collapsed by the marking of a stable form (C, m, ω) ∈ Ω * 0 S g to a node and set p = Per(C, m, ω) ∈ H g .

If [c] = 0 in homology, then the curve is separating and C is a union C 1 ∨C 2 of stable curves and the form ω = ω 1 ∨ ω 2 where ω i ∈ Ω * 0 (C i ). On the other hand m and the decomposition 

H 1 (C) = H 1 (C 1 )⊕H 1 (C 2 ) define a symplectic splitting V 1 ⊕V 2 of H 1 (Σ g ). The map m i = m |V i is a marking of H 1 (C i ). The periods of (C i , m i , ω i ) are precisely p i := p |V i ,
(p) = vol p (V 1 ) + vol p (V 2 ) = vol(p 1 ) + vol(p 2 )
and each factor of the sum is positive. On the other hand

deg p = deg p 1 • Im(p) Im(p 1 ) + deg p 2 • Im(p) Im(p 2 ) .
If [c] = 0 then the curve is non-serparating and p([c]) = 0. The normalization of the node produces a stable curve C 2 of genus g -1 equipped with a form

ω 2 ∈ Ω * 0 S g-1 . Let V 1 be a rank two symplectic submodule of H 1 (Σ g ) that contains [c] and V 1 ⊕ V 2 its associated symplectic splitting of H 1 (Σ g ). Then, m |V 2 defines a marking of H 1 (C 2 ). The map p 2 = p |V 2 corresponds
to the periods of (C 2 , m 2 , ω 2 ) and is therefore a Haupt homomorphism. In this case the volume of p 1 = p |V 1 is equal to zero and we have

vol(p) = vol(p 1 ) + vol(p 2 ) = vol(p 2 ).
The positivity of vol(p 2 ) is guaranteed by that of vol(p). However for p 2 to be a Haupt homomorphism we need to verify the primitive degree condition (H 2 ). Remark 6.5. Given any symplectic submodule V of rank two containing a primitive element a ∈ ker p, there is a natural symplectic isomorphism between V ⊥ and a ⊥ /Za. Under this identification p |V ⊥ is equal to the map p a : a ⊥ /Za → C induced by p on the quotient. In particular, if one is a Haupt homomorphism then so is the other. Definition 6.6. Let p : M → C be a Haupt homomorphism defined on a symplectic unimodular module. Given a symplectic splitting

V 1 ⊕ • • • ⊕ V k of M ,
we say that it is p-admissible if every p |V i is a Haupt homomorphism. We say that a primitive element a ∈ ker(p) \ 0 is pinched by p if the induced homomorphism p a is a Haupt homomorphism. Remark 6.7. If p : M → C is a Haupt homomorphism, then every primitive element of a symplectic submodule of ker p is pinched by p.

In Corollary 6.18 we will prove inductively that all those decompositions and elements of ker p appear as induced by marked stable forms.

Factors of rank two of p-admissible splittings and the primitive elements they contain will be important in the sequel. Definition 6.8. Given a Haupt homomorphism p : M → C define

V p := {V ⊂ M : V has rank two and V ⊕ V ⊥ is a p -admissible symplectic splitting of M }.
A primitive element a ∈ M is said to be p-admissible if it belongs to some V ∈ V p . 6.4. Volumes of symplectic submodules and p-admissible elements. A necessary condition for a symplectic splitting V ⊕ V ⊥ to be p-admissible is that vol p (V ) ∈ (0, vol(p)). In this subsection we will analyze the possibilities for the volumes for rank two symplectic submodules containing a given element a from an algebraic point of view. The idea behind the Lemmas is that we can parametrize such submodules by a ⊥ . The volume function is then affine with linear part

L a : a ⊥ → R defined by L a (c) = (p(c)p(a)).
Up to an isomorphism R 2 ∼ = C, L a (c) is the projection of p(c) ∈ C along the line = p(a)R to its orthogonal line. Whenever the image is discrete (which amounts to having many elements having p-image in ) there will be none, or a finite number of values of the affine function in the interval (0, vol(p)). In the other cases, the values are dense in R. Lemma 6.9. Let W be a unimodular symplectic module of rank 2g ≥ 4 and p : W → C a non-trivial homomorphism. Let a ∈ W \ker p and suppose that one of the following conditions hold:

(1) rank(a ⊥ ∩ p -1 (Rp(a))) ≤ 2g -3 or (2) there exists a real line = Rp(a) in C containing 0 and satisfying

rank(p(W ) ∩ ) > 2.
Then for every ε 1 < ε 2 there exists a symplectic submodule V ⊂ W of rank 2 such that a ∈ V and ε 1 < vol p (V ) < ε 2 . In particular if a is primitive, it is also p-admissible.

Proof. First suppose a is primitive and choose b ∈ W be such that a • b = 1. For each e ∈ a ⊥ define b = b + e. Denote α = p(a), β = p(b). The volume of V = Za + Zb is given by [START_REF] Fils | Periods of abelian differentials with prescribed singularities[END_REF] vol p (V ) = (βα) + (p(e)α).

If 1) holds, the form e ∈ a ⊥ → (p(e)α) ∈ R has image a submodule of R of rank

rank(a ⊥ ) -rank(a ⊥ ∩ p -1 (Rα)) ≥ 2g -1 -(2g -3)) ≥ 2.
Therefore its image is dense in R and we can find the desired e for any given ε's. On the other hand, 2) implies 1) so the same conclusion holds. If a is not primitive, it is an integer multiple of some primitive a 1 . If one of the conditions (1) or ( 2) is valid for a, then it is also valid for a 1 . Since the lemma is valid for a 1 we obtain V of appropriate volume containing a 1 . By construction a ∈ V . Proposition 6.10. Let W be a unimodular symplectic module of rank 2g ≥ 4, and p : W → C be a homomorphism whose image is not contained in a real line. Suppose that either p is injective or rank(p) ≥ 5. Then at least one of the following possibilities occur [START_REF] Francaviglia | Abikoff Degenerating families of Riemann surfaces[END_REF] there exists an element a ∈ W \ ker p such that for any pair of real numbers ε 1 < ε 2 , there exists a rank two symplectic submodule V ⊂ W containing a such that

ε 1 < vol p (V ) < ε 2 .
(2) g = 2, and for every real line l ⊂ C, the preimage p -1 (l) is either {0} or a Lagrangian submodule of W .

Moreover, if g ≥ 3 there exists a submodule ker p ⊂ I ⊂ W of positive co-rank such that the conclusion is true for every primitive a ∈ W \ I. If I = ker p does not have the property, then there exists a unique real line ⊂ C such that rank(p(W ) ∩ ) > 2. In this case, the module I = p -1 ( ) does the job.

Proof. We first treat the case g ≥ 3. Assume that for every real line l ⊂ C, p(W ) ∩ l has rank ≤ 2. Take a ∈ W \ ker p. Then rank(a ⊥ ∩p -1 (Rp(a)) ≤ rank p -1 (Rp(a)) ≤ rank ker p+rank(p(W )∩Rp(a)) ≤ 2g-5+2 = 2g-3 and we conclude by Lemma 6.9. Therefore in this case the conclusion with I = ker p is valid. If there exists a real line l ⊂ C such that p(W ) ∩ l has rank > 2 therefore item (1) in Proposition 6.10 follows by item (1) of Lemma 6.9. In this case the submodule I = p -1 (l) does the job.

For the uniqueness of the module I as defined: suppose that there exists a ∈ W \ ker p and an interval (ε 1 , ε 2 ) in R such that no symplectic submodule V ⊂ W containing a satisfies ε 1 < vol p (V ) < ε 2 . Then there exists a real line l ⊂ C, p(W ) ∩ l has rank > 2. On the other hand, no real line l = Rp(a) can have this property, since otherwise a would belong to rank two submodules of W of arbitrary volume. Hence the only possibility is that l = Rp(a). The submodule I = p -1 (l) is the only of this type that has the desired property.

Next suppose g = 2. Then p is injective by assumption. If there exists a real line l = Rp(w) ⊂ C with rank(a ⊥ ∩ p -1 (l)) = 1 or rank(p -1 (l)) > 2, we can use Lemma 6.9 to find the desired element a ∈ W \ 0. Otherwise we have that for every a ∈ W \ 0 rank(a ⊥ ∩ p -1 (Rp(a))) = 2 and rank p -1 (Rp(a)) ≤ 2.

By injectivity of p this means that p -1 (Rp(a)) ⊂ a ⊥ for every a, so p -1 (Rp(a)) is a Lagrangian. Corollary 6.11. Let W be a unimodular symplectic module of rank 2g ≥ 6, and p : W → C be a homomorphism whose image is not contained in a real line such that rank(p) ≥ 5. Then, either all elements in W \ ker p are p-admissible or all elements that are not p-admissible have image in a real line ⊂ C containing 0 and lie in a submodule of rank 2g -2 or 2g -1 of W . Consequently for every real line l = passing through 0 we have rank p -1 (l) ≤ 2. Example 6.12. In H 2 there are examples of injective homomorphisms for which the volume of symplectic submodules can only take discrete values. They necessarily correspond to case (2) in Proposition 6.10. These examples correspond precisely to the periods of forms belonging to Hilbert modular invariant submanifolds (see Theorem 1.5). Let W be a rank 4 unimodular symplectic module and the homomorphism p : W → C given on a symplectic basis a

1 , b 1 , a 2 , b 2 by α 1 = 1, β 1 = i √ D, α 2 = √ D, β 2 = i,
where D ≥ 2 is an integer. Then, direct calculation shows that for any symplectic submodule V of W we have vol p (V ) ∈ √ D + Z. Even if the possible volumes of symplectic submodules form a discrete set, there are an infinite number of elements in V p , all having volumes in a finite set of values. 6.5. Existence of pinched elements for non-injective p ∈ H g . Lemma 6.13. Suppose V 1 is a symplectic module of rank ≥ 4, and V 2 one of rank ≥ 2. Let p i : V i → C be a homomorphism for i = 1, 2. Suppose p 1 is Haupt and vol(p 2 ) ≥ 0. Then

p = p 1 ⊕ p 2 : V 1 ⊕ V 2 → C is a Haupt homomorphism.
and zero elsewhere. In this case vol(p) = 2 and deg p = 2. The volume of any symplectic submodule of H 1 (Σ g ) is an integer. Suppose there exists a p-admissible splitting V 1 ⊕ V 2 of H 1 (Σ g ). The volume of each component is a positive integer. Hence, the only possibility is that each component has volume one and thus vol(V i ) = vol(C/Im(p)). One of both factors, say V 1 , has even rank ≥ 4 so p| V 1 is not a Haupt homomorphism, contradicting the definition of p-admissible splitting. 6.6. Alternative proofs of Haupt's Theorem. In this section we provide an alternative proof of Haupt's Theorem in [START_REF] Haupt | Ein Satz über die Abelschen integrale I[END_REF]. Theorem 6.17 (Haupt's Theorem). A character p ∈ H 1 (Σ g , C) is the period of some marked abelian differential on a smooth curve if and only if it is a Haupt homomorphism.

Proof. For genus one and p ∈ H 1 the condition vol(p) > 0 implies that p is injective and the image of p is a lattice Λ ⊂ C. The abelian differential dz on C/Λ has periods p. For genus 2 (and even three) we can apply Theorem 2.3.

For g ≥ 3, we can proceed by induction. Suppose Haupt's Theorem is true for all genera up to g -1 ≥ 2 and take p ∈ H g .

Case 1: If ker p = 0. By Proposition 6.10 applied for g ≥ 3 we deduce that there exists a p-admissible splitting V 1 ⊕ V 2 . The restriction p i = p |V i is an injective Haupt homomorphism. By inductive hypothesis we can realize p i as the periods of a marked abelian differential on a smooth curve (C i , m i , ω i ). The marked nodal form (C 1 ∨ C 2 , m 1 ⊕ m 2 , ω 1 ∨ ω 2 ) has period p , no zero components and induces the decomposition

V 1 ⊕ V 2 .
Case 2: If ker p = 0. Use Lemma 6.15 to consider a primitive element a ∈ ker p such that p a is Haupt.

Choose b ∈ H 1 (Σ g ) such that a • b = 1, define V 1 = Za ⊕ Zb, V 2 = V ⊥
1 , and p i = p |V i . By construction p 2 is a Haupt homomorphism. By inductive hypothesis, let ω 2 be an abelian differential on a smooth curve of periods p 2 . Since g -1 ≥ 2, by Lemma 4.3 applied to ω 2 we can find an embedded arc β with distinct endpoints in ω 2 such that β ω 2 = p(b). Glue the endpoints and mark the obtained nodal curve to guarantee that the period homomorphism of the stable form is p and the class a is pinched to the node.

In either case smoothing the node produces a form of period p on a smooth curve.

Kapovich gave a proof of Haupt's Theorem for genus g ≥ 3 as a corollary of Proposition 2.10 in [START_REF] Kapovich | Periods of abelian differentials and dynamics[END_REF]. Indeed, he remarked that the image of the map Per g is an open set in H 1 (Σ g , C) invariant by the action of Sp(2g, Z). For genus g ≥ 3 he deduced that it is the set H g by finding forms with periods in each of the closed invariant sets defined by Proposition 2.10, except of course, for the collapse of g -1 handles.

Using the constructions of Cases 1 and 2 of the proof of Haupt's Theorem we can easily construct stable forms with more nodes and given period map: Corollary 6.18. Let p : H 1 (Σ g ) → C be a Haupt homomorphism and H 1 (Σ g ) = V 1 ⊕ . . . ⊕ V k a p-admissible splitting. Then k ≤ g and there exists a stable form in Ω * 0 S g (p) with k -1 separating nodes such that each p |V j corresponds to the periods of a component of its normalization. Moreover, if we choose up to g -k ≥ 0 classes a j ∈ ker p \ 0, each belonging to a distinct V j and such that a j is pinched by p |V j , then there exists a stable form as before that shares the separating nodes with the form of the previous case, and has non-separating nodes that pinch precisely the chosen classes a j . 6.7. Non-admissible splittings for injective p ∈ H g and disconnected covers. Since the primitive degree condition (H 2 ) of a Haupt homomorphism is automatically satisfied for injective p ∈ H g , a symplectic submodule V ⊂ H 1 (Σ g ) induces a p-admissible splitting V ⊕V ⊥ if and only if the intermediate volume condition 0 < vol p (V ) < vol(p) is satisfied. Using the bijection between symplectic splittings and boundary components of the ambient space of compact type given in section 3.8 we prove Proposition 6.19. Let g ≥ 2. If p ∈ H g is injective, then ΩS c g (p) cuts an infinite number of boundary components of ΩS c g and also avoids an infinite number of them.

Proof. If p falls into case (1) of Proposition 6.10, for each choice of interval (ε 1 , ε 2 ) in R we can construct an example of symplectic splitting V ⊕ V ⊥ of H 1 (Σ g ) with V of rank two and vol p (V ) ∈ (ε 1 , ε 2 ) by using that proposition. If the interval belongs to (0, vol(p)) the splitting is p-admissible. If it belongs to R\[0, vol(p)] it is not p-admissible. Since two splittings having factors of different volumes are different and an infinite number of disjoint intervals can be chosen, we conclude.

If p falls into case (2) of Proposition 6.10 we have that the genus g = 2. Haupt's Theorem guarantees that Per -1 (p) contains a stable form of period p on a smooth curve. By Corollary 5.6, ΩS g (p) contains a boundary point that corresponds necessarily to a p-admissible splitting H 1 (Σ g ) = V ⊕ V ⊥ with factors of rank two. Furthermore, the detailed description of the isoperiodic set of marked stable forms associated to p can be found in [46, Theorem 1.2, p. 2274]. Among other properties we find an infinite number of elements defined over nodal curves with a (necessarily separating) node, and inducing distinct p-admissible splittings H 1 (Σ g ) = V ⊕ V ⊥ with factors of rank two.

To construct splittings that are not p-admissible we take any p-admissible splitting V ⊕ V ⊥ with V = Za ⊕ Zb and c ∈ a ⊥ with p(c) / ∈ Rp(a). For each k ∈ Z consider V k = Za ⊕ Z(b + kc). Then only for a finite number of k's we have vol p (V k ) ∈ (0, vol(p)). Since the volumes of the V k 's are all different, we have found an infinite family of distinct splittings V k ⊕ V ⊥ k that are not p-admissible.

Any p-admissible splitting is realized by some singular stable form via Corollary 6.18.

Corollary 6.20. The generic fiber of the period map on ΩT 2 is disconnected.

Proof. By [START_REF] Mess | The Torelli groups for genus 2 and 3 surfaces[END_REF] there is a free generating family of the Torelli group I 2 that can be thought in Siegel space as the family of cycles around every boundary component of Torelli space in Siegel space. These boundary components are parametrized by symplectic splittings V ⊕ V ⊥ . Let p ∈ H 2 be injective (which is generic). From the proof of Theorem 2.3, Per -1 (p) is a slice of dimension one of Torelli space that is isomorphic to D \ B where B is the intersection of the slice with the boundary components. Inclusion induces a map π 1 (D \ B) → I 2 . By Corollary 6.19 this map is not surjective. Hence the lift of Per -1 (p) to T 2 is disconnected.

In the case of genus g = 3 and a period p ∈ H 3 of primitive degree two the argument of the proof of Theorem 2.3 together with the fact that there are no p-admissible splittings, imply that Per -1 (p) is isomorphic to Siegel space S 2 , hence simply connected. Its lift to ΩT 3 is therefore disconnected.

Connectedness of the boundary of a fiber of Per

This section will be devoted to show the following Theorem 7.1. Let g ≥ 4 and suppose that Theorem 1.2 is true up to genus g -1. Then for any p ∈ H g with deg p ≥ 3 the boundary set ∂Per -1 (p) is connected.

Its proof will be split in two separate parts, depending on whether p ∈ Hom(H 1 (Σ g , Z), C) is injective or not.

7.1. Proof of Theorem 7.1 for injective p ∈ H g . In the case of injective p ∈ H g all points in ΩS g (p) are contained in the smooth manifold Ω * S c g formed by stable forms without zero components on curves of compact type. Moreover, Corollary 3.34 guarantees that ΩS g (p) is a smooth manifold, and the boundary ∂Per -1 (p) a normal crossing divisor.

The connectedness of this divisor is equivalent to the connectedness of its dual graph G p of irreducible components. This graph has a vertex for each irreducible component and an edge between two vertices if the corresponding components intersect. When two components intersect, they do it on forms with two or more nodes. Smoothing some nodes of any form with several nodes and no zero components allows to find paths in ∂Per -1 (p) (see Figures 4,5 and 6). In particular, by smoothing all except for one node, they allow to find edges in G p . Remark 7.2. If L ∈ GL + 2 (R) is an orientation preserving real linear map, the graphs associated to p and to L • p are isomorphic. In particular, for any c ∈ C * , G p and G cp are isomorphic.

In the rest of this section we will prove the connectedness of the graph G p . Definition 7.3. The graph of p-admissible splittings associated to an injective p ∈ H g has a vertex for each p-admissible splitting into two non-trivial factors, and an edge between two vertices V 1 ⊕ V 2 and W 1 ⊕ W 2 if there exists a p-admissible splitting (possibly with more factors) having a factor V i and a factor W j .

We say that two p-admissible submodules V , W are equivalent denoted V ∼ W if their associated vertices lie in the same connected component of the graph of p-admissible splittings. Lemma 7.4. Let g ≥ 4 and suppose that Theorem 1.2 is true up to genus g -1. Let p ∈ H g be an injective Haupt homomorphism. Then the graph G p is isomorphic to the graph of padmissible splittings.

Proof. The primitive degree of the restriction of p to a p-admissible submodule of rank at least four is infinite. By Theorem 4.9 and the inductive hypothesis, for each separating simple closed currve c the set Ω * 0 B c (p) is connected. If it is non-empty, it corresponds to unique vertex of G p . To this vertex we can associate the p-admissible splitting associated to c, which is a vertex of the graph of p-admissible splittings. If there exists an edge between two vertices of G p , it means there is a form with at least two separating nodes and periods p that lies in the intersection of the associated boundary components. The underlying p-admissible splitting determines an edge between the corresponding vertices of the graph of p-admissible splittings. The constructed map between graphs is a homeomorphism thanks to Remark 3.15 and Corollary 6.18 applied only for p-admissible splittings.

we can extend the family a 1 , b 1 , a 2 = c to a symplectic basis of X. The symplectic submodule Y = Z(a 1 + b 2 ) + Zb 1 has the desired properties.

From now on a Greek letter will denote the period of the corresponding Latin letter. Let l = Rα 2 , and L = X ∩ p -1 (l). This space is either {0} or a Lagrangian subspace of X since we assume the restriction of p to X is in case ( 2 

vol p (W ) = ((β + Bα 2 )(α + Aα 2 )) = (β α ) + ((Aβ -Bα )α 2 ).
By construction none of the cycles of Y are mapped by p to an element of the line l = Rα 2 , so the linear form (A, B) ∈ Z 2 → (Aβ -Bα )α 2 ) ∈ R is injective, and thus the volume of W can approximate any real value. Since W is orthogonal to both V and V , choosing W with vol p (W ) ∈ (0, vol(p)) gives the solution to step 2.

Third step: assume that the periods of (V + V ) ⊥ lie on a real line l ⊂ C. Then V ∼ V .

Proof of the third step. Thanks to Remark 7.2 it suffices to show that V is equivalent to V for some wp where w ∈ C * . By choosing an appropriate w of modulus one we can suppose that wp((V + V ) ⊥ ) ⊂ R. If we prove Step 3 for the case l = R we will be done. Recall that X = i≥3 Za i + Zb i ⊂ (V + V ) ⊥ . Let c ∈ X and define V c := Za 1 + Z(b 1 + c). The volume of V c is given by vol p (V c ) = vol p (V ) + (p(c)α 1 ). If α 1 ∈ R, then V c is automatically p-admissible. Otherwise p(α 1 ) / ∈ R and V c is p-admissible as soon as -vol p (V ) < (p(c)α 1 ) < vol(p) -vol p (V ). Now X has rank at least 4 and so has the image of the homomorphism X → R c → (p(c)α 1 ). Therefore, the inequality has an infinite number of solutions c ∈ X \ {0}. We can even impose a further condition that c • a 3 = 1. Define V = V c for such a solution c.

We claim that V ∼ V . Indeed, the space (V + V ) ⊥ contains the element b 2 . Observe that the period β 2 of b 2 is not real, since otherwise all the periods of V ⊥ would be real, and so we would have vol p (V ) = vol(p) which contradicts V ∈ V p . On the other hand, the submodule c ⊥ ∩ X has rank ≥ 3 and is contained in (V + V ) ⊥ . Since the periods of X are real, this proves that some periods of (V + V ) ⊥ are real. We can thus apply Step 2 to the couple (V, V ) to infer V ∼ V .

To prove that V ∼ V we will show that (V + V ) ⊥ does not have all its periods in a line and apply Step 2. Consider the element b 2 + m 2 (a 1 + a 3 ). It belongs to (V + V ) ⊥ . If it has real period, then b 2 +m 2 a 1 has also real period, which implies that (V ) ⊥ has only real periods. This is in contradiction with the fact that V is p-admissible. Therefore b 2 + m 2 (a 1 + a 3 ) has non-real period. On the other hand there are elements in (V + V ) ⊥ ∩ X \ 0 and their periods are non-zero real numbers. Lemma 7.6, allows to reduce the equivalence relation ∼ on submodules in V p to an equivalence relation on the elements that belong to those submodules. Definition 7.8. Let p ∈ H g . Recall that a primitive element w ∈ H 1 (Σ g ) is said to be p-admissible if it is contained in some module V ∈ V p . Two p-admissible elements w, w are equivalent and denoted w ∼ w if there exist V, V ∈ V p containing w and w respectively such that V ∼ V .

The transitivity property of this equivalence relation is proven by the use of Lemma 7.6. In particular, we already know that if V ∩ V = 0 then any pair of primitive elements in V ∪ V are equivalent.

If V and W belong to V p and there exists some elements v ∈ V and w ∈ W such that v ∼ w, then V ∼ W . Indeed, we can find V , W ∈ V p such that v ∈ V , w ∈ W and V ∼ W . By Lemma 7.6, V ∼ V and W ∼ W , so V ∼ W .

Let us analyze the p-admissible elements.

Lemma 7.9. Let p : H 1 (Σ g ) → C be an injective Haupt homomorphism. Given w 1 , w 2 , w 3 ∈ H 1 (Σ g ) such that

(1) Proof. Write w 2 = w 2 + z where z ∈ w ⊥ 1 ∩ w ⊥ 3 . If we show that the image of the map w ⊥ 1 ∩ w ⊥ 3 → R 2 defined by z → (vol p (Zw 1 ⊕ Z(w 2 + z)), vol p (Z(w 2 + z) ⊕ Zw 3 )) has a point in the square (0, vol(p)) × (0, vol(p)) we will be done. The previous map is affine, with linear part ϕ(z) = ( (p(z)p(w 1 )), (p(w 3 )p(z))).

w i • w i+1 = 1 for i = 1, 2, (2) 
Since p(w 1 ) and p(w 3 ) are not R-colinear, Ker(ϕ) = 0 and therefore rank(Imϕ) = 2g -2. The topological closure of Imϕ in R 2 is either R, Z × R or R 2 . Suppose it is not R 2 . Then there exists a submodule H ⊂ w ⊥ 1 ∩ w ⊥ 3 such that ϕ(H) ⊂ ⊂ R 2 for some real line passing through the origin and rankH ≥ (2g -2) -1 = 2g -3. Write = {(x, y) : αx + βy = 0} and then for each z ∈ H, (p(z)(αp(w 1 ) -βp(w 3 )) = 0. Hence p(H) ⊂ R(αp(w 1 ) -βp(w 3 )) is a submodule of rank at least 2g -3 and we reach a contradiction with the rank hypothesis. If w ⊥ ∩ v ⊥ ⊂ I we can consider the union I ∪ I v ∪ I w . Since by Lemma 7.15 it is contained in a union of proper submodules, it cannot cover the whole of H 1 (Σ g ). Take z ∈ H 1 (Σ g ) \ (I ∪ I v ∪ I w ). Then by Lemma 7.14 v ∼ z ∼ w, which as before implies that V ∼ W . Proposition 7.5 is now proven for all possible ranks of an injective p ∈ H g . 7.2. Proof of Theorem 7.1 for non-injective p ∈ H g . In the case of non-injective p we mimic the definition of the injective case to define an associated graph of the boundary ∂Per -1 (p). Definition 7.17. Given p ∈ H g we consider the boundary graph G p defined as follows:

• A vertex in G p corresponds to a connected component of the intersection of Per -1 (p) with the set of forms over curves with precisely one node, i.e. a connected component of Ω * 0 B c (p) for some simple closed curve c. If the curve is separating, the vertex is said to be of compact type. Otherwise it is of non-compact type.

• Two vertices are joined by an edge if the closures of the corresponding components intersect in Ω * o S g or, in other words, there exists a form with at least two nodes, no zero component, zero residues and periods p that lies in the closure of the given components.

As in the injective case, smoothing some nodes of any form with several nodes and no zero components allows to find paths in ∂Per -1 (p) (see Figures 4, 5 and6). In particular, by smoothing all except for one node, they allow to find edges in G p . The connectedness of the boundary set ∂Per -1 (p) is therefore equivalent to that of the graph G p .

Recall that from Remark 3.15 we deduce that the boundary components of ΩS g are in oneto-one correspondence with the set of symplectic decompositions of H 1 (Σ g ) with two factors and primitive classes in H 1 (Σ g ) \ 0. Unfortunately, since ker p = 0, there may be boundary strata of ΩS g whose intersection with Per -1 (p) is disconnected. For instance, a p-admissible splitting V 1 ⊕ V 2 with rank V 1 ≥ 10 and deg(p |V 1 ) = 2 provides an example, via attaching maps and Theorem 1.3. We cannot algebrize the problem as in Lemma 7.4. However, we can use the inductive hypothesis to identify a particular subfamily of vertices that is characterized by algebraic information: Proof. Suppose that there is a vertex that is not simple. If it is of compact type, it means that one of the factors of the associated p-admissible splitting is of rank at least eight and the restriction of p to it is of primitive degree two. If it is of non-compact type, there is a symplectic submodule of rank at least 8 where the restriction of p has degree two. In either case there is a symplectic submodule of ker p of rank at least two. Each primitive element in that submodule determines a simple vertex of non-compact type of G p .

Definition 7.18. Let p ∈ H g . A p-admissible splitting V 1 ⊕ V 2 is simple if it satisfies rank(V i ) ≤ 6 or deg(p |V i ) ≥ 3 for i = 1, 2. A pinched class a ∈ ker p is simple if deg p a ≥ 3. A vertex of G p is
Proof of Theorem 7.1 in the non injective case. The intersection of Per -1 (p) with a boundary component of ΩS g corresponding to a p-admissible splitting or pinched class is not necessarily connected when ker p = 0. However, under the hypothesis of Theorem 7.1 and supposing that the splitting or pinched cass is simple we deduce that the given intersection is connected. Indeed, Propositions 4.9 and 4.10 describe it as image of connected sets under attaching maps. In the case of genera two and three we do not need to care about the degree condition thanks to Theorem 2.3.

Therefore each simple p-admissible splitting or pinched class appears only associated to one vertex of G p .

The connectedness of the graph G p in the non injective case proceeds in three basic steps:

Step 1: Each vertex of compact type is equivalent to some vertex of non-compact type.

Step 2: Each vertex of non-compact type is equivalent to some simple vertex of non-compact type.

Step 3: Any pair of simple vertices of non-compact type are equivalent.

Proof of

Step 1: from compact type to non-compact type: 

Let V 1 ⊕ V 2 = H 1 (Σ g )
C, m, ω) = (C 1 ∨ C 2 , m 1 ⊕ m 2 , ω 1 ∨ ω 2 )
of period p sitting in the boundary component associated to V 1 ⊕ V 2 is equivalent to a stable form with a non-separating node. Indeed, suppose without loss of generality, that ker p 2 = 0. Then V 2 has at least rank 4. Suppose first that the vertex defined by (C, m, ω) is simple. Then, under the hypotheses of Proposition 7.1, Per -1 (p 2 ) is connected, contains ω 2 and a stable form ω 3 over a curve with a non-separating node. An isoperiodic path η t between them provides an isoperiodic path ω 1 ∨ η t between ω = ω 1 ∨ ω 2 and ω 1 ∨ ω 3 . The latter is a form in Ω * 0 S g with periods p and two nodes, one of which is non-separating. Therefore it defines an edge between the vertex defined by (C, m, ω) and a vertex of non-compact type of G p .

Next suppose that the vertex defined by (C, m, ω) is not simple. Then rank V 2 ≥ 8 and deg p 2 = 2. Integration of ω 2 along C 2 provides a branched degree two cover

C 2 → C/p 2 (V 2 ) =: E 2
having at least two distinct critical values. The preimage of a path in E 2 joining these critical values provides a pair of twin paths for ω 2 sharing the same endpoints. The Schiffer variation along this pair of twin paths describes an isoperiodic deformation η t joining ω 2 with a stable form ω 3 with a non-separating node. Indeed, if it would join the two critical points to a single critical point, the local degree of the branched covering around the latter would be at least three, contradicting the degree two hypothesis. If it would collapse to a separating node, the degree of the restriction of the period map to each part of the curve would be one, and since one of the parts has genus at least two it would contradict Haupt's Theorem.

It remains to treat the case where both p 1 and p 2 are injective. We will prove that the (simple) vertex is equivalent to another vertex of compact type where the restriction of p to one of the parts has non-trivial kernel.

If both p 1 and p 2 are injective, we can find p-admissible splittings of V 1 and V 2 with all factors of rank 2 by using Corollary 6.19 inductively to p 1 and p 2 . In particular the vertex associated to (C, m, ω) is equivalent to a vertex defined by a p-admissible splitting having a rank two factor, so we can suppose rank V 1 = 2. If p 2 is non-injective we are done. It remains to treat the case where p 2 is injective.

Take a primitive element a ∈ ker p and write a = n 1 a 1 + n 2 a 2 for primitive a i ∈ V i and co-prime

n 1 , n 2 ∈ N * . If a 2 ∈ V 2 is contained in a factor V of a p 2 -admissible splitting of V 2 , define V 1 = V 1 ⊕V . The decomposition V 1 ⊕V ⊥
1 is also p-admissible and satisfies ker(p |V 1 ) = 0. It defines a vertex that is equivalent to the one defined by V 1 ⊕V 2 . In particular this argument works if a 2 is p 2 -admissible.

So suppose p 2 is injective and a 2 = 0 is not p 2 -admissible. Then by Lemma 6.9 applied to p 2 , the rank of p

-1 2 (Rp(a 2 )) ∩ a ⊥ 2 is at least (2g -2) -3 + 1 = 2g -4. Completing a 2 to a symplectic basis a 2 , b 2 , a 3 , b 3 , . . . , a g , b g of V 2 , and denoting V 3 := Za 3 + Zb 3 + . . . + Za g + Zb g , we conclude that H = (p -1 2 (Rp(a 2 )) ∩ a ⊥ 2 ) ∩ b ⊥ 2 = p -1 (Rp(a 2 )) ∩ V 3 is either V 3 or a co-rank one primitive submodule of V 3 .
In the latter case, by considering an element w ∈ V 3 such that p(w) does not belong to := Rp(a 2 ), we apply Lemma 6.9 to and V 3 to construct a symplectic rank two submodule

W ⊂ V 3 containing w with 0 < vol p (W ) < vol p (V 2 ). Since p 2 is injective, this implies that W ∈ V p 2 . The splitting V 1 ⊕ W ⊕ (W ⊥ ∩ V 2 ) of H 1 (Σ g ) is p-admissible,
and in particular so is W ⊕ W ⊥ . On the other hand a ∈ W ⊥ ∩ ker p so the restriction p |W ⊥ is non-injective and we are reduced to one of the previous cases. It remains to treat the case where H = V 3 , namely p(V 3 ) ⊂ Rp(a 2 ). In this case we will find a new initial p-admissible splitting V 1 ⊕ V 2 that falls in one of the previous cases and that defines an equivalent splitting. The new V 1 that we want to construct, call it V 1 , will be a rank two factor of a p 2 -admissible splitting of V 2 .

The candidates to V 1 satisfy 0 < vol p (V 1 ) < vol p (V 2 ). The initial decomposition of a will change to a = n 1 a 1 + n 2 a 2 with primitive a 1 ∈ V 1 and a 2 ∈ V 2 := (V 1 ) ⊥ and co-prime n 1 and n 2 (the reason for this notation a i instead of a i will become clear hereafter). We claim that it is possible to find V 1 so that either a 2 is p V 2 -admissible or p 2 = p |V 2 is not injective. We already explained that this would conclude the proof.

Take

b 1 ∈ V 1 such that a 1 •b 1 = 1.
Up to composing p with a R-linear orientation preserving equivalence from C to C, we can assume that

p(a 1 ) = n 2 , p(b 1 ) = 1, p(a 2 ) = -n 1 , p(b 2 ) < 0, and that p(a k ) = α k ∈ R, p(b k ) = β k ∈ R for k ≥ 3.
Remark that since the homomorphism p 2 is injective, the numbers α 3 , . . . , α g , β 3 , . . . , β g are linearly independent over Q.

We are going to look for the module V 1 as being generated by the elements a 1 and b 1 , where

a 1 = a 2 + k≥3 m k a k + n k b k , b 1 = b 2 , a 2 = a 1 , b 2 = b 1 and for k ≥ 3 a k = a k + n k b 2 , b k = b k -m k b 2
form a new symplectic basis for H 1 (Σ g ). Here m k , n k are integers that have to be determined for k ≥ 3. We have

vol p (V 1 ) = -(p(b 2 ))(n 1 - k≥3 m k α k + n k β k ).
Observe also that vol p (V 2 ) = -n 1 (p(b 2 )). We will choose m k , n k multiple of n 1 , so we write

m k = m k n 1 , n k = n k n 1 with m k , n k integers. We then have vol p (V 1 ) = εvol p (V 2 ) with ε = 1 - k≥3 m k α k + n k β k . Since p 2 is injective, V 1 is p 2 -admissible if and only if 0 < ε < 1.
By rational independence of α 3 , . . . , α g , β 3 , . . . , β g we can find m k , n k ∈ Z satisfying this condition. If for such a choice the homomorphism p 2 := p |V 2 is not injective, we are done. Suppose that for all choices we have that p 2 is injective. In this case we will refine the solution to have a 2 to be p 2 -admissible. Let us understand how the class a decomposes according to the splitting

V 1 + (V 1 ) ⊥ : it is given by a = n 2 a 1 + n 1 a 2 with a 1 = a 1 and a 2 = a 2 -n 2 k≥3 m k a k + n k b k .
Hence, it suffices to find n k , m k ∈ Z such that a 2 is p 2 -admissible. The volume of the symplectic rank two submodule Za

2 + Zb 2 ⊂ V 2 (containing a 2 ) is vol p (Za 2 + Zb 2 ) = (p(b 2 )p(a 2 )) = n 2 1 - k≥3 m k α k + n k β k = n 2 ε, while vol p (V 2 ) = vol p -vol p (V 1 ) = vol p -εvol p (V 2 ).
Hence, as soon as 0 < ε < volp n 2 +volp(V 2 ) one concludes that a 2 is p 2 -admissible. Again the solution exists because of the rational independence of α 3 , . . . , α g , β 3 , . . . , β g .

Proof of

Step 2: From non-compact type to simple of non-compact type. Lemma 7.20. Let (C, ω) be a stable form with a non-separating node having ( C, ω) as its normalization and n 1 , n 2 ∈ Ĉ the points corresponding to the node in C. Let p (resp. p) be the period homomorphism associated to ω (resp. ω). Assume that deg( p) < ∞, and let F : C → C/ p(H 1 ( C)) be the map defined by integration of ω. Then

deg( p) = deg(p) ⇔ F (n 1 ) = F (n 2 ).
Proof. The proof is straightforward once one realizes that vol(p) = vol(p).

Continuing with the notations of Lemma 7.20 we consider a marked stable form (C, m, ω) with period map p of primitive degree at least three, and a non-separating node that collapses a curve c such that deg(p c ) = 2. The period map p of its normalization ( C, ω) has therefore precisely degree two. By Lemma 7.20, F (n 1 ) = F (n 2 ) for the integral

F : C → C/ p(H 1 ( C))
of ω. The map F is a branched covering of degree two. All its branch points are therefore simple and have distinct values for F . Choose a path in C/ p(H 1 ( C)) that avoids the two points F (n 1 ) and F (n 2 ) and joins two distinct critical values. Its preimage by F defines a pair of twins that join two critical points in C and also two zeros of ω in C. The closed curve formed by both twins cannot be separating. Indeed, if it was separating, it would induce a p-admissible splitting of H 1 (Σ g-1 ). However, these do not exist for deg(p) = 2 and g -1 ≥ 3 (see Example 6.16). Therefore, the curve formed by both twins is non-separating. After the Schiffer variation on ( C, ω) along these twins, we obtain a new stable form ( C, ω) of period p with a node ñ that is non separating. It is a degree two cover of an elliptic differential. By Lemma 7.20, identifying the points n 1 and n 2 on ( C, ω) produces a stable form whose period map has finite primitive degree different from deg( p) = 2 (and from one by Haupt's Theorem). Hence it has degree at least three. Again by the same Lemma, the normalization of ñ on this form has that same degree, bigger than three. 

(Σ g ) = V 1 ⊕ V 2 . The primitive elements a ∈ V i ∩ ker p such that deg (p| V i ) a ≥ 2 satisfy deg(p a ) ≥ 3.
Proof. (1) First remark that the homomorphism p 1 := p |W ⊥ is defined on a module of rank at least 6 and has the same volume and primitive degree as p. By Lemma 7.19 applied to p 1 we deduce that there exists a simple vertex for G p 1 . Using Corollary 6.18 we construct a marked stable form (C 1 , m 1 , ω 1 ) of genus g -1 and period p 1 , with a node that induces the given simple vertex and -thanks to the genus hypothesis and up to some Schiffer variations -a simple zero at some regular point. Take a pair of embedded twins with distinct endpoints starting at the simple zero and glue the endpoints, thus obtaining a stable form on a genus g curve with two nodes. After the gluing, the union of the twins forms a closed loop in the nodal curve whose period vanishes. Given any symplectic basis a, b of W we mark the obtained nodal form by collapsing a to the node, associating b to the loop obtained from the twins, and keeping the marking on W ⊥ as it was for (C 1 , ω 1 , m 1 ). The given form with two nodes defines an edge in G p joining two simple vertices. One of them corresponds to the node of the initial ω 1 and is independent of the chosen a. In particular all primitive classes in W define equivalent simple vertices. Moreover, if the chosen node for ω 1 is determined by a primitive element ker p ∩ W ⊥ defining a simple vertex for G p it is also a simple vertex for G p 1 . This vertex is equivalent to any vertex defined by a primitive element of W . This shows that all simple vertices of non-compact type of G p corresponding to primitive classes in W ∪ W ⊥ are equivalent.

(2) The module L ⊥ /L has rank 2g -4 and the ambient symplectic form on H 1 (Σ g ) induces a symplectic form on it. Since L ⊂ ker p, the map p induces a homomorphism Next suppose a 1 , a 2 forms a basis of L corresponding to simple vertices and deg p L ≥ 2. We claim that we can construct a marked stable form of period p with precisely two nonseparating nodes that correspond to the given classes. The corresponding vertices are thus joined by an edge in G p . Indeed, take a form (C 2 , m 2 , ω 2 ) of genus g -2 and periods p L with two simple zeros. Complete the elements a 1 , a 2 to a symplectic basis a i , b i of H 1 (Σ g ). For i = 1, 2, apply Lemma 4.3 to ω 2 to choose an embedded path β i in C 2 having distinct endpoints and satisfying

p(b i ) = β i ω 2 .
We can further assume that β 1 and β 2 are disjoint. Indeed, if p(b 1 ) = p(b 2 ) = 0 it suffices to take pairs of short twins at distinct zeros of ω 2 . If only one of them is non-zero, we can take a very short pair of twins to realize the zero period so as to avoid the path of non-zero length. If both are non-zero and we have initially taken two paths that intersect, we change one of the paths in its homotopy class with fixed endpoints to avoid the intersections. Gluing the endpoints of the said paths and marking the form by collapsing a 1 and a 2 to the nodes, and associating b i to the corresponding loop β i we obtain a marked stable form of period p with two non-separating nodes as was claimed. In full generality it is not true that every primitive element of L corresponds to a simple vertex. However, if deg p L ≥ 3 we have that every primitive element of L corresponds to a simple vertex. The previous argument shows that we only have to check that for any pair of primitive elements a, a ∈ L we can construct a sequence a = a 0 , . . . , a n = a of primitive elements in L such that a i , a i+1 form a basis of L for each i = 0, . . . , n -1. This is guaranteed by Gauss algorithm in L.

It remains to treat the case g = 4 and deg p L = 2. In this case, p L is defined on a rank four symplectic module and has a lattice Λ ⊂ C as image. The normal form for periods of finite primitive degree, see Lemma 8.1 proved in Appendix 8, provides a symplectic decomposition of L ⊥ /L into rank two submodules

W 1 ⊕ W 2 satisfying p L (W i ) = Λ. Let V ⊂ H 1 (Σ g ) be a rank four symplectic submodule containing L and consider a symplectic decomposition of V ⊥ = V 1 ⊕ V 2 that induces W 1 ⊕ W 2 on L ⊥ /L. Let V 3 = V ⊕ V 1 . The symplectic decomposition H 1 (Σ g ) = V 3 ⊕ V 2 defines a simple vertex in G p ,
since all factors are of rank at most 6. We claim that there is an edge of G p between this simple vertex and any simple vertex corresponding to a primitive element in L. To construct it, it suffices to construct a marked stable form with two nodes one of which induces the symplectic splitting V 3 ⊕ V 2 and the other collapses the class a ∈ L ⊂ V 3 satisfying deg p a ≥ 3 to a node. On the other hand we have Im(p |V 3 ) a = Im(p a ), vol p (V ) = 0, and vol p (

V 2 ) = vol p (V 1 ). Therefore deg (p |V 3 ) a = vol (p |V 3 ) a vol C/Im(p |V 3 ) a = vol p a /2 vol C/Im(p a ) = 1 2 deg(p a ) ≥ 3 2 > 1.
By using Corollary 6.18 we can construct a stable form with two nodes, one of which corresponds to a and the other to the decomposition V 3 ⊕ V 2 .

( We continue the proof of Proposition 2.10, which is reminiscent of Ratner's theory. Equipp R 2g with its canonical symplectic form ω(x, y) = 1≤k≤g x 2k y 2k+1 -x 2k+1 y 2k . The volume of a period p ∈ C 2g is the symplectic product V (p) = ω( p, p). Since the action of Γ is linear, and that the volume is multiplicative, namely V (λp) = |λ| 2 V (p) for every λ ∈ C and p ∈ C 2g , we can restrict our attention to the action of Γ on the subset X ⊂ C 2g whose elements have volume 1. In real and imaginary coordinates the set of periods of volume 1 is then the set of pairs (x, y) ∈ R 2g × R 2g such that ω(x, y) = 1.

The simple real Lie group G = Sp(2g, R) acts transitively on the set of couples (x, y) ∈ (R 2g ) 2 such that ω(x, y) = 1, and that the stabilizer of the couple (1, 0, . . . , 0), (0, 1, 0, . . . , 0) is the group

  1 1 Sp(2g -2, R)  
that we will denote by U in the sequel. Our set X is isomorphic to the homogeneous space G/U . The linear action of Γ on X is under the isomorphism X G/U given by left multiplication on G/U .

Since the group G is simple, that U is generated by unipotent elements, and that Γ is a lattice in G, Ratner's theorem [START_REF] Ratner | Raghunathan's topological conjecture and distributions of unipotent flows[END_REF] tells us that the closure of the Γ-orbits on X are homogeneous in the following sense Theorem 8.2 (Ratner). For every p ∈ X of the form p = gU , there exists a closed subgroup H of G containing U g = gU g -1 , such that Γ ∩ H is a lattice in H, and such that Γ • p = ΓHp.

Notice that in our situation, we have U g = I |W ⊕ Sp(W ⊥ ) Sp(2g -2, R) where W = R p + R p ⊂ R 2g is the symplectic subspace associated to the volume one p ∈ C 2 . Let H 0 be the connected component of H containing the identity: then Γ ∩ H 0 is still a lattice in H 0 , and U g is contained in H 0 .

If H 0 = G then Γ • p = G and we deduce that the orbit closure is dense in X. Since the closure of Λ(p) contains all the Λ(q) of elements q ∈ Γ • p, we have Λ(p) = C.

If H 0 is a proper subgroup of G, Kapovich observes that it falls into two categories

• (Semi-simple case) H 0 is of the form S ⊕Sp(W ⊥ ), where S is a Lie subgroup of Sp(W ).

• (Non semi-simple case) H 0 is not semi-simple and preserves a line L ⊂ W .

The proof of this dichotomy can be found in [38, p. 12], and is based on Dynkin's classification of maximal connected complex Lie subgroups of Sp(2g, C), see [START_REF] Dynkin | Maximal subgroups of the classical groups[END_REF]. Let L be a maximal complex Lie subgroup of Sp(2g, C) which contains H 0 . If H 0 = Sp(2g, R), its Zariski closure in the complex domain is a strict subgroup of Sp(2g, C), so it is contained in a maximal complex Lie (strict) subgroup of Sp(2g, C). It satisfies one of the following properties (see [START_REF] Gorbatsevich | Structure of Lie groups and Lie algebras[END_REF]Ch. 6, Thm 3.1, 3.2]):

(1) L = Sp(V ) ⊕ Sp(V ⊥ ) for some complex symplectic subspace V ⊂ C 2g , (2) L is conjugated to Sp(s, C) ⊗ SO(t, C) where 2g = st, s ≥ 2, t ≥ 3, t = 4 or t = 4 and s = 2, (3) L preserves a line of C 2g . Since H 0 contains U g , L contains the complexification of U g , which is nothing but Id W C ⊕ Sp(W ⊥ C ), where W C denotes the complexification W ⊗ R C of W . In case (1), the only possibility is that up to permutation of V and V ⊥ , we have W C = V . In particular, H 0 is a subgroup of Sp(W ) ⊕ Sp(W ⊥ ). Since it contains Id |W ⊕ Sp(W ⊥ ), it must be of the form S ⊕ Sp(W ⊥ ), where S is a Lie subgroup of Sp(W ). Case (2) cannot occur. In case [START_REF] Arbarello | Geometry of Algebraic Curves[END_REF], observe that the line L needs to be in W C , since the group Id |W C ⊕ Sp(W ⊥ C ) preserves this line. If L is defined over the reals, we are done. If not, both L and L (the image of L by the complex conjugation) are preserved by H 0 , and thus H 0 is a subgroup of Sp(W ) ⊕ Sp(W ⊥ ). As before, because it contains Id W ⊕ Sp(W ⊥ ), it must be of the form S ⊕ Sp(W ⊥ ), where S is a Lie subgroup of Sp(W ).

Remark 8.3. If Γ W := Γ ∩ (Id W ⊕ Sp(W ⊥ )) is a lattice in Id W ⊕ Sp(W ⊥ ) then W is defined over Q and the conclusion of the first item of Proposition 2.10 follows easily. Indeed, Γ W acts by the identity on W σ for every Galois automorphism σ. The Zariski closure of Γ W being Id W ⊕ Sp(W ⊥ ) (by Borel density theorem, see [START_REF] Zimmer | Ergodic theory and semi-simple groups[END_REF]), Id W ⊕ Sp(W ⊥ ) acts by the identity on W σ as well. This implies that W σ = W for every σ (otherwise Id ⊕ Sp(W ⊥ ) acts by the identity on the non-trivial subspace (W + W σ ) ∩ W ⊥ ), and so W is rational.

Let us proceed to analyze the different cases. Semi-simple case. Since the group H 0 = S ⊕ Sp(W ⊥ ) contains a lattice, it must be unimodular. In particular, either S is the trivial group, or a 1-parameter subgroup, or the whole Sp(W ). If S is trivial, then Ratner's Theorem tells us Γ W := Γ ∩ (Id W ⊕ Sp(W ⊥ )) is a lattice in Id W ⊕ Sp(W ⊥ ) and we fall in case (1) by Remark 8.3.

If S is 1-dimensional, S ⊕ Id W ⊥ would be the radical of H 0 , and a theorem of Wolf and Raghunathan, see [START_REF] Raghunathan | Discrete subgroups of Lie groups[END_REF], shows that it would intersect Γ in a lattice. This implies that the intersection of Γ with Id W ⊕ Sp(W ⊥ ) is also a lattice. Indeed, let Γ denote the natural projection of Γ on Sp(W ⊥ ). Since the sequence 0 → S ∩ Γ → Γ → Γ → 1 is exact, the map Γ → (S ∩ Γ)\S induced by the projection of S ⊕ Sp(W ⊥ ) to S induces a morphism Γ → (Γ ∩ S)\S. The group (Γ ∩ S)\S is abelian, and since Γ has Kazdhan property (T), the image group in (Γ ∩ S)\S is finite. We thus conclude that the image of Γ on the factor S is a lattice and therefore Γ ∩ (Id W ⊕ Sp(W ⊥ )) as well. We conclude as in Remark 8.3.

Finally, it remains to treat the case where S = Sp(W ). This case splits into two subcases, depending on the lattice Γ∩Sp(W )⊕Sp(W ⊥ ) being reducible or irreducible. If it is reducible, this implies that Γ ∩ (Id W ⊕ Sp(W ⊥ )) is a lattice, and then W must be rational by the above considerations. Assume now that we are in the irreducible case. Then g = 2, by a theorem of Margulis [START_REF] Margulis | Discrete subgroups of semi-simple Lie groups[END_REF]. Assume W is not rational, otherwise we are done. Let σ be a Galois automorphism such that W σ = W . The group Γ ∩ Sp(W ) ⊕ Sp(W ⊥ ) preserves the splitting W σ ⊕ (W σ ) ⊥ , since Γ and the symplectic form are defined over the rationals. Borel density theorem applied to the lattice Γ ∩ Sp(W ) ⊕ Sp(W ⊥ ) shows that Sp(W ) ⊕ Sp(W ⊥ ) preserves the splitting W σ ⊕ (W σ ) ⊥ . This implies that W σ = W ⊥ and (W σ ) σ = W . This being true for every Galois automorphism, this means that W is defined over a totally real quadratic field K, and we have W σ = W ⊥ where σ is the Galois automorphism of K. This is the only situation where we fall in the last case of Proposition 2.10.

Non semi-simple case. We suppose that H 0 is not semi-simple and prove in this case that the periods p satisfy the second case of Proposition 2.10. We already know that there is a line L ⊂ W that is invariant by the action.

For this, we will first need to understand in detail the subgroup B of Sp(2g, R) formed by all elements that stabilize the line L, see [38, p. 10]. To unscrew the structure of B, notice that any element of B stabilizes both L and L ⊥ so that we have an exact sequence

CH 2g → B → Sp(L ⊥ /L) Sp(2g -2)
The group CH 2g is then the set of elements M ∈ Sp(2g) which induce the identity map on L ⊥ /L.

We now have another exact sequence Equation ( 47) is a straightforward computation. An equivalent formulation is that H 2g-1 is the central extension R → H 2g-1 → (L ⊥ /L) * , defined by the 2-cocycle (ϕ, ϕ ) → ω(ϕ, ϕ ). The group H 3 is isomorphic to the classical Heisenberg group of upper triangular real matrices of size 3 × 3 with 1's on the diagonal. Now CH 2g is a semi-direct product of R * by H 2g-1 , see [START_REF] Mcmullen | Moduli spaces of isoperiodic forms on Riemann surfaces[END_REF]. To understand its structure, we introduce for every λ, one of its lift S λ ∈ CH 2g defined by Let us first find C 1 , C 2 , C 3 , C 4 so that conditions (2)-( 5) are satisfied. In real and imaginary coordinates this is equivalent to

p(E 1 ) = 1 -C 1 • (b 1 + b 2 ) 2 , C 1 • (a 1 + a 2 ) 2 ,
and

p(E 2 ) = (b 1 + b 2 ) • C 2 2 , 1 + C 2 • (a 1 + a 2 ) 2 .
Observe that the right hand sides of the last two equations are integers because C k 's are lifts of -the elements of the symplectic basis-C k [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF]'s and satisfy [START_REF] Mcmullen | Foliations of Hilbert Modular Surfaces[END_REF]. By surjectivity of p there exist solutions to the equations ( 2)-( 5), and so we can assume that the C k 's satisfy (2)-( 5).

We can now replace C k by C k = C k + 2E k for k = 1, 2 with

E k ∈ (a 1 + a 2 ) ⊥ ∩ (b 1 + b 2 ) ⊥ for k = 1, 2.
to preserve conditions (2)-( 5). Condition ( 1) is equivalent to

1 = C 1 • (C 2 + 2E 2 ) = C 1 • C 2 + 2C 1 • E 2 ,
and we know that C 1 • C 2 is odd. So we are done if we can choose C 1 so that the map 53) is onto if and only if

(53) E 2 ∈ (a 1 + a 2 ) ⊥ ∩ (b 1 + b 2 ) ⊥ → C 1 • E 2 ∈ Z is onto. We have (a 1 + a 2 ) ⊥ ∩ (b 1 + b 2 ) ⊥ = Z(a 1 -a 2 ) + Z(b 1 -b 2 ) + k≥3 Za k + Zb k So the map (
(54) gcd(C 1 • (a 1 -a 2 ), C 1 • (b 1 -b 2 ), C 1 • a 3 , C 1 • b 3 , . . . , C 1 • a g , C 1 • b g ) = 1.
However, observe the following: [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF] is odd, and • If g ≥ 3, choosing E 1 appropriately, we can assume that the value of C 1 • a 3 is either 1 or 2.

• C 1 • (b 1 -b 2 ) = C 1 • (b 1 + b 2 )[2] = 1
So ( 54) is satisfied with these choices of E 1 . Hence the main step is achieved.

To conclude the proof of Lemma 2.9, we need to construct the columns C 5 , . . . , C 2g . We will inductively find the pair C 5 , C 6 , then the pair C 7 , C 8 , etc.. Let us construct the first one. We need to find E 5 , E 6 so that and the product C 5 • C 6 being even, equation ( 56) can be solved for some suitable choice of E 6 . We get C 5 and C 6 in this way. For the construction of the other pairs by induction, the argument is similar.

The first part of the lemma follows, namely the surjectivity of the map Stab Aut(H 1 (Σg,Z)) (p) → Stab Aut(H 1 (Σg,Z/2Z)) (p [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF]).

For the second part, it suffices to remark that the stabilizer of p [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF] in Aut(H 1 (Σ g , Z/2Z)) is the stabilizer of a pair of non colinear elements of H 1 (Σ g , Z/2Z) that do not intersect each other. The number of elements in this group is given by the announced formula, by elementary considerations.

Index of notations

• S g denotes Siegel space of genus g, i.e. complex g×g symmetric matrices with positive definite imaginary part. • If C is a smooth curve H g,d (C) denotes the Hurwitz space of equivalence classes of degree d and genus g branched coverings over C. • Σ g,n model topological orientable surface of genus g ≥ 0 with n ≥ 0 marked points q 1 , . . . , q n ∈ Σ g . When n = 0 we omit the second subindex: Σ g := Σ g,0 • H 1 (Σ g , q 1 , . . . , q n ; Z) denotes the relative homology group with integer coefficients.

• H 1 (Σ g ) := H 1 (Σ g , Z)

• T g,n is the Teichmüller space of Σ g,n • T g,n is the augmented Teichmüller space of marked stable curves of genus g with n marked points. • The boundary ∂T g,n of T g,n in T g,n is the set T g,n \ T g,n of marked stable curves of genus g with some node. • A curve system c in Σ g is a disjoint union of simple closed curves that are non-pairwise isotopic and each is not isotopic to a point. The empty curve system is denoted ∅. • Mod(Σ g,n ) is the mapping class group of Σ g,n that is, isotopy classes of orientation preserving diffeomorphisms of Σ g,n that fix every marked point. • To each curve system c we associate:

a boundary stratum B c ⊂ T g of marked stable curves that send each element of c to a node.

the distinguished open neighbourhood U c := c ⊂c B c of B c -The subgroup Γ c of Mod(Σ g ) generated by Dehn twists around any element of c • I g,n is the Torelli subgroup of Mod(Σ g,n ). It elements fix every class in H 1 (Σ g , q 1 , . . . , q n ; Z).

It is the kernel of the representation Mod(Σ g,n ) → Aut(H 1 (Σ g , q 1 , . . . , q n ; Z)).

• M g,n = T g,n /Mod(Σ g,n ) is the Deligne-Mumford compactification of the moduli space of genus g Riemann surfaces with n marked points M g,n = T g,n /Mod(Σ g,n ). The boundary ∂M g,n is the image of ∂T g,n . • S g,n = T g,n /Tor(Σ g,n ) is the Torelli covering of M g,n . The boundary ∂S g,n is the image of ∂T g,n .

• A bolded letter c denotes an equivalence class of curve system c under the action of the Torelli group. The boundary of S g,n is a disjoint union of strata ∪ c B c where c runs through all equivalence classes of non-empty curve systems in Σ g,n .

• A stable form on a stable curve C is a section of the dualizing sheaf of C. In other words, a meromorphic 1-form on each part of C having at worst simple poles at the nodes and whose sum of residues at each node is zero. • If C is a genus g stable curve, the set of stable forms Ω(C) forms a g-dimensional vector space. • A node of a stable form is said to be polar if the restricted form to each branch has a pole. Otherwise it has no residue at the node and the node is said to be holomorphic. • A node of a stable form is simple if the restricted forms on each component do not have neither a pole nor a zero at the point corresponding to the node. • A stable form has a zero component if it coincides with the zero form at some part of the curve. • For any family C of stable curves defined on some quotient of T g , -ΩC denotes the set of stable forms on the (marked) stable curves of C.

-Ω 0 C is the subset of forms in ΩC having zero residues at the nodes.

-Ω * 0 C is the subset of Ω 0 C having no zero components -Ω SZ C is the set of stable forms over curves in C whose isolated zeros are simple. ω, that is the composition of integration of ω on cycles in H 1 (C, r 1 , . . . , r n ; Z) with the map induced by the marking f on homology. • The period map on Ω 0 S g,n is the map Per g,n : Ω 0 S g,n → Hom(H 1 (Σ g , q 1 , . . . , q n ; Z), C) that associates to each marked stable form, its period homomrophism.

• Given a homomorphism p : H 1 (Σ g , q 1 , . . . , q n ; Z) → C and C ⊂ ΩS g,n a family of stable forms define C(p) as the set of forms in C whose period map is p. -V p is the set of rank two symplectic submodules V ⊂ H 1 (Σ g ) such that p |V and p |V ⊥ are Haupt homomorphisms. If p is injective, it suffices to check the intermediate volume condition vol p (V ) ∈ (0, vol(p)). -A primitive element in H 1 (Σ g ) is p-admissible if it belongs to some V ∈ V p .

-A primitive element a ∈ ker p is pinched by p if the induced map p a by p on a ⊥ /Za is a Haupt homomorphism.

Case 2 :

 2 Λ(p) is discrete. The image of the periods of any (C , ω ) ∈ L are precisely Λ(p). Each element in the fibre Per -1 (p) ⊂ ΩS g corresponds, by integration, to a unique primitive branched covering over C/Λ(p) of volume V . If we find a marking m of C where Per(C , m , ω ) = p, then by Theorem 1.2 we have (C , ω ) ∈ L. Therefore the leaf L is closed. The first item of Proposition 2.10 (or equivalently Lemma 8.1) shows that such a marking m on (C , ω ) exists.

  E) taking values in the Hurwitz space H g,d (E) of equivalence classes of primitive branched coverings over the elliptic curve E = C/Im(p) of primitive degree d = deg(p), the equivalence being the pre-and post-composition by automorphisms. The map R sends a form (C, ω, m) ∈ Per -1 (p) to the equivalence class of the covering from C to E given by integrating ω. Denoting by U ⊂ Per -1 (p) SZ the Zariski open subset consisting of forms whose integral between any pair of distinct zeros does not belong to the lattice Im(p), and by H g,d (E) DC ⊂ H g,d (E) the Zariski open subset consisting of coverings with distinct critical values, the map R induces a Galois covering

  Proposition 3.18 ([23],Proposition 6.14). Let c, c be two isotopy classes of simple closed curves in Σ g . If c and c are separating, then they are equivalent by some element of the Torelli group I g,0 if and only if the associated symplectic splittings coincide up to changing the order of the factors. If c and c are non-separating, then they are equivalent by some element of the Torelli group I g,0 if and only if, up to sign, they determine the same homology class in H 1 (Σ g ).

Corollary 3 . 19 .

 319 The set of unordered pairs {V, V ⊥ } of non-trivial symplectic submodules of H 1 (Σ g ) such that V ⊕ V ⊥ = H 1 (Σ g ) is in 1-1 correspondence with Torelli classes of curve systems formed by a separating simple closed curve. The set of non-trivial primitive submodules Z[c] ⊂ H 1 (Σ g ) is in 1-1 correpondence with the set of Torelli classes of curve systems formed by a non-separating simple closed curve.

Lemma 4 . 4 .

 44 Let ω be a holomorphic one form with simple zeros on a smooth curve C. Let Y = C × C and π : Y → Y any connected covering on which the form pr * 2 ω -pr * 1 ω becomes exact, namely π * (pr * 2 ω -pr * 1 ω) = dG for some holomorphic function G : Y → C. Then the level sets of G are connected.

Figure 3 .

 3 Figure 3. Cut and paste along twin paths contained in one part of the stable curve

Figure 4 .

 4 Figure 4. Cut and paste along twin paths contained in different branches of a node to smoothen the node and obtain a couple of twins between zeros

Figure 6 .

 6 Figure 6. γ 1 is a closed path based at the node. Its starting segment and end segment lie in different branches. After the surgery, there is no node, and a couple of closed twin paths based at a zero q

Figure 7 .

 7 Figure 7. Example of cut and paste along a family of three twin paths at a zero of order two. When the endpoint of γ 1 is a zero, the resulting stable form has one zero less

Figure 8 .

 8 Figure 8. Case 2: Universal cover of the initial annulus A Case 3: If b + and b-only pass through one zero q of ω, and at least one of them is formed by two saddle connections. The only case that is left is the case where none of the saddle connections of b + and b -coincide. We focus on the distribution of π-sectors described by the annulus at the zero q (see Figure9).

Figure 9 .

 9 Figure 9. Case 3: The π-sectors corresponding to the boundary of A at the saddle q are coloured black if they correspond to sectors of b -and light grey if they correspond to sectors of b + . Consecutive sectors of distinct colour have an even number of white π-sectors between them. If they are coloured the same there is an uneven number of white sectors between them.

Definition 6 . 1 .

 61 Given a unimodular symplectic Z-module M and a homomorphism p : M → C we define • The volume of p as vol(p) := (p) • (p) where the intersection is on the dual space Hom(M, R). Up to a choice of a symplectic basis {a j , b j } of M , the volume can be calculated as vol(p) = j (p(a j )p(b j ))

  which are Haupt homomorphisms of lower genus. Therefore we have a decomposition p = p 1 ⊕ p 2 of the Haupt homomorphism p into two Haupt homomorphisms. In this case vol

  ) of Proposition 6.10. By the preceding Lemma, there exists a symplectic rank two submodule Y ⊂ X such that Y ∩ p -1 (l) = {0}. Let a , b be a symplectic basis of Y , and let a = a + Aa 2 , b = b + Ba 2 , for some A, B ∈ Z. We have a • b = a • b = 1, and the volume of W = Za + Zb is given by

  p(w 3 ) / ∈ Rp(w 1 ) and (3) for every real line ⊂ C containing 0rank(p -1 ( ) ∩ w ⊥ 1 ∩ w ⊥ 3 ) < 2g -3.Then there exists w 2 ∈ H 1 (Σ g ) such that w 1 • w 2 = w 2 • w 3 = 1 and Zw 1 ⊕ Zw 2 and Zw 2 ⊕ Zw 3 belong to V p . Therefore w 1 and w 3 are p-admissible and w 1 ∼ w 3 .

Lemma 7 . 16 .

 716 Let g ≥ 4 and p : H 1 (Σ g ) → C an injective Haupt homomorphism with r(p) ≥ 2g -3. Then for any V, W ∈ V p we have V ∼ W .Proof. Again we suppose max = R and define I = p -1 (R). Since V and W are of positive volume we can find primitive elements v ∈ V ∩ I c and w ∈ W ∩ I c . If w ⊥ ∩ v ⊥ I we have v ∼ w by Lemma 7.14. Therefore V ∼ W .

  simple if the corresponding p-admissible splitting or pinched class is simple. Lemma 7.19. Let g ≥ 4. For any p ∈ H g with ker p = 0 and deg p ≥ 3 there exist simple vertices of non-compact type in G p .

7. 2 . 3 .

 23 Proof of Step 3: connecting simple vertices of non-compact type. Recall that each simple vertex of non-compact type of the graph G p corresponds to a unique cyclic primitive submodule Za ⊂ ker p such that deg p a ≥ 3. We will parametrize those vertices by the primitive elements ±a ∈ ker p \ 0 generating the submodule. We say that two such primitive elements a, a ∈ ker p \ 0 are equivalent if the corresponding vertices in G p lie in the same connected component of the graph G p . Lemma 7.21. Given g ≥ 4, a homomorphism p : H 1 (Σ g ) → C with vol p > 0, deg p ≥ 3 and (1) a symplectic submodule W ⊂ ker p of rank two, then every pair of simple vertices of non-compact type of G p corresponding to classes in W ∪ W ⊥ are equivalent. (2) an isotropic primitive submodule L ⊂ ker p of rank two, then every pair of simple vertices of non-compact type of G p corresponding to classes in L are equivalent. (3) a p-admissible splitting H 1

p

  L : L ⊥ /L → C. If ker p L contains a non-trivial symplectic submodule, then by item (1) of this Lemma, every pair of simple vertices in L are equivalent. Item (2) is proven for the cases deg p L = 1 (where the kernel is symplectic of corank two) or g ≥ 5 and deg p L < ∞ (thanks to Lemma 6.14 ). It remains to treat the cases g = 4 and deg p L ≥ 2 and g ≥ 5 and deg p L = ∞.

Corollary 7 . 22 .m 1 a 1 + n 1 b 1 + m 2 a 2 where a 2 2 * a 2 * = y -m 1 a 1 * -d b 1 *= m 2 v 2 a * 1 + (m 2 -

 7221122221112 If c, c ∈ ker p are primitive elements such that deg(p c ), deg(p c ) ≥ 3 and c • c = 0 then c ∼ c . Proof. Write a 1 = c and choose b 1 ∈ H 1 (Σ g ) such that a 1 • b 1 = 1. Define W 1 = Za 1 ⊕ Zb 1 and write c = ∈ W ⊥ 1 is a primitive element and m 1 , n 1 , m 2 ∈ Z. Since c • c = 0 we have n 1 = 0. If m 2 = 0 then c = ±c and we are done. Otherwise a 2 ∈ ker p and we can apply item (2) of Lemma 7.21 to L = Za 1 ⊕ Za 2 to conclude c ∼ c . Corollary 7.23. If there exists a non-trivial symplectic submodule W ⊂ ker p then every pair of primitive c, c ∈ ker p such that deg(p c ), deg(p c ) ≥ 3 are equivalent. Proof. For every primitive c ∈ W deg(p c ) = deg p ≥ 3. Every pair of primitive elements in W are equivalent by (1) in Lemma 7.21. Take any primitive c ∈ ker p with deg(p c ) ≥ 3. Then rank(c ⊥ ∩ W ) ≥ 1 and for any primitive element c ∈ c ⊥ ∩ W we have c ∼ c by Corollary 7.22 we deduce c ∼ c . Corollary 7.24. If there exists a primitive a ∈ ker p such that deg(p a ) < ∞ then for every pair of primitive c, c ∈ ker p such that deg(p c ), deg(p c ) ≥ 3 we have c ∼ c . Proof. deg(p a ) < ∞ implies that rank ker p = 2g -2. Since g ≥ 4 we have that ker p contains a non-trivial symplectic submodule and conclude by Corollary 7.23. The following result improves Corollary 7.22: Corollary 7.25. If rank(ker p) ≥ 3 then every pair of primitive c, c ∈ ker p such that deg(p c ), deg(p c ) ≥ 3 satisfy c ∼ c . Proof. By Corollary 7.24 if there exists an element c such that deg(p c ) < ∞ we are done. So we can suppose deg(p c ) = ∞ for every primitive c ∈ ker p. Let c, c ∈ ker p be two primitive elements. Then rank(c ⊥ ∩ c ⊥ ∩ ker p) ≥ 1 and a primitive element a ∈ c ⊥ ∩ c ⊥ ∩ ker p will satisfy c ∼ a ∼ c by Corollary 7.22. Since d and m 2 are co-prime we can already choose u 1 and v 2 to get m 1 = 0 and restart the argument by supposing m 1 = 0.For this choice, we havem du 2 )a * 2 -dv 2 b * 2 -d( k≥3 u k a * k + v k b * k )and from thism 2 = gcd(-m 2 v 2 , m 2 -du 2 , -dv 2 , -du 3 , -dv 3 , . . . , -du g , -dv g )If we still want m 1 = 0 we need to impose m 2 v 2 = du 1 by equation[START_REF] Masur | Interval exchange transformations and measured foliations[END_REF]. The choice v 2 = d, u 1 = m 2 and all other coefficients equal to zero gives m 1 = 0 and m 2 = 1, as desired.

( 46 )

 46 H 2g-1 → CH 2g → GL(L) R * ,the last arrow being given by the restriction of an element M ∈ CH 2g to the line L. Hence the subgroup H 2g-1 ⊂ CH 2g is the group of elements M ∈ Sp(2g) which act as the identity on L and on L ⊥ /L. Such M are easily seen to be of the form M ϕ,α , for some ϕ ∈ (L ⊥ /L) * and α ∈ R, where• the restriction of M ϕ,α to L ⊥ equals id |L ⊥ + ϕa 1 • M ϕ,α (b 1 ) = αa 1 + b 1 + k≥2 ϕ(b k )a k -ϕ(a k )b k ,where a 1 , b 1 , . . . , a g , b g is a symplectic basis such that L = Ra 1 . The group structure on H 2g-1 is then given by the following relation[START_REF] Mcmullen | Navigating moduli space with complex twists[END_REF] M ϕ,α M ϕ ,α = M ϕ+ϕ ,α+α +ω(ϕ,ϕ ) ,where ω(ϕ, ϕ ) is the natural symplectic product induced by ω on (L ⊥ /L) * , namelyω(ϕ, ϕ ) = k≥2 ϕ(a k )ϕ (b k ) -ϕ (a k )ϕ(b k ).

S λ (a 1 )

 1 = λa 1 , S λ (b 1 ) = 1 λ b 1 , S λ (a k ) = a k , S λ (b k ) = b k for k ≥ 2.If (49) and (1)-(5) are true, we have that (6) is automatically satisfied((a 1 +a 2 )-C 1 )•((b 1 +b 2 )-C 2 ) = (a 1 +a 2 )•(b 1 +b 2 )-(a 1 +a 2 )•C 2 -C 1 •(b 1 +b 2 )+C 1 •C 2 = 2-1-1+1 = 1.

C 5 , 6 and ( 56 ) C 5 •

 56565 C 6 ∈ (C 1 , C 2 , C 3 , C 4 ) ⊥ and C 5 • C 6 = 1.This means that the equations (55)(E k • C 1 , . . . , E k • C 4 ) = -1 2 (C k • C 1 , . . . , C k • C 4 ) for k = 5, (C 6 + 2E 6 ) = 1hold. We can find E 5 and E 6 so that (55) is satisfied, since C 1 , C 2 , C 3 , C 4 is a symplectic family (i.e. C 1 • C 2 = C 3 • C 4 = 1and other products are zero). So we can assume that C 5 and C 6 belong to the orthogonal of C 1 , C 2 , C 3 , C 4 , which is a symplectic submodule of Z 2g isomorphic to Z 2g-4 with the canonical symplectic product. In these coordinates, one of the coordinates of C 5 is odd (since C 5[START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF], the reduction of C 5 modulo 2, is non zero) so by adding to C 5 an even vector of Z 2g-4 one can assume that one of the coordinates of C 5 is equal to 1. Hence, equation (56) being equivalent toC 5 • E 6 = -C 5 •C 6 2

•

  To each class ([f : Σ g,n → (C, r 1 , . . . , r n )], ω) ∈ Ω 0 S g,n we can define its period homomorphism Per(C, [f ], ω) : H 1 (Σ g , Z) → C by Per([f : Σ g,n → (C, r 1 , . . . , r n )], ω)(a) = f * [a]

• 1 -

 1 Given a unimodular symplectic module M and a homomorphism p : M → C we define its volume as the intersection vol(p) := p • p and if the volume is positive define the primitive degree as deg(p) = vol(p) vol(C/p(M )) under the convention that it is +∞ whenever the denominator is zero. we say p is a Haupt homomorphism if vol(p) > 0 and either M has rank two or deg(p) > An element p ∈ H 1 (Σ g , C) that is realized by the period homomorphism of some form on a marked non-singular curve is called a Haupt homomorphism. • H g ⊂ H 1 (Σ g , C) is the set of Haupt homomorphisms. • Given p ∈ H g , let -G p be the dual graph of the boundary of Per -1 (p): a vertex corresponds to a connected component of Ω * 0 B c (p) for some Torelli class of simple closed curve c. An edge is considered between two vertices if the closures of the corresponding components intersect.

  Definition 2.5. Given a symplectic module M over a ring and a homomorphism p : M → C, the stabilizer of p is the subgroup of the group of symplectic automorphisms of M defined byStab(p) = {h ∈ Aut(M ) : p • h = p}When we want to stress the group it sits in we denote it Stab Aut(M ) (p).

	Remark 2.6. Let p = Per(C, m, ω) be the period map of a marked abelian differential
	(C, m, ω) ∈ ΩS g,0 . Then the group Stab(p) also stabilizes the fiber Per -1 (p). The isotopy
	class of a Dehn twist around any simple closed curve in C defining a primitive element
	a ∈ ker p \ 0, induces a non-trivial element δ a ∈ Stab(p) whose action fixes no point.
	Remark 2.7. The covering group of the map (11) is Stab(p). In particular, if Per -1 (p) is
	connected, the image of π 1 (L) in Sp(2g, Z) is precisely Stab(p), which is non-trivial as soon
	as ker(p) = 0.
	2.3. Disconnected fibers: proof of Theorem 1.3. Let p ∈ H g with deg p = 2. We will
	define an invariant that is constant on each component of Per -1 (p). On the other hand we
	will prove that if g ≥ 5, the stabilizer of p in the symplectic group Aut(H 1 (Σ g , Z)) is big
	enough to guarantee that the invariant takes at least two values on any orbit of its action on
	Per -1 (p).
	Consider the elliptic curve E := C/Im(p). To any (C, m, ω) ∈ Per -1 (p) we can associate
	a double branched covering π : C → E defined as the integral of ω based at some point. It
	is well-defined up to post composition by a translation in E. Denote by C(π) (resp. V C(π))
	the set of critical points (resp. critical values) of π.

  belongs to that set. By Theorem 4.1 the set ΩS g i ,1 (p i ) is also non-empty and connected. The natural attaching mapΩS g 1 ,1 (p 1 ) × ΩS g 2 ,1 (p 2 ) → Ω * B c (p)that attaches the marked curves and the forms at the marked points is a surjective continuous map (seeSubsection 3.13). Therefore the image is connected. Proposition 4.10. Let g ≥ 3, p ∈ H 1 (Σ g , C), and c be a Torelli class of a simple non separating curve in Σ g such that Ω 0 B c (p) is non empty. Suppose that, after a symplectic identification of [c] ⊥ /Z[c] with H 1 (Σ g-1 , Z), the primitive degree of p [c] is at least three, and ΩS g-1 (p[c] 

  ) Without loss of generality suppose a ∈ V 1 . Remark that by definition Im (p |V i ) a ⊂ Im(p a ). Therefore deg p a = vol p a vol C/Im(p a ) ≥ vol p a vol C/Im(p |V 1 ) a = vol (p |V 1 ) a + vol(p |V 2 ) vol C/Im(p |V 1 ) a > deg (p |V 1 ) a ≥ 2.

Proof. We already have vol(p) = vol(p 1 ) + vol(p 2 ) ≥ vol(p 1 ) > 0. If p were not Haupt, then vol(p) = vol(C/Im(p)). On the other hand Im(p 1 ) ⊂ Im(p) are discrete and therefore vol(C/Im(p)) ≤ vol(C/Im(p 1 )) < vol(p 1 ) ≤ vol(p) where the strict inequality comes from the Haupt condition for p 1 . Lemma 6.14. Let p : V → C be a homomorphism on a rank 2g ≥ 6 unimodular symplectic module V and suppose W ⊂ ker p is a symplectic submodule of rank at most 2g -4. Then p is Haupt if and only if p |W ⊥ is Haupt. If both are Haupt, then (1) all primitive elements in W are pinched by p;

(2) a primitive a ∈ ker(p) ∩ W ⊥ is pinched by p if and only if it is pinched by p |W ⊥ .

Whenever p is Haupt and deg(p) < ∞ there exists such a W of (maximal) rank 2g -4.

Proof. We have that V = W ⊕ W ⊥ is a symplectic splitting and vol p (W ) = 0. Hence vol p = vol p (W ⊥ ) is positive as soon as one of them is. As for the second of Haupt's conditions, remark that ker p is a symplectic submodule of rank 2g -2 if and only if ker p ∩ W ⊥ is a symplectic submodule of rank rank(W ⊥ ) -2. By Proposition 6.2 we have that under the positivity of the volume hypothesis, p is not Haupt if and only if p |W ⊥ is not Haupt.

To prove item (1), we remark that for any a ∈ W , p a is a Haupt homomorphism if and only if p |W ⊥ is. As for item [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF], take a ∈ ker p ∩ W ⊥ and W 1 ⊂ W ⊥ a symplectic submodule of rank two containing a. Take the splitting W ⊥ = W 1 ⊕ W 2 . If a is pinched by p |W ⊥ , then p |W 2 is a Haupt homomorphism. By Lemma 6.13 p |W 2 ⊕W is also a Haupt homomorphism which implies that a is pinched by p. If a is not pinched by p |W ⊥ then W 2 ∩ ker p is a symplectic submodule of rank 2g -6 and thus ker p ∩ W ⊥ 1 is a symplectic submodule of rank 2g -4. This implies that p a is not Haupt, and thus a is not pinched by p.

Using the normal form for homomorphisms of finite primitive degree, see Lemma 8.1 proved in Appendix 8, we find a rank 2g -4 symplectic submodule W ⊂ ker p. Lemma 6.15. Let g ≥ 2 and p ∈ H g be a Haupt homomorphism with ker p = 0. Then either all primitive elements of ker p are pinched by p, or, g ≥ 3, ker p has rank ≥ 2g -3 and contains a symplectic submodule of rank 2g -4 (whose primitive elements are pinched by p).

Proof. Suppose that there exists a primitive element a ∈ ker p such that p a is not Haupt and take a rank two symplectic submodule V containing a. Then p(V ) = 0 and 0 < vol(p) = vol p (V ) + vol p (V ⊥ ) = vol p (V ⊥ ).

If g = 2 then V ⊥ has rank two, and p V ⊥ is a Haupt homomorphism. A contradiction. Thus in genus g = 2 every a ∈ ker p satisfies that p a is Haupt, therefore pinched by p.

If g ≥ 3, then p |V ⊥ is of positive volume and primitive degree one, therefore contains a symplectic submodule W ⊂ ker p of rank 2g -4. Moreover W ⊕ Za ⊂ ker p.

When g ≥ 3 and there are examples of periods p with Ker(p) = 0 that do not admit any p-admissible splittings: Example 6.16. Let g ≥ 3 and p ∈ H g of primitive degree two and image the Gaussian integers. Using the normal form of period of finite primitive degree, see Lemma 8.1 proved in Appendix 8, it is defined on a symplectic basis {a

We first prove that every vertex of given by a p-admissible splitting

V is of rank strictly between 2 and 2g -2 then p |V is an injective Haupt homomorphism and by Proposition 6.19 there exists a p |V -admissible splitting

It remains to connect the vertices corresponding to rank two p-admissible submodules. Proposition 7.5. If g ≥ 4, p ∈ H g is injective and V, V ∈ V p , we have V ∼ V . Therefore the graph of p-admissible splittings is connected.

We will split the proof in several Lemmas :

Proof of the first step. The intersection V ∩ V is a primitive submodule of H 1 , since both V and V are primitive. Being of rank 1, we have

where a 2 is a primitive element of V ⊥ . Completing a 2 into a symplectic basis a 2 , b 2 , . . . , a g , b g of V ⊥ gives the desired statement.

Second step: if the periods of (V + V ) ⊥ do not lie in a real line of C, there exists a symplectic rank two submodule

In particular, V ∼ W ∼ V .

Proof of second step. In the coordinates of the first step, we have (V + V ) ⊥ = Za 2 + X where X := k≥3 Za k + Zb k . We apply Proposition 6.10 to p |X . If the restriction of p to X belongs to case (1) of that proposition, we are done. If it belongs to case (2), we use the Lemma 7.7. Let X be a unimodular symplectic module of rank 4. For every Lagrangian subspace L ⊂ X, there exists a symplectic rank two submodule Y ⊂ X such that L ∩ Y = {0}.

Proof. We can assume that L = Za + Za is primitive. Let a 1 = a and b 1 be an element of X such that a 1 • b 1 = 1. We have a = m 1 a 1 + c where c ∈ (Za 1 + Zb 1 ) ⊥ and m 1 ∈ Z. Up to replacing a by a -m 1 a 1 , we can assume that m 1 = 0. Since L is primitive, so is c, so that

The role played by the rank of p on lines in Lemma 6.9, Lemma 7.9 and Proposition 6.10 makes it useful to introduce the following Definition 7.10. Given a homomorphism p : W → C from a Z-module W we define its line rank as r(p) = max

Remark that if W is symplectic and vol(p) > 0 then r(p) < 2g. Also, if p is injective and r(p) > g, then the maximum is attained by a unique real line max ⊂ C containing 0.

As far as Lemma 7.9 is concerned, the rank condition is automatically satisfied if r(p) < 2g -3. For g ≥ 4 and r(p) ≥ 2g -3 we have to check the rank condition only for max . In case r(p) = 2g -1 the rank condition cannot be attained. In the other two cases it depends on whether there exists a rank two submodule of w ⊥ 1 ∩ w ⊥ 3 with periods outside or not. Lemma 7.11. For g ≥ 2, given primitive

It is primitive and we can take

is an injective homomorphism of positive volume and r(p) < 2g -3, then any pair of primitive elements in H 1 (Σ g ) are equivalent.

Proof. Let v, w ∈ H 1 (Σ g ) be two primitive elements. By taking z ∈ v ⊥ ∩ w ⊥ and applying twice Lemma 7.11 we can consider a sequence w 0 , w 1 , . . . , w 6 ∈ H 1 (Σ g ) such that w i •w i+1 = 1 for i = 0, . . . , 5, w 0 = v, w 3 = z and w 6 = w.

We claim that there exist c 2 ∈ w ⊥ 1 ∩ w ⊥ 3 and c 4 ∈ w ⊥ 3 ∩ w ⊥ 5 such that for w 0 = w 0 , w 2 = w 2 + c 2 , w 4 = w 4 + c 4 and w 6 = w 6 we can apply Lemma 7.9 to each of the triples w i , w i+1 , w i+2 for i = 0, 2, 4 and conclude. By the line rank assumption on p, we need to verify [START_REF] Margulis | Discrete subgroups of semi-simple Lie groups[END_REF] (p(w 2 )p(w 0 )) = 0, (p(w 4 )p(w 2 )) = 0, (p(w 6 )p(w 4 )) = 0, for this claim to hold. If p(w 2 ) is always colinear to p(w 0 ) for any choice of

) is contained in the line Rp(w 0 ), which contradicts the line rank assumption. Let us fix c 2 ∈ w ⊥ 1 ∩ w ⊥ 3 (and the corresponding w 2 ) such that p(w 2 ) is not colinear with p(w 0 ). Now, the same argument shows that each affine subspace

)) = 0} have positive corank. Hence, the union of these subspaces does not fill the whole w ⊥ 3 ∩ w ⊥ 5 . Choosing c 4 outside the union of these subspaces gives the solution to Lemma 7.12. Lemma 7.12 provides a proof of Proposition 7.5 for the case of r(p) < 2g -3. In fact, a similar reasoning, but more elaborated, permits to cover also the case r(p) = 2g -3. However, we will treat this case, together with the cases r(p) ≥ 2g -3, by different methods, in the next family of lemmata: Lemma 7.13. Let g ≥ 4 and p : H 1 (Σ g ) → C an injective Haupt homomorphism with r(p) ≥ 2g -3. Write I = p -1 ( max ) and suppose v, w ∈ H 1 (Σ g ) \ I are primitive elements such that v • w = 0 and [w] ∈ v ⊥ /Zv is also primitive. Then v ∼ w.

Proof. By applying Remark 7.2 we can suppose without loss of generality that max = R. Choose b ∈ w ⊥ such that v • b = 1. We claim that, up to changing b by b + e for some e ∈ I ∩ w ⊥ ∩ v ⊥ we can suppose that V = Zv ⊕ Zb belongs to V p . Indeed, since p(e) ∈ R,

By hypothesis the rank of p(I ∩ w ⊥ ∩ v ⊥ ) is at least 2g -5 ≥ 3 for g ≥ 4, so the value of the volume of V can be chosen arbitrarily close to any desired value.

Next take

Again, since the rank of w ⊥ ∩ V ⊥ ∩ I is at least 2g -6 ≥ 2 for g ≥ 4, we can suppose that c is chosen so that W = Zw ⊕ Zc belongs to V p |V ⊥ . By construction V ⊥ W and 0 < vol(V ) + vol(W ) < vol(p). Therefore V ∼ W and also v ∼ w.

Lemma 7.14. Let g ≥ 4 and p :

Proof. Take a symplectic basis

Restart the argument of the proof with a symplectic basis of (X ) ⊥ whose first element is still a 1 = v and complete it to a basis of H 1 (Σ g ) with the chosen basis of X . Since X I the argument will fall in the previous case and we will be done. 

Then there exists a proper submodule J H 1 (Σ g ) such that I v ⊂ J.

where the strict inequality comes from the fact that v / ∈ I and I is a primitive module. Therefore rank(v ⊥ ∩ I) = 2g -2. Its primitive submodule z ⊥ ∩ v ⊥ has also rank 2g -2 so the only possibility is that z Proof. If ker p has rank one, or a•a = 0 or there exists a symplectic module in ker p containing a and a we are done by Corollaries 7.22 and 7.23.

Let a 1 = a and b 1 such that

for a primitive a 2 ∈ W ⊥ 1 and integers m 1 , n 1 , m 2 . We can assume n 1 = a • a = 0 and m 2 p(a 2 ) = 0 (otherwise we contradict the rank hypothesis on ker p or we fall in one of the initial cases). Define

If a 2 is p 1 -admissible, i.e., it belongs to a symplectic module of rank two V 2 ∈ V p 1 , there exists a p-admissible splitting

The restriction of p to the orthogonal V ⊥ 4 = V 3 has infinite degree, since it has rank at least four, and the kernel of the restriction of p to V ⊥ 4 has rank bounded by one (otherwise the whole period would have a rank bounded from below by three). Since a 1 ∈ V 4 does not belong to any symplectic submodule contained in ker(p), p |V 4 is a Haupt homomorphism on a rank four symplectic module. By Lemma 6.15 applied for g = 2, all primitive elements a in ker p |V 4 are pinched by p |V 4 . Applying Corollary 6.18 we can find a form with two nodes: one that pinches a and another that induces the decomposition V 4 ⊕ V ⊥ 4 , which is simple, hence the vertex of G p associated to a is equivalent to the vertex associated to V 4 ⊕ V ⊥ 4 . Since a, a are primitive elements in V 4 ∩ ker p we have a ∼ a. By Corollary 6.11 applied to W ⊥ 1 , there exists a proper submodule I ⊂ W ⊥ 1 containing all elements that are not p 1 -admissible, i.e. that do not belong to any symplectic module

∈ I we are done. Next we are going to show that, up to changing the initial choice of b 1 , we can guarantee that we fall in the previous case.

Indeed, suppose a 2 ∈ I \ ker p is not admissible. Denote = Rp(a 2 ). We know by Corollary 6.11 that I = p -1 ( )∩W ⊥ 1 has rank at least 2g-4 and for every other real line , ∩p(W ⊥ 1 ) has rank at most 2. Since p(a 1 ), p(b 1 ) ∈ , p -1 ( ) has rank at least 2g -2 ≥ 6. On the other hand, for every other real line ⊂ C containing 0 we have rank(p -1 ( )∩W ⊥ 1 ) ≤ 2+rank(ker p 1 ) ≤ 3. Therefore p -1 ( ) has rank at most 5. If we manage to find a decomposition as in equation [START_REF] Masur | Closed trajectories for quadratic differentials with an application to billiards[END_REF] where the image of the a 2 is outside we will be done. We are going to show that, up to changing the initial b 1 , we can suppose that we fall in this case or one of the previous cases.

Given

where m 2 a 2 = m 2 a 2 -n 1 w. If we manage to guarantee that

we will be done: We first begin by providing a normal form for periods of positive volume and finite primitive degree, which implies the first item of Proposition 2.10 in the case where the subspace ( 18) is rational. Lemma 8.1. Given a surjective homomorphism p : Z 2g → Z + iZ of volume (and primitive degree) d ≥ 2, there exists M ∈ Sp(2g, Z) and a symplectic basis

where the star denotes the symplectic dual of the given element.

Proof. Denote by x = (p) and y = (p) the elements in (Z 2g ) * . They satisfy 

Hence, p is surjective if and only if d and m 2 are co-prime.

To conclude, we are going to show that under the hypothesis of d and m 2 co-prime, there exists a choice of b 1 such that the coefficients m 1 and m 2 in the decomposition given by ( 44) are 0 and 1 respectively.

Let us analyze the effect of a change of the first given b

The first equation is automatically satisfied, and the second gives ( 45)

A trivial computation shows that for any λ ∈ R * , every ϕ ∈ (L ⊥ /L) * and every α ∈ R, we have ( 48)

This shows that CH 2g is not unimodular, and consequently does not contain any lattice. By construction, our group H 0 is contained in B. We have an exact sequence CH 2g → B → Sp(L ⊥ /L, ω). The image of H 0 by the right arrow is onto since H 0 contains U g , so that H 0 itself splits as an exact sequence CH 2g ∩ H 0 → H 0 → Sp(L ⊥ /L, ω). The group CH 2g ∩ H 0 is invariant under the action by conjugation of Sp(L ⊥ /L, ω)

Sp(W ⊥ ). The restriction of this action on H 2g-1 can be described explicitly: for

Lemma 8.4. The closed non-trivial connected subgroups of CH 2g invariant by Sp(W ⊥ ) are

The proof of Lemma 8.4 is an easy consequence of the previous exact sequences and calculations. Now H 0 ∩ CH 2g cannot fall in cases (1) and (2) of Lemma 8.4 since in either of those, H 0 would be semi-simple, contrary to hypothesis. It can neither fall in cases (4) or [START_REF] Bainbridge | Euler characteristics of Teichmüller curves in genus two[END_REF], since in those cases equation [START_REF] Mcmullen | Dynamics of SL2(R) over moduli space in genus two[END_REF] does not allow H 0 to be unimodular. Hence we are left with the possibility H 0 ∩ CH 2g = H 2g-1 (and H 0 Sp(W ⊥ ) H 2g-1 ). In this case we will show that the invariant line L is rational, and thus we fall in the second possibility of Proposition 2.10.

The theorem of Raghunathan and Wolf cited above tells us that Γ ∩ H 2g-1 is a lattice in H 2g-1 . By using Borel's density Theorem in [26, p.91] we deduce that its Zariski closure is H 2g-1 . We have L ⊂ K := γ∈Γ∩H 2g-1 Ker(γ -I) which is an intersection of rational spaces. If the inclusion is proper, then the Zariski closure of Γ ∩ H 2g-1 would not be the whole of H 2g-1 . This shows that L = K and it is a rational one-dimensional subspace of R 2g .

Up to a real affine change of coordinates on C, we can assume that the imaginary part of p generates L, and that it is a primitive element of Z 2g . Since the group H 2g-1 acts transitively on the set of vectors v ∈ R 2g such that v • p = 1, while keeping the period p fixed, we see that H •p already contains all the periods q such that q = p and such that V (q) = V (p) = 1. Since, Γ acts transitively on the set of primitive elements of Z 2g , we infer that ΓHp = Γ • p contains all the periods q with volume V (p) = 1 and with a primitive integer imaginary part. Since any periods of Γ • p is of this form, we deduce that this situation is exactly the second case of the proposition. The proof of this latter is now complete. Applying Moore's ergodic theorem in [START_REF] Moore | Ergodicity of flows on homogeneous spaces[END_REF] to each case H above we deduce the final ergodicity part of Proposition 2.10. 9. Appendix II: proof of Lemma 2.9 Up to composing p by an element of GL + 2 (R) we can assume that the image of p is the set of Gaussian integers. By Lemma 8.1, we can assume that there exists a symplectic basis a 1 , b 1 , . . . , a g , b g in which the period p has the following form:

This basis permits to identify H 1 (Σ g , Z) with Z 2g equipped with the symplectic form

and the group Aut(H 1 (Σ g , Z)) with Sp(2g, Z). In these coordinates we have

• u), whereas the form u 2 + u 4 ∈ (Z 2g ) * is dual to P 2 = a 1 + a 2 (meaning u 2 + u 4 = (a 1 + a 2 ) • u). We then have that an edomorphism of Z 2g given by a matrix M stabilizes p if and only if M (P k ) = P k for k = 1, 2, and similarly an endomorphism of (Z/2Z) 2g given by a matrix M [2] stabilizes p [START_REF]Ahlfors The complex analytic structure of the space of closed Riemann surfaces[END_REF] 49) is valid for the columns of M . We will assume in the sequel that these equations are always satisfied.

Our goal is to modify the vectors C k by defining

in such a way that the matrix M := (C 1 , . . . , C 2g ) not only stabilizes p (satisfying [START_REF] Mcmullen | Foliations of Hilbert Modular Surfaces[END_REF]) but also belongs to Sp(2g, Z). It is therefore necessary to impose