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Abstract

The GBAR experiment aims to measure the gravitational accelera-
tion of antihydrogen H. It will use H

+
ions formed by the interaction of

antiprotons with a dense positronium cloud, which will require about
1010 positrons to produce one H

+
. We present the first results on

the positron accumulation, reaching 3.8(4) × 108 e+ collected in 560
seconds.

1 Introduction

The GBAR collaboration’s aim is to measure the acceleration of antihydrogen
atoms in the Earth’s gravitational field [1]. In the GBAR scheme, one first

produces H
+

ions [2], which are subsequently sympathetically cooled using
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laser cooled Be+ ions [3]. When the anti-ion is cold enough, the extra positron
is removed using a laser pulse and the acceleration is derived by timing the
subsequent annihilation products of the H. The antiprotons are obtained
from the ELENA decelerator at CERN [4], while positronium is produced
by implantation of about 1010 positrons into a mesoporous silica film at a
kinetic energy of 4 keV [5].

To obtain the necessary positrons, a 9 MeV LINAC accelerates electrons
into a tungsten target equipped with a mesh moderator biased at 50 V. The
resulting low energy positrons are then accumulated in a buffer gas trap
(BGT) and transferred in a high field trap (HFT).

The BGT is a Penning-Malmberg trap based on the Greaves-Surko scheme
[6], and was developed at CEA Saclay [7]. It uses N2 as the trapping gas
and CO2 as a cooling gas. The trap is constructed from 3 sets of electrodes.
In the first stage, inelastic collisions occur under a typical N2 pressure of
10−3 mbar, whilst the second one is used for the accumulation at a typical
N2 pressure of 10−4 mbar, with the final stage used to store positrons for a
dozens of seconds with a typical N2 pressure of 10−6 mbar. The magnetic
field in this trap is ∼ 0.05 T and an electric potential between −140 V and
140 V can be applied to the electrodes, as appropriate.

The HFT [8] is a 5 T Penning-Malmberg trap with 27 electrodes each able
to hold potentials between −1 kV and 1 kV. The base pressure is lower than
10−9 mbar. This trap is used for long time storage.

In this article we present the outcome of optimisation studies to trap a
large cloud of positrons. The final goal is to accumulate 1010 positrons in
100 s.

2 Studies of the trapping conditions

After an accumulation time t, using the potential profile shown in Figure
1a, the positron cloud is axially compressed, and then dumped on a target
at the exit of the trap (Figure 1b-c). The positron number is estimated by
detecting the γ rays resulting from their annihilations on the target using
a CsI detector. The signal is proportional to the number of accumulated
positrons, which evolves as N(t) = Rτ(1 − e−

t
τ ), with N the number of

positrons, τ the lifetime and R the trapping rate. Some accumulation curves
for e+ in the second stage are presented in Figure 2a for different N2 pressures
as measured at the injection point of the system. If t � τ , N(t) ≈ Rt, and
the only parameter to optimise is then R. For the rest of the experiment we
keep PN2 = 6 mbar, with τ = 0.67(1) s and we accumulate for 100 ms before
transferring to the third stage (Figure 1c-d).
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Figure 1: On-axis potentials used in the Buffer Gas Trap. (a) Accumulation
in the second stage. (b) Axial compression of the cloud. (c) Transfer from
the second to the third stage. (d) Re-trapping. (e) Preparation for transfer
/ dumping. (f) Dumping.
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Figure 2: (a) Number of e+ as measured by the CsI detector, fit with N(t)+c.
(b) R vs N2 pressure. (c) Positron annihilation rate (λ = 1/τ) vs N2 pressure.
Pressures in mbar as measured at the injection point of the system.

Currently, the energy spread in the longitudinal direction of the incoming
positrons is σ = 8.8(3) eV but a spread of energy smaller than 3 eV [6] would
increase R and therefore the overall efficiency.

In the third stage, the e+ lifetime is 16.5(5) s, as shown in Figure 3a, and
since this is much greater than 100 ms a stacking procedure of the positrons
from the second stage can be done. Figure 3b shows that, using a static
potential, only 6 stacks can be accumulated in the well in a linear way,
beyond which the stacks are lost. It also shows that by lowering the bottom
of the well by 0.2 V per stack, a dozen stacks can be accumulated without
any loss. Therefore 10 stacks are accumulated in 1 s (10 × 100 ms) before
being transferred to the HFT.

To stack positrons from the BGT third stage in the HFT, one first uses
a potential well made of 3 electrodes with −10 V as bottom of the well as
shown in Figure 4a. Figure 4b shows that the well is saturated after 80
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Figure 3: (a) Lifetime of positrons in the third stage. (b) Measurement of
positron signal for different accumulation conditions in stage 3 (see text for
details). The bottom of the well is lowered by dV between each stack.

stacks. To accumulate positrons in a linear way, a sequence is used in which
the well is enlarged and deepened each time we approach a saturation limit.
In the first well, 50 stacks are accumulated, after which the bottom of the
well is lowered. Then 150 stacks are added, and again the bottom of the
well is lowered and then a further 200 stacks are added. Finally we lower
the bottom of the well to reach a maximum, so in total, we can accept 560
stacks of e+ from the third stage corresponding to 3.8(4) × 108 e+. We are
planning to extend this process to trap even more positrons.

With the knowledge that the LINAC based positron source provides
1.54(6) × 105 e+ per pulse at a frequency of 200 Hz, the current overall effi-
ciency is 2.3%.
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Figure 4: (a) Subsequent on-axis potentials in the HFT. (b) Accumulation
signal from HFT, for respectively a 1-, 2-, 3- and 4-step sequence.

3 Conclusion

We succeeded in trapping 3.8(4) × 108 e+ in 560 s, which is a first important
step for the development of the GBAR experiment. Improvements will be
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made in the coming months to reach our next step of 1010 positrons in a few
hours, after which the goal will be to decrease this accumulation time, by
increasing the e+ flux at the entrance, and by improving efficiencies at the
interfaces of the system.
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