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Abstract. Rainfall-induced landslides are a common and significant source of damages and fatalities world-
wide. Still, we have little understanding of the quantity and properties of landsliding that can be expected for a
given storm and a given landscape, mostly because we have few inventories of rainfall-induced landslides caused
by single storms. Here we present six new comprehensive landslide event inventories coincident with well iden-
tified rainfall events. Combining these datasets, with two previously published datasets, we study their statistical
properties and their relations to topographic slope distribution and storm properties. Landslide metrics (such as
total landsliding, peak landslide density, or landslide distribution area) vary across 2 to 3 orders of magnitude but
strongly correlate with the storm total rainfall, varying over almost 2 orders of magnitude for these events. Ap-
plying a normalization on the landslide run-out distances increases these correlations and also reveals a positive
influence of total rainfall on the proportion of large landslides. The nonlinear scaling of landslide density with to-
tal rainfall should be further constrained with additional cases and incorporation of landscape properties such as
regolith depth, typical strength or permeability estimates. We also observe that rainfall-induced landslides do not
occur preferentially on the steepest slopes of the landscape, contrary to observations from earthquake-induced
landslides. This may be due to the preferential failures of larger drainage area patches with intermediate slopes or
due to the lower pore-water pressure accumulation in fast-draining steep slopes. The database could be used for
further comparison with spatially resolved rainfall estimates and with empirical or mechanistic landslide event
modeling.

1 Introduction

Landslides associated with heavy rainfall cause significant
economic losses and may injure several thousand people a
year worldwide (Petley, 2012). In addition, the frequency of
landsliding increases with the frequency of extreme rainfall
events (Kirschbaum et al., 2012), which is expected to be
enhanced by global climate change (Gariano and Guzzetti,

2016). Landslides are also recognized as a major geomorphic
agent contributing to erosion and sediment yield in moun-
tainous terrain (Hovius et al., 1997; Blodgett and Isacks,
2007). Yet, constraining quantitative relationships between
landslides and rainfall metrics remains difficult.

There is limited theoretical understanding of how rain-
fall, through water infiltration in the ground, can increase
pore-water pressures and trigger failures (Van Asch et al.,
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1999; Iverson, 2000). Therefore, a variety of mechanistic
models have been developed, usually by coupling a shallow
hydrological model to a slope failure criterium (e.g., Mont-
gomery and Dietrich, 1994; Baum et al., 2010; Arnone et al.,
2011; Lehmann and Or, 2012; von Ruette et al., 2013). How-
ever, such deterministic approaches require not only appro-
priate physical laws but also an accurate and fine-scale quan-
tification of several input parameters such as topography,
cohesion, permeability, and rainfall pattern (Uchida et al.,
2011). In most places, such a level of detailed information
is currently unavailable, rendering deterministic approaches
hardly applicable.

Data-driven studies have mostly focused on using precise
information on individual landslide location and timing to
decipher thresholds, typically based on preceding rainfall
intensity and duration, at which a landslide would initiate
(Caine, 1980; Guzzetti et al., 2008, and references therein).
Although useful for hazard and early-warning purposes (e.g.,
Keefer et al., 1987), these approaches do not address the
quantity and properties of landslides that can be triggered
by a rainfall event. In order to understand the importance of
rainfall on erosion rates or to anticipate landslide hazard as-
sociated with emerging cyclones and heavy rainstorms, it is
highly desirable to quantitatively relate the properties of a
landslide event L (total area, volume, size distribution) to the
combination of site susceptibility, s, and rainfall forcing, f ,
properties, or equivalently to develop scaling relations of the
form of

L= g(s(slope, soil thickness, strength, permeability, . . .),
f (total rainfall, intensity, antecedent rainfall, . . .)). (1)

Note that variables in such an equation may be a statistical
description at the catchment or landscape scale (being a sim-
ple mean or other moments of the distribution), and thus may
not describe the fine-scale variability required by mechanis-
tic models. Although being simplified versions of mechanis-
tic models, such scaling laws can be useful to describe aver-
age properties of the phenomena, i.e., a population of land-
slides associated with a constrained trigger. The advantage of
statistical or semi-deterministic approaches is that they are
able to accurately predict global properties, while circum-
venting the difficulties of predicting specific local properties
of individual landslides. Indeed, such scaling laws would al-
low prediction in data-scarce regions and possibly at var-
ious scales (hillslope scale, catchment scale, region scale,
etc). This approach has driven important progress for both
the understanding and hazard management of earthquake-
induced landslides, thanks to the introduction of purely em-
pirical, physically inspired, or mixed functional relations in
the form of Eq. (1) (e.g., Jibson et al., 2000; Meunier et al.,
2007, 2013; Nowicki et al., 2014; Marc et al., 2016, 2017).
This progress has been possible thanks to detailed investiga-
tion of individual case studies with comprehensive landslide
event inventories (e.g., Harp and Jibson, 1996; Liao and Lee,

2000; Yagi et al., 2009) and through their combined analy-
sis as aggregated databases (Marc et al., 2016, 2017; Tanya
et al., 2017). By comprehensive event-inventories we mean
that all landslides larger than a given size were mapped, and
that the spatial extent of the imagery allowed us to observe
the landslide density fading away in all direction, tracking
the reduction of the forcing intensity of the triggering event,
whether shaking or rainfall.

In contrast, few studies on rainfall-induced landslides are
based on comprehensive event inventories. Some studies
are based on individual landslide information. For example,
Saito et al. (2014) studied 4744 landslides in Japan, that oc-
curred between 2001 and 2011, to better understand which
rainfall properties control landslide size. This dataset, ag-
gregating a small subset of the landslides triggered by rain-
fall events, misses the vast majority of landslides. For exam-
ple, in Japan, Tropical Storm Talas alone caused a similar
amount of landslides in a few days. It is, therefore, insuffi-
cient for a more advanced statistical analysis. At the global
scale, Kirschbaum et al. (2009) presented a catalog contain-
ing information on 1130 landslide events worldwide, which
occurred in 2003, 2007, and 2008. With this catalog, they
underline the correlation between extreme rainfall and land-
sliding (Kirschbaum et al., 2012). However, such catalogs,
mainly based on reports from various kinds, are rarely ade-
quate to constrain the quantity and properties of landslides
triggered by a rainfall event. Thus, we consider that neither
studies, based on a small sample of individual landslides or
on a global-scale analysis, will be able to effectively con-
strain Eq. (1), and that detailed storm-scale information is
needed.

Few case studies rely on fragmentary event inventories
(and are briefly reviewed in the next section) but they may
contain too few landslides for statistical analyses or may be
biased to specific locations (e.g., along roads or near settle-
ments, within weak lithological units, or near rivers), thus
complicating the deconvolution of forcing and site influ-
ences. However, in theory, satellite imagery allows for com-
prehensive mapping of landslides larger than the resolution
limit, across all catchments affected by a large storm. In prac-
tice, obtaining useful images strictly constraining the lands-
liding caused by a single storm is not always possible, mainly
because of cloud coverage, and detailed mapping across vast
areas represents a significant work effort. As a result, land-
slide inventories triggered by rainfall during a whole season
or a few years are used for testing mechanistic models (e.g.,
Baum et al., 2010; Arnone et al., 2011).

The purpose for this work is to present a compilation of
new and past comprehensive rainfall-induced landslide (RIL)
inventories, each containing the landslide population associ-
ated with an identified storm. They constitute the core of an
expandable database, essential for further research. We first
briefly review existing comprehensive and partially complete
inventories associated with specific storms. Then we present
six new inventories and analyze their statistical properties in
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terms of size (total area, landslide density), geometry (length,
width, and depth), and relation to topographic slopes. We fur-
ther analyze and discuss these properties with respect to rain-
fall observations in those cases and conclude on the various
insights that can be derived from such an inventory compila-
tion.

2 Data and methods

2.1 Review of pre-existing datasets

An in-depth literature review revealed that very few compre-
hensive, digital, RIL inventories have been published, such
as the Colorado 1999 and Micronesia 2002 events detailed
below. If we look for partial inventories, in which landslides
have been mapped comprehensively in limited zones affected
by a storm, a few more datasets exist.

For example, Hurricane Mitch hit Central America at the
end of 1998 and triggered thousands of landslides across
several countries. The rainfall was record-breaking in many
places, with rain gauges recording up to 900, 1100, and
1500 mm in Honduras, Guatemala, and Nicaragua (Bucknam
et al., 2001; Cannon et al., 2001; Crone et al., 2001; Harp
et al., 2002). In the following weeks, the USGS performed
a number of aerial surveys, identified the most affected ar-
eas in these three countries as well as in El Salvador (where
the rainfall amount was less), and mapped a large number of
the failures in selected zones. The resolution of their aerial
photographs allowed them to distinguish failures down to a
relatively small size (< 100 m2), but the mapping amalga-
mated multiple failures into single polygons, and combined
very long debris flow paths and/or channel deposits to the
source areas. Because of these limitations, we did not inves-
tigate this case in detail but note that these inventories may be
corrected and used by later studies. Similarly in a number of
studies, inventories of all the landslides caused by a given
storm in a specific catchment or geographic zone can be
found: in Liguria 2000 (Guzzetti et al., 2004), Umbria 2004
(Cardinali et al., 2006), Sicily 2009 (Ardizzone et al., 2012),
Peru 2010 (Clark et al., 2016), Thailand 2011 (Ono et al.,
2014), and Myanmar 2015 (Mondini, 2017), as well as in
Taiwan for 10 typhoons between 2001 and 2009 (Chen et al.,
2013). These inventories could not constrain the total land-
slide response to a storm, but may allow to constrain relation-
ships between landslide properties and local rainfall proper-
ties, provided that enough landslides have been mapped for
statistical analysis (e.g., > 50–100) and without any system-
atic sampling bias. However, a detailed assessment of these
dataset properties and of their relation to rainfall is outside
the scope of this study although it would probably interest-
ingly complement our work in the future.

In this study, we analyzed two datasets previously pub-
lished by the USGS. First, afternoon rain on 28 July 1999
that triggered numerous landslides and debris flows in the
Colorado Front Range (Godt and Coe, 2007). Based on aerial

photograph interpretation and field inspection, landslides
were mapped as polygons containing source areas, debris
flow travel, and deposition zones. Initiation points were as-
sumed to be the highest point upslope of each mapped land-
slide. In 57 out of 328 polygons, multiple initiation points
(2 to > 15) were mapped for multi-headed polygons (Godt
and Coe, 2007). These polygons are among the largest of
the inventory and represent 61 % of the total landslide area.
The surface of the source areas were often of similar width,
suggesting equivalent contribution from each source to the
transport and deposit areas, and rendering a manual splitting
impractical. Thus, we instead conserve multi-headed poly-
gons and we use the whole landslide area, Al, perimeter, Pl,
and number of source, Ns, for each multi-headed polygon
to derive an equivalent area and perimeter associated with
each source: A∗l = Al/Ns and Ps = Pl/Ns. This first-order
approach underestimates the perimeter of each component
by one width, the segment that would be added for each new
subpolygon; however, this underestimation decreases with
the length/width ratio of the polygons, and is already be-
low 10 % for L/W > 4. In any case, this assumption does
not affect the total area affected, but it changes the land-
slide frequency-area and frequency-width distributions, and
all terms derived from them.

The second dataset contains landslides caused by a sum-
mer typhoon in July 2002, mapped exhaustively with aerial
photos on the islands of Micronesia (Harp et al., 2004). We
digitized the original maps based on strong contrast between
red polygons and the rest of the maps. A few artifacts due
to this image processing were removed and a few amalgams
were split. Again, scarps and deposits are not differentiated.

2.2 New comprehensive inventories of rainfall-induced
landslides

We present the mapping methodology and imagery (Table S1
in the Supplement) used to produce six additional invento-
ries. Here we consider landslides as a rapid downslope trans-
port of material, disturbing vegetation outside of the fluvial
domain, which we define by visible water flow in the im-
agery. We also consider individual landslides with a single
source or scar areas to avoid amalgamation, and split poly-
gons when necessary. Although the transition between hill-
slopes and channel may be blurry and in part subjective, the
width estimation (cf. Sect. 2.4) will mitigate variations in the
transport length, as long as large alluviated or flooded ar-
eas are not mapped as landslide deposits. Still the limit be-
tween scar, transport, and deposit areas could rarely be de-
tected with the available imagery, and all polygons consider
the whole disturbed areas on the hillslopes. Subsets of the
inventories in Taiwan 2009 and Brazil 2011 were produced
with an automatic algorithm, and then edited and corrected
manually, while all others were manually mapped.

In 2008 around the Brazilian town of Blumenau, several
days of intense rainfall at the end of a very wet fall trig-
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gered widespread landsliding and flooding, with some partial
inventories published in the Brazilian literature (e.g., Poz-
zobon, 2013; Camargo, 2015), which were not reported in
the international literature. The detection and manual map-
ping of landslides as georeferenced polygons was primarily
done with a pair of Landsat 5 cloud-free images (1 Febru-
ary 2009 and 2 March 2008). The coarse resolution (30 m)
of the images allowed us to only locate vegetation distur-
bances and accurate landslide delineation was only possible
for the largest events. Therefore, we used extensive high-
resolution imagery available in Google Earth (over > 90%
of the area of interest, AOI) acquired in May–June 2009 in
most areas, and in 2010–2012 elsewhere, where scars were
still visible. To avoid mapping post-event landslides, we only
mapped the ones corresponding to vegetation radiometric in-
dex (e.g., NDVI) reduction for the pair of Landsat 5 images,
present even for subpixel landslides (e.g., 10 m×5 m). Thus,
the landslide mapping could be confirmed for ∼ 90 % of
the mapped polygons, and industrial digging or deforestation
occurring on steep slopes could be avoided. This approach
avoids amalgamating groups of neighboring landslides and
allows for the mapping of very small landslides (∼ 1 pixel in
Landsat 5 images). However, some detailed field mapping in
the surrounding of Blumenau reports up to twice the number
of landslides that we observed (Pozzobon, 2013), indicating
that we still miss a substantial number of small events. Nev-
ertheless, these landslides must be quite small (not visible in
∼ 1 m resolution imagery) and likely do not affect any of our
statistics (area, volume, slope) apart from the total number of
landslides.

The same approach was used to map the intense landslid-
ing caused by a few days of intense rainfall between 10 and
12 January 2011 (Netto et al., 2013), in the mountains north-
east of Rio de Janeiro. Near Teresópolis, first we used a pan-
sharpened (10 m) EO-ALI and 30 m Landsat 7 images from
February 2011 for co-registration and ortho-rectification.
> 95% of the slides were cross-checked in Google Earth

based on images from the 20 and 24 January 2011 (Fig. 1);
and where clouds or no images where available we mapped
landslides directly from Google Earth (available over >90 %
of the AOI), even if poor ortho-rectification may create geo-
metric distortions. Closer to Nova Friburgo, we used a pair
of very-high-resolution GeoEye-1 images (2/0.5 m resolu-
tion in multispectral/panchromatic) from 26 May 2010 and
20 January 2011. On these images we applied the methods
presented by Stumpf et al. (2014) to classify the whole im-
age, detecting > 90 % of the landslides we could manually
observe , but also including false positive. Thus, we man-
ually screened the image to remove agricultural fields, inun-
dated areas, channel deposits that were included, and split the
amalgamated landslides frequently given the important clus-
ters of landslides in many parts of the image. This correction
seems sufficient given that the landslide size distribution for
the three subparts of the inventory are consistent (Fig. S1 in
the Supplement). Polygons from the automatic classification

display a slightly larger equivalent length/width ratio, maybe
because some amalgamated polygons have been missed or
simply because the classification allows for hollow polygons,
biasing upward the length/width estimate based on a perime-
ter/area ratio (cf. Sect. 2.4).

From 1 to 4 September 2011, Tropical Storm Talas poured
heavy rainfall on the Kii Peninsula, in Japan, resulting in
several thousands of landslides. For disaster emergency re-
sponse, the National Institute for Land and Infrastructure
Management of Japan (NILIM) mapped landslides across
most of the affected areas based mainly on post-typhoon
aerial photographs and occasionally on Google Earth im-
agery (Uchida et al., 2012). Screening antecedent imagery
(2010–2011) from Google Earth and Landsat 5, we identi-
fied and removed a few hundred pre-Talas polygons, mostly
within 5 km of 136.25◦ E/34.29◦ N and 135.9◦ E/34.20◦.
With Google Earth we could validate NILIM mapping over
about 85 % of the AOI and we added almost 200 poly-
gons in areas were aerial photographs were not taken and
split many large or multi-headed polygons that were amal-
gamated. Some polygons had distorted geometry or exagger-
ated width, most likely due to poor ortho-rectification of the
aerial imagery and/or time constraints for the mapping. We
could not systematically check all polygons, but we checked
and corrected all polygons larger than 30 000 m2 (3 % of the
catalog but representing 45 % of the total area). We consider
that the remaining distortions for some of the smaller poly-
gons have minor impacts on the statistics discussed in the
next sections.

In Taiwan, we collected landslide datasets associated with
the 2008 Kalmaegi (16–18 July) and 2009 Morakot (6–
10 August) typhoons, partially described by Chen et al.
(2013). For 2008, we compared multispectral composite im-
ages and NDVI changes between (30 m) Landsat 5 images
taken on the 21 June, 7 July, and 23 July. The image from
7 July is covered by clouds and light fog in many parts but
allows us to identify that most places affected by landslides
in the last images were still vegetated at this time. Thus all
new landslides are attributed to the rainfall from typhoon
Kalmaegi. For 2009, landslides were mapped with pre- and
post-event FORMOSAT-2 satellite images (2 m panchro-
matic and 8 m multi-spectral; Chang et al., 2014). To cover
most of the island, we mosaicked multiple mostly cloud-free
pre-event (14 January, 8 May, 9 May, 10 May, 6 June 2009)
and post-event (17 August, 19 August, 21 August, 28 Au-
gust, 30 August, 6 September 2009) images. For a subsets of
the inventory, especially to the east of the main divide, land-
slides were significantly amalgamated and bundled with river
channel alluviation. We thus manually split the polygons and
removed the channel areas.

In a few areas with clouds (< 5% of the AOI) in the
post-event mosaic, we mapped with Landsat 5 images (from
24 June and 12 September 2009), even if the spatial resolu-
tion limit may have censored the smallest landslides in these
zones. Special attention was given to the separation of in-
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Figure 1. Landslides inventory superimposed on digital surface model for the events in Japan 2011 (a), Colombia 2015 (b), Taiwan 2008
and 2009 (c), Brazil 2008 (d), Colorado 1999 (e), Micronesia 2002 (f) and Brazil 2011 (g). Landslides are in purple, rain gauges used in
this study are in red dots (and red crosses for Taiwan 2009), and the yellow frames show the availability of high-resolution imagery (Google
Earth) used to check or perform the mapping. In (c) the green dots are landslides from 2008, while purple dots are from 2009. In (g) purple,
red, and green dots are landslides mapped from EO-ALI, Google Earth, and automatic classification of GeoEye images, respectively.

dividual landslides by systematically checking and splitting
polygons above 0.1 km2 (2 % of the catalog but representing
30 % and 60 % of the total area and volume, respectively).
However, it is clear that a number of smaller landslides are
missed or merged with large ones; and, therefore, although
total landsliding and landslide locations on slopes may be
well represented, the size distribution of this catalog must be
biased to some extent.

Between 15 and 17 May 2015, heavy rainfall in the moun-
tains above the village of Salgar, Colombia, triggered catas-
trophic landslides and debris flow (> 80 deaths). Landslide
mapping was carried out by comparing a (10 m) Sentinel-2
image from the 21 July 2016 and a pan-sharpened (15 m)
Landsat 8 image from the 19 July and 26 December 2014.

These images were selected for their absence of clouds, good
conditions of light, and similarity. High spatial resolution im-
agery from Google Earth, dated from 31 May 2015, shows
fresh scars consistent with our mapping over most of the
area (Fig. 1), and we assumed that the remaining landslides
(< 15% of the inventory) were also triggered by the same
rainfall event.

2.3 Rainfall data

Rainfall data quality and amount are very variable for the dif-
ferent events, from none or one single gauge (for Microne-
sia or Colombia) to a dense gauge network and potentially
weather radar coverage in Japan, Taiwan, and Brazil. There-
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fore, we selected a simple index that could be obtained for
each case in order to discuss potential rainfall controls on the
landslide properties. For each case we calculated an estimate
of total rainfall, Rt, duration, D, and a peak rainfall inten-
sity over 3 h, I3 (Table 1). Note that these variables do not
represent an average value within the whole footprint of the
storm, but rather a maximal forcing, usually colocated with
the areas where landsliding was the most intense (Fig. 1) and
derived mostly from one or a few rain gauges. Thus, these
indexes may be taken as storm magnitude. A more detailed
analysis of the spatiotemporal pattern of the rainfall and of
its relations to the spatial pattern of landsliding is highly de-
sirable, but challenging and is left for a future study.

The estimates from Taiwan and Japan are based on hourly
gauge measurements from the Japan Meteorological Agency
and Taiwan Institute for Flood and Typhoon research. In each
case we took the three closest gauges within 5 to 15 km
from the areas with the highest landslide densities (in 0.05
by 0.05◦ window, Fig. S2) and computed their average prop-
erties (Fig. 2). Minimum and maximum single gauge mea-
surements give a coarse measure of the uncertainty. A sin-
gle gauge is available in Micronesia, and we used the hourly
rainfall from 1 to 3 July 2002 reported in Harp et al. (2004).
For Colorado, we used the hourly rainfall from the rain gauge
at Grizzly Peak, closest to the intense landsliding reported by
Godt and Coe (2007). For this event, radar data indicate very
localized, high-intensity precipitation located on the peaks
where the debris flows occurred (Godt and Coe, 2007) and
suggests that the single closest gauge is more representative
than averaging with the other nearby ones. For the event in
Brazil 2008 we considered the total daily rainfall from Luis
Alves station (Fig. 1), where more than 130 mm day−1 were
accumulated on the 21, 22, and 23 November and 250 mm
on the 25, and intensity going up to 50 mm h−1 (Camargo,
2015). These days were also preceded by an abnormally
wet period, with November 2008 accumulating ∼ 1000 mm,
7 times the long-term average for this month. In 2011 in
Brazil, hourly rain data at Sitio Sao Paulista report 200 mm in
8 h before gauge failure, while there, and at nearby sites, the
cumulative rainfall was ∼ 280 mm from the 10 to the morn-
ing of the 12 January (Netto et al., 2013). For these cases,
rain gauges give a trustworthy estimate of the local rainfall,
but are not constraining the large-scale rainfall pattern. Last,
in Colombia, we could not find data from any nearby rain
gauge and we thus use rainfall estimates from the GSMaP
global satellite products (Kubota et al., 2006; Ushio et al.,
2009) (Fig. S3). Here, the minimum, mean, and maximum
rainfall are obtained by considering the triggering storm as
the raining period at the time of debris flow occurrence, or
the one from the previous day or merging both events, re-
spectively (Fig. S3).

Defining storm duration accurately requires defining
thresholds on rainfall intensity over given periods, to delimit
the storm start and end. Given the variable quality of our data,
we limit ourself to a first-order estimate of the continuous pe-

riod when rainfall was sustained (i.e., I3> 3 mm h−1). We
consider these durations accurate within 10 %–20 % for the
events with overall hourly data. For the less constrained cases
B08, B11 and C15 durations are more uncertain. In any case,
for these eight storms, we note a strong correlation between
D and Rt and I3 and Rt (for power-law scalings, R2

= 0.9
and R2

= 0.8, respectively (Fig. S4). Thus, given that spatial
and temporal length scales are often linked in meteorology,
the long events causing larger rainfall may also have larger
footprints.

2.4 Landslide area, width and volume

Landslide plan view area and perimeter are directly obtained
from each polygon. However, these values represent the to-
tal area disturbed, that is the scar, deposit and run-out areas,
because a systematic delineation of the scar was not possi-
ble from most of the imagery. This means that landslide size
statistics are resulting from processes affecting both land-
slide triggering and run out. Landslide volume, estimated
based on area, may also be overestimated for long run-out
slides. Therefore, we propose here a simple way to normal-
ize for landslide run out and obtain an estimate of the scar
area.

Following Marc and Hovius (2015), we computed an
equivalent ellipse aspect ratio, K , using the area and perime-
ter of each polygons. For polygons with simple geometries,
K is close to the actual length/width ratio, but this is a mea-
sure that also increases with polygon roughness or branching,
and therefore with amalgamation (Marc and Hovius, 2015).
Assuming an elliptic shape, polygon area can be approx-
imated by πLW/4 with L and W being the polygon full
length and width, respectively. This allows us to estimate
W '

√
4A/πK . To validate this geometric method to re-

trieve landslide width, we systematically measured the width
of 418 randomly selected landslides across a wide range of
polygon areas and aspect ratios, belonging to four invento-
ries: J11, TW8, B11, and C15. For each polygon, we focused
on the upper part of the landslide only, the likely scar, and
averaged four width (i.e., length perpendicular to flow) mea-
surements made in arcGIS. The width estimated based on
P and A are within 30 % and 50 % of the measured width
for 72 % and 92 % of the polygons, respectively (Fig. S5).
We do not observe a trend in bias with area nor aspect ra-
tio, except perhaps for the automatically mapped landslide
in B11, where high aspect ratio correlates with underesti-
mated width. Thus, for correctly mapped polygons, we can
use P and A to derive W and a proxy of landslide scar area,
As ∼ 1.5W 2. We assume landslide scars have an aspect ra-
tio of 1.5, as it was found to be the mean aspect ratio found
across a wide range of landslide size within a global database
of 277 measured landslide geometries (Domej et al., 2017).
Even if this equivalent scar area may not exactly correspond
to the real landslide scar, it effectively removes the contribu-
tion of the landslide run out to the landslide size and allows
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Table 1. Rainfall data summary, containing the total rainfall, duration and maximum 3 h intensity for each storms. For TW8, TW9 and J11,
we indicate the range for the three indexes that could be estimated from three gauges near the zone of maximal landsliding. We cannot
perform this analysis for MI2 and C99, and can only assess a range of Rt for B08 and B11. For B08 the question mark indicates that the
upper bound of Rt is under-constrained and taken as 115 % of the best estimate. For C15, we indicate by a star that we could only access
satellite based rainfall estimates (GSMaP_MVK V04 ungauged products; Kubota et al., 2006; Ushio et al., 2009; see Fig. S3). Reference are
as follows, 1: Godt and Coe (2007), 2: Harp et al. (2004), 3: Camargo (2015), 4: Netto et al. (2013) .

Event C99 MI2 B08 TW8 TW9 B11 J11 C15

Rt, mm 45 500 695 670 2500 280 1300 65
[680–800?] [600–740] [2100–2800] [200–320] [1000–1500] [10–75]∗

D, hours 4 20 100 24 105 36 62 10∗

I3, mm h−1 13 65 30 92 85 55 58 8∗

[78–116] [83–87] [38–88]
Ref. 1 2 3 Us Us 4 Us GSMaP
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Figure 2. Rainfall history for typhoons Kalmaegi (TW8), Morakot (TW9), Talas (J11). For each event, hourly intensity is shown with solid
curves for three gauges nearby the area with most intense landsliding (see Fig. 1 for locations). Dashed lines represent the mean cumulative
rainfall from the three gauges.

us to compare different size distributions while reducing the
impact of variable run-out distances.

We also assessed how using As affects estimates of land-
slide volumes and erosion, by computing landslide volume
with the total landslide area and with As only. In both cases,
we used V = αAγ , with α and γ and their 1σ globally de-
rived by Larsen et al. (2010). Given that soil and bedrock
slides have different shape and that soil slides are rarely
larger than 105 m2 (104 m2 for soil scars; Larsen et al.,
2010), we used the “all landslide” parameters (γ = 1.332±
0.005; log10(α)=−0.836± 0.015) when A< 105, and the
“bedrock” parameters (γ = 1.35±0.01; log10(α)=−0.73±
0.06) for larger landslides. Similarly, we used the soil scars
(γ = 1.262±0.009; log10(α)=−0.649±0.021) and bedrock
scars (γ = 1.41± 0.02; log10(α)=−0.63± 0.06) for As <

104 m2 and As>=104 m2, respectively (Larsen et al., 2010).
Marc et al. (2016) proposed a rudimentary version of such
a run-out correction, where they effectively reduced land-
slide area by a factor of 2 for mixed landslides and of 3 for
bedrock landslides, noting that volumes derived in this way
were closer to field estimates for large landslides than with-
out correction.

Uncertainties in this approach include the 1σ variability
in the coefficient and exponent of the landslide area–volume
relations given above, and an assumed standard deviation of
20 % of the mapped area. These uncertainties were propa-
gated into the volume estimates using a Gaussian distribu-
tion. The standard deviation on the total landslide volumes,
for the whole catalogs or for local subsets, were calculated
assuming that the volume of each individual landslide was
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unrelated to that of any other, thus ignoring possible covari-
ance. Although estimated 2σ for single landslides is typi-
cally from 60 % to 100 % of the individual volume, the 2σ
for the total volume of the whole catalog is below 10 % for
the eight datasets. However, for subsets with fewer landslides
and with volume dominated by large ones, typical when we
compute the total landslide volume density in a small area
(e.g., 0.05◦), 2σ uncertainty reaches 40 %–60 %. We note,
however, that these uncertainty estimates do not consider po-
tential errors in the identification of landslides, either missed
because of occasional shadows or clouds, or erroneously at-
tributed to the storm. Such uncertainty is hard to quantify but
must scale with the area obscured in pre- and post-imagery.
In most cases multiple pre- and post-event images mean that
obscured areas typically represent less than 10 % of the af-
fected area, and such errors may be between a few to∼ 20%
of the total area or volume, depending on whether obscured
areas contain a landslide density higher or lower than the av-
erage observed throughout the affected area. Last, resolution
may not allow us to detect the small landslides and in some
cases the landslide number may be significantly underesti-
mates, but not the total area and volume dominated by the
larger landslides.

For each inventory, we also estimated the landslide distri-
bution area, that is the size of the region within which land-
slides are distributed. Based on the landslide inventories we
could delineate an envelope containing the overall landslid-
ing. As discussed by Marc et al. (2017), such delineation is
prone to high uncertainties as it is very dependent on individ-
ual isolated landslides. Thus for all cases, we give a range of
distribution area, where the upper bound is a convex hull en-
compassing all the mapped landslides, while the lower bound
is an envelope ignoring isolated and remote landslides (i.e.,
single or small cluster of landslides without other landslides
within 5–10 km), if any. Although the spread can be large
in absolute value, both approaches yield the same order of
magnitude.

3 Results

The inventories contain from ∼ 200 to > 15000 landslide
polygons, representing total areas and total volumes (from
scars) from 0.2 to 200 km2 and 0.3 to 1000 Mm3, respec-
tively. The triggering rainfalls are characterized by a total
precipitation of∼ 50 to 2500 mm in periods ranging from 4 h
to 4 days, and caused landslides within areas ranging from
∼ 50 to 10 000 km2. Although the dominant landslide types
are soil and regolith slumps, a number of large deep-seated
bedrock landslides are also present in the inventories asso-
ciated to the Talas and Morakot typhoons (Saito and Mat-
suyama, 2012; Chen et al., 2013). A more detailed descrip-
tion of the landslide types and materials involved was not
possible with the available imagery; thus, our analysis does
not consider landslide types. In the next sections, we present

results obtained from these inventories in terms of landslide
size statistics, landslide spatial patterns, and relation to slope,
before correlating these landslide properties to rainfall pa-
rameters.

3.1 Landslide properties

3.1.1 Landslide size statistics

Frequency size distributions of landslide inventories have
typically been fit by power-law tailed distributions, above
a certain modal size (Hovius et al., 1997; Malamud et al.,
2004). The modes and the decay exponents of these dis-
tributions are mainly related to the lithology (mechanical
strength) or topographic landscape properties (i.e., suscepti-
bility related) (Stark and Guzzetti, 2009; Frattini and Crosta,
2013; Katz et al., 2014; Milledge et al., 2014). Some au-
thors suggested that this behavior could also be affected by
the forcing processes. For example, analyzing earthquake-
induced landslide catalogs, it was found that deeper earth-
quakes, thus with weaker strong-motions, have a smaller
proportion of large landslides (Marc et al., 2016). Based
on theoretical arguments, it has been proposed that short,
high-intensity rainfall could cause pulses of high pore-water
pressures at the soil–bedrock transition, initiating mainly
small, shallow landslides, while long duration rainfall with
high total precipitation could provoke significant elevation
of the water table and trigger large, deep-seated landslides
(Van Asch et al., 1999). To our knowledge, little empirical
evidence has supported these assumptions, and we discuss
next how our data compare to these ideas.

All landslide size distributions present a roll-over and then
a steep decay (Fig. 3). The modal landslide area varies be-
tween ∼ 3000 m2 for TW8 and ∼ 300 m2 for B11, while the
largest landslides are ∼ 0.1 km2 for most events and reach
∼ 0.4 and 2.8 km2 for J11 and TW9, respectively. The roll-
over position certainly relates partly to the spatial resolution
and acquisition parameters of the images (Stark and Hovius,
2001) (e.g., for TW8 and B08, where landslides were mostly
mapped on a coarse spatial resolution image compared to
aerial photographs for C99 and J11). However, mechanical
parameters are also expected to influence the roll-over po-
sition (Stark and Guzzetti, 2009; Frattini and Crosta, 2013),
as suggested by the fact that MI2, mapped with 1 m resolu-
tion aerial imagery, has larger modal area than C15, mapped
with 10 m Sentinel-2 satellite imagery. Following Malamud
et al. (2004), we use maximum likelihood estimation (MLE)
to fit the whole distribution with an inverse gamma distri-
bution (IGD) and obtain power-law decay exponents α+ 1
between ∼ 2 and 3, consistent with the typical range found
in the literature (Hovius et al., 1997; Malamud et al., 2004;
Stark and Guzzetti, 2009; Frattini and Crosta, 2013). How-
ever, we note that at least three cases, B11, TW9 and C99,
poorly follow an IGD, with a break in the distribution occur-
ring in large areas, followed by a very steep decay.
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Figure 3. Probability density functions of landslide whole area (a, b) and estimated scar area (c, d). To improve visualization we split the
8 inventories in two groups. A Log-Normal and Inverse Gamma Distribution maximum-likelihood estimation for the whole distribution are
shown by solid and dashed lines, respectively.

When considering landslide estimated scar sizes, that is es-
sentially a correction to reduce landslide polygon aspect ratio
to 1.5, we observe a reduction of the largest landslide size by
2 to 10 times, but a moderate reduction of the modal area.
This is consistent with the fact that landslides with long run-
out distances are often over represented within the medium
to large landslides (Fig. S6). We also note that after the run-
out distance variability is normalized, the distribution of C99
agrees better with an IGD. This is not the case, however, for
B11 and TW9 that still feature a steepening of their distribu-
tion decay (and a divergence from IGD fit) beyond∼ 103 and
∼ 104 m2, respectively. Run out being normalized, this could
be an artifact relating to residual amalgamation for TW9, but
not for B11, where most landslides were mapped manually
and amalgamation was avoided. In these two cases, for the
whole landslide area or the landslide scar only, we note that
a MLE fit of a log-normal distribution agrees better to the
data (based on the result of both the Kolmogorov–Smirnov
and the Anderson–Darling test). For other inventories, a log-
normal fit is equivalent or worse than an IGD, but we note
that the parameters describing the decay of both distributions
are highly correlated (Fig. S7). Thus, we take α+ 1 as a rea-

sonable indicator of the relative proportion of large landslides
within the different dataset and do not further explore the
functional form of landslide size distribution and its implica-
tions, which we consider beyond the scope of this study.

3.1.2 Landslide and slope distribution

For all cases, we computed the frequency of slope angles
above 5◦ based on the global 1 arcsec (∼ 30 m) Shuttle Radar
Topography Mission (SRTM) digital surface model (Farr and
Kobrick 2000; Farr et al., 2007). In most cases, hillslopes
have a distribution clearly independent from valley floors.
However, for B08 and MI2, for example, the amount of
plains in the study area do not allow for resolving the hill-
slope distribution. Therefore, for Micronesia we removed all
slopes which are less than 10 m above sea level; and for
Brazil, we extracted the slope cells in the landslide distribu-
tion area but with a mask excluding the wide valley bottoms,
allowing us to obtain a hillslope distribution as an approxi-
mate Gaussian, with a mode significantly beyond our thresh-
old of 5◦. To focus on the scar area of each landslide polygon,
we extracted only the slopes for the highest-elevation pixels
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representing a surface of 1.5 W2 m2. Then, we computed the
probability density function for the landslide-affected area
and the whole topography (hereafter the “landslide” and “to-
pographic” distributions) with a normal-kernel smoothing
with an optimized bandwidth, as implemented in Matlab. We
obtain topographic modal slopes, SM, at 15.5 and 18.5◦ for
the gentle landscape of Micronesia and Brazil, while in Japan
and Taiwan we reach almost 30◦ (Fig. 4a). The landslide dis-
tributions are unimodal, except for C15 that seems to have
secondary modes at SM− 5 and SM+ 25, and are systemati-
cally shifted towards steeper slopes.

To further quantify the differences in slope sampling be-
tween these events, we computed the ratio of probability be-
tween the slope distribution of the whole topography and of
the landslide-affected area only (PL/PT, Fig. 4). This ratio
represents the tendency of landslide occurrence on a given
slope to be more or less frequent than the expected occur-
rence of this given slope in the landscape. We refer to this as
an oversampling or undersampling of the topographic slope
distribution. To compare the events in different landscapes,
we plot each event against S−SM (Fig. 4b). An important is-
sue is to determine whether the landslide probability can be
considered a random drawing from slopes of the topography
or not. Given that landsliding affects less than 10 % of the
landscape, the sampling of the topography by landslides can
be approximated by a Bernoulli sampling. In this case, the
central limit theorem gives the 95 % prediction interval as
PT± 1.96

√
PT(1−PT)/N , with N the number of indepen-

dent draws, here taken as the number of landslide scars. The
convergence of N draws to PT within the prediction interval
is only valid ifN > 30,NPT > 5, andN (1−PT)> 5, imply-
ing that only very large samples can be interpreted towards
the extremity of the topographic slope distribution, where PT
is small.

For all events, we observe that PL is significantly differ-
ent from a random drawing of the topography with over-
sampling of the slopes beyond SM and undersampling below
it (Fig. 4b). However, we note that for most events the un-
dersampling and oversampling is smaller than a factor of 2.
Some cases (C15, J11, and TW8) have stronger oversampling
(> 4) for S−SM > 25 but they may not be representative ra-
tios given the limited number of landslides and of slopes this
steep (i.e., NPT < 5). The scars of C99 clearly depart from
this behavior, with undersampling and oversampling of a fac-
tor of 10 and 6 at SM±10◦, respectively. B08 has also strong
undersampling below SM but has a landslide distribution that
rapidly converges to the topographic ones at high slopes.

3.2 Correlation between rainfall metrics and landslide
properties

3.2.1 Total landsliding

For the eight inventories, we observe a nonlinear increase
in all metrics of total landsliding with the storm total rain-

fall (Fig. 5). The increase is similar for the total area and
volume, and best fit by exponential functions. We observe
higher correlations with rainfall, when using the total scar
area (R2

= 0.78), estimated as W 2, instead of the total area
(R2
= 0.72). This is mainly due to the very large reductions

of area for C99 and B11, where long run-out landslides were
dominant (Fig. 5). Correlations are generally higher with vol-
ume and also increase when we derive total volume from scar
estimates (fromR2

= 0.81 toR2
= 0.87). Note also that with

these scar metrics, the relation to rainfall becomes equally or
better fit by a power-law function rather than an exponential
function (Fig. 5). This is because when including landslide
run out, the total landsliding of C99 and C15 is larger and
creates an apparent asymptote, better fit by an exponential
function. Last, we note that total volume values may change
depending on which A-V scaling relations are used and with
which assumptions, and their absolute values may be inaccu-
rate but this should not affect the reported scaling form and
exponents, considering that potential biases should be rela-
tively uniform.

Total number of landslides also tends to increase with to-
tal rain but the scatter is much larger (Fig. 5). This is at least
partly an artifact, given that for C99, MI2, and B11, high
spatial resolution imagery allows us to delineate many more
small landslides and to mitigate amalgamation, whereas for
B08, TW8, and TW9, the limited spatial resolution, the den-
sity of landsliding, and our limited ability to split amalga-
mated landslides lead to an underestimation of the landslide
number. Thus, even if landslide number may contain infor-
mation, quantitative comparisons of the events are biased and
we will not further interpret the total number of landslides in
the following.

Last, we note that the landslide distribution areas (i.e., the
regions within which landslides are distributed) also correlate
strongly with the total rainfall. Only considering the eight in-
ventories strongly suggest a power law form. However, based
on the dataset reported for Hurricane Mitch, the distribution
area was at least 100 000 km2 for maximum total rainfall of
about 1500 mm (Cannon et al., 2001). Adding it to our fit, we
found that power-law or exponential functions of the rainfall
explained a similar amount of the variance, 72 % and 63 %,
respectively.

In the next subsection, we compute landslide densities
(in % of area), allowing us to study the intra-storm variability
in landsliding.

3.2.2 Maximum and mean landslide density

Understanding what controls landslide density is a key ob-
jective to better constrain hazards and their consequences.
For each storm, we compute the mean landslide density (in
area and volume) by dividing total landsliding by the land-
slide distribution area (Fig. 6a). This density represents the
whole affected area and hides important spatial variability
(Fig. 1), thus we also compute the maximum landslide den-
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Figure 4. (a) Slope gradient probability distribution for the affected topography (solid) and the landslide scar areas only (dashed), for the
eight rainfall events and as a comparison to the Chi-Chi earthquake. (b) Ratio of the two probability distributions against the difference
between slope gradient and the modal topography. The ratios are estimated with the PDF averaged within 3◦ bins. Solid circles and dots
represent ratios where the landslide probability is beyond or within, respectively, the 95 % prediction interval of the topography distribution.
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sity by computing the total landsliding (again in area and vol-
ume) within a moving window of 0.05◦ (∼ 25 km2), assign-
ing landslides to a cell based on their centroid locations and
selecting the maximal value (Fig. 6b). Given the better corre-
lation obtained above with a run-out normalization, we focus
on area and volume densities derived from scar estimates.

The mean landslide densities vary between 0.01 %–1 %
and 100–10 000 m3 km−2 but with poor correlation with to-
tal rainfall (R2

= 0.01 and R2
= 0.46 for area and volume

density, respectively). Indeed, given that both total landslid-
ing and distribution area increase strongly with total rainfall,
their ratio is relatively independent. In contrast, the maxi-
mum landslide scar density and volume density range from
0.1 % to 5 % and 0.002 to 1.5 millions m3 km−2 , respec-
tively, and are strongly correlated with a power-law of total
rainfall (R2

= 0.76 and R2
= 0.95). We found very similar

correlations when computing the local density on a grid of
0.03 or 0.1◦, but degraded correlations when using the whole
landslide area to compute landslide density (R2

= 0.40 and
R2
= 0.69). We also note that, as for the total landsliding,

maximum landslide density and volume density are signifi-
cantly correlated with peak rainfall intensity, I3 (R2

= 0.58
and R2

= 0.67, respectively), and duration, D (R2
= 0.70

and R2
= 0.73, respectively), although less strongly than

with total rainfall.

3.2.3 Landslide size, run out, and position on slope

The decay exponents of the distribution of landslide area do
not correlate significantly with any storm metrics (intensity,
duration, or total rainfall; |R|< 0.1). However, after run-out
normalization, the decay exponents of landslide scar area
correlate with all metrics, although with significant scatter
(R2
∼ 0.5 Figs. 3, 7). The two largest storms (J11 and TW9)

have the lowest exponents (α+ 1∼ 1.8), and thus a large
proportion of very large landslides, while the two smallest
storms (C15 and C99) have a small proportion of large land-
slides and large exponents (α+ 1∼ 2.7). However, interme-
diate cases are very scattered, as B11 and TW8 have sim-
ilar total rainfall, peak intensity, and duration but very dif-
ferent distribution with α+ 1= 1.9 and with α+ 1= 2.6 ,
respectively. Still, randomly removing one event (i.e., jack-
knife sampling) we obtained R2 between 0.4 and 0.7, with a
similar mean R2 of about 0.5.

The decay exponents of the equivalent aspect ratio
(Figs. 3, S6) do not correlate significantly with any storm
metrics (intensity, duration, or total rainfall; |R|< 0.2). In-
deed, long run-out landslides are abundant for the smallest
storms, C99 and C15, as well as for the second largest storm,
J11, but are relatively rare for other storms (e.g., MI2,TW8,
B08), spanning the whole range of storm indexes. Similarly,
the mean and modal aspect ratio are similar for all events
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Figure 5. Total landsliding in area and volume derived from whole landslides (a) or from scar estimates only (b), total landslide number (c)
and landslide distribution area (d) against storm total rainfall. M98 is for Mitch 1998. Horizontal error bars show a range of maximum storm
rainfall when available (cf., Table 1). In (a) and (b) 1σ uncertainty in the total volumes and areas, ignoring potential landslide mis-detections
(cf. methods), are smaller than the symbols (< 10%). Vertical error bars are based on the range of affected areas in (d), while we could not
obtain quantitative uncertainties in the total number (c).

across all storm metrics, except for C99 which is heavily
dominated by debris flow and has a modal aspect ratio > 10.

We have observed that almost the eight events behave sim-
ilarly with respect to the distribution of topographic slopes,
not suggesting a strong link with the individual storm proper-
ties. The C99 event has a different behavior that may relate to
the fact that it was the shortest storm with the smallest total,
or that it was the only case occurring in high-elevation terrain
with sparse vegetation. C15, the second shortest and smallest
storm event may also have strong oversampling about 20◦ be-
yond SM but the limited number of landslides does not allow
us to confirm the significance of this oversampling.

4 Discussion

4.1 Scaling between rainfall and landsliding

We found that total landsliding, peak landslide density, and
the distribution area of landsliding were all best described as
increasing as a power-law or exponential function of the total
storm rainfall, Rt. Our mechanistic understanding of lands-

liding predicts that, for a given site, the mechanism leading
to failure is the reduction of the normal load and friction due
to the increasing pore-water pressure (Iverson, 2000). This
requires progressive saturation of the material above the fail-
ure plane and depends directly on the total amount of water
poured on the slopes. However, we can envision that land-
scapes may rapidly reach an equilibrium in which all un-
stable slopes under rainfall conditions frequently occurring
would have been removed. In this framework, the rainfall
amount relative to the local climate would be more relevant
than absolute rainfall, requiring an analysis in terms of devia-
tion from the mean rainfall or in terms of rainfall percentiles
(e.g., Guzzetti et al., 2008). Although we could not define
rainfall percentiles in each area, we note that normalizing Rt
by the mean monthly rainfall relevant for each storm, we still
find a decent correlation with the peak landslide density, im-
plying climate normalized rainfall variable may be driving
landsliding (Fig. S8).

The antecedent rainfall is also expected to play a key role
in controlling the saturation level before the triggering storm
(e.g., Gabet et al., 2004; Godt et al., 2006). However, if the
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rainfall when available (cf., Table 1). Vertical error bars are based on the range of affected area in (a) (the most uncertain term), and represent
1σ uncertainty in the total volume and area density in (b), ignoring potential landslide mis-detections (cf. methods).

regolith is already close to the field capacity, significant parts
of antecedent rainfall may be drained from the regolith within
some hours or days (Wilson and Wieczorek, 1995), and as
a result, the contribution of past storms may be negligible
compared to heavy rainfalls over relatively short time inter-
vals (1–4 days). However, for moderate storms, like C15 or
C99, and especially during dry periods when the slopes are
saturated below field capacity, the role of antecedent rain-
fall may be more substantial. Thus, we expect that moderate
storms happening after prolonged dry or wet periods may de-
viate downward or upward from the scaling, respectively. We
also note that the abundance of larger and deeper landslides,
strongly influencing the total volume or erosion, may depend
on deeper water level rather than regolith saturation and thus
may be most sensitive to water accumulation over several
days rather than a few hours (Van Asch et al., 1999; Uchida
et al., 2013). Therefore, although we obtained a good corre-
lation without considering antecedent rainfall, its role should
be assessed in future refined scalings. Last, the scaling re-
ported here is based on events where all landslides occurred
within a short time frame (few hours to few days), and would
not apply to a monsoon setting where landslides occur more
or less continuously during several weeks (Gabet et al., 2004;

Dahal and Hasegawa, 2008), driven by continuous, heavy but
unexceptional, rainfall. Indeed, in a long period with fluctu-
ating rainfall such as the monsoon, drainage and storage of
water will certainly not be negligible and the derivation of a
soil water content proxy will be necessary (e.g., Gabet et al.,
2004).

The strong correlation between Rt and Ad suggests that
storms able to generate greater amounts of rainfall also tend
to deliver a sufficient amount of rain over broader areas. For
tropical storms and hurricanes (5 out of 9 cases in Fig. 5d)
a number of studies (cf., Jiang et al., 2008, and references
therein) found that the maximum inland storm total rainfall
(i.e., Rt for us) correlated well (R > 0.7) with a rainfall po-
tential defined as the product of storm diameter and storm
mean rainfall rate within this diameter over storm velocity,
each term measured 1–3 days before the storm made land-
fall. It was also generally observed that rainfall intensity is
higher closer of the storm core, thus potentially tightening
the link between Rt and a given storm radius with intense
rainfall and high landslide probability. These observations
would imply linear proportionality between Rt and Ad and
could be consistent with the observed power-law trend (ex-
ponent 1.5; Fig. 5), especially if some further links between
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(black). The best least-squares fit is shown in red. The reduction of the decay exponents with increasing storm magnitude indicates an increase
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Rt and mean storm intensity or velocity exist. Potential links
between Rt and Ad for smaller-scale storms (C99, C15, B08,
and B11) are harder to interpret, and we cannot exclude that
it is a coincidence allowed for by our small number of events.

In any case, the broader zone is not likely to receive ho-
mogeneous rainfall amount, decoupling mean landslide den-
sity from storm maximum strength (Fig. 6a). The variability
in rainfall within these extended zones is likely a main con-
trol on the spatial variability in landslide density, although
lithological properties or slope distribution may also matter.
Indeed lithological boundaries or a lack of steep slopes can
sometimes explain spatial variability in landsliding, but not
all of it (e.g., Fig. S9). In any case, it seems clear that to
predict the spatial variability of landsliding, the rainfall spa-
tiotemporal pattern is a primary requirement. The good cor-
relation between storm total rainfall and peak landslide den-
sity is encouraging and suggests that, as most mountainous
regions may have sparse instrumental coverage, the use of
satellite measurements (Ushio et al., 2009; Huffman et al.,
2007) or meso-scale meteorological models (e.g., Lafore
et al., 1997) may be required to understand the spatial pat-
tern of rainfall-induced landsliding.

A few nonlinear scalings between total landsliding and to-
tal rainfall have been reported at the catchment scale, but
were derived from datasets not easily comparable to the one
presented in this study (Reid, 1998; Chen et al., 2013; Marc
et al., 2015). The details of this scaling are of importance in

order to understand the impact of extreme rainfall events and
more generally which type of rainfall event contributes most
to sediment transfer over long timescales (Reid and Page,
2003; Chen et al., 2015). We also found nonlinear scaling be-
tween Rt and total landslide area, but without a strong statis-
tical difference between exponential or power-law functions.
Exponential functions yield a minimum landsliding amount
at low rainfall, that is not physically justified. This appar-
ent contradiction may, however, be resolved by considering a
rainfall threshold below which landsliding is null. The higher
correlation between Rt and total volume is likely due to the
fact that Rt correlates well with maximum landslide size
(R2
= 0.8 with whole landslides, R2

= 0.9 and almost linear
correlation with scar estimates, Fig. 10), with large landslides
contributing most of the total volume and erosion. A correla-
tion between Rt and large landslides may arise because land-
slide stability is determined by the ratio between pore pres-
sure and the total normal stress on the slip plane, meaning
that larger landslides that usually have deeper failure planes
(Larsen et al., 2010) may only fail with greater precipitation
amount. However, given that the trend between total rainfall
and the landslide size distribution is much weaker, this cor-
relation may also partly result from a sampling bias as the
probability to draw large landslides increases with the total
number of landslides. For now, our unreliable estimates of
total landslide number do not allow for quantifying this ef-
fect.
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In any case, several caveats should be taken with the pre-
liminary scalings between total storm rainfall and total land-
sliding. First, the definition and limit of a single “storm” is
not generally agreed in the meteorological community, be-
cause the atmospheric fluids suffer perturbations with scale
interactions, and therefore with events not independent from
each other. Ideally, future studies could categorize storms ac-
cording to some space-time filtering and analyze the scalings
with total landsliding for each storm category. Currently, our
database is not sufficient for this. Second, linking total rain-
fall in a limited area and the total landsliding within the storm
footprint implicitly suggests that storm rainfall is somewhat
structured with internal correlations between peak rainfall,
storm size, and the spatial pattern of rainfall intensity within
the storm. This seems to be the case for large tropical storms
(Jiang et al., 2008), but should be explored for a broader
range of storm types. Orographic effects (e.g., Houze, 2012;
Taniguchi et al., 2013), focussing high-intensity rainfall on
topographic barriers, may also enhance such a correlation
between local total rainfall and the broader pattern of rain-
fall and landsliding. Last, the scaling with rainfall may also
be obscured by outliers due to processes not controlled by
rainfall. For example, the inclusion of the very long run-out
components in several inventories led to larger scattering for
both power-law and exponential models and to favor the lat-
ter. Therefore, the proposed run-out correction seems essen-
tial for future studies. Another issue concerns the normal-
ization of landscape parameters affecting the susceptibility
to landsliding, such as hillslope steepness and mechanical
strength (Schmidt and Montgomery, 1995; Parise and Jib-
son, 2000; Marc et al., 2016). Nevertheless, the proportion
of flat or submerged land within the area of the most intense
rainfall must limit the total landsliding, as it was certainly
the case for MI2 or B08 (Fig. 1). Recent, widespread an-
tecedent landsliding may also reduce subsequent susceptibil-
ity to rainfall triggered by removing the weak layer of soil or
regolith on steep slopes. In the pre-event imagery, we did not
see specific evidence of such a limitation, except maybe for
J11, where abundant pre-event fresh landsliding were visible
near 136,25◦ E/34,29◦ N and 135,9◦ E/34,20◦ and very few
new landslides occurred. A more systematic evaluation of
this effect may be important when quantitatively comparing
the landslide and rainfall patterns. In any case, it is clear that
further analysis of this database, possibly extended with ad-
ditional landslide inventories, should be used by future stud-
ies to refine the scaling with rainfall and incorporate the ef-
fects of controlling parameters such as available topography,
antecedent rainfall or regolith properties (e.g., strength and
permeability).

4.2 Relation between rainfall and landslide properties

We found an increase in the proportion of large landslide
scars with all storm metrics, but clearest with the total rain-
storm (Fig. 7). This is consistent with the idea that large

landslides require larger amounts of rainfall to be triggered
(Van Asch et al., 1999), as discussed above and exemplified
with the strong correlation between Rt and maximal land-
slide scar (Fig. S10). The large remaining scatter suggests
that other differences between the inventories matter, such as
differences in the mechanical properties of the substrate (e.g.,
Stark and Guzzetti, 2009). Indeed, broad lithological contrast
exists between each event, and sometimes within an event
(Fig. S9). The variability in extent and thickness of weak su-
perficial layers (i.e., soils) between the different landscapes
affected may also be important. Variations in slope distribu-
tion and relief are also wide between each case (Figs. 1, 4)
and have also been reported to influence landslide size (Frat-
tini and Crosta, 2013).

We note that the positive correlation between peak rainfall
intensity and large landslide abundance is opposed to what
could be expected, as more small landslides are expected for
pulses of very intense rain leading to the occurrence of tran-
sient high pore-water pressure pulses at shallow depth (Iver-
son, 2000). Given that water retention and hydraulic conduc-
tivity may easily change by orders of magnitude between dif-
ferent environments, it may be needed to normalize intensity
by the regolith hydraulic conductivity (Iverson, 2000) to un-
derstand its potential influence. For the moment, we consider
that the correlation between D and I3 and the landslide size
distribution exponents likely arises because of the correlation
between these storm metrics and Rt (Fig. S4)

In any case, our results suggest that it is not only the
landscape properties that set the landslide size distribution
but also the trigger characteristics, as previously reported for
earthquake-induced landslide size distributions (Marc et al.,
2016). This means, for example, that the influence of forcing
variability should be assessed and normalized before invert-
ing landslide size distribution parameters to obtain regional
variations of mechanical properties (e.g., Gallen et al., 2015).

In contrast, aspect ratio or run out did not correlate well
with storm metrics and thus obscured any direct correlation
between storm metrics and the decay exponents of whole
landslide area. This underlines again the importance to iso-
late scar geometry to deconvolve processes driving landslide
initiation and landslide run out. As for the landslide size
distribution, landslide run out may likely be influenced by
slope and relief distributions, as well as by hydrologic pro-
cesses. The case of C99, with exceptional run out for most
of its landslides is interpreted as the effect of low infiltra-
tion rates favoring large runoff generation (Godt and Coe,
2007). This may also explain the abundance of debris flow
in other places (C15, J11) but cannot be verified without in-
formation on infiltration rate in these places to normalize the
intensity variations. An alternative could be to study various
storms occurring over the same region, and where infiltration
rate or conductivity could be assumed constant; for example,
with datasets from multiple typhoons in Taiwan (Chen et al.,
2013).
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Finally, we observed that most rainfall-induced landslide
inventories sample the topographic slope distribution with
a minor oversampling beyond the topographic modal slope
(Fig. 4). This is in contrast with the case of earthquake-
triggered landslides, where we systematically observe pref-
erential landsliding on the steepest slopes (Parise and Jib-
son, 2000; Gorum et al., 2013, 2014; Fig. 4), quite similar to
the case of C99. One-dimensional static force balance shows
that the steepest slopes are the most unstable, and there-
fore the oversampling of steep slopes must be expected if
the forcing (pore-water pressure or shaking) is randomly dis-
tributed across the whole topography. To obtain equal sam-
pling or undersampling of steep slopes, the forcing intensity
must be anti-correlated with slope gradient. Rainfall may be
mostly independent of local slopes, but probably not the pore
pressure rise that depends on the underground water circula-
tion and thus topography. The pore pressure will thus cru-
cially depend on vertical infiltration and drainage, but also
on along-slope contributions. For example, under moderate
intensity, but long rainfall, pore-water pressure will reach a
higher level in concave, downslope areas (Montgomery and
Dietrich, 1994) with a relatively large drainage area, and thus
lower slope gradient (Montgomery, 2001). In such a view,
landslide slope statistics would bear information on the type
of rainfall, short and intense (relative to local permeabil-
ity) for steep oversampling, while equal sampling and un-
dersampling would relate to moderate and long rainfall. This
framework might explain the preferential location on steep
slopes observed for the very short duration C99 and possi-
bly C15 (Fig. 4). However, the statistics of C15 are weak,
and C99 strong oversampling may mainly relate to specific
mass movement triggered by surface runoff such as rilling
and the “fire hose effect” (cf., Godt and Coe, 2007). These
processes also require high-intensity short-duration events,
but also low surficial infiltration rate leading to overland flow
able to mobilize relatively loose surface material. For other
events, we analyzed the slope-gradient to drainage area re-
lationship for a topography and landslide subset and did not
find clear oversampling of high-drainage and gentle-gradient
areas in the landslide distribution. A 30 m digital elevation
model (DEM) may not be able to accurately resolve the
fine-scale pattern of slope gradients and drainage areas on
the hillsides, where landslides occur, but it may also sug-
gest that the upslope drainage area is not the main expla-
nation. For example, the subsurface drainage efficiency may
also increase with slope gradient, thus making very steep ar-
eas less likely to develop large pore pressure and possibly
explaining the preferential landsliding of slopes just above
the modal slopes for almost all events, independent of rain-
fall properties. Hydro-mechanical modeling at the catchment
scale (e.g., von Ruette et al., 2013), applied on several of our
dataset may be the only way to test between these different
hypotheses. Further constraints on the processes controlling
rainfall-induced landslides may also be achieved through a
discussion in terms of relative distance from ridge and river

(cf, Meunier et al., 2008), as intense and brief storms should
yield uniformly distributed landsliding, in contrast to longer,
less-intense storms favoring near-river slides.

5 Conclusions

We present landslide inventories (comprising from a few
hundreds to more than 15 000 polygons) associated with
eight triggering rain storms from Asia, South America, and
North America. We hypothesize that these datasets consti-
tute a global database of rainfall-induced landslides, which
allows for studying a number of landslide metrics and their
relations to rainfall and landscape properties. Indeed, al-
though spanning a large range of landscape settings, whether
in terms of topography, climate, or vegetation, the magni-
tude of landsliding scales nonlinearly with the magnitude of
the storm, here quantified with estimates of the total rain-
fall. A preliminary analysis indicates that these correlations
hold when total rainfall is normalized by long-term monthly
rainfall, and how to normalize the storm rainfall by the re-
gional climate should be further investigated. We also found
that the correlation between landsliding and rainfall is higher
when considering landslide scar estimates obtained through
a normalization of landslide run out, as the run-out distri-
bution does not clearly correlate to rainfall. Therefore, after
removing the run-out contribution (i.e., focussing on scars)
we also find that the landslide size distribution decay expo-
nent seems to be partly controlled by total rainfall, with a
greater proportion of large landslides for larger total precip-
itation. This implies that variations in landslide size distri-
bution cannot be directly interpreted as variations in land-
scape properties. For total landsliding and maximum local
landslide density, power-law scaling based on total rainfall
explains 74 % (87 % for total volume) and 76 % (95 % for
volume density) of the variance, respectively. Adding a num-
ber of other storm events as well as integrating other rainfall
forcing parameters or landscape susceptibility properties has,
therefore, the potential to yield robust prediction on the mag-
nitude of rainfall-induced landsliding. Finally, we observe
that compared to earthquakes, storms tend to trigger land-
slides that only slightly oversample the topographic slope
distribution, possibly due to faster drainage on steep slopes
or to underground water accumulation on high-drainage–
low-gradient portions of the hillslope. This may bring new,
although less straightforward, implications for the differ-
ence in resulting topography of bedrock landscape domi-
nated by rainfall-induced or earthquake-induced landslides
(Densmore and Hovius, 2000). Although preliminary these
insights and scalings show the value of systematically map-
ping a large sample of the landslides that can be related to
a single storm and we identified a number of recent storm
events where such a type of inventory could be produced. Al-
though not thoroughly investigated here, a landslide density
spatial pattern is likely strongly related to the spatiotemporal
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pattern of rainfall, and constraining the quantitative links be-
tween the two is another challenge that may be addressed
with some of the inventories presented here. More gener-
ally, the database presented here may also serve as a bench-
mark for developing and comparing rainfall-induced land-
slide models, whether empirical, semi- or fully deterministic.
These future developments are important challenges in order
to understand the natural hazards posed by rainfall-induced
landslides as well as their specific implication for the erosion
and topographic evolution of landscapes in different climatic
settings.
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