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SUPRA-MAXIMAL REPRESENTATIONS FROM
FUNDAMENTAL GROUPS OF PUNCTURED SPHERES TO

PSL(2,R)

BERTRAND DEROIN AND NICOLAS THOLOZAN

Résumé. Représentations supra-maximales des groupes fonda-
mentaux de sphères épointées dans PSL(2,R).

Nous étudions une classe particulière de représentations du groupe
fondamental des sphères épointées Σ0,n dans le groupe PSL(2,R), que
nous appelons supra-maximales. Bien qu’elles soient pour la plupart Za-
riski denses, nous montrons qu’elles sont totalement non hyperboliques,
au sens où l’image de toute courbe fermée simple est elliptique ou para-
bolique. Nous montrons aussi qu’elles sont géométrisables (hormis celles
qui sont réductibles) en un sens très fort : pour tout élément de l’es-
pace de Teichmüller T0,n, il existe une unique application équivariante
holomorphe à valeurs dans le demi-plan inférieur H−. Nous montrons
également que les représentations supra-maximales forment des com-
posantes compactes des variétés de caractère relatives. Munies de la
structure symplectique de Atiyah–Bott–Goldman, ces composantes sont
symplectomorphes à l’espace projectif complexe de dimension n−3 muni
d’un multiple de la forme de Fubini–Study que nous calculons explicite-
ment. Cela généralise un résultat de Benedetto–Goldman pour la sphère
à quatre trous.

Abstract. We study a particular class of representations from the fun-
damental groups of punctured spheres Σ0,n to the group PSL(2,R),
which we call supra-maximal. Though most of them are Zariski dense,
we show that supra-maximal representations are totally non hyperbolic,
in the sense that every simple closed curve is mapped to an elliptic or
parabolic element. They are also shown to be geometrizable (appart
from the reducible ones) in the following very strong sense : for any
element of the Teichmüller space T0,n, there is a unique holomorphic
equivariant map with values in the lower half-plane H−. In the relative
character varieties, the components of supra-maximal representations
are shown to be compact and symplectomorphic (with respect to the
Atiyah–Bott–Goldman symplectic structure) to the complex projective
space of dimension n−3 equipped with a certain multiple of the Fubini-
Study form that we compute explicitly. This generalizes a result of
Benedetto–Goldman [BG99] for the sphere minus four points.
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Introduction

0.1. Overview. Let Σg,n be a surface obtained from a connected oriented
closed surface of genus g by removing n points, called the punctures. We as-
sume in the sequel that the Euler characteristic of Σg,n is negative. Through-
out the paper, we will denote by G = PSL(2,R) the group of orientation-
preserving isometries of the half-planesH± = {z ∈ C | ±im(z) > 0} equipped
with the metrics dx2+dy2

y2
of curvature −1, where z = x + iy. We denote by

Hom(π1(Σg,n), G) the set of representations from the fundamental group of
Σg,n to G, and by Rep(π1(Σg,n), G) = Hom(π1(Σg,n), G)/G its quotient by
the action of G by conjugation. We will call this latter the character vari-
ety, even though we do not consider the algebraic quotient (in the sense of
geometric invariant theory).

A representation ρ ∈ Hom(π1(Σg,n), G) determines a flat oriented RP1-
bundle over Σg,n which, if we forget the flat connection, is encoded up to
isomorphism by a class in H2(Σg,n,Z), called the Euler class, and denoted
eu(ρ). In the closed case, i.e. when n = 0, we have H2(Σg,0,Z) ' Z, so
that the Euler class is an integer that satisfies the well-known Milnor-Wood
inequality :

(1) |eu(ρ)| ≤ |χ(Σg,0)| ,

as proved by Wood [Woo71], following earlier work of Milnor [Mil58]. All
the integral values in the interval (1) are achieved on Hom(Σg,0, G). Gold-
man proved that the level sets of the Euler class are connected [Gol88],
and Hitchin that they are indeed diffeomorphic to vector bundles over some
symmetric powers of Σg,0 [Hit87]. Goldman also proved in his doctoral dis-
sertation that the Euler class is extremal exactly when the representation is
the holonomy of a hyperbolic structure on Σg,0 [Gol80]. He conjectured more
generally that the components of non-zero Euler class are generically made
of holonomies of branched H±-structures on Σg,0 with k = |χ(Σg,0)| − |eu|
branch points (see [Gol10], as well as [Tan94] where the problem is discussed).

This paper is the first in a series aiming at studying the analogous pic-
ture on the relative character varieties when the surface Σg,n is not closed,
namely when n > 0. We focus here on a particular family of components
of the relative character varieties, that we call supra-maximal. They occur
only on punctured spheres Σ0,n for n ≥ 3, for some particular choices of
elliptic/parabolic peripheral conjugacy classes.

We prove that these components are compact, and more precisely that
they are symplectomorphic (with respect to the Atiyah–Bott–Goldman sym-
plectic structure) to the complex projective space of dimension n−3, equipped
with a certain multiple of the Fubini-Study form that we compute explicitly.
This generalizes to any n ≥ 4 a result obtained by Benedetto-Goldman in
the case n = 4 [BG99].

We also prove that the supra-maximal representations (i.e. those lying
in supra-maximal components) have very special algebraic and geometric
properties. First, we prove that they are totally non hyperbolic, namely
that no simple closed curve of Σ0,n is mapped to a hyperbolic conjugacy
class of G. Moreover, we prove that they are geometrizable by H−-conifolds
in a very strong way.



SUPRA-MAXIMAL REPRESENTATIONS 3

0.2. Volume, relative Euler class and the refined Milnor–Wood in-
equality. In the closed case, the Euler class is closely related to the volume
of the representation, classically defined by the integral

(2) Vol(ρ) =

∫
Σg,0

f∗
(
dx ∧ dy
y2

)
where f : Σ̃g,0 → H+ is any ρ-equivariant smooth map. Namely, we have
Vol(ρ) = −2π eu(ρ). Burger and Iozzi [BI07] and Koziarz and Maubon
[KM08] have independently extended the definition of the volume of a rep-
resentation ρ : π1(Σg,n) → G to the case of punctured surfaces. (See also
Burger–Iozzi–Wienhard [BIW10] for a generalization to representations into
Lie groups of Hermitian type.) This volume can be defined as a bounded
cohomology class, or more trivially as an integral of the form (2), where the
behaviour of the equivariant map is constrained in the neighborhood of the
cusps: namely, the completion of the metric f∗

(dx2+dy2

y2

)
in the neighbor-

hood of a cusp is assumed to be a cone, a parabolic cusp, or an annulus with
totally geodesic boundary.

The analogous Milnor-Wood inequality

(3) |Vol(ρ)| ≤ 2π|χ(Σg,n)| ,

holds in this context [BIW10, KM08]. It is also proved in [BIW10] that the
volume is continuous as a function on Rep(π1(Σg,n), G) and achieves every
value in the interval defined by (3).

The volume heavily depends on the conjugacy class of the peripherals
ρ(ci), where the ci are elements of π1(Σg,n) freely homotopic to positive
loops around the punctures. For instance, its reduction modulo 2π equals the
sum −

∑
iR(ρ(ci)), where R(ρ(ci)) is the rotation number of ρ(ci) [BIW10,

Theorem 12]. In order to understand better the dependence of the volume
on the ρ(ci), it is convenient to introduce the following function:

θ : G→ R+

that maps an element g ∈ G to
— 0 if g is hyperbolic or positive parabolic (i.e. a parabolic that translates

the horocycles based at the fixed point of g clockwise),
— 2π if g is negative parabolic (i.e. a parabolic that translates the horo-

cycles based at the fixed point of g counterclockwise) or the identity,
— the value between 0 and 2π of the rotation angle of g when g is elliptic.
We will denote θi(ρ) = θ(ρ(ci)) and Θ(ρ) =

∑n
i=1 θi(ρ).

Remark 0.1. The function θ is one among the many ways of lifting the
rotation number to a function from G to R. Note however that it is (up to
adding a multiple of 2π) the only lift which is continuous in restriction to
the set of elliptic elements and upper semi-continuous on the whole group G.

Definition 0.2. We define the relative Euler class of the representation ρ
by

(4) −eu(ρ) =
1

2π

(
Vol(ρ) + Θ(ρ)

)
.
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By [BIW10, Theorem 12], the relative Euler class is an integer. In fact,
it can be shown that it is the genuine Euler class of the flat oriented RP1-
bundle with monodromy ρ, relative to some explicit trivializations above the
curves ci. When ρ is the holonomy of a H+-structure on Σg,n with cusps,
totally geodesic boundary or cone singularities of angle between 0 and 2π at
the punctures, then −eu(ρ) = |χ(Σ)| by the Gauss–Bonnet formula.

One could expect this to be the maximal value of −eu(ρ), as it is in the
closed case. Here we will prove the following analog of the Milnor–Wood
inequality:

Theorem 1.
For every representation ρ : π1(Σg,n)→ G, we have the inequality

(5) inf
(
−|χ(Σg,n)|+ l, d 1

2π
Θ(ρ)e

)
≤ −eu(ρ) ≤ sup

(
|χ(Σg,n)|, b 1

2π
Θ(ρ)c

)
,

where l is the number of elliptic/parabolic/identity conjugacy classes among
the ρ(ci)’s, with the identity counted twice.

In particular, the relative Euler class satisfies |eu(ρ)| ≤ |χ(Σg,n)| un-
less g = 0, in which case it can take no more than two additional values:
−eu(ρ) = n− 1 or n.

Note that the relative Euler class does not distinguish connected com-
ponents of the character variety (which is connected for surfaces with punc-
tures), mainly because the function θ : G→ R+ is only upper semi-continuous
while the volume is a continuous function, see [BIW10, Theorem 1]. How-
ever, it does distinguish connected components of relative character varieties.
It can be related to the degree of a line subbundle of the parabolic Higgs
bundle describing the representation (see Section 0.6 and [Mon16]).

0.3. Supra-maximal representations. By Theorem 1, the usual Milnor–
Wood inequality

|eu(ρ)| ≤ |χ(Σg,n)|
holds unless g = 0, in which case −eu(ρ) can be equal to n − 1 or n. This
motivates the following definition:

Definition 0.3. A representation ρ : π1(Σ0,n) → G is supra-maximal if
−eu(ρ) = n− 1 or n.

By Theorem 1, such representations only occur when

(6) 2π(n− 1) ≤ Θ(ρ) ≤ 2πn.

We will see soon that −eu(ρ) = n if and only if the representation ρ is
trivial (i.e. sending everyone to the identity). In contrast, the set of rep-
resentations such that −eu(ρ) = n − 1 has non empty interior in the set
Hom(π1(Σg,n), G). Such representations can be constructed by considering
a “necklace” of negatively oriented triangle groups with appropriate angles
(see Subsection 3.2).

Bowditch raised in [Bow98] the question of whether, given a surface group
representation, one can find a simple closed curve mapped to an elliptic or
parabolic element. The importance of this question in understanding the
dynamics of the mapping class group on character varieties was suggested in
[Gol97, Gol03] and recently made precise in [MW16].
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Here, we prove that supra-maximal representations satisfy Bowditch’s
property in a very strong way:

Theorem 2.
Every supra-maximal representation ρ : π1(Σ0,n) → G is totally non hyper-
bolic, namely every element of π1(Σ0,n) which is homotopic to a simple closed
curve is mapped by ρ to an elliptic or a parabolic isometry of G.

Totally non hyperbolic representations were already known to exist when
g = 0 and n = 4: Shinpei Baba observed that the representations lying in
the compact component of the relative PSL(2,R)-character varieties of the
four punctured sphere discovered by Benedetto and Goldman in [BG99] have
this property.

Their existence in genus zero contrasts with the higher genus case: indeed,
Gallo, Kapovich and Marden [GKM00, Part A] showed (among other things)
that a non elementary representation from the fundamental group of a closed
surface with values into PSL(2,C) always maps a certain element of the
fundamental group isotopic to a simple closed curve to a hyperbolic element.

In a different direction, Yang recently found representations of four punc-
tured spheres with parabolic boundaries that do not satisfy Bowditch’s prop-
erty [Yan16].

A consequence of Theorem 2 together with the work of Gueritaud–Kassel
[GK17] is that a supra-maximal representation is “dominated” by any Fuch-
sian representation (the holonomy of a complete metric of finite volume on
Σ0,n). To be more precise, let l(g) := infx∈H+ d(x, g(x)) be the translation
length of an element g ∈ G, and for every representation ρ ∈ Hom(π1(Σg,n), G),
let Lρ : π1(Σ0,n) → [0,∞) be defined by Lρ(g) = l(ρ(g)). Then for any
couple (j, ρ) formed by a Fuchsian representation j and a supra-maximal
representation ρ, we have Lρ ≤ Lj . From this we deduce:

Corollary 3.
In the character variety Rep(π1(Σ0,n), G), the subset of supra-maximal rep-
resentations is compact.

0.4. Compact components in relative character varieties. Let us fix
α = (α1, . . . , αn) ∈ (0, 2π)n. We denote by Repα(π1(Σ0,n), G) the set of
conjugacy classes of representations such that θi(ρ) = αi. Because the αi’s
are different from 0 and 2π, the space Repα(Σ0,n, G) has the structure of
a smooth manifold and carries a natural symplectic form that has been
constructed by Goldman [Gol84], building on works of Atiyah and Bott
[AB83]. Let RepSMα (Σ0,n, G) denote the set of supra-maximal representa-
tions in Repα(Σ0,n, G). Corollary 3 implies that RepSMα (Σ0,n, G) forms com-
pact connected components of Repα(Σ0,n, G). We can say more and describe
the symplectic geometry of these components:

Theorem 4.
If 2(n − 1)π <

∑n
i=1 αi < 2nπ, then the space RepSMα (Σ0,n, G) is non-

empty and symplectomorphic to CPn−3, with a multiple of the Fubini–Study
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symplectic form whose total volume is

(πλ)n−3

(n− 3)!
,

where

λ =
n∑
i=1

αi − 2(n− 1)π .

The proof is given in Subsection 3.3. It makes use of a faithful Hamil-
tonian action of the torus (R/πZ)n−3 on RepSMα (Σ0,n, G), associated to a
pair-of-pants decomposition of Σ0,n. Delzant proved in [Del88] that com-
pact symplectic manifolds provided with a faithful Hamitonian action of a
torus of half the dimension are classified by the image of their moment map,
which is a polytope satisfying certain arithmeticity conditions. Here we
compute explicitly the Delzant polytope of our action and recognize the one
corresponding to a natural action of (R/πZ)n−3 on CPn−3 with a certain
multiple of the Fubini–Study symplectic form.

0.5. Geometrization by H−-conifolds. In Section 4, we show that supra-
maximal representations can be geometrized by H−-structures in a very
strong way. In fact, the set of all possible geometrizations by a H−-structure
is a copy of the Teichmüller space T0,n.

Theorem 5.
Let ρ : π1(Σ0,n) → G be a supra-maximal representation. Then either ρ
is Abelian, or for every σ ∈ T0,n, there exists a unique ρ-equivariant map
Σ̃0,n → H− which is holomorphic with respect to the complex structure σ.

This property characterizes the supra-maximal representations. For in-
stance, for maximal representations, namely those satisfying eu(ρ) = χ(Σg,n),
the isomonodromic space of conical H+-structures is discrete, as was proven
by Mondello in [Mon10]. In a companion paper, we will adress the prob-
lem of geometrizing representations that are merely maximal, using different
techniques.

Notice that Theorem 5, together with the help of the Schwarz Lemma,
gives an alternative proof of the fact that supra-maximal representations are
dominated by Fuchsian representations. Also, the proof of Theorem 5 allows
to find explicit parametrizations of supra-maximal components by symmetric
powers of the Riemann sphere (which are models for the complex projective
spaces). These parametrizations transit via the Troyanov uniformization
theorem.

0.6. An interpretation of the results via parabolic Higgs bundles.
After the first version of this preprint appeared on arXiv, we discussed with
Olivier Biquard about the possibility of a proof using the theory of parabolic
Higgs bundles. It turned out that such a proof exists. In the recent preprint
[Mon16], Gabriele Mondello independently gave a topological description
of relative character varieties of punctured surfaces using parabolic Higgs
bundles. We pointed out to him that he was in particular recovering the
results of the present paper. Let us sketch very briefly the interplay between
our results and the parabolic Higgs bundle theory.
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Let us fix a Riemann surface structure X on Σg,n and denote by D the
divisor of the punctures. To any irreducible representation of π1(Σg,n) into
SL(2,R) is associated a stable parabolic Higgs bundle, namely a holomorphic
vector bundle E of rank 2 on Σg and a holomorphic section Φ ofK⊗End(E)⊗
D (where K denotes the canonical bundle of Σg), plus some extra data for
each cusp which boils down to the data of our θi(ρ). Moreover, the bundle
E splits as L1/2 ⊕ L−1/2 and the Higgs field has the form(

0 α
β 0

)
,

where α ∈ H0(K ⊗D ⊗ L) and β ∈ H0(K ⊗D ⊗ L−1). Our relative Euler
class then coincides with the degree of L. Assume now that L is positive.
The classical Higgs bundle proof of the Milnor–Wood inequality (in the case
of a closed surface) goes as follows: since the Higgs bundle associated to ρ
must be stable, L cannot be invariant by Φ. Therefore, β is non-zero. Since
the line bundle K ⊗D ⊗ L−1 has a holomorphic section, it is non-negative,
hence

−eu(ρ) = deg(L) ≤ deg(KD) = 2g − 2 + n .

However, for parabolic Higgs bundles, the stability is a condition on the
parabolic degree of L, which is defined as deg(L)− 1

2π

∑n
i=1 θi(ρ). Therefore,

in the particular case of the puntured sphere, if
∑n

i=1 θi(ρ) > 2π(n−1), then
the degree of L can “exceptionally” be equal to n − 1. This will force β to
vanish but will not contradict the stability because the parabolic degree of
L will still be negative. The vanishing of β implies that the Higgs field is
nilpotent, which is reflected by the existence of a ρ-equivariant holomorphic
map to H−. Finally, the stability implies that α does not vanish, and the
space of all such Higgs bundles (with fixed values of θi) is thus parametrized
by ProjCH0(KLD) ' CPn−3.

0.7. Acknowledgements. The authors wish to thank Mikhaïl Kapovich
for sharing with us Shinpei Baba’s remark about Benedetto–Goldman’s rep-
resentations, to Olivier Biquard for explaining to us the basics of the theory
of parabolic Higgs bundles and to Maxime Wolff for pointing out to us the
paper of Tian Yang.

1. The refined Milnor–Wood inequality

In this section, we establish Theorem 1.

1.1. Reduction to a bound from above. Let us explain first that The-
orem 1 is a consequence of the following result, the proof of which will be
postponed to the next two subsections.

Proposition 1.1. We have

(7) −eu(ρ) ≤ sup
(
|χ(Σg,n)|, b 1

2π
Θ(ρ)c

)
≤ |χ(Σg,n)|+ 2 .

Moreover, the inequality −eu(ρ) > |χ(Σg,n)| is possible only when g = 0,
none of the conjugacy classes of ρ(ci) are hyperbolic, and the volume is non-
positive. Finally, −eu(ρ) = |χ(Σ0,n)| + 2 if and only if ρ is the trivial
representation.
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Let us prove Theorem 1 assuming Proposition 1.1. Let ρ be the conjuga-
tion of ρ by an orientation-reversing isometry of H+. We have the formulas

Vol(ρ) = −Vol(ρ)

and
Θ(ρ) + Θ(ρ) = 2πl ,

where l is the number of elliptic or parabolic cusps (counting the identity
twice). In particular, we deduce

(8) −eu(ρ) =
1

2π

(
Vol(ρ) + Θ(ρ)

)
= l + eu(ρ).

Applying (7) to ρ, we get

−eu(ρ) ≥ inf
(
− |χ(Σg,n)|+ l, d 1

2π
Θ(ρ)e

)
,

which concludes the proof of Theorem 1 if (7) holds.
The rest of this section is devoted to the proof of Proposition 1.1. We

will proceed by induction on the topology of the surface. We thus start by
proving the proposition in the case of the pair of pants Σ0,3.

1.2. The case of the pair of pants. The universal cover G̃ of the group
G acts faithfully on R̃P1. We denote by m the generator of the covering
group that acts positively with respect to the natural orientation of RP1,
namely m(x) > x for every x ∈ R̃P1. On G̃ there is a well-defined notion
of translation number: identifying R̃P1 with R in such a way that m is
conjugated to the translation x 7→ x + 2π, the translation number T (g) of
an element g ∈ G̃ is the following limit:

T (g) = lim
k→±∞

gk(x)− x
k

.

It does not depend on x ∈ R. We refer to [Ghy01] for a survey on this notion.
The fundamental group π1(Σ0,3) is generated by three elements c1, c2, c3

that satisfy the relation c1c2c3 = 1, and that correspond to positively ori-
ented loops around the punctures. For each i = 1, 2, 3, we denote by ρ̃(ci)

the unique lift of ρ(ci) in G̃ having translation number θi(ρ). Notice that
since ρ(c1)ρ(c2)ρ(c3) = 1, there exists k ∈ Z such that

ρ̃(c1)ρ̃(c2)ρ̃(c3) = mk.

Lemma 1.2. We have −eu(ρ) = k.

Proof. This lemma can be seen as a reformulation (in the particular case of
Σ0,3) of Theorem 12 of [BIW10], according to which — given ρ̃ a lift of ρ to
G̃ — one has

Vol(ρ) = −
∑
i

T (ρ̃(ci)) .

Indeed, let ρ̃ : π1(Σ0,3) → G̃ be a lift of the representation ρ. Then for
each i there exists some integer ki such that

ρ̃(ci) = ρ̃(ci)m
ki .
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We have the relations

k1 + k2 + k3 = k and θi(ρ) = T (ρ̃(ci)) + ki.

Both come from the fact that m belongs to the center of G̃. Therefore∑
i

θi(ρ) =
∑
i

T (ρ̃(ci)) + 2πk,

and the claim follows from [BIW10, Theorem 12]. �

We now proceed to a case-by-case analysis.

Case of an identity peripheral. We first consider the case where ρ(ci) = Id for
some i. Applying a cyclic permutation if necessary, we can assume ρ(c3) =

Id. Thus ρ(c2) = ρ(c1)−1. We then have ρ̃(c3) = m and

mk = ρ̃(c1)ρ̃(c2)ρ̃(c3) = m if ρ(c1), ρ(c2) are hyperbolic
= m2 if ρ(c1), ρ(c2) are elliptic or parabolic
= m3 if ρ(c1) = ρ(c2) = 1.

Notice that in the first case Θ(ρ) = 2π, in the second case, Θ(ρ) = 4π, and in
the third case Θ(ρ) = 6π. By Lemma 1.2, we thus have −eu(ρ) = 1

2πΘ(ρ),
which proves the inequality (7).

Case of a hyperbolic peripheral. Assume now that one of the ρ(ci)’s is hy-
perbolic. Up to cyclic permutation, we can assume that ρ(c3) is hyperbolic.
Notice that the lifts ρ̃(ci) are chosen so that

(9) m−1(y) < ρ̃(ci)(y) ≤ m(y)

for every y ∈ R̃P 1. Moreover, there exist two points x± ∈ R̃P1 such that

ρ̃(c3)(x+) > x+ and ρ̃(c3)(x−) < x−.

From (9), we deduce that

mk(x+) = ρ̃(c1)ρ̃(c2)ρ̃(c3)(x+) > m−2(x+)

and similarly

mk(x−) = ρ̃(c1)ρ̃(c2)ρ̃(c3)(x−) < m2(x−).

The integer k hence satisfies |k| ≤ 1, which implies the proposition in the
case one of the ρ(ci) is hyperbolic. 1

1. Note that there exists a representation having ρ(c1), ρ(c2) negative parabolic and
ρ(c3) hyperbolic: such a representation has −eu(ρ) = 1 but Θ(ρ) = 4π, showing that
Theorem 1 is not sharp when some peripheral is parabolic.
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Figure 1. A representation with the ρ(ci) elliptic.

Case where none of the ρ(ci)’s is identity or hyperbolic. In this case each
ρ(ci) has a unique fixed point pi ∈ H ∪ ∂H. Either they are distinct, or
equal.

We first consider the case where p1 = p2 = p3. In this case, the volume is
zero. Moreover, if pi lies in H+, then θi(ρ) < 2π since none of the ρ(ci) are
the identity. In particular Θ(ρ) = 2π or 4π. If pi lies in ∂H+, then one of the
ρ(ci) has to be a positive parabolic, since their product is 1. In particular,
Θ(ρ) = 2π or 4π as before. So we are done.

Suppose now that the pi’s are distinct. In this case, the image of ρ is a
“triangle group”. More precisely, for p, q ∈ H+ ∪ ∂H+ distinct, let σpq be the
reflection with respect to the geodesic (pq). We then have the formulas

ρ(c1) = σp3p1σp1p2 , ρ(c2) = σp1p2σp2p3 and ρ(c3) = σp2p3σp3p1

(see Figure 1).
Since none of the ρ(ci)’s is the identity, the triangle ∆ = p1p2p3 is non

degenerate. In particular, ρ is the holonomy of a H+-structure (if p1p2p3 is
clockwise oriented) or a H−-structure (if p1p2p3 is counterclockwise oriented)
on the sphere minus three points, obtained by gluing two copies of ∆. In the
first case, θi(ρ) is twice the angle of ∆ at pi and the volume of ρ twice the
volume of ∆, so by Gauss-Bonnet we get −eu(ρ) = 1. In the second case,
2π − θi(ρ) is twice the angle of ∆ at pi, and the volume of ρ is −2Vol(∆),
so we get −eu(ρ) = 2 in this case.

This concludes the proof of Proposition 1.1 in the case of Σ0,3.

1.3. The general case. Crucially, our induction will use the following fact:

Proposition 1.3. Assume Σ is obtained from a (possibly disconnected) sur-
face Σ′ by gluing b with b′−1, where b and b′ are two boundary curves of
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Σ′. Let ρ be a representation of π1(Σ) into G and ρ′ the restriction of ρ to
π1(Σ′). Then we have the following:

— if ρ(b) is the identity, then

−eu(ρ) = −eu(ρ′)− 2 ;

— if ρ(b) is parabolic or elliptic, then

−eu(ρ) = −eu(ρ′)− 1 ;

— if ρ(b) is hyperbolic, then

−eu(ρ) = −eu(ρ′) .

(If Σ′ has several connected components, we denote by eu(ρ′) the sum of
the Euler classes of the restrictions of ρ to the fundamental group of each
connected component.)

Proof. By additivity of the volume, we have Vol(ρ) = Vol(ρ′). Therefore,

−eu(ρ′) = −eu(ρ) +
1

2π

(
θ(ρ′(b)) + θ(ρ′(b′))

)
.

One has ρ′(b′) = ρ′(b)−1 and therefore

θ(ρ′(b)) + θ(ρ′(b′)) = 4π if ρ′(b) is the identity
= 2π if ρ′(b) is elliptic or parabolic
= 0 if ρ′(b) is hyperbolic.

�

Let us now prove Proposition 1.1 for Σ0,n by induction on n.

Proof of Proposition 1.1 in the genus g = 0 case. We decompose Σ = Σ0,n

as the union of Σ′ = Σ0,k+1 and Σ′′ = Σ0,n−k+1, where some boundary curve
b′ of Σ0,k+1 is glued with b′′−1 for some boundary curve b′′ of Σ0,n−k+1.
Denote by ρ′ the restriction of ρ to π1(Σ0,k+1) and by ρ′′ the restriction of ρ
to π1(Σ0,n−k+1).

By induction, we have −eu(ρ′) ≤ k+ 1 and −eu(ρ′′) ≤ n−k+ 1. We can
now proceed to a case-by-case study:

— If −eu(ρ′) = |χ(Σ′)|+2 and −eu(ρ′′) = |χ(Σ′′)|+2, then by, induction
hypothesis, both ρ′ and ρ′′ are trivial. Hence ρ is trivial and −eu(ρ) =
n.

— If −eu(ρ′) = |χ(Σ′)|+ 2 and −eu(ρ′′) = |χ(Σ′′)|+ 1 (or the converse)
then, by induction hypothesis, ρ′ is trivial. Therefore ρ′(b) is the iden-
tity. Hence

−eu(ρ) = −eu(ρ′)− eu(ρ′′)− 2 = n− 1 .

By induction, no boundary curve of Σ0,k+1 and Σ0,n−k+1 has hy-
perbolic image. Hence the same holds for Σ0,n. Moreover, we have
b
∑

i′ θi′(ρ
′)c = |χ(Σ′)|+ 2 and b

∑
i′′ θi′′(ρ

′′)c = |χ(Σ′′)|+ 1, so

b
∑
i

θi(ρ)c = b
∑
i′

θi′(ρ
′) +

∑
i′′

θi′′(ρ
′′)− 2c = n− 1 ,

proving (7).
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— If −eu(ρ′) = |χ(Σ′)|+ 1 and −eu(ρ′′) = |χ(Σ′′)|+ 1, then ρ′(b) is not
hyperbolic. If ρ′(b) is the identity, then

−eu(ρ) = −eu(ρ′)− eu(ρ′′)− 2 = n− 2 .

Otherwise, we have

−eu(ρ) ≤ −eu(ρ′)− eu(ρ′′)− 1 = n− 1 .

Like in the previous case, no boundary curve of Σ is sent to a hyperbolic
element. Finally, since ρ(b′), ρ(b′′) are not hyperbolic, we get θ(ρ(b′))+
θ(ρ(b′′)) = 2π, and∑

i

θi(ρ) =
∑
i′

θi′(ρ
′) +

∑
i′′

θi′′(ρ
′′)− 1

≥ (|χ(Σ′)|+ 1) + (|χ(Σ′′)|+ 1)− 1 = |χ(Σ)|+ 1 ,

proving (7).
— If −eu(ρ′) = |χ(Σ′)| + 2 and −eu(ρ′′) ≤ |χ(Σ′′)| (or the converse),

then ρ(b′) is the identity. Hence

−eu(ρ) = −eu(ρ′)− eu(ρ′′)− 2 ≤ n− 2 .

— If −eu(ρ′) = |χ(Σ′)| + 1 and −eu(ρ′′) ≤ |χ(Σ′′)| (or the converse),
then ρ(b′) is not hyperbolic. Hence

−eu(ρ) ≤ −eu(ρ′)− eu(ρ′′)− 1 ≤ n− 2 .

— Finally, if −eu(ρ′) ≤ |χ(Σ′)| and −eu(ρ′′) ≤ |χ(Σ′′)|, then
−eu(ρ) ≤ −eu(ρ′)− eu(ρ′′) ≤ n− 2 .

�

We can now prove Proposition 1.1 in the higher genus case. Note that
1

2π
Θ(ρ) =

1

2π

∑
i

θi(ρ) ≤ n ≤ 2g − 2 + n = |χ(Σg,n)|

as soon as g ≥ 1. Therefore, Proposition 1.1 when g ≥ 1 reduces to the
classical Milnor-Wood inequality

−eu(ρ) ≤ |χ(Σg,n)| .

Proof of Proposition 1.1 if g > 0. We argue by induction on g.
g = 1. The surface Σ1,n is obtained from Σ0,n+2 by gluing together b and

b′−1, for two boundary curves b and b′. Denote by ρ′ the restriction of
ρ to π1(Σ0,n+2). If −eu(ρ′) = n+2, then ρ′ is trivial, hence ρ is trivial
and −eu(ρ) = n. If −eu(ρ′) = n + 1, then ρ′(b) is not hyperbolic.
Hence

−eu(ρ) ≤ −eu(ρ′)− 1 = n .

Finally, if −eu(ρ′) ≤ n then −eu(ρ) ≤ n.

g ≥ 2. The surface Σg,n is obtained from Σg−1,n+2 by gluing together
two boundary curves b and b′. Denote by ρ′ the restriction of ρ to
π1(Σg−1,n+2). By induction hypothesis, we have

−eu(ρ′) ≤ 2(g − 1)− 2 + n+ 2 = 2g − 2 + n ,
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hence
−eu(ρ) ≤ −eu(ρ′) ≤ 2g − 2 + n .

�

2. Supra-maximal representations

2.1. Definition and examples. Supra-maximal representations are repre-
sentations whose Euler class violates the classical Milnor-Wood inequality.
It happens only in the following situation:

Definition 2.1. A representation ρ : π1(Σg,n)→ G is called supra-maximal
if g = 0 and −eu(ρ) = n− 1 or −eu(ρ) = n.

As we saw in Proposition 1.1, supra-maximal representations have Euler
class n− 1, except for the trivial representation which has Euler class n.

2.2. Supra-maximal representations are “totally non hyperbolic”. A
first important fact about supra-maximal representations is that they send
every simple closed curve to a non hyperbolic element.

Proposition 2.2. Let ρ : π1(Σ0,n) → G be a representation of Euler class
−eu(ρ) = n− 1 or n. Then, for any element γ in π1(Σ0,n) freely homotopic
to a simple closed curve, ρ(γ) is not hyperbolic.

Proof. Let γ be a simple closed curve in Σ0,n. If γ is freely homotopic to
a boundary curve, then ρ(γ) is not hyperbolic, as part of Proposition 1.1.
Othewise, γ cuts Σ0,n into two surfaces Σ′ and Σ′′. We saw in the demon-
stration of Proposition 1.1 that the restrictions of ρ to π1(Σ′) and π1(Σ′′) are
both supra-maximal, and therefore that the images of the boundary curves
of Σ′ by ρ (and in particular ρ(γ)) are non hyperbolic. �

Remark 2.3. Shinpei Baba observed that the representations lying in the
Benedetto–Goldman compact components [BG99] are totally elliptic. This
remark gave us the idea that supra-maximal representations should form
compact components of relative character varieties.

2.3. Domination. As a corollary, we obtain that ρ is dominated by any
Fuchsian representation:

Corollary 2.4. Let ρ : π1(Σ0,n) → G be a representation of relative Euler
class n − 1 or n. Then, for any Fuchsian representation j : π1(Σ0,n) → G,
there exists a 1-Lipschitz (j, ρ)-equivariant map from H+ to H+.

Proof. According to the work of Guéritaud–Kassel [GK17], in order to obtain
the conclusion, it is enough to know that

Lρ(γ) ≤ Lj(γ)

for every simple closed curve γ. This is obviously true since, by Proposi-
tion 2.2, Lρ(γ) = 0 for every simple closed curve γ. �

As a consequence, we obtain that the length spectrum Lρ of any supra-
maximal representation is bounded by the following interesting function

C(γ) = inf{Lj(γ), j : π1(Σ0,n)→ G Fuchsian} .
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It is invariant by conjugation and by the braid group, and measures a certain
complexity of the corresponding element of π1(Σ0,n). It would be interest-
ing to understand this function in more details. See Basmajian [Bas13] for
related results.

2.4. Compactness of the space of supra-maximal representations.
Corollary 2.4 provides a uniform control on all supra-maximal representa-
tions, from which we can prove that the space of supra-maximal representa-
tions is compact.

Let Hom(Σ0,n, G) denote the space of representations of π1(Σ0,n) into G
and Rep(Σ0,n, G) its quotient by the action of G by conjugation. The natural
topology of Hom(Σ0,n, G) induces a non-Hausdorff topology on Rep(Σ0,n, G).

Proposition 2.5. The space of supra-maximal representations is a compact
subset of Rep(Σ0,n, G).

Proof. Let (ρn)n∈N be a sequence of supra-maximal representations. We fix
a Fuchsian representation j. By Corollary 2.4, we can find a sequence of
1-Lipschitz maps fn : H+ → H+ such that fn is (j, ρn)-equivariant. Up
to conjugating each ρn and composing each fn by an isometry of H+, we
can assume that each fn fixes a given base point. By Ascoli’s theorem,
up to extracting a subsequence, fn converges uniformly on every compact
set to a 1-Lipschitz map f∞. This map f∞ is (j, ρ∞)-equivariant for some
representation ρ∞ and we have

ρn →
n→+∞

ρ∞

in Rep(Σ0,n, G).
Finally, since the function−eu : Rep(Σ0,n, G)→ R is upper semi-continuous,

the limit ρ∞ is still supra-maximal. We have thus proved that the set

{ρ ∈ Rep(Σ0,n, G)→ R | −eu(ρ) ≥ n− 1}

is sequentially compact, hence compact. �

2.5. Compact components in relative character varieties. Recall that
RepSMα (Σ0,n, G) denotes the set of supra-maximal representations in the cor-
responding relative character variety Repα(Σ0,n, G).

Proposition 2.6. If 2(n − 1)π <
∑n

i=1 αi < 2nπ, then RepSMα (Σ0,n, G)
forms a non-empty compact connected component of Repα(Σ0,n, G).

Proof. Since Repα(Σ0,n, G) is closed in Rep(Σ0,n, G), its intersection with the
set of supra-maximal representations is compact by Proposition 2.5. Since
none of the αi is equal to 0 or 2π, the Euler class is continuous in restriction
to Repα(Σ0,n, G). Since it takes integral values, the subset of supra-maximal
representations is a union of connected components.

It remains to prove that RepSMα (Σ0,n, G) is non-empty and connected. We
postpone this to Section 3.3. �
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3. Symplectic geometry of supra-maximal components

3.1. The Goldman symplectic structure on (relative) character va-
rieties. Goldman constructed in [Gol84] a natural symplectic structure on
the character variety χG(Σ) of the fundamental group of a closed connected
oriented surface Σ into G, and in fact into any semi-simple Lie group. More-
over, he found in [Gol86] a duality between conjugacy invariant functions on
G and certain “twisting” deformations of representations.

More precisely, let F : G → R be a function invariant by conjugation.
Recall that there is a natural non-degenerate bilinear form κG on the Lie
algebra g which is invariant under the adjoint action of G: the Killing form.
At a point g ∈ G where F is C1, we define δgF as the vector in g such that

dFg(g · v) = κG(δgF, v)

for all v ∈ g. Because F is invariant by conjugation, δgF is centralized by g.
Now, let ρ : π1(Σ)→ G be a representation. Let b denote a simple closed

curve in Σ which is not homotopic to a boundary curve. If b is separating,
then it cuts Σ into two surfaces Σ′ and Σ′′ and we can write

π1(Σ) = π1(Σ′) ∗ π1(Σ′′)/b′ ∼ b′′ .
If b is not separating, cutting along b gives a compact surface Σ′ and we can
write

π1(Σ) = π1(Σ′) ∗ 〈u〉/bleft ∼ ubrightu−1 .

Since ρ(b) centralizes δρ(b)F , we can “twist” the representation ρ along b
and define a representation ΦF,b,t(ρ) by

ΦF,b,t(ρ) : γ ∈ π1(Σ′) 7→ ρ(γ)
γ ∈ π1(Σ′′) 7→ exp(tδρ(b)F )ρ(γ) exp(−tδρ(b)F )

if b is separating and

ΦF,b,t(ρ) : γ ∈ π1(Σ′) 7→ ρ(γ)
u 7→ u exp(tδρ(b)F )

if b is non-separating. On can prove that ΦF,b,t induces a well-defined flow
on the character variety of Σ.

Theorem 3.1 (Goldman). Let F be a function of class C1 on G invariant
by conjugation. If b is a simple closed curve in Σ. Denote by Fb the function
on χG(Σ) defined by

Fb(ρ) = F (ρ(b)) .

Then Fb is C1 and its Hamiltonian flow (with respect to the Goldman sym-
plectic form) is the flow (ΦF,b,t)t∈R.

This generalizes to relative character varieties of surfaces with boundary
(see for instance [Gol06]).

3.2. AHamiltonian action of (R/πZ)n−3. We consider the decomposition
of Σ0,n into pairs of pants given by Figure 2.

If ρ is a representation of π1(Σ0,n) into G, we note βi(ρ) = θ(ρ(bi)). We
also set ᾱi = 2π − αi.
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Figure 2. A pair-of-pants decomposition of Σ0,n.

Lemma 3.2. If ρ ∈ RepSMα (Σ0,n, G), then, for all 1 ≤ i ≤ n− 3, we have
i+1∑
k=1

ᾱk ≤ βi(ρ) ≤ 2π −
n∑

k=i+2

ᾱk .

In particular, ρ(bi) is elliptic.

Proof. The curve bi cuts Σ0,n into two surfaces Σ′0,i+2 and Σ′′0,n−i. Let ρ
′ and

ρ′′ denote respectively the restrictions of ρ to π1(Σ′) and π1(Σ′′). Since none
of the αi is equal to 2π, neither ρ′ nor ρ′′ is trivial. Since ρ is supra-maximal,
ρ′ and ρ′′ are also supra-maximal. Applying Proposition 1.1 to ρ′, we get

βi(ρ) +

i+1∑
k=1

αk ≥ 2π(i+ 1) .

Applying Proposition 1.1 to ρ′′, we get

β̄i(ρ) +

n∑
k=i+2

αk ≥ 2π(n− i− 1) ,

where β̄i(ρ) = θ(ρ(bi)
−1).

If ρ(bi) were the identity, then we would get

−eu(ρ) = −eu(ρ′)− eu(ρ′′)− 2 = |χ(Σ0,n)|
and ρ would not be supra-maximal.

Therefore, β̄i(ρ) = 2π − βi(ρ) and we get
i+1∑
k=1

ᾱk ≤ βi(ρ) ≤ 2π −
n∑

k=i+2

ᾱk .

In particular, ρ(bi) is elliptic. �

Since ρ(bi) is elliptic for all ρ ∈ RepSMα (Σ0,n, G), The functions βi are
n− 3 well-defined smooth functions on RepSMα (Σ0,n, G).

Proposition 3.3. The Hamiltonian flow associated to the function βi is
π-periodic.

Proof. Recall that the function θ on G associates to an elliptic element g the
rotation angle of g in H+. The function θ is invariant by conjugation. Let
us compute its gradient (with respect to the Killing metric, which is a non
degenerate pseudo-Riemannian metric on G) at the point

g0 =

(
cos(θ0/2) − sin(θ0/2)
sin(θ0/2) cos(θ0/2)

)
.
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We can write
θ(g) = f(Tr(g)) ,

where f satisfies
f(2 cos(x/2)) = x .

For u ∈ sl(2,R), we have

d

dt |t=0
f (Tr(g0 exp(tu))) = f ′ (Tr(g0)) Tr(g0u)

= f ′(2 cos(θ0/2))Tr ((g0 − Tr(g0)I2)u) .

Since g0 − Tr(g0)I2 ∈ sl(2,R), we deduce that

δg0θ = f ′(2 cos(θ0/2))(g0 − Tr(g0)I2)

=

(
0 −f ′(2 cos(θ0/2)) sin(θ0/2)

f ′(2 cos(θ0/2)) sin(θ0/2) 0

)
=

(
0 1
−1 0

)
since −f ′(2 cos(θ0/2)) sin(θ0/2) = d

dx |x=θ0
f(2 cos(x/2)) = 1.

Therefore, the flow
t 7→ exp(tδg0θ)

is π-periodic.
Since every elliptic element is conjugated to some g0, we obtain, thanks

to Theorem 3.1, that the Hamiltonian flow

Φi = Φθ,bi

associated to the function βi : ρ 7→ θ(ρ(bi)) on RepSMα (Σ0,n, G) is π-periodic.
�

Since the curves bi are pairwise disjoint, the functions βi Poisson commute
and their Hamiltonian flows together provide an action of (R/πZ)n−3 on
Repα(Σ0,n, G).

3.3. The Delzant polytope of the Hamiltonian action. In this subsec-
tion we prove Theorem 4.

By the work of Delzant [Del88], in order to understand the symplectic
structure of the manifold RepSMα (Σ0,n, G), it is essentially enough to under-
stand the image of the moment map:

β : RepSMα (Σ0,n, G) → Rn−3

ρ 7→ (β1(ρ), . . . , βn−3(ρ))
.

More precisely, Delzant proved the following:

Theorem 3.4 (Delzant [Del88]). Let (M,ω) and (M ′, ω′) be two compact
symplectic manifolds of dimension 2(n− 3) provided with a Hamiltonian ac-
tion of (R/πZ)n−3. Assume that the moment maps β and β′ of these actions
have the same image (up to translation). Then there exists a symplectomor-
phism ϕ : (M,ω)→ (M ′, ω′) that conjugates the actions of (R/πZ)n−3.
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Lemma 3.5. The moment map β of the Hamiltonian action of R/πZ de-
scribed in Subsection 3.2 satisfies the following n− 2 affine inequalities:

β1 ≥ ᾱ1 + ᾱ2 ,(10)
βi − βi−1 ≥ ᾱi+1, 2 ≤ i ≤ n− 3 ,(11)

βn−3 ≤ 2π − ᾱn−1 − ᾱn .(12)

Conversely, if (x1, . . . , xn−3) ∈ Rn−3
+ satisfies the inequalities (10), (11),

(12) (when substituting xi to βi), then the set of supra-maximal representa-
tions ρ satisfying βi(ρ) = xi is non-empty and connected.

Proof. Let P1, . . . , Pn−2 denote the pants in the pair-of-pants decomposition
given in Figure 2. Let ρ be a representation in RepSMα (Σ0,n, G). Then, as in
the proof of Proposition 1.1, the restriction of ρ to π1(Pi) is supra-maximal
for every i. In particular, the sum of the rotation angles of the images of the
boundary curves of Pi (with the proper choice of orientation) is at least 4π.
Applying this to each Pi gives the required inequalities.

Conversely, let x1, . . . , xn−3 satisfy the inequalities of Lemma 3.5. Fix
2 ≤ i ≤ n− 3. Then we have 4π ≤ xi + (2π− xi−1) +αi+1 < 6π. Therefore,
there exists a supra-maximal representation ρi of π1(Pi) sending the bound-
ary curves b̄i−1, bi and ci+1 respectively to rotations of angle 2π − xi−1, xi
and αi+1. Moreover, this representation is unique up to conjugation. It
is obtained by considering a hyperbolic triangle p1p2p3 oriented clockwise
with angles π − xi−1/2, xi/2 and αi+1/2, and setting ρi(b̄i−1) = σp3p1σp1p2 ,
ρi(bi) = σp1p2σp2p3 and ρi(ci+1) = σp2p3σp3p1 (cf Figure 1).

Similarly, there is a representation ρ1 (resp. ρn−2) of π1(P1) (resp. π1(Pn−2))
satisfying

(θ(ρ1(c1)), θ(ρ1(c2)), θ(ρ1(b1))) = (α1, α2, x1)

(resp.

(θ(ρn−2(c1)), θ(ρn−2(c2)), θ(ρn−2(b1))) = (2π − xn−3, αn−1, αn) ).

Now, there is a way to conjugate the ρi so that they can be glued to-
gether to form a supra-maximal representation ρ satisfying θ(ρ(ci)) = αi
and θ(ρ(bi)) = xi. More precisely, on can choose g1 in G, and then recur-
sively choose gi+1 ∈ G such that

gi+1ρi+1(b̄i)
−1g−1

i+1 = giρi(bi)g
−1
i .

(This is possible because both ρi+1(b̄i)
−1 and ρi(bi) are rotations of angle

xi.) There exists a representation ρ whose restriction to each π1(Pi) gives
Adgi ◦ ρi(bi). Since the restriction of ρ to each π1(Pi) is supra-maximal, and
since ρ(bi) is never trivial, the representation ρ itself is supra-maximal.

Finally, two choices of gi+1 coincide up to left multiplication by an ele-
ment of the centralizer of ρi+1(b̄i) which is connected. Therefore the space
of all choices of the (g1, . . . , gn−2) is connected. Since any supra-maximal
representation ρ in β−1(x1, . . . , xn−3) is obtained by such a gluing, it follows
that the fiber β−1(x1, . . . , xn−3) is connected. �

It remains to identify the polytope defined by the equalities (10), (11),
(12) to the Delzant polytope of a certain torus action on CPn−3.
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Recall that CPn−3 carries a natural Kähler form ωFS . There are n − 3
natural commuting Hamiltonian actions r1, . . . , rn−3 of R/πZ on CPn−3,
given by

rk(θ) · [z0, . . . , zn−3] = [z0, . . . , zk−1, e
2iθzk, zk+1, . . . , zn] .

With a convenient scaling of ωFS , a moment map of the action rk with
respect to the Fubini–Study symplectic form is the function

µk : CPn−3 → R
[z0, . . . , zn−3] 7→ |zk|2∑n−3

j=0 |zj |2
.

(See [Del88, Example p.317].)
The image of the moment map µ = (µ1, . . . , µn−3) is the symplex

{(x1, . . . , xn−3) ∈ Rn−3
+ | x1 + . . .+ xn−3 ≤ 1 }.

Though this is not exactly the same simplex as the image of the moment
map β, it is identical up to translation, dilation, and a linear transformation
in SL(n,Z).

To be more precise, let us set λ = 2π −
∑n

j=1 ᾱi. Let us define an action
r′k of R/πZ on CPn−3 by

r′k(θ) · [z0, . . . , zn−3] = [e2iθz0, . . . , e
2iθzk, zk+1, . . . , zn] .

Then the function

µ′k = λ

k∑
j=1

µj +

k+1∑
j=1

αj

is a moment map for the action r′k with respect to the symplectic form
λωFS . The actions r′1, . . . , r′n−3 still commute and provide a new action of
(R/πZ)n−3 with moment map

µ′ = (µ′1, . . . , µ
′
n−3) .

Given the affine relation between µ and µ′, one sees that the image of µ′ is
the set of vectors (x1, . . . , xn−3) in Rn−3 satisfying

x1 ≥ ᾱ1 + ᾱ2 ,

xj ≥ xj−1 + ᾱj+1, 2 ≤ j ≤ n− 3 ,

xn−3 ≤ λ+

n−2∑
j=1

ᾱj = 2π − ᾱn−1 − ᾱn .

These are exactly the inequalities (10), (11), (12). By Delzant’s theorem, it
follows that RepSMα (Σ0,n, G) is isomorphic (as a symplectic manifold with a
Hamiltonian action of (R/πZ)n−3) to (CPn−3, λωFS) with the action (r′1, . . . , r

′
n−3).

In particular, the symplectic volume of RepSMα (Σ0,n, G) is equal to

(λ)n−3
∫
CPn−3

ωn−3
FS .
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Using the Hamiltonian action (r1, . . . , rn−3) of (R/πZ)n−3, we see that∫
CPn−3

ωn−3
FS = πn−3

∫
xi≥0,

∑
xi≤1

dx1 . . . dxn−3

=
πn−3

(n− 3)!
.

Thus ∫
RepSMα (Σ0,n,G)

ωn−3
Goldman =

(πλ)n−3

(n− 3)!
.

This ends the proof of Theorem 4.

4. Geometrization of supra-maximal representations

In this section we prove Theorem 5. We fix the numbers α1, . . . , αn ∈
(0, 2π) such that

2π(n− 1) <
∑
i

αi < 2πn.

Recall the following uniformization theorem, independently proved by
McOwen and Troyanov:

Theorem 4.1 ( [McO88, Tro91]). Let Σ be a compact Riemann surface of
genus g, and D =

∑
i κipi be a divisor on Σ with coefficients κi ∈ (−∞, 2π].

Assume that its degree κ(D) =
∑

i κi satisfies

κ > 2πχ(Σ).

Then there exists a unique conformal metric gD on Σ\Supp(D) having curva-
ture −1, and whose completion at each pi is either a cone of angle θi = 2π−κi
if κi < 2π, or a parabolic cusp if κi = 2π. Here Supp(D) is the union of the
pi’s.

In this result, the local curvatures κi’s are not necessarily integers. Sup-
pose that Σ = CP1 is the Riemann sphere, and let p1, . . . , pn be distinct
points on CP1. Assume now that Q ∈ Symn−3(CP1), and let

D :=
n∑
i=1

αipi − 2πQ.

We have
∑

i αi − 2π(n − 3) > 2πχ(CP1) so Troyanov’s theorem yields a
conformal metric gD on CP1 \ supp(D). Its completion at the pi’s are cones
of angle congruent to αi modulo 2πZ (depending if some qj ’s coalesce with
pi), whereas at the points of supp(Q) they are cones of angle a multiple
of 2π (it can be a large multiple if some of the qj coalesce). In particular,
there exists an orientation preserving conformal (hence holomorphic) map
f : ˜CP1 \ {p1, . . . , pn} → H− such that

(13) gD = f∗
(dx2 + dy2

y2

)
This map f is unique up to post-composition by an orientation preserving
isometry of H−, namely by an element of G. In particular, the map f is
equivariant with respect to a representation ρ : π1(CP1 \ {p1, . . . , pn})→ G,
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which is well-defined up to conjugacy by an element ofG. This representation
is called the holonomy of gD.

Lemma 4.2. ρ belongs to RepSMα (π1(CP1 \ {p1, . . . , pn}), G).

Proof. By construction θi(ρ) = αi. We get

−eu(ρ) =
1

2π

(
−Vol(gD) +

∑
αi
)

= n− 1

by Gauss-Bonnet formula. �

Remark 4.3. We chose f with values in H− so that Vol(ρ) = −Vol(gD).

Let M0,n and T0,n respectively denote the moduli space and the Te-
ichmüller space of Σ0,n. Those spaces are complex manifolds that can be
described in the following way: M0,n is identified with the set of tuples
(p1, . . . , pn−3) ∈ (CP1 \{0, 1,∞})n−3 of distincts points, and T0,n is the uni-
versal cover ofM0,n. In this description, the conformal structure correspond-
ing to the tuple (p1, . . . , pn−3) is CP1\{p1, . . . , pn}, where pn−2 = 0, pn−1 = 1
and pn =∞. An element of T0,n is the data of a tuple (p1, . . . , pn−3) as be-
fore, plus an isotopy class of diffeomorphisms ϕ : Σ0,n → CP1 \ {p1, . . . , pn}.

Lemma 4.2 enables to define a map

H : T0,n × Symn−3(CP1)→ T0,n × RepSMα (π1(Σ0,n), G),

by the formula

(14) H(p1, . . . , pn, [ϕ], Q) = (p1, . . . , pn, [ρ ◦ ϕ∗])
where [ρ] is the holonomy of the metric gD on CP1 \ Supp(D), with D =∑

i αipi − 2πQ. As explained above, the holonomy is well defined on the
fundamental group of CP1 \ {p1, . . . , pn}.
Lemma 4.4. H is injective.

Proof. Assume that we are given distinct points p1, . . . , pn, and two elements
Q,Q′ ∈ Symn−3(CP1) such that

H(p1, . . . , pn, Q) = H(p1, . . . , pn, Q
′).

If D =
∑
αipi− 2πQ and D′ =

∑
αipi− 2πQ, we can find developing maps

f and f ′ of gD and gD′ respectively that are equivariant with respect to the
same representation ρ : π1(CP1 \ {p1, . . . , pn})→ G.

Consider the following function

δ = u ◦ d(f, f ′)

where d(., .) is the hyperbolic distance in H, and where u = cosh−1
2 . The

function δ descends to a function defined on CP1 \ {p1, . . . , pn}. Notice
that, by Schwarz Lemma, f and f ′ are 1-Lipschitz maps with respect to the
uniformizing metric of P1 \{p1, . . . , pn}, so that f and f ′ have the same limit
in each connected component of a preimage of a cusp: the fixed point of the
image by ρ of the stabilizer of the component. In particular, the function δ
tends to 0 at each of the cusps pi.

Assume by contradiction that δ is not identically zero. The set of zero val-
ues is then discrete by holomorphicity of f −f ′. Identifying holomorphically
the upper half-plane H with the unit disc D, we have

log δ = log |f − f ′|2 − log(1− |f |2)− log(1− |f ′|2).
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In particular log δ is strictly subharmonic everywhere, except at the points
where f and f ′ have zero derivative. This contradicts the maximum princi-
ple.

The lemma follows. �

Proposition 4.5. H is continuous.

Proof. Assume that

(pk1, . . . , p
k
n, [ϕ

k], Qk) −→
k→∞

(p1, . . . , pn, [ϕ], Q).

One can choose the diffeomorphisms ϕk : Σ0,n → P1 \ {pk1, . . . , pkn} in such
a way that they converge uniformly on compact subsets of Σ0,n to ϕ in the
smooth topology.

The family of metrics gk := (ϕk)∗gDk is bounded on each compact set of
Σ0,n \ ϕ−1(Supp(Q)), by the Schwarz Lemma. Since it satisfies an elliptic
PDE, it is bounded in the smooth topology on compact sets. In particular,
to prove our claim, it suffices to prove that if a subsequence gkj converges in
the smooth topology to some metric g∞ on compact subsets of Σ0,n\ϕ−1(Q),
then in fact g∞ = ϕ∗gD. Indeed, this will prove that gk converges to ϕ∗gD in
the smooth topology, and in particular, that the holonomies ρk of (ϕk)∗gDk
tend to the holonomy ρ of ϕ∗gD when k tends to infinity.

So let us assume in the sequel that (gk) converges to g∞ when k tends to
infinity, and let us prove that g∞ = ϕ∗gD. By the Schwarz Lemma again,
the metric g∞ is bounded by ϕ∗gP , where gP is the Poincaré metric on CP1\(
{p1, . . . , pn} ∪ supp(Q)

)
. In particular, at each point q of ϕ−1(Supp(Q)) ∪

{1, . . . , n} it admits a completion isometric to a cone. Denote by κ∞(q)
the curvature of g∞ at such a point. By the uniqueness part of Troyanov
uniformization theorem, it suffices to prove that κ∞(q) is the coefficient of q
in the divisor D.

Burger, Iozzi and Wienhard proved that the volume of a representation
depends continuously on this representation (see [BIW10, Theorem 1]). In
particular, we have the following property:

(15)
∫

Σ0,n

vol(g∞) = Vol(ρ∞) = lim
k→∞

Vol(ρk) = lim
k→∞

∫
Σ0,n

vol(gk),

where vol(g) stands for the volume form of g on Σ0,n.
Let U ⊂ Σ0,n be any open set with smooth boundary not containing

points of ϕ−1(Supp(D)) on its boundary. The uniform convergence of gk to
g on compact subsets of Σ0,n\ϕ−1(Supp(D)), together with Fatou’s Lemma,
show that

(16)
∫
U
vol(g∞) ≤ lim inf

k→∞

∫
U
vol(gk).

Any strict inequality in (16) would contradict the conservation of volume
(15). So ∫

U
vol(g∞) = lim

k→∞

∫
U
vol(gk).
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Applying Gauss Bonnet to the metrics gk on U , and using the uniform con-
vergence of gk to g∞, we get∑

q∈U∩ϕ−1(Supp(D))

κ∞(q) = lim
k→∞

∑
q∈U∩ϕ−1(Supp(D))

κk(q).

This concludes the proof that κ∞(q) is the coefficient of D at the point q. �

Corollary 4.6. H is a homeomorphism. In particular, for τ ∈ T0,n, the
map

H(τ, ·) : Symn−3(CP1) ' CPn−3 → RepSMα (π1(Σ0,n), G)

is a homeomorphism.

Proof. The map H is a continuous, proper, injective map between connected
manifolds of the same dimension. So the result is a consequence of the
invariance of domain theorem. �
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