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Abstract The design of Freight Loading Zones (FLZ) aims to identify the
appropriate number and locations of FLZ. We propose a new methodology
based on solving the well-known optimization problem of minimum vertex
cover on a predefined hypergraph for the design of FLZ. The model is applied
on Paris city urban network and have been proven to produce an enhanced
saving in terms of average delivery walking distances by around 46% compared
to the actual distribution of FLZ.

Keywords Urban freight · Freight Loading Zone · Truck parking design ·
Graph theory

1 Introduction

Parking spots and especially the search for on-street available spots are key
determinants of the urban mobility and are now strongly related to the trans-
portation policies that cities want to deploy. As the mobility is becoming more
and more multi-modal, parking spots can be dedicated to various uses: private
vehicles, car-sharing stations, bike-sharing stations, terraces, etc. The litera-
ture is already large on the studies analyses of these different approaches, e.g.
Ortuzar and Willumsen (2001) [5], Marcucci et al. (2015) [10], Nourinejad and
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Roorda (2017) [12], Muñuzuri et al. (2017) [11], Alho et al. (2018) [3], Letnik et
al. (2018) [9]. One of the most common usage is to dedicate on-street parking
spots to freight in order to facilitate the urban good transportation by saving
times in the spot search and in the pickup/delivery operations.

Even if this so-called Freight Loading Zones (FLZ) exist in almost all the cities
over the world, they clearly still deserve attention of the research community.
Especially, we can identify, in the both academic and practical literature, only
a few studies that aims at determining optimal location for FLZ deployment.
This problem reveals two main questions: how many parking spots must be
dedicated to freight and where should they be located? Some existing ap-
proaches are of particular interest to answer to these questions. Muñuzuri et
al. (2017) [11] estimated the number and the location of FLZ on a given street.
More particularly, the authors proposed an two-step methodology: estimate (i)
the number of FLZ and (ii) its locations. Their case study was four streets in
Seville, Spanish. However, Muñuzuri et al. considered the number of FLZ as
a static parameter of their model. More precisely, they calibrated the number
of FLZ according to a CERTU procedure [4]. In the same vein, Tamayo et
al. (2017) [17] considered the calibration of the number of FLZ by the pol-
icy maker knowledge. Nevertheless, the policy maker may not be aware of the
proper value or the optimal number of FLZ to calibrate. Letnik et al. (2018) [9]
proposed a dynamic management of FLZ based on the fuzzy c-means cluster-
ing of commercial establishments. Their case study was the Lucca city center
in Italy. One inherent limitation of their method is the high sensitivity of the
c-means algorithm to the input parameters, such as the initial cluster cen-
ters, [19] similarly as the k-means algorithm. Pinto et al. (2019) [14] identified
the number, the location and the size of FLZ. The authors use the concept
of radius, which represents the longest distance that delivery driver is willing
to walk from the FLZ to the given commercial establishment. This later was
used also by [9,17]. They addressed the problem as a long-term facility location
problem. Their objective is to minimize the number of FLZ and to determine
the sizing of FLZ as well. Their case study was a central district of the city of
Bergamo, Italy.

To determine the optimal number and location of FLZ for any given network,
we propose a novel approach formulated as an optimization problem. Notice
that the number of parking spots to dedicate to freight is a variable of our
modeling. Some papers considered the number of FLZ as a parameter of the
model, e.g. Muñuzuri et al. [11] and Tamayo et al. [17]. To our best knowledge,
no studies have considered the number of FLZ endogenously. More particu-
larly, we address an optimization of two objective functions in only one step.
Muñuzuri et al. [11] solved the location-allocation problem in the second step
of their method. In this paper, the number and the location of FLZ are de-
termined simultaneously with a unique optimization problem. To this end, we
model the situation with an hypergraph, linking potential FLZ and commer-
cial establishment, that allow to solve the problem as a classical minimum
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vertex cover problem. A very simple algorithm is proposed and tested in the
network of Paris, France. Based on various values of the radius, it makes it
possible to calculate and compare the optimal number and locations of FLZ
but also to determine the optimal deployment according a given number ded-
icated parking spots, for example the actual number of FLZ in Paris.

The paper is organized as follows. Section 2 presents the methodology, while
section 3 describes data used for our case study. Section 4 shows some experi-
mental results for the case study of Paris city. Finally, section 5 concludes the
study and suggests furthers research.

2 Methodology

The proposed algorithmic framework aims to simultaneously find the optimal
FLZ number and their locations. We address the problem by first constructing
a weighted undirected hypergraph. Then, we model and solve an optimization
based on the minimum vertex cover problem on this hypergraph, as said before.
We denote the set of existing parking spots and commercial establishments in
the studied area respectively by P and S. The distance between each couple
(p, s) ∈ P × S is computed. This distance is supposed to be symmetric, since
it represents the walking distance the delivery operator is willing to cross be-
tween p and s. We denote by D = (dps)(p,s)∈P×S the walking distance matrix.
The hypergraph is characterised by vertices corresponding to the set P, and by
undirected hyperedges given by S in the following way. For each commercial
establishment s ∈ S, the set of parking spots p that are of interest, denoted
by Ps, are those selected from P within a pre-specified distance parameter,
called radius R, i.e. Ps = {p ∈ P : dsp ≤ R} ⊆ P. To provide a starting cover
for their optimizations, Pinto et al. [14] and Tamayo et al. [17] also make
use of a radius parameter R. Therefore, for each commercial establishment s,
we define an hyperedge1 equal to the subset Ps. The proposed hypergraph is
then H = (P, E), with E = {Ps : s ∈ S} is the set of edges. Fig. 1 shows an
example of hypergraph modelization applied on the first section of Lafayette
Street in Paris. In this example, 8 parking spots and 10 commercial establish-
ments are considered. Hyperedges induced by the commercial establishments
are determined conditional on the value of R. For instance, if R = 0 meter, no
hyperedge subsists, while in case of R = 1000 meters, 10 similar hyperedges
are generated, which is the maximum number of edges. Each one of these hy-
peredges actually includes all the 8 parking spots. The example of Fig. 1 is
given for R = 20 and 30 meters.

Each commercial establishment receives an average delivery number per week
that lasts for an average time. This average demand highly influences the
usage of the FLZ. For instance, pharmacies and drugstores usually receive a

1 In hypergraphs, edges are called hyperedges, and they correspond to edges with any
number of endpoints, thus they are a subset of the vertex set.
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Fig. 1: An example of constructing the hypergraph H = (P, E) on the first
section of Lafayette Street in Paris. We notice 8 parking spots (red dots)
and 10 commercial establishments (blue dots). The set of vertices is given by
the parking spots: P = {p1, p2, ..., p8}. The set of hyperedges on the other
hand depends on the value of the radius R. If R = 20 meters, five commer-
cial establishments can be selected with the corresponding set of hyperedges:
E =

{
{p8}, {p1, p4, p7}, {p6, p8}, {p5, p8}, {p3, p5}

}
. If R = 30 meters, the same

five commercial establishments are selected but with different underlying hy-
peredges: E =

{
{p8, p4, p6}, {p1, p4, p7}, {p6, p8, p4}, {p5, p8, p6}, {p3, p5, p4}

}
.

Notice that the parking spot p2, which actually corresponds to the extreme
left red dot, is not used at all due to the long crossing distance.

high number of deliveries per week that are generally short2, at the opposite of
clothing retail stores which have low number of deliveries that may last long.
There are several ways to quantify the significance of a selection of parking
spots in function of commercial establishments in their surroundings. We chose
one criterion to start with. It relates the significance of a parking spots p to the
weighted distance to commercial establishments s in its vicinity, i.e. dps ≤ R,
where weights are given by the average weekly number of deliveries ws. If we
denote by W = (ws)s∈S the vector of demands, the criterion formulation will

2 For France, national averages given by CERTU are equal to 31.8 deliveries per week for
2 minutes in general [15].
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be,

c(p,D,W ) =
∑

s∈S, dsp≤R

ws dsp

/ ∑
s∈S, dsp≤R

ws, (1)

which represents the expected value of walking distances for the parking spots
p according to the distribution of commercial establishments’ demands in its
vicinity. In this paper, we disregarded the average delivery times, although it
would be interesting to add them later. The formulation of the optimization
problem we solve is as follows:

min
xp

∑
p∈P

c(p,D,W ) xp (2)

s.t.
∑
p∈Ps

xp ≥ 1, ∀s ∈ S (3)

xp ∈ {0, 1}, ∀p ∈ P (4)

This problem actually coincides with the basic formulation of the minimum
vertex cover problem for the hypergraph H = (P, {Ps : s ∈ S}), where the
weight of vertices is provided by the function c(p,D,W ). The minimum vertex
cover problem is a classical problem in graph theory and computer science in
general. Its goal is to find the smallest subset of the graph vertex set, such that
each edge has at least one of its endpoints in this subset. The weighted version
targets the subset of vertices with the smallest sum of weights that cover all
edges. This problem has been proven to be NP-complete in 1972 by Karp
[8], and has several practical applications, like in the area of computational
biology [2]. The objective function of our formulation (2) corresponds to the
weighted version. As for (3) and (4) constraints, they respectively impose the
coverage of all edges of H, which as said before are derived from the set of
commercial establishments S, and states the binary variables, which indicate
which vertex is belonging to the minimal cover. For comparison matters, we
also solve the following unweighted version:

min
xp

∑
p∈P

xp s.t. (3) and (4).

As said before, we did not consider times of deliveries by the operators, our
model is thus macroscopic in nature. The underlying assumptions adopted in
the modeling and in the study case application are as follows: (i) deliveries at
the same parking spot do not happen at the same time, (ii) FLZ are supposed
to be solely dedicated to deliveries, and (iii) the size of FLZ is large enough to
park all used delivery vehicles. These assumptions are not realistic in practice,
but they allow us to focus on the optimization task of determining the FLZ
number and locations.

For the solving approach, we rely on the approximation algorithm provided
by Ramadan et al. (2004) [16], who applied it to the protein complex network
modeled as an hypergraph in order to find near-optimal covers. This algorithm
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is greedy in nature, and conceptually similar to the algorithm proposed by
Johnson, Chvatal and Lovasz [18] to solve the set cover problem. It is described
in the following pseudocode. The idea is to choose at each iteration the vertex
with the minimum cost, defined by its weight distributed over the set of the
not yet covered hyperedges, to include it in the cover. This algorithm yields
good results [16].

Algorithm 1 The approximate algorithm for the minimum weight vertex
cover of hypergraphs, given by Ramadan et al. (2004) [16]

1: i := 1 (iteration number)
2: C := ∅ (optimal cover)
3: Fi := F (set of uncovered hyperedges)
4: while Fi 6= ∅ do
5: for v ∈ V \ C do

6: vi = arg min
w(v)

|adj(v)∩Fi|
(w(v) and adj(v) are resp. the weight and the set of

adjacency hyperedges of vertex v)
7: C := C ∪ {vi}
8: Fi+1 := Fi \ adj(vi)
9: i := i + 1

10: end for
11: end while

3 Data description

The proposed method is tested on Paris city, more specifically in the area
covering the 1st to the 6th boroughs and a part of the 7th one, as shown in
the perimeter of Fig. 2. Our dataset is composed of parking spots for cars and
actual FLZs. Real-world data of overall parking spots were provided by Open
Data Paris [1]. Parking spots for motorcycles and bike-sharing have been re-
moved from the dataset as their length can be too short for handling of goods.
On-street and off-street parking spots are considered as well. The second el-
ement of the dataset concerns commercial establishments. Real-world data
of overall commercial establishments were provided by Open Street Map [13].
Fig. 2 shows the studied Paris network, wherein blue (resp. red) dots rep-
resent commercial establishments (resp. parking spots), which account for a
total number of 7649 (resp. 8261) objects. The third element of the dataset is
the actual delivery demand in terms of delivery frequencies for the considered
commercial establishments. We have used averages given by the French service
CERTU3 for these values, which are expressed in function of the type of the
activity of the commercial establishment, and can be found in Plantier and
Bonnet (2013) [15].

3 i.e. “Centre d’Études sur les Réseaux, les Transports, l’Urbanisme et les constructions
publiques”, which is a service of the French institute“Centre d’Études et d’expertise sur les
Risques, l’Environnement, la Mobilité et l’Aménagement (CEREMA)”.
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Fig. 2: Paris’ network - covering the 1st to the 6th boroughs, and a part of
the 7th one - where commercial establishments (right plot) and parking spots
(left plot) are displayed.

To construct the distance matrix D = (dps)(p,s)∈P×S , we initially considered
three formulations of the distance: (i) the Euclidean distance, (ii) the traveled
distance and (iii) travel times. In our study, results are reported the second
case (ii) through the computation of walking distances. Thus, we considered
an undirected graph of the transportation network of Paris in order to cal-
culate those traveled distances. We used the R package OSRM [7] for this
purpose. The R package ‘hypergraph’ [6], which provides the data structure
and algorithms for hypergraphs is also used.

4 Study case application: Initial results

This section presents the application of the methodology on the real study
case of Paris, presented in the previous section. We compare our optimal de-
sign with the existing FLZ system. For the reported metrics, in addition to the
objective function given by expression (2) and the parking cover size, we also
used statistical values, such as the mean, the median and the standard devia-
tion, taken on the distribution of traveled distance between each commercial
establishment and its first nearest FLZ. In other terms, given a selection of
parking spots P ⊆ P generated by a given method, we affected each commer-
cial establishment s ∈ S of the dataset to its closest parking spot in P, and
then studied the distribution of distances (dsP)s∈S , where dsP = minp∈P dsp.

Fig. 3 displays the evolution of the value of the objective function, the size
and the ratio of commercial establishments covered by the the optimal cover



8 Clélia Lopez, Omar Rifki, and Nicolas Chiabaut

Mean (m) Median (m) Maximum (m) Standard deviation (m)
Existing FLZ 130.1 89.0 1461.0 136.2

Optimal cover
70.19 31.0 1305 105.02

(R = 50m)

Table 1: Statistics related to the distributions shown in Fig. 4.

and the existing FLZ in function of the input radius R. Concerning cover size,
as expected, it is inversely correlated to R. Lower R values require a large
cover, which varies from ≈ 7950 for R = 10 meters, to ≈ 1507 parking spots
for R = 220 meters. The actual FLZ system is implemented for 2017 parking
spots, which is corresponding to the optimal cover size for a radius distance of
185 meters. Although this number of elements is small, the repartition however
does not cover all commercial establishments in the area, as it is shown in the
lower plot. In this lower plot, percentage of commercial establishments covered
varies in function of R used in the evaluation, given always an advantage to
optimal covers over the existing FLZ system. For instance, for R = 10 (resp.
50 and 220 meters), shops coverage for the optimal cover is 29.58 (resp. 66.81
and 90.93%), which is better that the corresponding coverage for the FLZ
system, 9.48 (resp. 32.71 and 81.22%). Optimal solutions do not always cover
100% commercial establishments. This is due to the fact that for a number of
commercial establishments, no parking spot is at R walking distance. However,
they cover the maximum number of shops given the input R. On the other
hand, evaluating the objective function shows an increasing trend in function
of R for the optimal covers. It is sticking to notice that results of the weighted
and unweighted hypergraphs are almost matching. Thus, the impact of the
frequency demands seems to be negligible compared to the physical position
of parking spots and commercial establishments.

Fig. 4 represents the distribution of the walking distance (dsP)s∈S between all
commercial establishments and their first nearest FLZ for the optimal weighted
cover when the radius is fixed to R = 50 meters, and for the existing FLZ
system as well. Table 4 shows the mean, the median and the standard deviation
for both distributions. The mean distance (commercial establishment-nearest
parking spot) for the existing FLZ is equal to 130.1 meters in our studied
area, which is almost twice the corresponding value of the optimal cover, i.e.
70.19 meters. The gap between both values is huge, and account for 46% =
|130.1−70.19| ∗100/130.1 of additional walking distance the delivery operator
is ought to cross. Fig. 5 shows visual examples of the optimal repartition
of parking spots when the radius is fixed to R = 10, 50 and 100 meters, in
addition to showing the existing FLZ system. This figure confirms the previous
observation that a lower R generates a higher number of parking spots. When
R = 10 meters, almost all streets have to be used for delivery parkings.
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Fig. 3: Evolution of the objective function (upper plot) and the size (mid-
dle plot), the commercial establishments coverage ratio (lower plot) for the
optimal covers and the existing FLZs in function of the radius R. Note that
the evaluation of the objective function, given by expression (2), and the per-
centage of commercial establishments coverage both depend on the value of
R. This is the reason why evaluations of the existing FLZ cover (in orange
color) for the first and the third plots vary in function of R. The CERTU
recommendation to not exceed 50 meters for the walking distance is added as
well [15].
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Fig. 4: Distribution of the distances (dsP)s∈S when the parking cover P is equal
to the optimal cover for a weighted hypergraph with a radius R = 50 meters
(upper plot), or when P is equal to the existing FLZ system (lower plot).

5 Conclusion

This paper aims to design the optimal FLZ system. A novel methodology
based on hypergraph modeling is introduced, and is applied to the real case
study of Paris, France. The traveled (walking) distances between commercial
establishments and parking spots are calculated based on the transportation
network.

Numerous studies have previously used optimization to provide a design of
parking spots: locations and number. Nevertheless, to our best knowledge,
existing bibliography mainly proposed macroscopic approaches, where both
objectives, locations and number, are separately determined, plus optimiza-
tion is solely used for obtaining the locations. We proposed a graph oriented
approach that simultaneously accounts for both objectives.

We have captured a difference of performance of 46% (60 additional meters to
walk in average for delivery operators) between the existing FLZ system and
our optimal cover for an input radius of R = 50 meters. Our novel approach has
several promising applications. We could cite for instance, transit planning and
car-sharing. For further works, we are currently comparing our optimal cover
to outputs of other optimization models in the literature, namely to Muñuzuri
et al. (2017) [11], Tamayo et al. (2017) [17] and Pinto et al. (2019) [14]
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Fig. 5: Optimal parking cover solution for the weighted hypergraph given R =
10 (upper-left), R = 50 (upper-right) and R = 100 meters (lower-left), in
addition to the FLZ parking spots implemented by local authorities (lower-
left).
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