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This work aims to assess the risks of Covid-19 disease spread in di-
verse daily-life situations (referred to as scenarios) involving crowds
of maskless pedestrians, mostly outdoors. More concretely, we de-
velop a method to infer the global number of new infections from
patchy observations of pedestrians. The method relies on ad hoc
spatially resolved models for disease transmission via virus-laden
respiratory droplets, which are fit to existing exposure studies about
Covid-19. The approach is applied to the detailed field data about
pedestrian trajectories and orientations that we acquired during the
pandemic. This allows us to rank the investigated scenarios by the
infection risks that they present; importantly, the obtained hierarchy
of risks is conserved across all our transmission models (except the
most pessimistic ones): Street cafés present the largest average rate
of new infections caused by an attendant, followed by busy outdoor
markets, and then metro and train stations, whereas the risks in-
curred while walking on fairly busy streets (average density around
0.1 person/m²) are comparatively quite low. While none of our ad hoc
models can claim accuracy, their converging predictions lend cre-
dence to these findings. In scenarios with a moving crowd, we find
that density is the main factor influencing the estimated infection
rate. Finally, our study explores the efficiency of street and venue
redesigns in mitigating the viral spread: While the benefits of enforc-
ing one-way foot traffic in (wide) walkways are unclear, changing the
geometry of queues substantially affects disease transmission risks.

Covid-19 | Crowd dynamics | Epidemiology
Classification: Biological Sciences (Medical Sciences)

Efficient collective action to curb the spread of epidemics in
general, and of the current Covid-19 pandemic in particu-

lar, requires input from a variety of disciplinary fields, from
microscale fluid dynamics (to understand the propagation of
virus or bacteria-laden droplets (1, 2)) to macroscale epidemi-
ology. At present, the weak link between these two scales
hinders the prediction of how the SARS-CoV-2 virus at the
origin of the pandemic will spread in a given crowd.

Gatherings of people are encountered both in enclosed
spaces (such as restaurants, offices, private accommodation
or fitness centers), where statistical data may be insightful a
posteriori from an epidemiological standpoint (3–5), as well
as in non-confined environments. Most Covid-19 oubreaks are
certainly associated with indoor settings (6), but nonetheless
a minority of clusters – at least a few percent, as a tentative
estimate (5, 7–9) – reportedly originate in outdoor or mixed
indoor/outdoor settings, e.g., on building sites. Viral transmis-
sions amidst outdoor crowds raise a specific challenge because
they are inherently hard to trace and document, but also
hard to circumscribe, as they bring together unrelated people∗.

∗To wit, more than three out of four new infections in France do not belong to the reported contacts
of a Covid-19 case as of November 2020 according to national statistics (10); 35% of new cases
are wholly unaware of how they were infected (11).

These difficulties are a hurdle to the control of outbreaks.
Accordingly, recommendations to wear a face covering out-

side have been issued far and wide. Some cities in China,
France, part of Germany, Italy, Poland, Portugal, Singapore,
South Korea, Spain, some Swiss cantons, and a number of US
states, among others, have put in place mask mandates for
some, or all, outdoor activities. Let us say from the outset
that mask-related policies may have a broader impact than
their chief purpose of physically warding off infections (12–14):
Widespread usage of face coverings attracts every one’s atten-
tion to the health situation and may thus promote stronger
vigilance and abiding by other sanitary measures. Further-
more, these policies are constrained by the legal possibilities
in place in each country, the indirect consequences of the
measures, public perception, and an imperative of simplicity.
On the downside, there is some discomfort associated with
wearing a mask and it might still be too early to assess the
psychological impact of being surrounded by covered faces.

Thus, a proper assessment of the risks of infections incurred
by maskless crowds in diverse non-confined spaces is much
needed. Not only can it provide more objective foundations to
public policies, but it is instrumental in better targeting the
situations where risks are highest and masks are most crucial,
thus justifying stricter local control, and determining if (and
where) it makes sense to restrict pedestrian mobility on streets
and sidewalks.

For the time being, there remains a gap between the thriving
experimental and computational studies focused on measuring
the emission and propagation of respiratory droplets (2, 15–22)
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and the investigations of disease spread at larger scales (23–25).
The former have shed light on the complex, turbulent dynamics
that take place inside the exhaled puff and called into question
both the binary distinction between falling droplets and tinier
airborne aerosols (2, 26), and the scientific basis of the 2-
meter social distancing rule (26–29). However, the translation
of these results into epidemiological predictions relevant for
policy-making is uneasy, and trailing. Poles part from these
microscopic studies, risk assessments at the scale of a facility or
venue by means of agent-based pedestrian simulations (25, 30,
31) or large-scale experiments (32) resort to particularly crude
assumptions with regard to viral transmission. Generally, an
individual is considered exposed to the disease when he or she
comes in a given radius (e.g., 2 meters) around an infected
person, regardless of their orientations, overlooking that their
head orientations control the direction in which respiratory
droplets are expelled. Moreover, pedestrian dynamics models
are hardly designed to reproduce fine observables such as
precise inter-pedestrian spacings with any reliability, neither
in usual times nor in times of pandemic, when pedestrian
behaviors and trajectories are altered to reduce infection risks
(33, 34).

To overcome these strong limitations, we collected detailed
field data†, during the pandemic in France, about pedestrian
separations and orientations in diverse situations (hereafter
called scenarios), either outdoors or in large, ventilated indoor
facilities, and we developed a mathematically sound method
to infer the hourly rate of new infections in each scenario from
our partial observations. The method rests on simple ad hoc
models for viral transmissions, which we introduce and fit to
droplet emission data and existing exposure studies. While
none of these simple models can claim to be accurate, they
all converge towards a fairly robust ranking of the scenarios
in terms of infection risks. The proposed framework is also
useful to quantify the effect of enhanced physical distancing
and to assess the mitigation efficiency of redesigning certain
premises (one-way footpaths, queues, etc.).

Coupling observations of crowds with spatially re-
solved models of viral transmission

While one can rely on estimated numbers of contacts between
people to model the spread of an epidemic at regional or na-
tional scales (23, 24), more detailed information about the
viral transmission route and the interactions between people
is required to gauge how a virus will propagate in a given
crowd. Although small respiratory droplets may evaporate
into airborne residues that can accumulate in the air and poten-
tially travel long distances, short-range (∼ 1 m) transmission
is widely believed to prevail in non-confined environments,
at least for influenza and the coronavirus (18, 20, 35). These
droplets are exhaled when breathing, talking, shouting, pant-
ing, coughing or sneezing, mostly through the mouth but also
through the nose (15, 17); the focus must thus be put on their
transport.

Modeling viral transmission via respiratory droplets.

†The processed field data are freely available on the Zenodo public repository, with the DOI:
10.5281/zenodo.4527462. The Python scripts used to analyze the data can be obtained by re-
quest to the authors.

In principle, the instantaneous transmission rate due to
droplets emitted at te by a contagious individual E and inhaled
at tr > te by a ‘receiver’ R reads

ν(te, tr) = T−1
0 ν̃

[
r, θE(te), θR(tr), tr−te, ambient flows, activity(te)

]
[1]

where the characteristic time for infection T0 ∝ ninf/cv is
related to the specifics of the disease (namely, the viral titer
cv in the respiratory fluid and the minimal infectious dose
ninf), whereas the function ν̃ accounts for the fluid dynamics of
droplet emission and transport. Its parameters r, θE , and θR
will be clarified in the following. Unfortunately, an accurate
derivation of ν̃ from the fluid dynamics of droplet and aerosol
propagation in these scenarios would not only be extremely
demanding computationally, but also hinge on very specific
information that is neither available (36) nor transferable
between situations, e.g., ambient air flows (28), wind speed
(22), humidity (26), and speech details (17).

Therefore, we opted for the development of coarser-grained,
ad hoc models that notably overlook propagation delays and
ambient air flows. (Appendix D presents some early evidence
that our main findings are conserved when more realistic
transmission dynamics are brought back into play.) With the
insight into droplet propagation gained from computational
studies as well as experiments on expiration and inhalation
(2, 15, 19, 22, 29, 37), the disease transmission rate thus
boiled down to a function νER(t) = ν

[
r(t), θE(t), θR(t)

]
that

decreases with the horizontal distance r between the individu-
als’ heads and the orientations θE and θR of the emitter’s and
receiver’s heads relative to the direction of the vector that con-
nects them. We then defined a family of plausible parameter
sets for the ν functions, whose values span the entire spectrum
from highly contagious (‘pessimistic’) to only mildly conta-
gious (‘optimistic’); see the Methods for details. An example
of such a function is depicted in Fig. 1. The spatial decay of
the transmission function is such that ν(r, θE , θR) becomes
negligible past a few meters, except for the worst-case model
describing uncovered sneezes (16). The typical time for infec-
tion in the event of a close (r = 50 cm) face-to-face contact
lies between 5 minutes (an extremely pessimistic estimate)
and 30 minutes (except for sneezes), consistently with the
epidemiological literature on SARS-CoV-2, outbreak reports
and exposure case studies (8, 10, 14, 29, 38–40).

The resulting models are representative of a disease that
may be transmitted to multiple individuals within an hour
in unfavorable cases (7, 41), but generally requires close and
prolonged contacts for transmission: Even in households, re-
ported attack rates lie in the range 5%-30%(42), often around
15% (43–45); moreover, casual episodic contacts at work or
in the community, even face to face, do not necessarily trig-
ger an outbreak (38, 43). More quantitatively, the spatial
decay described by the fairly optimistic models agrees well
with the decay of the concentration of droplets emitted by
a coughing subject (37) (see Fig. S2). The reliability of the
transmission models is further tested by mimicking a journey
aboard a Chinese train (overlooking its confined nature), where
transmission risks for passengers who sat close to an infected
traveler were recently assessed using trip records (4). Overall,
the simulated results, detailed in Appendix B, are compati-
ble with the empirical data; the models featuring the most
optimistic parameters display the best concordance. Finally,
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Fig. 1. Spatially resolved model of disease transmission via virus-laden respiratory
droplets. The transmission rate (Eq. 3) depends on the direction of the emitter’s head,
the distance between the emitter and the inhaler, and the latter’s head orientation;
these dependencies are all modeled with a decaying function, f1, f2, or f3. Optimistic
parameters combined with f3 (ModOpt3) are used in the illustration.

let us mention that the order of magnitude of the parameters
(especially the most optimistic ones) is consistent with the
putative minimal infectious dose of SARS-CoV-2, estimated to
be order 100 (46), granted that most exhaled droplets contain
0 or 1 viral copy (47) (see Appendix B).

Although these pieces of evidence favor the optimistic end
of the parameter spectrum, our study is conducted with the
whole gamut of plausible model parameters. This variety
better reflects our current uncertainty with regard to the
transmission of SARS-CoV-2, but also the established inter-
individual and inter-case variability (15, 17), depending on
physiology, talking characteristics (48), viral mutations, etc.

Field measurements and inference of the rate of new infec-
tions.
We used a privacy-respective setup to film different scenarios
with non-confined crowds (listed in Table S1) and we extracted
the distances between pedestrians, the orientations of their
heads, and their group membership (i.e., co-walkers who ap-
pear to be relatives, co-workers, or friends). This was done by
means of exhaustive semi-manual tracking, which allowed high
accuracy and almost error-free processing. We compensated
for undetected contacts with off-camera people by appraising
the fraction of missed interactions as a function of their range
and re-weighting the detected ones; Appendix A demonstrates
the efficiency of this method.

For each scenario the time and space-resolved pedestrian
measurements are then coupled to the above transmission mod-
els. This directly yields the instantaneous rate, abbreviated
as νij(t), at which a supposedly infected index patient i, that
we will call Iago, transmits the disease to other pedestrians j
around him via virus-laden droplets. Under the independent
action hypothesis (IAH) (49, 50), each inhaled virus is equally
likely to lead to an infection, with no cooperation or antago-
nism between viruses. It follows that, over the time interval
[t0, t0 + τi] over which Iago was filmed, he infected a number
C

(τi)
i of other people j (leaving aside his fellow group mem-

bers Gi, whose possible infection is not specifically related to
the scenario, except at the cafés), given by a Wells-Riley-like
equation (51), viz.

C
(τi)
i =

∑
j /∈Gi

S0
j ·
(
1− e−Nij

)
, [2]

where S0
j is the probability that j is susceptible (i.e., not

already infected) at the beginning of the observation interval,
and Nij =

∫ t0+τi
t0

νij(t) dt is the cumulative transmission risk
(52).

It is worth noticing that the IAH implies that infections
are a stochastic process without threshold: Any encounter can
potentially result in a new case, and multiple short interactions
with various people are as risky as a single long one, and even
riskier because, once infected, agent j can no longer be infected,
viz., S0

j : 1→ 0. This saturation of the risk complicates the
evaluation of C(τi)

i even if we assume that all pedestrians
except Iago’s group Gi of co-walkers are initially susceptible,
because our videos only record part of Iago’s wandering and
may thus miss earlier off-camera interactions. Nonetheless,
rigorous bounds on C(τi)

i can be set by noticing that, on the
one hand, S0

j 6 1 and that, on the other hand,
∑

j /∈Gi
(1−S0

j )
cannot be larger than the number of people actually infected
by Iago, which is related to C(τi)

i (see Appendix C). Finally,
for comparison purposes, C(τi)

i is recast into an hourly rate
of new infections Ci ≡ C

(∆T )
i = ∆T

τi
C

(τi)
i with ∆T = 1 h,

assuming that the recorded videos are representative.
Static scenarios – namely, the cafés and waiting lines –

are handled slightly differently, because then Iago’s neighbors
do not change significantly as time passes, in which case we
set Nij = ∆T

τi

∫ t0+τi
t0

νij(t) dt and S0
j = 1 in Eq. 2. In a

nutshell, the proposed framework enables us to quantitatively
translate patchy observations, with undetected contacts, into
an estimated global risk of viral spread.

Ranking of scenarios by the risks of new infections.
Inserting the collected field data into this framework, we ob-
tain upper and lower bounds on the mean rate C = 〈Ci〉i of
new infections per hour for each scenario and each transmis-
sion model. Figure 2 presents a sample of results for four of
these models (also see Figs. S5-S7). These results confirm
the efficiency of the proposed bound-setting method, as the
bounds are found to confine C to a narrow interval. Most
importantly, the ranking of the different scenarios turns out
to be robust, that is to say, largely preserved across models.
This is our first major result.

Pursuing the analysis of Fig. 2, we observe that street cafés
present the highest risks in terms of the mean number of
new infections per hour, even though their tables were more
spaced when the videos were shot than before the pandemic.
These infections at cafés are easily rationalized by the close,
face-to-face interactions between people sharing a table, let
alone the increased emission of droplets associated with lively
discussions and eating, which is overlooked here. This result
is in line with case reports of high risks of viral transmission
while dining and drinking (indoors or outdoors, unspecifically)
(3, 41, 52). Next in line among the observed scenarios comes
the outdoor market alley. Despite its high average density
ρ ' 0.5 ped/m2, this scenario never matches the level of risk at
cafés, bar with the very pessimistic parameters corresponding
to high contagiousness. Further down the list, crowd density
explains the considerably higher risks at train and metro
stations (ρ ' 0.25 ped/m2) than on fairly busy streets in Lyon
(ρ ' 0.05 − 0.1 ped/m2) and, to an even larger extent, the
riverbank walkway that we filmed. Somewhat intriguingly, the
estimated infection rate may be as large, or even larger, at
the observed testing site in Lyon than it is on these streets,

Garcia et al. Submitted to PNAS | February 17, 2021 | vol. XXX | no. XX | 3
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Fig. 2. Rates C of new infections per hour in the scenarios under study, estimated with four different parameter sets for the transmission model. Except in the static scenarios
(cafés and queue), infections within groups have been dismissed and the error bars span the interval between the estimated lower bound C(1 h) and C̄(1 h), while the filled

bars represent 1
2

(
C(1 h) + C̄(1 h)

)
. Refer to Table S1 for details about the investigated scenarios.

although the overall density there is low and attendants were
strictly asked to stay 2 meters apart from each other; yet,
their relative proximity was prolonged over considerable time
and, besides, they tended to turn and pace around a bit while
waiting. One should however bear in mind that our models
estimate the risks of viral transmission if no face mask is worn,
whereas everybody was wearing a mask at the testing site that
we filmed.

Hourly rates of new infections.
Besides the robustness of this qualitative ranking of scenarios,
largely maintained across parameter sets, on a more quan-
titative note we observe that the infection rates are always
(except with the worst-case models) at least 10 times scantier
in the investigated streets than at cafés, even without taking
into account that talking and eating augment droplet emis-
sions. In addition, the pessimistic estimates are generally at
most a factor 10 larger than the (possibly more relevant) most
optimistic ones. Thus, it is reasonable to conclude from those
estimated values, that contagious Iago will infect a number
of order 1 persons roughly speaking if he sits at a café for one
hour, whereas he would probably cause significantly less than
∼ 0.1 new infections if he spent this time walking on a fairly
busy street.

Nonetheless, these average rates brush aside the variety of
pedestrian contacts in the different scenarios, which is better
reflected in the box plots of Fig. 3. The figure shows that, while
the scenarios involving a moving crowd cause fewer infections
than cafés on average, their rates of infections Ci are more
dispersed and, unlike cafés, they feature many outliers on
both ends, i.e., at Ci ' 0 as well as at high-Ci, the latter
being pedestrians that fortuitously turn into super-spreaders
because of their pattern of on-street contacts. As we shall see
below, the blame does not necessarily rest on the pedestrian,
but rather on the ebbs and flows of crowding in each observed
situation.

Prior to that, let us remark that accounting for the direction-
ality of droplet propagation and describing the orientations of
pedestrians’ heads had a marked effect on our results. Indeed,
not only does an isotropic transmission model overestimate
risks in crowds by a factor of at least 10 in comparison to
its directional counterpart, but it also alters the ranking of
scenarios: It predicts considerably more infections at the out-

Streets
Queue

Stations
Marke

t
Cafés

0.0

0.5

1.0

1.5

2.0

2.5

C i

Fig. 3. Hourly rates of new infectionsCi caused by the different pedestrians i in each
scenario, as estimated with ModOpt3. The dashed red lines represent mean values,
solid back lines are medians and open symbols are outliers.

door market than at the cafés (Fig. S7). Otherwise, such an
inversion (along with high risk estimates) is only found for
our worst-case transmission models, in particular the model
that we introduced to mimic the effect of a contagious patient
sneezing every few minutes without covering his or her sneezes.
On the other hand, allowing infections within groups, as we
did for the cafés, does not dramatically change the picture,
even though it substantially heightens the risks associated
with sparse situations, for instance, the riverbank walkway.
This is not surprising because in these situations close contacts
mostly occur between group members.

Key determinants of the transmission rate.
To better understand the observed disparities, we need to
identify the key variables that determine the level of risk. Fig-
ure 4 confirms the intuition that the instantaneous pedestrian
density ρ(t) is a major determinant of the rate of viral trans-
mission ν(t) ≡

〈∑
j /∈Gi

νij(t)
〉
i
(where the average is taken

over all pedestrians observed at time t), in that it controls how
close each pedestrian is to their counterparts. (Note that all
time-dependent variables have been averaged over intervals of
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Fig. 4. Dependence of the rate of viral transmission ν(t) on the instantaneous density
ρ(t), in different scenarios, using the ModOpt3 parameter set. Refer to Fig. 2 for the
color code. In the insets, the rates are distinguished depending on the directionality
of the flow in the (bottom right) outdoor market scenario, (top left) corridor flow
experiments of the BaSiGo project (53). The error bars and envelopes represent
standard errors (i.e.,± std√

n
, where n is the number of uncorrelated data points).

two seconds, to reduce the statistical noise.) The variation of
ν with ρ looks similar across scenarios, but is not strictly iden-
tical, which indicates that other scenario-dependent variables
affect the transmission rate ν. Furthermore, these variations
become more muddled as one turns to more optimistic pa-
rameter sets, which is consistent with the idea that one then
probes the configuration of the crowd at finer length-scales,
owing to the shorter transmission range. The total pedestrian
flow rate could in principle play a role; however, we found that
ν does not follow any clear trend with this flow rate at fixed
density ρ (Fig. S8).

On the other hand, head orientations naturally have some
bearing on the risks of infection, as evinced by the failure of
isotropic transmission models to reproduce our results‡, but
we now show that in non-static scenarios these orientations
can be practically inferred using only the trajectories. To
do so, we notice that the head orientations of walking pedes-
trians (speed v > 0.3 m · s−1) are approximately normally
distributed around their walking direction, with a standard
deviation around 26◦, and decorrelate over one second. There-
fore, we choose to ascribe angular orientations randomly drawn
from this normal distribution to walkers, while their stationary
counterparts (v 6 0.3 m · s−1) are considered purely randomly
oriented; the random values are refreshed every second. Quite
interestingly, this simple reconstruction of head orientations
yields mean infection rates C per hour that agree very well
with the bona fide values, with a relative difference gener-
ally lower than 15%, regardless of the transmission model.
The correspondence between the individual Ci values for each
pedestrian is of course imperfect with this method, but overall
the differences are not extremely large (Fig. S9). These ob-
servations are particularly relevant to bolster risk assessments
based on observed or (reliably) simulated pedestrian datasets
in which head orientations are missing, as they most often are.

Practical implications and concluding remarks

Insight into the risk in the scenarios under study.
In summary, the foregoing risk assessments in non-confined

‡We think that this is largely due to the discrepancy between the face-to-face orientations at cafés
(which facilitate transmission) and the more or less random orientations e.g. at a market.

environments can guide public decisions in times of pandemic,
in that (irrespective of the transmission parameters that are
used) they confirm the risks of infection incurred at cafés (3)
and underline the key role of pedestrian density in determining
the rate of viral transmission in moving crowds without masks.
Fairly busy streets, with densities up to ρ ' 0.1 ped/m2, are
found to present risks that are not completely negligible, but
comparatively quite low, and these risks will manifestly reach
even lower values for less busy streets. This suggests that
the scant reports of outbreaks in outdoor walking crowds are
not only due to the intricacy of tracing back these infections
(due to unidentified contacts, recall biases, etc.), but also to
the limited transmission of the virus in these conditions, even
without face coverings. Nevertheless, this remark does not
apply to very crowded settings such as markets or metro and
train stations, which deserve particular attention.

As a matter of fact, the spatial resolution of our empirical
data and models provides deeper insight into the circumstances
of infection in the above scenarios; it can contribute to the
debate about what physical distance should be prescribed be-
tween pedestrians in non-confined environments, and whether
2 meters or ’6 feet’ are enough from an epidemiological per-
spective (27, 28). Admittedly, the answer will heavily rest on
the transmission model (which was here established in an ad
hoc way), but the statistics of inter-pedestrian contacts in the
scenario also play a large role. Using the cumulative rate of
transmission

∫
ν(t) dt as a proxy for the incurred risk, we find

that its dominant contribution comes from interactions within
a distance of 1 meter (for instance, 70% at Bellecour metro
station, with OptMod3), whereas transmission beyond 2 me-
ters, albeit possible, accounts for only a few percent of the risk
(5% at Bellecour), at most. Importantly, here and throughout
the paper, risks have been quantified by the number of new
cases expected in each setting; this choice is relevant at the
collective scale, for policy-making, but not for the evaluation
of the risks incurred by an individual in the crowd.

Mitigation efficiency of redesigns.
Beyond these conclusions rooted in actual observations, the
framework introduced here opens the door to evaluating the
mitigation efficiency of hypothetical redesigns of streets and
venues, consisting e.g. of enforcing one-way circulation on
footpaths, a sitting plan at cafés, or increased spacing in
queues. Since circulation plans have flourished during the
pandemic, let us first explore the impact of one-way vs. two-
way foot traffic on sidewalks and pedestrian streets.

To avoid potential situational biases, the question is investi-
gated by separating the periods of time (binned in two-second
intervals) when the flow was unidirectional from those when
there were pedestrians going in both directions, in each given
scenario – the market alley in the bottom right inset of Fig. 4.
Since the transmission risks were found to depend on density,
but not on the total flow rate (i.e., the sum of the directional
flow rates across sections perpendicular to the main flow), we
perform a comparison at fixed density. Our data (inset of
Fig. 4) reveal only little benefit to switching from two-way
to one-way traffic in our wide-path scenarios. To further test
this somewhat surprising finding, we exploit the controlled ex-
periments performed a few years ago by the German BaSiGo
team§ to study unidirectional and bidirectional pedestrian

§These extensive datasets are openly available under: https://ped.fz-juelich.de/db/doku.php
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Fig. 5. Hourly rate of new infections in a linear queue (top row) and a winding queue,
depending on the spacing between pedestrians and lines, as estimated with the
ModOpt3 parameter set. People move one spot forward every other minute. Note the
logarithmic color scale on the graph.

flows in 4 to 5-meter-wide corridors (53); head orientations
are reconstructed as explained above. The results, shown in
the top left inset of Fig. 4, are in line with the aforementioned
finding: In wide walkways, switching from two-way flow to
one-way flow seems to (at best) reduce the risks only moder-
ately, probably because head-on ’collisions’ are rare in these
self-organized flows.

Next, we turn to queues and study how their arrangement
affects transmission risks. On the basis of our observations at
a testing site, we modeled a queue as a line of more or less
equally spaced people, swaying in a 50 cm× 50 cm rectangle
around their central spot and whose head orientations are
normally distributed (with a standard deviation of 22◦) around
the queuing axis 75% of the time and purely random for the
remaining 25% of the time, due to people turning around or
having a look around. Both the positions and orientations are
refreshed every second. Albeit simplistic ¶, the reconstructed
queuing scenario is comparable with our actual observations
as far as the estimated infection rates are concerned; these
estimates with and without reconstruction differ by less than
50% for any of our models – except the most optimistic ones,
which bestow special importance to rare contact events that
are overlooked in the reconstitution. Figures 5 and S4 illustrate
the extent to which predicted infection rates vary when the
spacing between queuing people or the queuing geometry are
modified.

Current limitations and perspectives.
Our study pioneers the coupling of empirical crowd data to
spatial models of viral transmission at mesoscales. As such, it
undoubtedly suffers from some limitations. To start with, the
empirical data could be extended to include more scenarios
and longer footage.

Perhaps more crucially, the transmission model should
be refined. The models used in this study are admittedly
overly simple, even though this problem was partly warded
off by ensuring the robustness of our qualitative conclusions

¶The observed scenario is significantly more complex than its reconstruction: It actually features
two different, not strictly linear queues, one outdoors and one indoors, as well as a few people who
are not queuing.

across diverse model variants, including a spatio-temporal
model. More sophisticated models, which may differentiate
transmission rates as a function of people’s activity (reflecting
known variations in droplet emission (17, 19)) and account
for the effect of the wind (22) and ambient air flows, will
afford more accurate estimation of the rate of new infections.
In addition, fluid dynamics simulations of long-range aerosol
propagation would make it possible to study enclosed spaces
with poor ventilation, where our current models that discard
the airborne transmission route can only provide lower bounds
on infection risks.

Still, the most pressing task might be to generalize the
transmission models to people who are (adequately or inad-
equately) wearing a mask (12), in order to determine how
serious an issue very crowded streets really are in current
times. It would be straightforward to account for the par-
ticle filtration efficiency of masks in the present framework,
by simply multiplying the transmission rates by a reduction
factor (say, ∼ 20% for cloth masks, ∼ 10% for surgical masks
and � 5% for N95 masks (37, 42), if only the emitters have
their face covered), but masks are probably even more effi-
cient, because they also reduce the reach of the exhaled puff
(13), thereby probably shortening the range of transmission of
droplets (37).

Materials and Methods

Video acquisition, pedestrian tracking, and contact rescaling. Pedes-
trian flows and crowds were filmed in diverse scenarios in a discrete
and passive way with a TomTom Bandit camera covered with a thin
plastic layer (to deteriorate the quality of the image) and installed
in a zenithal position. This privacy-respective setup was approved
by the Data Protection Officer of CNRS.

After some pre-processing with the FFMpeg software to correct
the ’fish-eye’ effect, downsample the video, and select the area of
interest (from 8 m2 to 100 m2), the positions and head orientations
of all pedestrians were manually tracked at a rate of 2 frames per
second (fps) with the help of a dedicated Python software; linear
interpolation then increased the rate to 10 fps. Overall, close to
5,000 pedestrian trajectories were thus obtained. Pixel coordinates
were converted into real-world coordinates with a geometric formula
whose parameters are fit thanks to predefined calibration points at
pedestrian height (see Appendix A). The estimated experimental
error on the positions is typically below or around 20 cm, while that
on the head orientations is lower than 20◦ in most videos.

Because of the limited field of view, some interactions with off-
camera people were missed, especially at large separations. We
compensated for this by numerically gauging the fraction of inter-
actions thus lost, under the assumption of homogeneous density,
and reweighting the detected contacts accordingly. We checked
that this rescaling method successfully restores the genuine contact
distribution, up to contact distances close to the size of the field of
view (Fig. S1).

Ad hoc spatially resolved models for viral transmission. The pro-
posed transmission models are premised on direct, fairly short-
ranged propagation of droplets or aerosols (18). The process is
directional in terms of the emitter’s relative orientation θE (exhaled
jet) and, to a lesser extent, that of the receiver, θR (note that
droplet emission and inhalation are not symmetric (19)). Assuming
that these variables can be decoupled, we write the instantaneous
transmission rate as

ν(r, θE , θR) = 1
T̃0
f̄

(
r

r0

)
· f̄
(
θE

θE0

)
· f̄
(
θR

θR0

)
, [3]
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T0 (min) r0 (m) θE0 θR0

Optimistic 30 0.3 22.5◦ 45◦

Moderately optimistic 15 0.5 30◦ 60◦

Standard 10 0.5 30◦ 60◦

Pessimistic 10 0.75 45◦ 60◦

Very pessimistic 7.5 1 45◦ 60◦

Extremely pessimistic 5 1 45◦ 90◦

Uncovered sneezes 1.7 1.5 22.5◦ 60◦

Table 1. Parameter sets used in the transmission model of Eq. 3.
The angular values θE0 and θR0 correspond to the half-angles of the
emission and inhalation cones in the horizontal plane.

where f̄(x) is a function such that f̄(x ≈ 0) = 1 and f̄(x) decays
rapidly for x � 1. To be concrete, we tested the following three
functions,

f1(x) = exp( 1− x2

2
); f2(x) = |x|−m; f3(x) = exp(1− |x|)

Because of the limited accuracy of our positional measurements
and the uncertainties about very near field transmission, the peaks
of these functions are leveled at x → 0, viz., f̄k = min(1, fk) for
k = 1, 2, 3. The parameters r0, T̃0, θE0 , and θR0 in Eq. 3 and m in
f2 were bounded using a broad scope of available empirical data,
which suggest a characteristic distance r0 6 1 m, an infection time
(at r0 = 0.5 m) T0 = T̃0/f̄( 0.5

r0
) between a dozen minutes and an

hour, and an exponent m ≈ 2 − 2.5. More details are given in
Appendix B. Within these plausible bounds, we explored different
sets of values, listed in Table 1.
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A. Empirical observations of pedestrian crowds

Video acquisition and processing. Videos of crowds were acquired from a top view in the non-confined settings described in Table S1, in a
discrete and passive way that allowed us to observe natural behavior as pedestrians were mostly unaware of being filmed.

Scenario / Location Date and time Comments
Number of tracked

pedestrians
Mean Density

(ped/m2)

Pedestrian banks of the Rhône river,
close to the Morand Bridge

Friday, July 3rd 2020, 4pm-5pm Sunny and windy day 164 0.042

Plaza in front of Perrache hub (Hall -
Level 1)

Friday, July 17th 2020,
9am-10am

Nice weather 1021 0.038

Part-Dieu train station - Ground
level/passage area (indoors)

Friday, July 17th 2020,
11:20am-12:40pm

Sunny day 875 0.22

Busy street - Under the Passerelle
Bouchut

Wednesday, July 29th 2020,
12pm-1pm

Hot and sunny day 800 0.05

Bellecour subway station - Platform
of Line D (indoors)

Tuesday, July 28th 2020,
3pm-4pm

Hot and sunny day 849 0.26

Croix-Rousse boulevard - street
cafés

Friday, September 11th 2020,
6:30pm-7pm

Nice weather 13 /

Grande rue de la Croix Rousse
(shopping street)

Saturday, January 16th 2021,
11am-12pm

Cold and cloudy day 420 0.06

Saint-Jean street in the Old Town of
Lyon

Monday, September 21st 2020,
1pm-2pm

Hot and cloudy day 481 0.11

Place des Terreaux -
Bar/Restaurant terraces

Thursday, October 8th 2020,
5:40pm-6pm

Sunny day, cool weather 30 /

Croix-Rousse - Main market alley
Sunday, October 18th 2020,

morning
Sunny day 183 0.46

COVID-19 testing site
Monday, October 19th 2020,

8:30am-10:30am
Outdoor waiting lines (cold day) -
Indoor waiting lines (sport arena)

66 /

Table S1. Details about the investigated scenarios. All sites are in the metropolitan area of Lyon, France; most are outdoors.

After correcting for lens deformation, the trajectories and head orientations were extracted by extensive manual tracking with the help
of a dedicated Python script and a touch screen. The pixel coordinates (x′, y′) are converted into real-world coordinates (X′, Y ′) using
the following geometric relation, {

X = Xc + γ (νx−Xc)
Y = Yc + γ (νy − Yc)

where γ = 1
1−sinα· y

D

, α is the angle between the camera axis and the vertical direction (we systematically found α ' 0, reflecting the
top view used in virtually all videos). Here, and (X,Y ) and (x, y) are connected to (X′, Y ′) and (x′, y′), respectively, by rotations in
Euclidean space. The unknown parameters in this relation are estimated by fitting at least 4 calibration points at predefined positions,
where a team member stood in each scenario.

The expected uncertainty on positions created by failing to account for height differences (δh) between individuals is expected to be
around δx ' tanα′ · δh ≈ 15 cm in the present conditions, where α′ is the angle in which the pedestrian was filmed with respect to the
vertical. In practice, by double-tracking some test pedestrians, we estimate that the uncertainty is typically below or around 20 cm. The
same method allowed us to evaluate the standard deviation of the error on head orientations to 19◦. Some videos, especially for the static
scenarios, were filmed from a more distant viewpoint, in which case the error on the orientations is likely to be larger.

Contact rescaling to compensate for undetected interactions. The finite field of view of the camera results in some missed interactions with
off-camera people. We can estimate the fraction φ(r) of missed contacts depending on the separation distance r under an assumption of
uniform density. This is achieved numerically by randomly placing points (pedestrians) in an area with the same dimensions as the view
field and testing if secondary points inserted at a distance r of the first one in a random direction are inside or outside the area. Then, all
detected interactions are multiplied by a factor 1

1−φ(r) to compensate for those that went undetected; for practical purposes, we set a
maximal value (20) to this factor, to avoid excessive amplification of the statistical noise at large separation distances r.

This method is put to the test by focusing on a small area of dimensions 3 m×3 m in the view field of a given scenario and computing
the radial distribution function g(r) of contacts (i.e., g(r) ∝ N(r)

2πr where N(r) is the number of contacts of range r) in the ’partial’ field
before and after applying the rescaling method. Figure S1 demonstrates the efficiency of the method: After rescaling, g(r) gets much closer
to the distribution measured in the original field of view (up to statistical noise, since only a fraction of the people are then observed).

B. Ad hoc models for viral transmission

This supplementary section details and discusses the ad hoc functions that were introduced to model the transmission rate ν, defined such
that νdt is the probability for a susceptible individual to be infected by the index patient over the interval dt.

Specification of transmission models. We start by recalling the generic expression chosen for these functions (Eq. 3 of the main paper),

ν(r, θE , θR) = 1
T̃0
f̄

(
r

r0

)
· f̄
(
θE

θE0

)
· f̄
(
θR

θR0

)
, [S1]
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Fig. S1. Contact rescaling method. (Left) Sketch illustrating the possibility to miss interactions with off-camera people. (Right) Radial distribution function g(r) in the Perrache
plaza scenario measured using the original field of view or a reduced field with and without application of the contact rescaling method.

emphasizing that θE and θR are the orientations of the pedestrians’ heads, hence mouths and noses, relative to the vector that connects
them, in the horizontal plane, i.e., irrespective of the difference in height. Accordingly, θE = θR = 0 corresponds to a face-to-face
interaction.

The formulation of Eq. S1 is arbitrary to a large extent, but its main features are derived from experimental and numerical data.
Experimental images of inhalation (54) and expiratory emissions during breathing, speaking (19), or coughing (16), as well as computational
fluid dynamics simulations (18, 19, 22), brought to light strong directed transport of respiratory droplets overs tens of centimeters, reaching
a couple of meters; the exhaled cloud is mostly enclosed in a cone of half-angle between 10◦ and 50◦ at most, depending on the speech
conditions (19), thus pointing to a significantly smaller characteristic angle θE0 . In passing, note that such conical propagation is well
described by Eq. S1, in which r and θE are decoupled. Inhalation is also directional, but, as ambient air from all around the mouth will be
breathed in (19), we have systematically considered that its directionality was less marked, i.e., θR0 > θE0 (see Table 1 of the main paper).

Regarding the characteristic distance r0, a review of 172 observational studies (40) tentatively suggests that keeping a physical distance
of 1 meter reduces the infection risk from 13% (very close contact) to 3% and down to 1.5% if a distance of 2 meters is maintained,
although there is very large dispersion in the data. In the UK, the Scientific Advisory Group on Emergencies (SAGE) asserts that
physically distancing by 2 meters instead of 1 reduces the risks by a factor between 2 and 10 (14). This translates into an exponent
m ≈ 2− 3 in function f̄2, a value r0 ∈ [0.4 m, 1.4 m] if one uses function f̄3 or r0 ∈ [1 m, 2 m] if one uses function f̄1. However, at larger
physical distances, contacts may have been less in a face-to-face orientation or shorter in duration, so these ranges ought to be taken with
a grain of salt. Chen et al.’s theoretical work rather suggests r0 ≈ 0.2 m for talking and r0 ≈ 0.5 m for coughing (see Fig. 7 of (18)). In any
event, our goal is to consider a family of parameter sets spanning the whole range between those for which viral transmission is more likely
(conservative, or ‘pessimistic’, approach) and those for which it more seldom occurs (‘optimistic’, i.e., predicting fewer infections).

As for the time parameter, it is most easily expressed as T0 = T̃0/f̄( 0.5
r0

) which is the characteristic duration for infection at a distance
r = 0.5 m. Contact tracing routines generally consider a threshold duration between 5 and 15 minutes. Nonetheless, this value may be at
the safe end of the spectrum, as exposure case studies have only reported very few cases with contacts lasting less than 15 minutes.

Finally, we also modeled uncovered sneezes, which are longer ranged than other expiratory events but also highly directional (16).
Even though the emitted jet is reported to reach 7 or 8 meters, not all droplets are expected to travel this far, as seen in the experimental
images of (16). Accordingly, we settled for r0 = 1.5 m, which means that the risk at a distance of 7 meters is 1% of that at 50 cm with the
f̄3 function, 3% with f̄2, but close to zero with f̄1.

There is no denying that the foregoing ad hoc models and their parameters are but coarse approximations of the reality: They do not
account for the effect of wind, ventilation, or humidity (22), nor do they describe the dynamics of exhaled jets and the time lag due to
their propagation. Perhaps more importantly, the variability in droplet emission and viral shedding between individuals is overlooked, as
is their dependence on their activity (breathing through the nose or the mouth, panting, talking loud, coughing, etc.), which is known to
have a major impact (15, 17, 55). However, since virtually all scenarios under consideration (with the exception of the cafés) involve
similar activities, i.e., very moderate physical activity and limited talking, we expect our approach to hold in a statistical sense, although
different index patients may be associated with different parameter sets in the model. The characteristic duration T0 is set by noting that
a single sneeze may expel 10 times as many respiratory droplets as 5 minutes of talking (47), but generally does not occur more than once
every few minutes. This is particularly true if the focus is on uncovered sneezes. Accordingly, as a worst-case estimate, we set T0 = 100 s.

Consistency with the current knowledge about infection risks and droplet emission. Let us now examine to what extent case reports may
support the proposed models.

Generally, outbreak reports do not specify the very precise circumstances of the infections. Still, the attack rates in diverse settings are
useful indications. Indeed, within households, reported attack rates range from 5% to 30% (42), for instance around 15% in (43–45). At
work or in the community, casual episodic contacts, even face to face, do not necessarily trigger an outbreak of cases (38, 43). Furthermore,
it was reported that at Solano County hospital (California, US) the majority of healthcare personnel did not get infected despite spending
10 to 50 minutes in the same room as a Covid patient, often within 2 meters and with no facial mask (39). All these pieces of evidence
hint at an average time for infection T0 in a close face-to-face contact that is probably longer than ∼ 10 minutes.

Another general indication comes from the basic reproductive number R0 in the pre-pandemic context, which was around R0 ≈ 3.
Contact pattern data in this usual, pre-pandemic context imply that only 7% of contacts lasting longer than 15 minutes lead to an
infection. Assuming prolonged contacts of median duration 20 minutes that are mostly face to face (leaving aside height differences), this
leads to a characteristic time for infection T0 of a couple of hours if the contact distance is only 50 cm, or varying between 20 minutes and
2 hours for a contact distance of 80 cm, depending on the functional choice f̄1, f̄2 or f̄3 and the chosen value for r0. Thus, this gives
credence to the ‘optimistic’ end of our parameter spectrum.

Further insight is provided by empirical measurements of the particle number concentration of the respiratory droplets exhaled by a
(healthy) subject (37). The concentration of droplets of sizes 0.5µm− 20µm was measured at different distances in front of a subject
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Fig. S2. Comparison between the spatial decay of the modeled transmission rate ν(r, θE = 0, θR = 0) with distance r and the particle number concentration (PNC)
measurements during coughing of (37). Arbitrary units have been chosen so that the value at r = 0.m is always unity.
The following abbreviations are used: Opt1 (optimistic parameters combined with f1), ModOpt2 (moderately optimistic parameters combined with f2), ModOpt3 (moderately
optimistic parameters combined with f3), Std3 (standard parameters combined with f3), Pess2 (pessimistic parameters combined with f2).

during coughing, with and without face covering. In Fig. S2, we compare the spatial decay of these measurements (without face covering)
to the predictions of some of our transmission models. Excellent agreement is found with the moderately optimistic and standard models
combined with f3. Yet, one should bear in mind that the measurements were made while the subject was coughing, which may increase
the transmission range. Therefore, these data once again support the most optimistic of our transmission models.

Order of magnitude of droplet emission. One may also wonder how compatible the model parameters are with the current fundamental
knowledge about droplet emission. Exhaled droplets are very broadly distributed in size around a mean value of ∼ 5µm and contain ∼ 0.1
viral copy (mostly zero or one copy) per droplet (47). Talking for five minutes, or coughing once in these 5 minutes (which is a relevant
frequency according to coughing statistics (2)) will expel about 3 · 103 droplets. It is difficult to estimate what fraction of these will be
breathed in by a person standing 50 cm apart, but, following the reasoning of (19), droplets should be diluted by a factor ∼ 0.1 at this
distance, so it is reasonable to estimate that at most a few % of the droplets will be inhaled, a significant fraction of which may deposit in
the nasopharynx, where they are most likely to lead to an infection (46). Assuming an infectious dose of O(100) (46), i.e., that only one in
a hundred virions will successfully invade a host cell and replicate, one arrives at a characteristic time for infection T0 of several hours
(T0 . 10h). Notwithstanding how rough an estimate this is, it is worth noticing that it is once again rather in line with the very optimistic
end of our spectrum of plausible values.

As a matter of fact, on the basis of a similar, but more rigorous reasoning, Yang et al. derived shorter infection times T0, but
their explicitly conservative approach assumes constant speech and rests on the idea that any inhaled droplet reaches zones where viral
penetration in the cellular tissue is possible (29).

Direct comparison with the collated statistics of infections aboard Chinese trains. It is generally difficult to test transmission models against
empirical data related to Covid-19 cases in a statistically meaningful way because the detailed interactions between the index patient and
his or her contacts are seldom known. However, Hu et al.’s study of transmission risks among train passengers in China (4) provides a
virtually unique opportunity to attempt such a direct comparison. Indeed, Hu et al. were able to retrieve the trip record of confirmed
Covid-19 patients who had traveled on a train in the 14 days before the onset of the illness, between December 2019 and late February
2020. Having access to the detailed seating plan on their train coaches, the researchers then tracked reported Covid-19 cases among
co-travelers and computed the infection probability depending on the distance (expressed as a number of rows and columns) between the
index patients and the contacts. A marked increase in the infection risk was found for people seated in the same row as the index patient,
especially in adjacent seats, for more than a couple of hours.

Leaving aside the fact that a train coach is an enclosed (but usually ventilated) space, the transmission models introduced above can be
applied to these settings. Distances between seats and rows are precisely known. The central aisle is counted as one seat, as in the original
study (4), while the barrier to transmission created by seat rows (and represented by dashed lines in Fig. S3) is arbitrarily considered
to have an effect comparable to an additional distance of 1 meter. In the light of our empirical measurements on moving and queuing
crowds (see the main text), the passengers’ head orientation is assumed to be normally distributed around the axial direction, with a
standard deviation of 26◦; we consider that the seated position suppresses the rotations of the whole torso that are occasionally observed
in standing pedestrians.

Figure S3 presents the probabilities of infection evaluated on this basis using three different transmission models on the optimistic side
of the parameter spectrum, with the help of Eq. S3. These results are directly confronted with Fig. 2 of (4); the three of them are found
to compare well as far as both the evolution of the risks with co-travel duration and their spatial pattern are concerned.

A note of caution should nevertheless be made about the absolute values of infection probabilities, which peak at about 10% in (4),
compared to 25% to 80% here. This very notable difference may largely be due to the fact that all trips of the index patient in the two
weeks before his or her diagnosis are taken into account in (4) whereas it is very unlikely that the patient was contagious during all this
period. If the contagious period before the onset of symptoms spans two to three days (42, 56), i.e., about 15% to 20% of the two-week
period, then applying this 15-20% ratio to the simulated infection probabilities yields values that become comparable to those reported by
(4). These pieces of evidence thus give credence to our transmission models coupled with optimistic parameter sets.

Another caveat should however be mentioned regarding Hu et al.’s work (4): The researchers admit that they were not able to
distinguish relatives from unrelated people in their data. Therefore, part of the reported infections may not have taken place aboard the
train, but elsewhere.

10 | This is a draft paper, not an accepted manuscript. Garcia et al.



DRAFT

Optimistic parameters combined with f2:

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

1h30

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

4h30

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

6h30

0%

10%

20%

Moderately optimistic parameters combined with f1:

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

1h30

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

4h30

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

6h30

0

10%

20%

30%

40%

50%

Moderately optimistic parameters combined with f3 (ModOpt3):

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

1h30

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

4h30

0.0 0.5 1.0 1.5 2.0 2.5
x (m)

0.0

0.5

1.0

1.5

2.0

2.5

y
(m

)

6h30

0

20%

40%

60%

80%

Fig. S3. Simulated probability of infection of co-passengers aboard the train, depending on their proximity to the index patient (red cross) and the time spent together on the
train. ∆x denotes the absolute distance along each row and ∆y denotes the distance along each column; the physical barriers created by seats are materialized as a dashed
line. Model parameters are specified above each row of charts. These figures are amenable to a direct comparison with Fig. 2 of (4).

Garcia et al. Submitted to PNAS | February 17, 2021 | vol. XXX | no. XX | 11



DRAFT

C. Transmission

Our study relies on the independent action hypothesis introduced by Druett in the early 1950s (49) and partially validated by Zwart in
virus-insect pathosystems a decade ago (50). It posits that there is no minimal infectious dose and that one can overlook cooperative or
antagonistic interactions between virions in the host system and assign to each of them a finite probability (here denoted by ε) to cause an
infection. This yields a Wells-Riley-like equation (51) for the time evolution of the contagion status Ij(t) of (initially susceptible) agent j,
Juliette, infected by index patient i, Iago (Ij is the probability that Juliette is infected), viz.,

İj(t) = [1− Ij(t)] νij(t), [S2]

Ij(t) = 1− e−Nij(−∞,t), withNij(s, t) =
∫ t

s

νij(t′) dt′ [S3]

where νij(t) = nij(t)/ninf is the risk transmission rate, ninf is the minimal infectious dose, and nij(t) is the number of viral copies
exchanged between Iago and Juliette per unit time around time t. Accordingly, if Iago was filmed between time t0 and time t0 + τi, the
number of new infections that were actually witnessed (or ’event R’ in the terminology of (52)) can be estimated to

C
(τi)
i =

∑
j /∈Gi

Ij(t0 + τi)− Ij(t0)

=
∑
j /∈Gi

S0
j ·
[
1− e−Nij(t0,t0+τi)

]
[S4]

where Gi contains Iago and all other agents that we visually identified as members of his group (family, friends, etc.) and S0
j = 1− Ij(t0) =

e−Nij(−∞,t0) is the probability that Juliette was already infected at t0. Note that similar assumptions about the rate of infections were
made in a recent paper that we came across just before submission (52). Let us emphasize in particular that intra-group infections are
discarded here, because group members are likely to have been infected outside the scenario of interest, whereas our purpose is to estimate
new infections in the scenario.

Scenarios involving a moving crowd. To compute Eq. S4, an issue must be overcome. Indeed, due to their limited temporal and spatial
span, our observations may not capture all interactions between Iago and other pedestrians, in the non-static scenarios. Therefore, the
infection status S0

j at t0 is difficult to evaluate. To circumvent the issue, we derive upper and lower bounds on Ci that do not require
specific information about the S0

j .
The upper bound is straightforward, because S0

j 6 1 by definition, which implies that C(τi)
i 6 C̄

(τi)
i ≡

∑
j /∈Gi

1 − e−Nij(t0,t0+τi).

This value can be converted into an hourly rate of new infections, C̄(1 h)
i , by multiplying it with 1 h

τi
.

The lower bound requires more careful examination, wherein we will set a maximal value to the number of people that have already
been infected at t0, under the hypothesis that only Iago is contagious on the premises. Let Hi = {j s.t. j /∈ Gi andNij(t0, t0 + τi) > 0} be
the group of unrelated pedestrians j with whom Iago came in contact while filmed, so that this number reads

∑
j∈Hi

Ij(t0). If Iago and
Juliette (j) are unrelated, it is sensible to consider that they have not been close to one another for more than a duration δτ in the global
scenario (we will set δτ = 5 min for most scenarios), viz.,∑

j∈Hi

Ij(t0) 6
∑
j /∈Gi

1− e−Nij(t0−δτ,t0) 6 C̄
(δτ)
i , [S5]

where C̄(δτ)
i is our upper-bound estimate for the number of infections during δτ . Note that the foregoing inequality manifestly holds if

Iago and Juliette’s interaction took place in the interval [t0 − δτ, t0], but it will also hold should the interaction have occurred earlier,
provided that our video is representative. Indeed, under this proviso, Juliette is equally likely to have already been infected at t0 as
any random pedestrian in Iago’s vicinity in the interval [t0 − δτ, t0] (note that these random pedestrians are more numerous than those
observed in [t0, t0 + τi], because it was almost always verified that τi < δτ = 5 min). It follows from Eq. S5 that∑

j∈Hi

S0
j > #Hi − C̄(∆T )

i .

One is thus left with an optimization under constraints, wherein one has to minimize (i.e., find a lower bound for)

C
(τi)
i =

∑
j∈Hi

S0
j ·
[
1− e−Nij(t0,t0+τi)

]
[S6]

under the following constraints on the variables S0
j ,

∀j ∈ Hi, 0 6 S0
j 6 1∑

j∈Hi

S0
j > #Hi − C̄(∆T )

i .

This optimization problem may for instance be solved using Lagrange’s multipliers. The minimum is reached at (S0
j )j∈Hi such that

S0
j = 1 for all j ∈ Hi, except

• the n ≡
⌊
C̄

(∆T )
i

⌋
indices j exhibiting the highest values Nij(t0, t0 + τi), which are set to Sj = 0,

• j = n, which is set to S0
n = 1−

(
C̄

(∆T )
i −

⌊
C̄

(∆T )
i

⌋)
.
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In other words, this boils down to treating as infected the n unrelated people who interacted most closely with Iago on the video. The
lower bound C(τi)

i that we were seeking is obtained by computing Eq. S6 with the above (S0
j )j∈Hi , which concludes our search.

Finally, let us note that the foregoing reasoning can easily be extended to a population with partial immunity, by replacing the initial
conditions S0

j = 1− Ij(t0) with S0
j = (1− α) · [1− Ij(t0)], where α is the fraction of immunized people.

Static scenarios. In the ’static’ scenarios, i.e., the streets cafés and the queue, interactions are less changing. Therefore, we consider
that the interactions that are observed on the videos are prolonged over the whole period of study, i.e., 1 hour to get an hourly rate.
Accordingly, the risk increments Nij(t0, t0 + τi) in Eq. S3 are simply multiplied by 1 h

τi
, where τi generally coincides with the duration of

the video, and the hourly rate of new infections is given by

C
(1 h)
i =

∑
j

[
1− e−

1 h
τi
·Nij(t0,t0+τi)

]
.

A remark should be made here. The sum is not restricted to people that are unrelated to Iago, contrary to the case of moving crowds, and
we assume that everybody apart from Iago is initially susceptible, S0

j = 1. Indeed, infections at a café are counted starting from the
moment when people meet and sit together. Besides, on these videos, we are not able to distinguish Iago’s household members (who may
have been infected beforehand) from his other relatives or friends, so everybody is assumed initially susceptible.

D. Dynamic model of viral transmission

The main text of this paper focused on a family of ad hoc models of viral transmission ν(t) that overlook the propagation dynamics of
respiratory droplets. In this supplemental section, we generalize our methodology by considering dynamical transmission models derived
from microscopic fluid dynamics computations of droplet propagation. This will allow us to ascertain that our main findings remain valid
with more realistic transmission models and, in particular, that the differences in the estimated infection risks between scenarios are not
an artifact due to our simple models, but arise from intrinsic differences between the scenarios. Admittedly, the more realistic models used
in this section also suffer from some inaccuracies, by not accounting for the wind nor for differences in walking speeds, in activity (speech,
cough), and so on; a more exhaustive study including these effects is differed to a subsequent publication. Still, they tend to bolster the
robustness of our main results.

The propagation of droplets emitted during a pedestrian’s breathing cycle is simulated with the CFD (Computational Fluid Dynamics)
software YALES2 (57), https://www.coria-cfd.fr/index.php/YALES2, already used in the context of the transport of respiratory droplets (19, 29).
We first compute the air flow field around a pedestrian walking at speed v = 1 m · s−1. The simulation is performed in the moving frame
of the walker, so that the difference of speed between the pedestrian and the ambient air is mimicked by a uniform airflow at v = 1 m · s−1

opposite to the walking velocity (the person thus remains static and body motion is not accounted for). The pedestrian is breathing out
through the mouth with a breathing period of 3 s, with 1.5 s of exhaling and inhaling times, and an exhaled flow rate of 20 L/min, which
is representative of mild exercise. The mouth region delimited by the lips has an area of 5 cm2, approximately. Uniform flow is imposed at
exhalation, with a flow along the walking direction. The boundaries of the domain are typically 2 m away from the walker; the grid is
fully tetrahedral, with a mesh size as low as 5 mm in the vicinity of the head and a uniform mesh size of 8 mm in the rest of the region
of interest where droplets flow. This is dealt with automatic mesh refinement (58) which adapts the mesh size along the course of the
calculation.

Fig. S4. Dynamic model of viral transmission. (a) Top view of the propagation of respiratory droplets around a pedestrian walking at 1 m · s−1, simulated with CFD, in the
walker’s co-moving frame. A large number of droplets is visible. In the range of diameter between 0.1 and 50 microns, approximately 60,000 droplets are injected per breath.
Volumes of virus are then rescaled to match the target exhaled size distribution (59). (b) Spatio-temporal representation of the coarse-grained disease transmission rate, in the
laboratory frame, as a function of the propagation delay τ . Note the logarithmic scale.

Then, we simulate the propagation of respiratory droplets of various diameters in this flow field, as illustrated in the top view of
Fig. S4(a). As the issue of droplet evaporation is still debated and its impact may have been overestimated in the past (26), we chose not
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to account for evaporation here. As a first approximation, we thus performed simulations at constant temperature, so that incompressible
Navier-Stokes equations are solved, with a uniform kinematic viscosity of 1.5 · 10−5 m2 · s−1. Buoyancy effects are thus neglected, but
they are not expected to dominate in this configuration where rapid mixing occurs between the exhaled air and the ambient air. We use
Large-Eddy Simulations with the so-called sigma subgrid model (60) and the numerical method is identical to the one recently used by
Abkarian et al. (19) for simulations of the flow generated by speech. The simulation is run for 7 cycles (21 s): the flow is established
during the first 3 cycles and only the last 4 cycles are used for computing the coarse-grained transmission rates.

Another issue is also prickly, that of the sizes of exhaled droplets. Widely different distributions of sizes can be found in the literature,
leading to widely different travel ranges (36). Here, we arbitrarily selected Johnson et al.’s (59) data and focused on the breathing mode,
for which the distribution of droplet diameters D is lognormal and its cumulative function Ps obeys

dPs(D) ∝ e−
ln2(D/D̄)

2ln2σ dlnD, [S7]
where D̄ ' 0.8µm and σ ' 1.3. This can be recast into a distribution of fluid volumes PV ,

dPV (D) ∝ D3 dPs(D). [S8]
Provided that exhaled droplets have an equal concentration of viral copies, the disease transmission rate ν(te, te + τ) due to droplets

shed at te and inhaled at te + τ is proportional to the mass concentration of droplets at the receiver’s position at tr, relative to the
emitter’s position at te, within a ±20 cm-thick horizontal slice centered on the emitter’s mouth. The spatio-temporal evolution of this
rate is symmetrized and coarse-grained by binning the data into τ of duration 0.2 s and polar cells of radial length 20 cm, as shown in
Fig. S4(b) in the laboratory frame. We found a qualitatively similar spatio-temporal pattern for a static emitter (v = 0 m · s−1, except
that the propagation is then slower and shorter-ranged (in the laboratory frame). Here, as a first approach, we used the pattern obtained
for a breathing walker at v = 1 m · s−1 uniformly for all pedestrians regardless of their speed; we agree that this choice is particularly
questionable for the static ones (even though it might be argued that the slightly longer range may be better suited for droplets emitted
while talking or coughing).

Finally, the effect of the inhaler’s head orientation θR is accounted for by multiplying this rate by a factor exp(1− |θ
R|

π/3 ), as in our
standard models coupled with f3. The question of the number of emitted droplets and that of the viral load are eluded by setting a
characteristic infection time T0 of 15 min.

Coupling this dynamic model to our field data yields the ranking of scenarios by the risks they present that is displayed in Fig. S5.
The crucial point is that the hierarchy of risks (dominated by street cafés, with fairly busy streets very far behind) is chiefly preserved.

The absolute infection rates are comparable to those found with our most optimistic models, but tend to be even smaller. It is possible
that this owes to our choice of modeling a breathing cycle: Although the droplet emission rate has been renormalized, the air flow field
associated with coughing would probably have reached farther.‖

Fig. S5. Hourly rates of new infections estimated with a dynamic transmission model.

We also computed afresh the rate of new infections in a queue, depending on its geometry, in Fig. S6. For this purpose, we used a
time-delay-integrated transmission rate ν(te) =

∫∞
0 dτ ν(te, te + τ), as the queuing pedestrians are mostly static. Once again, the results

are qualitatively very similar to those obtained previously, even though quantitatively smaller rates are found.

E. Additional figures

‖ Incidentally, the intriguing discrepancy between the two street café scenarios also owes to this short transmission range, whereby the crowd’s configuration is probed at fine length scales; a similar
tendency could already be observed with our optimistic models.
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Fig. S6. Hourly rate of new infections in a queue, as a function of the queuing geometry.

Fig. S7. Hourly rates of new infections in the scenarios under study, estimated with four transmission parameter sets. The isotropic model and the directional one (θE0 = π
6 ,

θR0 = π
3 ) share the same parameters T0 = 15 min and r0 = 1 m. The error bars span the interval between the lower bound C(1 h) and C̄(1 h), while the filled bars

represent 1
2

(
C(1 h) + C̄(1 h)

)
.
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Fig. S8. Variations of the global transmission rate ν with the total flow rate in a street in the Old Town of Lyon (left) and along an outdoor market alley (right), at fixed pedestrian
density, with ModOpt3.
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Fig. S9. Correspondence between the bona fide individual-based hourly rates of new infections C̄i (upper bound) and the values C̄(rdm)
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of random head orientations (see the main text), on the plaza in front of the Perrache train station (left) and on the Rhône riverbank (right), with ModOpt3.
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