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Abstract 18 

 19 

Aging evolutionary theories predict that patterns of actuarial and reproductive senescence should 20 

be aligned, with a common onset of senescence set at the age of first reproduction. However, a few 21 

empirical studies reported asynchrony between actuarial and reproductive senescence. This 22 

asynchrony is expected to be particularly pronounced in organisms with indeterminate growth. Yet, 23 

this process is still poorly documented due to the lack of long-term demographic data on known-24 

aged individuals. We investigated the asynchrony of actuarial and reproductive senescence in the 25 
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Introduction 42 

 43 

Although a few studies have challenged the idea of an inevitable senescence in nature (e.g. Martinez 44 

1998, Cayuela et al. 2020), it is now broadly recognized that senescence, the decline in the 45 

contribution to fitness with increasing age, is a widespread phenomenon across the animal kingdom 46 

(Nussey et al. 2013; Gaillard & Lemaître 2020). Senescence can be due to an age-specific decrease 47 

in survival probabilities (i.e., actuarial senescence) and/or reproductive performance (i.e., 48 

reproductive senescence), two processes usually anchored in the same theoretical framework 49 

(Gaillard & Lemaître 2017). Evolutionary theories predict that patterns of actuarial and 50 

reproductive senescence should be aligned (Williams 1957, Maynard-Smith 1962), with a common 51 

onset of senescence at the age of first reproduction (Williams 1957). However, few recent studies, 52 

performed in both laboratory and free-ranging conditions, reported asynchrony between actuarial 53 

and reproductive senescence patterns (reviewed in Gaillard & Lemaître 2017). The factors 54 

modulating the degree of synchrony are still poorly understood.  55 

The asynchrony between actuarial and reproductive senescence could be particularly 56 

pronounced in organisms with indeterminate (i.e., continuous) growth (e.g., fishes, amphibians, 57 

and reptiles) where survival and reproductive traits (e.g., fecundity, offspring survival) are often 58 

positively correlated with maternal body size, and thus indirectly determined by female age 59 

(Hoekstra at al. 2020). This asynchrony could result from non-linear relationships between fitness 60 

components and age. The fecundity of females with indeterminate growth recurrently increases 61 

with body size and age in a linear way (e.g., in reptiles, Jenkins et al. 2009, Setser et al. 2010, Rose 62 

et al. 2018), whereas the strength and the form of the relationship between mortality and age after 63 

sexual maturity can be highly variable among species (Colchero et al. 2019, Cayuela et al. 2019a) 64 

and populations (Cayuela et al. 2020). 65 

To date, the asynchrony of actuarial and reproductive senescence in indeterminate growers 66 

is still poorly documented, mainly due to the lack of long-term demographic data on known-aged 67 
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day lasting from 0800 to 1800), by two or three people who searched intensively for snakes in the 94 

dilapidated building and neighbouring area of about 100× 80 m. Snakes were captured by hand, 95 

and individually marked by ventral scale clipping for future identification. At their first capture, 96 

female snakes were measured for snout-vent-length (SVL). We did not measure them on further 97 

captures to minimize disturbance and hence risks of their departure from the nesting area, as 98 

permanent emigration would bias capture-recapture inferences. We were able to assess the age of 99 

16 females that were captured at juvenile stage over the capture-recapture survey. Detailed 100 

information about the number of captures performed each year is given in Table S1. 101 

Several females (N = 16) on their first capture were palpated in the abdomen to verify their 102 

pregnancy status and to count the number of eggs (Filippi et al. 2007). We also captured 44 103 

additional females in the surroundings of the study area to increase the number of observations of 104 

egg clutch size (N = 60 in total). 105 

 106 

 Reproductive senescence: assessing age-dependent variation in clutch size 107 

 108 

First, we verified that SVL was a good proxy of female age by quantifying the correlation between 109 

age and SVL in a small set of females for which the age was known (N = 16). Then, we examined 110 

how annual egg clutch size was associated with SVL in a larger sample of females (N = 60). In 111 

both cases, we used regression models where SVL or egg clutch size were included as the response 112 

variable and body size or age were included as explanatory variables. We compared null (i.e. 113 

without covariate), linear, and polynomial models using their AIC. We graphically verified the fit 114 

of the model by examining model residuals. The analyses were conducted in R program (R 115 

Development Core Team 2018). 116 

 117 

Modeling age-dependent mortality using BaSTA 118 

 119 
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 146 

Reproductive senescence pattern 147 

 148 

Our results confirmed that female SVL linearly increased with age (Fig.1A and Table S2 for model 149 

selection procedure) and was thus a robust proxy of their age (!" = 0.43). Next, we showed that 150 

annual egg clutch size increased with SVL (Fig.1B). Although the polynomial model was close 151 

(less than 2 AIC points between the two models), the linear model was selected !" (0.74) (Table 152 

S3). Overall, our analyses highlighted that female annual fecundity increased linearly with SVL 153 

and age. 154 

 155 

Actuarial senescence pattern 156 

 157 

BaSTA models revealed that capture-recapture data were best described by a logistic function 158 

without any refinement of the shape (Table 1). The cumulative probability of surviving was 0.75 159 

until age six, 0.50 until age seven, and 0.25 until age eight (Fig.1C). Furthermore, the model 160 

showed a strong positive effect of age on hazard rate (Fig.1D), which indicates an early and strong 161 

actuarial senescence in H. viridiflavus. 162 

 163 

Discussion 164 

 165 

Using capture-recapture data collected over a 29-year period, we showed that H. viridiflavus female 166 

did not experience any fecundity loss late in life, suggesting a negligible reproductive senescence. 167 

In contrast, they suffered from an early and severe actuarial senescence. Taken together, those 168 

results revealed a pronounced asynchrony in the senescence process of two main fitness 169 

components. 170 
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general inferences about the ecological and biological factors modulating the asynchrony between 197 

aging components. At the intraspecific level, abiotic factors such as temperature and habitat 198 

predictability regulate lifespan and actuarial senescence (Sears 2005, Hjernquist et al. 2012, Zhang 199 

et al. 2018, Cayuela et al. 2019b), as well as reproductive investment (Morrison et al. 2003, Cayuela 200 

et al. 2016, Hughes et al. 2019), in ectotherm vertebrates with an indeterminate growth, which could 201 

ultimately modify the asynchrony of senescence patterns. In our study system, the low abundance 202 

of natural predators compared to other habitats occupied by H. viridiflavus (Philippi et al. 2007) 203 

could also buffer actuarial senescence by reducing predation-induced mortality late in life, which 204 

might lead to intraspecific variation in the degree of asynchrony between aging components. 205 

Furthermore, covariation between mortality patterns and several phenotypic traits of indeterminate 206 

growers could result in interspecific variation in the asynchrony of actuarial and reproductive 207 

senescence. In particular, the magnitude of the asynchrony could be diminished in species with 208 

size-dependent fecundity and negligible or even “negative” actuarial senescence (sensu Vaupel  et 209 

al. 2004, Jones & Vaupel 2017) allowed by high regeneration capacities (e.g., salamanders, Cayuela  210 

et al. 2019a), or chemical (e.g., venomous snakes, Cayuela  et al. 2019a, Colchero et al. 2019) and 211 

armour protection (e.g., turtles, Warner et al. 2016). Overall, our study raises important questions 212 

about the ecological and evolutionary mechanisms allowing the uncoupling of reproductive and 213 

actuarial senescence processes. 214 
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 329 

Fig.1. Reproductive and actuarial senescence in females of Hierophis viridiflavus. (A) Linear 330 

relationship between snout-vent-length (SVL) and age. (B) Linear relationship between egg clutch 331 

size and SVL. (C) Relationship between survival and age described by a logistic function. (D) 332 

Relationship between hazard rate and age described by a logistic function. 333 
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