Charlotte Depeux 
email: charlotte.depeux@gmail.com
  
Ascel Samba-Louaka 
  
Thomas Becking 
  
Christine Braquart-Varnier 
  
Jérôme Moreau 
  
Jean-François Lemaître 
  
Tiffany Lemaître 
  
Hélène Laverre 
  
François-Xavier Paulhac 
  
Jean-Michel Dechaume-Moncharmont 
  
Gaillard 
  
Tiffany Laverre 
  
Hélène Paulhac 
  
François-Xavier Dechaume-Moncharmont 
  
Jean-Michel Gaillard 
  
Sophie Beltran-Bech 
  
  
The crustacean Armadillidium vulgare (Latreille, 1804) (Isopoda: Oniscoidea), a new promising model for the study of cellular senescence
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INTRODUCTION

Many hypotheses have tried to explain why senescence is a quasi-ubiquitous phenomenon in the living organisms. For instance, the disposable soma theory proposed the senescence process as a result of damages accumulation over time [START_REF] Kirkwood | Evolution of ageing[END_REF]. These damages are strongly influenced by the environment, leading to trade-offs between the different functions (e.g., between reproduction and somatic maintenance) and shaping a high diversity of senescence patterns across species and populations, among individuals, and between sexes.

One current challenge is to understand the selective forces and mechanisms driving this diversity of senescence patterns.

At the cellular level, senescence corresponds to the cellular deterioration leading to stop the cellular cycle [START_REF] Campisi | Cellular senescence: when bad things happen to good cells[END_REF]. As ageing is associated with cellular senescence [START_REF] Herbig | Cellular senescence in aging primates[END_REF][START_REF] Wang | DNA damage response and cellular senescence in tissues of aging mice[END_REF][START_REF] Lawless | Quantitative assessment of markers for cell senescence[END_REF], many biomolecular parameters potentially inform about senescence and can therefore be valuable tools for studying this process (Bernardez de [START_REF] Bernardez De | Assessing cell and organ senescence biomarkers[END_REF]. For example, the evolution of the integrity and efficiency of immune cells is particularly relevant to study cellular senescence because a diminution of the number of effective immune cells with increasing age takes place in both vertebrates (e.g., [START_REF] Cheynel | Immunosenescence patterns differ between populations but not between sexes in a long-lived mammal[END_REF] and invertebrates (e.g., [START_REF] Park | Cellular immunosenescence in adult male crickets, Gryllus assimilis[END_REF]. Another marker used to study cellular senescence is the enzymatic activity of the b-galactosidase. This enzyme is a hydrolase that transforms polysaccharides into monosaccharides. The lysosomal activity of this enzyme is increased when the cell enters in senescence [START_REF] Dimri | A biomarker that identifies senescent human cells in culture and in aging skin in vivo[END_REF][START_REF] Itahana | Methods to detect biomarkers of cellular senescence: the senescence-associated β-galactosidase assay[END_REF]. This phenomenon occurs in senescent cells of many organisms ranging from humans [START_REF] Gary | Quantitative assay of senescence-associated βgalactosidase activity in mammalian cell extracts[END_REF] to honeybees [START_REF] Hsieh | Honeybee trophocytes and fat cells as target cells for cellular senescence studies[END_REF]. Another protein linked to the cellular senescence process is the telomerase, a ribonucleoprotein complex composed by two essential components, the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR) and other accessorial proteins [START_REF] Podlevsky | The telomerase database[END_REF]. Telomerase lengthens the ends of telomeres (i.e., DNA sequences located at the end of chromosomes that protect chromosome integrity and shorten after each cell division).

Cell senescence arises when the telomere length becomes critically short [START_REF] Chiu | Replicative senescence and cell immortality: The role of telomeres and telomerase[END_REF][START_REF] Shay | Senescence and immortalization: role of telomeres and telomerase[END_REF]. Telomerase activity depends on the species, age, as well as the type of tissue (e.g., [START_REF] Gomes | Telomere biology in Metazoa[END_REF]. For instance, telomerase is active during the development before birth and after only in stem and germ cells in humans [START_REF] Liu | Telomere lengthening early in development[END_REF][START_REF] Morgan | Telomerase regulation and the intimate relationship with aging[END_REF] whereas in Daphnia pulicaria Forbes, 1893 the telomerase activity in all tissues of the body decreases with increasing age [START_REF] Schumpert | Telomerase activity and telomere length in Daphnia[END_REF]. The TERT is essential in the telomerase protein complex and has been shown to be related to cell survival in humans [START_REF] Cao | TERT regulates cell survival independent of telomerase enzymatic activity[END_REF]. The TERT has also been detected in numerous species including vertebrates, fungi, ciliates, and insects [START_REF] Robertson | Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera[END_REF][START_REF] Podlevsky | The telomerase database[END_REF].

Because the patterns of senescence are strongly diversified within the living world, it seems essential to study organisms displaying markedly different life histories strategies to understand the causes and mechanisms underlying this diversity. Thus, invertebrates are increasingly used in experimental studies of senescence [START_REF] Stanley | Aging and immunosenescence in invertebrates[END_REF][START_REF] Ram | Invertebrates as model organisms for research on aging biology[END_REF].

In addition to share similarities with vertebrates in terms of senescence, they can be manipulated experimentally and they are easier to monitor throughout their entire lifetime [START_REF] Ram | Invertebrates as model organisms for research on aging biology[END_REF]. These advantages make them models of choice for studying senescence. Here, we propose the common woodlouse Armadillidium vulgare [START_REF] Latreille | Tableau méthodique des Insectes[END_REF] as a promising new model for studying senescence. Woodlouse can live beyond three years and display sex-specific senescence patterns in natural populations [START_REF] Paris | Population characteristics of the terrestrial isopod Armadillidium vulgare in California grassland[END_REF]. In addition, one study has already reported evidence of immune-senescence in this species [START_REF] Sicard | Variations of immune parameters in terrestrial isopods: a matter of gender, aging and Wolbachia[END_REF].

In this context, we tested the suitability of β-galactosidase activity, immune cell parameters, and the TERT gene expression to cause age-specific responses in A. vulgare.

According to reports in the literature, we expected an increase in β-galactosidase activity, and a decrease of both TERT gene expression and immune cell viability and density in A. vulgare.

As males have higher adult survival than females [START_REF] Paris | Population characteristics of the terrestrial isopod Armadillidium vulgare in California grassland[END_REF], cellular senescence patterns are also expected to be sex-specific in this species.

MATERIALS AND METHODS

Biological model

Individuals of A. vulgare used in the experiments were obtained from a wild population collected in Denmark in 1982. These individuals have been maintained on moistened soil under the natural photoperiod of Poitiers, France (46.58°N, 0.34°E) at 20 °C, and fed ad libitum with dried linden leaves and carrots. Crosses were monitored to control and promote genetic diversity. For each clutch obtained, individuals were sexed, and brothers and sisters were separated to ensure virginity. Woodlice are promiscuous and only breed when they are one-year old during their first breeding season in the spring. Females carry their offspring in a ventral pouch (marsupium) and can produce up to three clutches per season. In the common woodlouse, individuals molt throughout their lifetimes, with approximate one molt per month.

During this process all the cells of the concerned tissues are renewed at 20 °C [START_REF] Steel | Mechanisms of coordination between moulting and reproduction in terrestrial isopod crustacea[END_REF].

The brain, the nerve cord, and gonads, however, are not renewed during molting and are therefore relevant candidates for tissue-specific study of senescence in this species. Woodlice were classified in three different age categories: juvenile (before first reproduction, birth to one-year old), young (one-year old, first year of reproduction), and old (up to two-year old), which are very rare in natural populations [START_REF] Paris | Population characteristics of the terrestrial isopod Armadillidium vulgare in California grassland[END_REF]. As the woodlouse is continuous grower, juveniles and small individuals could not be used for certain experiments, especially when they required protein extraction or hemolymph collection. Thus, we were only able to test in them the telomerase expression. Old individuals were sampled according to the number of individuals available in our breeding; sometimes we had two-year-old individuals and sometimes three-year-old ones. Moreover, males and females were tested separately to assess the impact of sex.

Measurement of β-galactosidase activity

To test the impact of age on β-galactosidase activity, 180 individuals were used: 90 young (i.e., six-month old, 45 males, and 45 females) and 90 old (two-year old, 45 males, and 45 females).

Individuals were dissected separately in Ringer solution (sodium chloride (NaCl) 394 mM, potassium chloride (KCl) 2 mM, calcium chloride (CaCl2) 2 mM, sodium bicarbonate (NaHCO3) 2 mM) and nerve cord was removed. To obtain a sufficient amount of protein, we made pools of five nerve cords from five different individuals of the same age. The five nerve cords were filed in 500 µl of Lyse buffer 1X (Chaps detergent ((3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate) 5 mM, citric acid (C6H807) 40 mM, sodium phosphate (Na3PO4) 40 mM, benzamidine (C7H8N2) 0.5 mM, and PMSF (phenymethylsulfonyle (C7H7FO2S) 0.25 mM, pH 6) [START_REF] Gary | Quantitative assay of senescence-associated βgalactosidase activity in mammalian cell extracts[END_REF], and then centrifuged at 15,000g at 4 °C for 30 min. The supernatant was taken and kept at -80°C until its utilization. The protein concentration was determined by the BCA (bicinchoninic acid assay) assay (Thermo Fisher Scientific, Waltham, MA, USA) and homogenized at 0.1 mg ml -1 . The β-galactosidase activity was measured as described by [START_REF] Gary | Quantitative assay of senescence-associated βgalactosidase activity in mammalian cell extracts[END_REF]. Briefly, 100 µl of extracted protein at the concentration of 0.1 mg ml -1 were added to 100 µl of reactive 4-methylumbelliferyl-D-galactopyranoside (MUG) solution in a 96-wellmicroplate.

The MUG reactive, in contact to β-galactosidase, leads by hydrolysis to the synthesis of 4methylumbelliferone (4-MU), which is detectable using fluorescent measurements. Measures were performed by the multimode Mithrax microplate reader (LB940 HTS III, excitation filter: 120 nm, emission filter 460 nm; Berthold Technologies, Bad Wildbad, Germany) for 120 min. Two technical replicates were measured for each nerve pool.

Measurement of immune cell parameters

To test the impact of age on the immune cell parameters (i.e., density, viability, and size), we were able to undertake individual tests because of our previous experience. It was therefore not necessary to carry out pools of hemolymph unlike proteins or DNA to make the measurements. Sixty mature individuals were used: 30 young (i.e., one-year old, 15 males, and 15 females) and 30 old (three-year old, 15 males, and 15 females) individuals.

To study the impact of age on the immune parameters, a hole was bored in the middle of the sixth segment and 3 µl of haemolymph were collected per individual with an eyedropper and deposited promptly in 15 µl of anticoagulant solution (MAS-EDTA (EDTA (ethylenediaminetetraacetic (C10H16N208)) 9 mM, trisodium citrate (Na3C6H5O7) 27 mM, sodium chloride (NaCl) 336 mM, glucose (C6H12O6) 115 mM, pH 7 [START_REF] Rodriguez | Characterisation of shrimp haemocytes and plasma components by monoclonal antibodies[END_REF]).

individuals were used for this experiment. For each group we tested the expression level of the TERT gene in two different tissues: the nerve cord (somatic line) and gonads (germinal line).

Animals were washed by immersion for 30 sec in a 30% sodium hypochlorite solution (NaClO) followed by two 30-sec immersions in distilled water. Tissues were dissected in Ringer solution (sodium chloride 394 mM, potassium chloride (KCl) 2 mM, calcium chloride (CaCl2) 2 mM, sodium bicarbonate (NaHCO3) 2 mM) and deposited by pools of five units for each tissues on TRIzol reagent (Invitrogen) to extract RNA according to the manufacturer's protocol after a cell disintegration using a Vibra Cell 75,185 sonicator (amplitude of 30%).

Total RNA was quantified by NanoDrop technology and stored at -80 °C until use. Reverse transcriptions (RT) were made from 500 ng of RNA previously extracted and using the SuperScript TM IV Reverse Transcriptase kit (Thermo Fisher Scientific) according to the manufacturer's instructions. Primers were designed using the identified gene: primer TERT_F: 5'-AGGGAAAACGATGCACAACC-3' and primer TERT_R: 5'-GTTCGCCAAATGTTCGCAAC-3' (see Supplementary material S1). Quantitative RT-PCR was performed using 0.6 µl of each primer (10 µM), 2.4 µl of nuclease-free water, and 1.5 µl of cDNA template and the LightCycler LC480 system (Roche, Pleasanton, CA, USA ) as follows: 10 min at 95 °C, 45 cycles of 10 s at 95 °C, 10 s at 60 °C, and 20 s at 72 °C.

Expression levels of target genes were normalized based on the expression level of two reference genes previously established: the ribosomal protein L8 (RbL8) and the Elongation Factor 2 (EF2) [START_REF] Chevalier | The immune cellular effectors of terrestrial isopod Armadillidium vulgare: Meeting with their invaders, Wolbachia[END_REF].

Statistical analyses.

All statistical analyses were performed using the R software v.3.5.2 (R. Core [START_REF] Team | R: A language and environment for statistical computing[END_REF].

The β-galactosidase activity was analyzed with linear mixed effect models using the package lme4 [START_REF] Bates | Fitting linear mixed-effects models using lme4[END_REF]. As two technical replicates were measured for each pool, the model included the pools fitted as a random effect, age and sex and their two-way interaction as fixed factors.

Concerning the immune parameters, linear models with Gaussian distribution were fitted to analyze variation in the cell size and viability. A linear model of the cell number (logtransformed; [START_REF] Ives | For testing the significance of regression coefficients, go ahead and logtransform count data[END_REF] was fitted for the cell density.

The level of TERT expression according to age in the two different tissues were compared by a Kruskal-Wallis rank sum test in combination with Nemenyi's post hoc multiple comparison test with the Tuckey correction using R package PMCMR [START_REF] Pohlert | The pairwise multiple comparison of mean ranks package (PMCMR). R package[END_REF].

RESULTS

β-galactosidase activity

The β-galactosidase activity was higher in old (i.e., two-year old) than in young (i.e., sixmonth old) individuals (c 2 1 = 6.15, P = 0.013; Fig. 1). We also detected a higher βgalactosidase activity in females than in males (c 2 1 = 7.26, P = 0.007; Fig. 1).

<Fig. 1> Immune cells parameters

Cell size was higher in three-year-old than in one-year-old individuals (F1,58 = 8.54, P = 0.005; Fig. 2A). Conversely, the cell density was higher in one-year-old than in three-year-old individuals (F1,58 = 4.33, P = 0.01; Fig. 2B). Concerning the immune cell viability, a statistically significant interaction occurred between age and sex, with a relatively lower immune cell viability in three-year-old females (F3,56 = 6.85, P = 0.01; Fig. 2C). No sex effect was detected on cell size (F2,57 = 0.76, P = 0.38; Fig. 2A) or cell density (F2,57 = 0.32, P = 0.57, Fig. 2B).

<Fig. 2> TERT gene expression

The TERT gene expression decreased with increasing age in nerve cords (c 2 3 = 23.30, P < 0.001; Fig. 3A). TERT expression was higher in four-month-old individuals compared to twoyear-old and three-year-old individuals (P = 0.001 in both cases) and in one-year-old individuals compared to three-years-old individuals (P = 0.038), without any detectable sex effect (c 2 1 = 0.14, P = 0.70; Fig. 3A). In gonads, the TERT gene expression was much higher in females (c 2 1 = 17.81, P < 0.001; Fig. 3B) and tended to decrease with increasing age (c 2 3 = 7.5, P = 0.057; Fig. ,3B) as the TERT gene expression tended to be higher in four-month-old females compared to three-year-old females (P = 0.054). A general tendency was also observed in males (c 2 1 = 7.34, P = 0.061; Fig. 3B), the TERT gene expression tending to be higher in two-year-old individuals compared to one-year-old and three-year-old individuals (P = 0.14 and P = 0.12, respectively; Fig. 3B).

<Fig. 3>

DISCUSSION

We tested several effective physiological biomarkers of vertebrate senescence to assess whether they could also be used in invertebrates such as the common woodlouse. Immune cells showed an increase in their size and a decrease in their density and viability with increasing age. The activity of the β-galactosidase enzyme in nerve cords increased. The TERT gene expression decreased with increasing age in nerve cords of males and females and in the gonads of females. In contrast, the TERT gene expression was very low in the male gonads to suggest a role on the cellular senescence status in this tissue. The difference regarding the expression of TERT in the nerve cords and gonads underlies the importance of organ choice to perform such an analysis.

Our study is in line with previous studies that had previously revealed the possibility of using vertebrate biomarkers in invertebrates [START_REF] Hsieh | Honeybee trophocytes and fat cells as target cells for cellular senescence studies[END_REF][START_REF] Park | Cellular immunosenescence in adult male crickets, Gryllus assimilis[END_REF][START_REF] Schumpert | Telomerase activity and telomere length in Daphnia[END_REF]. By testing a set of different physiological biomarkers of vertebrate senescence, often studied independently, our study supports both ideas that routinely used biomarkers in vertebrates can be adapted in invertebrates and that the senescence process is quasi-ubiquitous in the living world and can be expressed in a similar way in very different organisms.

Previous studies have shown that the probabilities to survive decrease with increasing age in A. vulgare [START_REF] Paris | Population characteristics of the terrestrial isopod Armadillidium vulgare in California grassland[END_REF]. The cellular damages accumulated during the life of the isopod could be the cause of cell senescence and therefore the driving force behind actuarial senescence [START_REF] Harman | Aging: a theory based on free radical and radiation chemistry[END_REF][START_REF] Barja | The flux of free radical attack through mitochondrial DNA is related to aging rate[END_REF][START_REF] Barja | Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals[END_REF][START_REF] Finkel | Oxidants, oxidative stress and the biology of ageing[END_REF]. In A. vulgare, the 2-and 3-year-old individuals could have therefore accumulated more cellular damages during their lifetime, leading to the cellular senescence we report.

Our study also revealed a strong difference between sexes on the response of biomarkers to age changes. At a given age, females display higher β-galactosidase activity and lower immune cell viability than males, as if they age faster than males. Between-sex differences in lifespan have been reported in A. vulgare with a longer lifespan in males than in females [START_REF] Geiser | Further observations on the sex-ratios of terrestrial isopods[END_REF][START_REF] Paris | Population characteristics of the terrestrial isopod Armadillidium vulgare in California grassland[END_REF]. Exact differences in actuarial senescence patterns (i.e., age-specific changes in survival probabilities) remain to be quantified in A.

vulgare but such differences are quite common both in vertebrates and invertebrates [START_REF] Tidière | Does sexual selection shape sex differences in longevity and senescence patterns across vertebrates? A review and new insights from captive ruminants[END_REF][START_REF] Marais | Sex gap in aging and longevity: can sex chromosomes play a role?[END_REF]. One of the main hypotheses proposed to explain sex differences in longevity or senescence patterns relies on different resource allocation strategies between sexes [START_REF] Vinogradov | Male reproductive strategy and decreased longevity[END_REF][START_REF] Bonduriansky | Sexual selection, sexual conflict and the evolution of ageing and life span[END_REF]. Females carry their offspring in their marsupium for one month, giving nutrients and protection, thus, they allocate more energy to reproduction than males that do not provide any parental care. The fact that the lifespan of A. vulgare is shorter in females [START_REF] Paris | Population characteristics of the terrestrial isopod Armadillidium vulgare in California grassland[END_REF] thus supports a role of differential sex allocation in this species. Moreover, the difference between males in TERT expression in gonads also suggest a difference in sex allocation according both to age and sex. The increased in TERT expression in male gonad in two-years-old individuals should be the result of a terminal investment in reproduction for males: by increasing their TERT expression and thus potentially their telomerase activity they should provide a better fitness to their offspring. This allocation may be lost when males are too old (three-year old).

Sex differences in resource allocation strategies could also be driven by environmental conditions [START_REF] Shertzer | State-dependent energy allocation in variable environments: life history evolution of a rotifer[END_REF]. Our physiological biomarkers of vertebrate senescence revealed sex differences, and as supported in [START_REF] Depeux | Impact of temperature and photoperiod impact on survival and biomarkers of senescence in common woodlouse[END_REF], they could constitute useful tools to identify other factors involved in variations in senescence patterns, such as environmental stressors. Moreover, if these biomarkers seem to predict better the physiological age than chronological age, notably in terms of survival and reproduction, they could correspond to biomarkers of senescence in the woodlouse [START_REF] Baker | Biomarkers of aging[END_REF][START_REF] Simm | Potential biomarkers of ageing[END_REF][START_REF] Sprott | Biomarkers of aging and disease: Introduction and definitions[END_REF].

The physiological biomarkers of vertebrate senescence thus respond to age changes in A. vulgare, a species that represents a new invertebrate model of aging. The parameters that predict the chronological age of A. vulgare individuals might offer reliable biomarkers, especially if their measurements are related to both reproductive and survival prospects more than to the chronological age of individuals. The availability of its genome, the ease of its breeding, its particularity to continue growing during its lifespan, and its adaptations to 
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 2 Figure 2. Relative expression level of TERT expression in nerve cords (A) and in gonads (B)
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Then, 6 µl of trypan blue at 0.4% (Invitrogen, Carlsbad, CA, USA) were added to color the dead cells. Thereafter, 10 µl of this solution were deposed in a counting slide (Invitrogen Coutness®; Thermo Fisher Scientific). The immune cell density, the immune cell viability, and the immune cell size were evaluated using an automated cell counter (Invitrogen Countess®).

Measurement of TERT gene expression

The identification of the telomerase reverse transcriptase (TERT) gene was first performed from the A. vulgare genome [START_REF] Chebbi | The genome of Armadillidium vulgare (Crustacea, Isopoda) provides insights into sex chromosome evolution in the context of cytoplasmic sex determination[END_REF]. In order to test whether this gene was present and preserved in crustaceans, phylogenetic analyses were undertaken upstream (see Supplementary material S1-S4). This gene has been found in crustacean transcriptomes and the topology of the TERT-gene tree follows the phylogenetic relationships between the involved species (Supplementary S3), suggesting a conserved role of the TERT gene.

Gene expression

We tested the effect of age on the expression of TERT gene within four different age groups: 1) four-month old, 2) one-year old, 3) two-year old, and 4) three-year old. Females and males were tested separately by pools of five individuals in one-, two-, and three-year-old groups and by pools of seven individuals in a four-month-old group as smaller individuals provide less biological material. All conditions required four replicates for each sex. A total of 176 terrestrial life as well as the presence of cellular senescence on our senescence biomarkers make it a promising candidate to study senescence.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of Crustacean Biology online. S1. Phylogenetic analysis protocol of the TERT gene in crustaceans. S2. TERT-gene alignment used for the phylogenetic analysis. S3. TERT-gene tree following the phylogenetic relationships between the species involved. S4. TERT-gene tree following the phylogenetic relationships between the species involved (Newick format).