
HAL Id: hal-03060095
https://hal.science/hal-03060095

Submitted on 13 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CSR++: A Fast, Scalable, Update-Friendly Graph Data
Structure

Soukaina Firmli, Vasileios Trigonakis, Jean-Pierre Lozi, Iraklis Psaroudakis,
Alexander Weld, Dalila Chiadmi, Sungpack Hong, Hassan Chafi

To cite this version:
Soukaina Firmli, Vasileios Trigonakis, Jean-Pierre Lozi, Iraklis Psaroudakis, Alexander Weld, et
al.. CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure. 24th International Con-
ference on Principles of Distributed Systems (OPODIS ’20), Dec 2020, Strasbourg (on line), France.
�10.4230/LIPIcs.OPODIS.2020.17�. �hal-03060095�

https://hal.science/hal-03060095
https://hal.archives-ouvertes.fr

CSR++: A Fast, Scalable, Update-Friendly Graph1

Data Structure2

Soukaina Firmli∗3

Mohammed V University in Rabat, Ecole Mohammadia d’Ingénieurs, SIP Research Team, Morocco4

Oracle Labs, Morocco5

Vasileios Trigonakis∗
6

Oracle Labs, Switzerland7

Jean-Pierre Lozi∗8

Oracle Labs, Switzerland9

Iraklis Psaroudakis∗
10

Oracle Labs, Switzerland11

Alexander Weld∗
12

Oracle Labs, Switzerland13

Dalila Chiadmi†14

Mohammed V University in Rabat, Ecole Mohammadia d’Ingénieurs, SIP Research Team, Morocco15

Sungpack Hong∗
16

Oracle Labs, USA17

Hassan Chafi∗
18

Oracle Labs, USA19

Abstract20

The graph model enables a broad range of analysis, thus graph processing is an invaluable tool in21

data analytics. At the heart of every graph-processing system lies a concurrent graph data structure22

storing the graph. Such a data structure needs to be highly efficient for both graph algorithms and23

queries. Due to the continuous evolution, the sparsity, and the scale-free nature of real-world graphs,24

graph-processing systems face the challenge of providing an appropriate graph data structure that25

enables both fast analytical workloads and low-memory graph mutations. Existing graph structures26

offer a hard trade-off between read-only performance, update friendliness, and memory consumption27

upon updates. In this paper, we introduce csr++, a new graph data structure that removes these28

trade-offs and enables both fast read-only analytics and quick and memory-friendly mutations. csr++29

combines ideas from CSR, the fastest read-only data structure, and adjacency lists to achieve the30

best of both worlds. We compare csr++ to CSR, adjacency lists from the Boost Graph Library, and31

LLAMA, a state-of-the-art update-friendly graph structure. In our evaluation, which is based on32

popular graph-processing algorithms executed over real-world graphs, we show that csr++ remains33

close to CSR in read-only concurrent performance (within 10% on average), while significantly34

outperforming CSR (by an order of magnitude) and LLAMA (by almost 2×) with frequent updates.35

2012 ACM Subject Classification Information systems → Data structures; Theory of computation36

→ Concurrency; Theory of computation → Graph algorithms analysis; Computing methodologies37

→ Concurrent algorithms38

Keywords and phrases Data Structures, Concurrency, Graph Processing, Graph Mutations39

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.1740

∗ firstname.lastname@oracle.com
† chiadmi@emi.ac.ma

© Soukaina Firmli, Vasileios Trigonakis, Jean-Pierre Lozi, Iraklis Psaroudakis, Alexander Weld,
Dalila Chiadmi, Sungpack Hong and Hassan Chafi;
licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.OPODIS.2020.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

1 Introduction41

Graph processing is an invaluable tool for data analytics, as illustrated by the plethora of42

relatively recent work aiming at achieving high performance for graph algorithms [12, 17, 23,43

34, 35, 41], such as PageRank [29], or graph querying/mining [13, 21, 26, 27, 31, 33, 38], e.g.,44

using PGQL [5]. At the heart of each graph system lies the graph data structure, responsible45

for holding the vertices and the edges comprising the graph, and whose performance largely46

contributes to the general performance of the system. The ideal graph structure should offer47

excellent read-only performance, fast mutations (i.e., vertex or edge insertions and deletions),48

and low memory consumption with or without mutations.49

Classic graph data structures typically trade some characteristics for others (see Sec-50

tion 2.1). Adjacency lists enable quick graph updates and consume relatively little memory,51

but sacrifice performance, as they lead to expensive pointer chasing. Adjacency matrices52

enable quick edge updates, but sacrifice vertex insertions and consume a lot of memory.53

Finally, the Compressed Sparse Row (CSR) representation offers a good memory footprint54

with excellent read-only performance by completely sacrificing mutability: even a single vertex55

or edge insertion requires complete reallocation of the underlying structures. There have been56

efforts to improve the update-friendliness of CSR (see Section 2.2). These include in-place57

update techniques [36, 39], batching techniques [11, 24], and changeset-based updates with58

delta maps [22] and multi-versioning [23]. A multi-versioning solution is used in LLAMA [23],59

a state-of-the-art update-friendly graph structure that enables mutability on top of CSR by60

appending delta snapshots. However, having a frequent flow of graph updates—which is the61

common case in real-life scenarios, such as financial transactions—results in a large number62

of delta logs, and thus high memory utilization and decreased performance. Compaction63

operations on these data structures are often expensive, hindering the benefits of fast mutab-64

ility (see Section 4 for a performance analysis). Very often, users simply need to operate on65

the most up-to-date version of the graph data, thus asking for fast in-place graph updates.66

In this paper, we introduce csr++, a concurrent graph data structure with performance67

comparable to CSR, efficient updates, and memory consumption proportional to the number68

of mutations. csr++ maintains the array-continuity that makes CSR very fast. In particular,69

vertices are stored in arrays, segmented for better update-friendliness. As in CSR, vertex70

IDs in csr++ are implicitly determined by the location of the vertex, but include both the71

segment ID and where in the segment the vertex lies. Accordingly, the 64 bits of vertex IDs72

are split into {int segment_id; int in_segment_id}, making vertices directly addressable.73

Due to segmentation, inserting a new vertex is as simple as (i) if needed, appending a new74

segment to the array of segments, and (ii) appending the vertex to that segment.75

In contrast to CSR, and like adjacency lists, csr++ can independently manage the edges76

of each vertex. If a vertex has two or more edges, csr++ holds a pointer to an array storing77

the edges. To reduce memory usage, for single-edge vertices, the target vertex of the edge is78

inlined in lieu of the array pointer. All in all, csr++ maintains the array-oriented structures79

of CSR for performance, while enabling per-vertex edge-list modifications to enable fast80

updates as with adjacency lists.81

Apart from vertices and edges, graph structures also need to store vertex and edge82

properties, which are a prominent feature of property graphs. csr++ includes segmentation83

techniques to enable fast property updates when new vertices or edges are inserted. Vertex84

properties are stored in segmented arrays, and each vertex holds a pointer to an array of edge85

property values, allowing for fast per-segment or per-vertex reallocation of property arrays.86

We evaluate csr++ with both read and update workloads, with various graphs and87

S.Firmli et al. 17:3

graph algorithms, and compare it against CSR, adjacency lists, and LLAMA. Our results88

indicate that csr++ is much faster than adjacency lists, is almost as fast as CSR on read-89

only workloads, and has faster updates and lower memory consumption than LLAMA. In90

particular, csr++ performs on average within 10% of the read-only performance of CSR with91

36 threads and is an order of magnitude faster for updates. Furthermore, csr++ is faster92

than LLAMA for most read-only workloads, is almost 2× faster in applying batched updates,93

and consumes 4× less memory when 100 update batches are applied on a base graph.94

The main contributions of this paper are as follows:95

csr++, a new graph data structure that supports fast in-place updates, without sacrificing96

read-only performance or memory consumption; and97

Our thorough evaluation that shows that csr++ achieves the best of both read-only and98

update-friendly worlds.99

2 Background & Related Work100

Graphs are already a prominent data model, especially in the current era of big data and101

data deluge [16]. The advantage over the traditional relational model is that graphs can102

inherently model entities and their relationships. While a relational model needs to join103

tabular data in order to process foreign-key relationships, graph-processing engines have104

built-in ways to efficiently iterate over the graph [37], e.g., over the neighbors of vertices, and105

support a plethora of expressive graph algorithms (such as Green-Marl [19, 34]) and graph106

pattern-matching queries (such as PGQL [5], SPARQL [8], and Gremlin [9]).107

Graphs can be represented with different models and data representations. A popular108

model is the RDF (Resource Description Framework) graph data model [8], which became109

popular with the rise of the semantic web [10]. RDF regularizes the graph representation110

as a set of triples. RDF adds links for all data, including constant literals, and it does not111

explicitly store vertices, edges, or properties separately. As the graph is not stored in its112

native format, it results in reduced performance [40], as RDF engines are forced to process113

and join a large number of intermediate results.114

Our paper focuses on a more recent model, the Property Graph (PG) model [6, 38], which115

is widely adopted by various graph databases and processing systems (such as Neo4J [27]116

and PGX [28, 31]). PG represents the topology of a graph natively as vertices and edges,117

and stores properties separately in the form of key-value pairs. This separation allows for118

quick traversals over the graph structure. Classic graph algorithms, such as PageRank [29]119

and Connected Components, are very naturally expressed on top of property graphs [34].120

In order for graph-processing engines to provide efficient solutions for large-scale graphs,121

they rely on efficient data structures, potentially resident on main memory [23, 41, 18, 15],122

to store and process vertices and their relationships. One of the key challenges for in-memory123

graph-processing engines is to design data structures with reasonable memory footprint [23]124

that can support fast graph algorithm execution [19] and query pattern matching [32], whilst125

supporting topological modifications (like additions or removals of vertices and edges), either126

in batches or in a streaming fashion [25, 11]. In the following, we discuss the most prominent127

data structures in related work [15], and motivate the necessity of the novel csr++. We show128

in Figure 1 an example of a graph and how it is represented in different formats.129

2.1 Graph Representations130

Adjacency Matrices and Lists. An adjacency matrix represents a graph with a V 2 matrix131

M , where V is the number of vertices in the graph. A non-zero cell M [vs][vd] represents the132

OPODIS 2020

17:4 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

 0 1 2 3 4

0 2 5 7 8

1 2 2 3 0 3 31
 0 1 2 3 4 5 6 7 3

0

1

2

3

1 2

1 2 3

0 3

0 - 1 2 - 3

1 1 2 0 3

0,1 0,2 0,10,2
 0 1 2 3

Page 0 Page 1

- - - - - -

4
0 - 1 2 - 3

1,0 1,1
 0 1

Page 0'

3 32
- -

Snapshot 0 Snapshot 1

0

12

3
ne

w ed
ge

new edge1 2 3

Figure 1 (1) An example graph with newly inserted edges in green, represented in different graph
structures: (2) CSR, (3) Adjacency list, and (4) LLAMA with implicit linking and deletion vectors.

directed edge from a source vertex vs to a destination vertex vd. An adjacency matrix is not133

preferred for sparse graphs, i.e., graphs where the number of edges E � V 2, due to increased134

memory footprint and decreased performance in analytics.135

Adjacency lists represent the graph with a set of vertices, where each vertex is associated136

with a list of neighbors, as shown in Figure 1(3). An adjacency list typically consumes less137

memory than an adjacency matrix, since for a given vertex only the existing edges need to138

be stored. The typical format for the adjacency list uses linked lists, with extra pointers, but139

more cache-friendly variants exist, such as Blocked Adjacency Lists, where adjacencies are140

represented by simple arrays [41] or with linked lists of buckets containing a fixed size of141

edges [14, 17]. As an example, the popular Boost C++ Library [1] implements adjacency142

lists and the edge structures can be configured to either be vectors, lists, or sets. Although143

adjacency lists can be efficient in terms of mutations, they struggle in read-only workloads,144

as we show in Section 4.145

Compressed Sparse Row (CSR). CSR [19] is a commonly used data structure for sparse146

graphs, because it compacts adjacencies into two arrays: The vertex array and the edge array.147

In the vertex array, each vertex is identified by its array index. The vertex cell stores the148

begin offset in the edge array (the end offset is implicit, as it is equal to the begin offset of149

the next vertex cell), where the list of the destination neighbors of this vertex is stored, as150

shown in Figure 1(2). In terms of graph mutations, CSR is very inefficient. For example, to151

add an edge, the whole edge array needs to be reallocated with the newly-added edge and152

the subsequent edges shifted by one place.153

2.2 Graph Mutations154

Graph mutations, or updates, mostly refer to vertex or edge insertions and deletions. Although155

CSR is one of the most popular data structures for representing a graph, it is, as mentioned156

above, very limiting for graph mutations. This has prompted a lot of related work on mutable157

data structures to represent graphs that can efficiently digest sets of updates.158

In-Place Updates. Techniques that use in-place updates employ the aforementioned static159

data structures in a way that allows for in-place digestion of sets with insertions and deletions160

of vertices and edges, without requiring the expensive rebuild of the data structure. For161

instance, Dense [20] is a concurrent graph adjacency matrix that supports mutations and162

partial traversals through a coordination protocol, but does not handle graph properties.163

NetworKit [36], in order to perform edge insertions, stores adjacencies vectors that double the164

size of the initial array to reserve enough space for new incoming edges. Madduri et al. [24]165

S.Firmli et al. 17:5

use the same underlying technique but define a configurable size of the new edge array instead166

of using factor 2. Ediger et al. [14] implement blocked adjacency lists and allow insertions167

by appending new blocks and updating pointers. Wheatman et al. [39] implement a variant168

of CSR that leaves space at the end of each adjacency list to allow efficient single-threaded169

mutations. We employ similar techniques in csr++ to ingest mutations, but in a parallel170

manner while also handling graph property mutations.171

Batching. Regarding the sources of changes, they can be continuous streams of updates [11,172

14] or single changes applied as “local” mutations. Generally, when applying a batch of173

updates, frameworks perform pre-processing to re-arrange the batches in ways that can174

speed-up the mutations. For instance, Madduri et al. [24] apply techniques on the list of new175

edges, such as sorting, re-ordering, and partitioning, in order to exploit parallelism at the176

time of the changes application. Similarly, csr++ groups updates by their source vertices,177

and uses multiple threads to perform fast edge insertions (see Section 3.2).178

Multi-Versioning & Deltas. One way to extend CSR to support fast updates is by allocating179

a separate structure to store only the new changes [22] in delta maps. Furthermore, by180

using deltas, the following systems can run analytical workloads on different static versions181

(snapshots) of the changing graph over time. LLAMA [23] is a state-of-the-art snapshot-based182

graph system that supports multi-versioning by storing deltas as separate snapshots and183

supports concurrent access to those snapshots (see Figure 1(4)). ASGraph [17] limits its184

read-access to one snapshot at a time but still ensures high performance by extending its185

underlying data structure [14] with temporal attributes. Graphite [30] is an in-memory186

relational column-store that employs also multi-versioning snapshots using deltas.187

The downside of the above approaches is two-fold. First, maintaining separate snapshots188

increases the memory requirements of the system, as a frequent flow of graph updates results189

in a large number of deltas. Second, the performance of analytics is degraded because they190

need to read from both the original structure and the deltas and reconcile them. A solution191

to the potential performance degradation is to periodically merge the delta maps into CSR,192

an operation called compaction. Compaction, however, can become very expensive, often193

zeroing the mutability performance benefits of these structures. For users that wish to194

operate on the most up-to-date version of the graph data, we show that csr++, which is195

designed for in-place graph mutations, achieves better analytics and update performance than196

LLAMA [23], with up to an order of magnitude lower memory requirements (see Section 4).197

3 CSR++: Design and Implementation198

With csr++, our goal is to design a data structure that stores graphs and allows fast in-199

place mutations with analytics performance comparable to CSR. In order to allow for fast200

algorithms, csr++ enables fast concurrent accesses to the main graph data (vertex and edge201

tables) and stores additional graph data, such as reverse edges, user-defined keys, and vertex202

and edge properties. csr++ does not aim to support versioning, but instead fast in-place203

updates, allowing to withstand frequent small updates without the overhead of snapshots.204

3.1 Graph Topology and Properties205

csr++ is a concurrent structure that stores the graph in memory using segmentation techniques.206

It allows in-place insertions by allocating additional space for new incoming edges and supports207

logical deletions of vertices and edges. Figure 2 shows the building blocks of csr++.208

OPODIS 2020

17:6 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

Segments. csr++ stores vertices in arrays called segments. The graph is represented as an209

array of segments, each storing a fixed number of vertices defined by a global configurable210

parameter NUM_V_SEG. Segments give flexibility to csr++ in three ways: (i) memory allocations211

and reallocations use segment granularity, (ii) vertex properties are allocated per segment,212

and (iii) synchronization for concurrency uses segment granularity. As with CSR, csr++213

packs the vertices in arrays to reduce the memory footprint when storing sparse graphs,214

which also results in better cache locality. The entry point to csr++ is an array that stores215

all segments; this also enables quick segment additions. Finally, each segment stores a vector216

of pointers to the vertex property arrays.217

Vertices. Each vertex stores its degree, a pointer to its list of neighbors, and optionally218

a pointer to the property values of its edges. This design resembles a mix of CSR and219

adjacency lists, however, adding a new vertex in csr++ is faster (see Section 3.2) considering220

that the vertex array is segmented, i.e., we do not need to copy the whole vertex array to221

add or remove entries. csr++ does not store explicit IDs for vertices nor edges, but since222

all segments store a fixed number NUM_V_SEG of vertices, we can compute implicit IDs for223

vertices using the segment ID and the index of the vertex in the segment: global_v_id =224

(seg_id * NUM_V_SEG) + v_id . Overall, the vertex structure consists of the following fields:225

length (4 bytes): The vertex degree. A length of −1 indicates a deleted vertex.226

neighbors (8 bytes): A pointer to the set of neighbors. As a space optimization, if227

length = 1, this field directly contains the neighbor’s vertex ID.228

edge_properties (8 bytes): A pointer to the set of edge properties. As a space229

optimization, this field can be disabled in case the graph does not define edge properties.230

Edges. csr++ represents the neighbors list of a vertex by an array of edges, where every231

entry stores the coordinates (i.e., the vertex ID and the segment ID) of the corresponding232

neighbor. At loading time, the edges are sorted; as with CSR and LLAMA, keeping the233

edges sorted allows for better cache performance. Moreover, this semi-sorting is necessary for234

csr++ in a deletion-frequent context, as we use binary search to locate edges. Additionally,235

as an optimization for update-friendliness, csr++ can be configured to create extra empty236

space for new incoming edges during graph loading (see Section 3.2). The edge structure237

consists of the following fields:238

deleted_flag (2 bytes): For logical deletion of edges.239

vertex_id (2 bytes): The index of the neighbor in the segment; using 16 bits allows240

for segments with a capacity NUM_V_SEG of up to 65536 entries.241

segment_id (4 bytes): The segment ID where the neighbor is stored.242

Edge Array

prop_1
{type = char}

prop_2
{type = int}

Segments

V1 {num_edges = 3}

Vertex Array

Edge Properties Array

Vertex Array

Lock

Properties DesignTopology Design

Vertex Property Array

Figure 2 The building blocks of csr++: Graph topology (left) and graph properties (right).

S.Firmli et al. 17:7

For better cache utilization when scanning over vertices and better load balancing when using243

multiple threads, the number of vertices that a segment stores should neither be very small244

nor too large, in order to avoid copying large amounts of data when the graph is updated.245

By default we use NUM_V_SEG = 4096 vertices per segment.246

Properties. Vertex property values are stored in arrays parallel to the vertices array. csr++247

keeps a vector of pointers to each vertex property array within the segment. The size of248

each array is therefore NUM_V_SEG * sizeof(Property_Type). For edge properties, we use the249

same segmentation approach as vertices. If the user enables edge properties, each vertex250

structure stores a pointer to an array of edge property values, as shown in Figure 2. In251

case of multiple properties, we allocate an array that stores the values for different edge252

properties in an cache-aligned manner. In order to locate a specific edge property p, we use253

offsets and the position of its values can be calculated given the type of that property Tp,254

the index i of the edge in the neighbor list, and the degree d of the vertex v. For example,255

suppose the user registers n edge properties, then the total size of the edge properties of256

a vertex v is
∑n

p=1(sizeof (Typep) ∗ d). Similarly, the values of the xth property begin at257

Values(x) =
∑x

p=1(sizeof (Typep) ∗ d). Accordingly, the property value for the xth property258

of the edge i is Value(x, i) = Values(x) + (i ∗ sizeof (Typex)).259

The reason for this choice is that having the edge properties stored in parallel to the edge260

arrays allows to copy-on-write the edge property arrays of the updated vertices only, unlike261

with CSR where there is a need to rebuild edge properties for the entire graph. In addition,262

this design makes it easier to keep the property values in the same order as the edges in case263

we have to sort them after an update operation. As we show in Section 4.6, this design adds264

a moderate memory overhead. Naturally, if the to-be-loaded graph configuration does not265

include edge properties, edge property support can be disabled to save memory.266

Additional Structures. Most real-life graphs include user-provided vertex IDs, e.g., a full-267

name string. csr++ supports mapping of user vertex keys to internal IDs by storing them in a268

map and, inversely, internal IDs are mapped directly inside the segments of csr++ using one269

ID mapping array per segment. For directed graphs, some algorithms, e.g., PageRank, require270

access to reverse edges and sometimes mappings from reverse to their corresponding forward271

edges (e.g., Weighted PageRank; see Section 4). To ensure fast lookup over the reverse edges272

and their mapping, similar to most representations, such as CSR in Green-Marl [2] and273

LLAMA, csr++ reserves additional structures to store the reverse edges corresponding to274

each forward edge, as well as the mapping between their indices stored as an edge property.275

These increase the memory footprint but contribute to higher performance.276

Synchronization. Synchronization in csr++ is implemented at the segment level, using277

spinlocks to protect data writes. csr++ does not support scans concurrent to updates.278

3.2 Update Protocols279

csr++ supports efficient concurrent in-place mutations by allowing both single local updates280

(e.g., inserting edge by edge) and batch update operations.281

Vertex and Edge Insertion. For vertex insertions, as described in the previous section, the282

length field in the vertex structure stores the degree of the vertex. Lengths ≥ 0 indicate a283

valid vertex. New vertex insertions land in the last segment. To add a vertex: in case there284

OPODIS 2020

17:8 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

is enough space in the last segment, csr++ finds the first non-valid vertex, and then sets the285

vertex accordingly. Setting the vertex also indicates that there is a reserved space for the286

corresponding vertex property entries. Otherwise, if the last segment is full, the insertion287

operation allocates a new one, along with new arrays for each registered vertex property.288

Inserting a new segment in csr++ is as simple as appending a new pointer to the segment289

array. Extending this array is lightweight, given that even for large graphs such as Twitter,290

csr++ only needs to copy ≈ 3MB worth of pointers.291

As for edge insertions, the per-vertex edge arrays use classic allocation amortization292

techniques for efficient edge insertions. If there is no space left to add edges, we double the size293

of the array through reallocation. This way we keep the size of the allocated array as a power294

of two, which helps amortize the allocation costs upon possible future insertions. Naturally,295

csr++ can support different growing factors than 2× to enable tuning edge insertion and296

memory consumption performance.297

Although csr++ efficiently supports single vertex and/or edge insertions, in practice,298

insertions happen in batches, e.g., inserting a set of new transactions in a financial graph.299

Batch insertion enables csr++ to leverage multi-threading and reduces the cost of maintaining300

per-vertex edge sorting. Batch insertions are implemented with the following steps:301

1. Collect an input of edges grouped by their source vertices and convert both source and302

destination user keys to internal keys. New vertices are inserted in csr++ and each303

acquires a new internal ID. We keep this step sequential in csr++, as it is very lightweight304

(see Section 4.2).305

2. Sort new edges (parallel for each source vertex) then insert them in direct and reverse306

maps (parallel for each source vertex).307

3. Sort the final edge arrays using a technique that merges two sorted arrays (i.e., the308

old edges and the new ones) and reallocate edge properties (parallel for each modified309

segment) according to the new order of edges.310

Vertex and Edge Deletion. Deletions are not very frequent in real-life workloads. Accord-311

ingly, we develop a very lightweight protocol of logical deletions. As presented above, for312

vertices, setting the length to a negative value indicates an invalid/deleted vertex. For edges,313

the separate delete_flag indicates deletion. Of course, vertex and edge iterators are adapted314

to take these flags into account and disregard deleted entities. Optionally, when deleting315

a vertex, the list of neighbors can be destroyed. Currently, csr++ instead restricts access316

to the edges if the vertex length is negative. Since csr++ does not store explicit edge keys,317

deleting an edge requires to translate the source and destination vertex keys to internal IDs318

and scan over the neighbor list to locate the edge to be deleted. As already mentioned, for319

fast scans, csr++ keeps the per-vertex edges sorted and performs binary searches. In case320

storage becomes very fragmented due to many deletions, a rather heavyweight compaction321

operation needs to be invoked to physically remove logically deleted entities. The cost of this322

operation is proportional to the cost of populating the same graph from scratch. However, we323

expect that this operation seldom happens in real-life deployments. Additionally, segments324

with no deletions can be reused as-is in the compacted graph.325

3.3 Algorithms on Top of CSR++326

csr++ is written in C++ and is simple to use when writing graph algorithms. To iterate over327

vertices, csr++ requires a nested loop to iterate over the segments then over the vertices per328

segment. Using parallelism APIs, such as OpenMP [4], the nested loops can be automatically329

S.Firmli et al. 17:9

collapsed and optimized. For algorithms requiring access to edges, the vertex structure330

implements a get_neighbors() method that returns its edge list.331

4 Evaluation332

In this section, we answer to the following questions regarding the performance of csr++: How333

does csr++ perform on read-only and on update workloads? How much memory does csr++334

consume on these workloads? How does csr++ perform in comparison to other read-friendly335

(i.e., CSR) and update-friendly graph structures (i.e., adjacency lists and LLAMA [23])?336

To this end, we compare the graph-structure configurations in Table 1, using two real-world337

graphs [7], LiveJournal (4.8 million vertices and 68 million edges) and Twitter (41 million338

vertices and 1.4 billion edges), as well as the four algorithms in Table 2 in various workload339

configurations. Before we present the experimental results, we describe our configuration.340

Table 1 Graph structures and the configurations that we use in our evaluation.

Name Type Configuration
csr++ Segmentation based Pre-allocating extra space for new edges. Deletion support

enabled only on deletion workloads, in order to have fair
comparison to LLAMA that does not support deletions by
the default.

BGL [1] Adjacency list Bidirectional with default parameters.
CSR [2] CSR Implementation in the Green-Marl library [2].
LLAMA [3] CSR with delta logs Read- and space-optimized with explicit linking. The fast-

est overall variant of LLAMA. Deletion support enabled
only on deletion workloads.

Table 2 Algorithms used in our evaluation.

Algorithm Description
PageRank Computes ranking scores for vertices based on their incoming edges.
Weakly Connected
Components (WCC)

Computes affinity of vertices within a network.

Breadth-First Search
(BFS)

Traverses the graph, starting from a root vertex, visits neighbors and
stores distance of vertices from the root vertex, as well as parents.

Weighted PageRank Computes ranking scores like the original PageRank and allows a weight
associated with every edge. It requires access to edge properties.

Experimental Methodology. For every result point, we perform five iterations and plot the341

median. We report the execution time as a function of the number of threads. For most342

analytics workloads we use CSR as a baseline. We run our benchmarks on a two-socket,343

36-core machine with 384GB of RAM. Its two 2.30Ghz Intel Xeon E5-2699 v3 CPUs have344

18 cores (36 hardware threads) and 32KB, 256KB and 46MB L1, L2, and LLC caches,345

respectively. We disable Intel TurboBoost and do not use Intel Hyper-Threading in all346

experiments. Both csr++ and the other evaluated systems are implemented in C++ and347

compiled using GCC 4.8.2, with optimization level -O3 and -fopenmp on Oracle Linux 7.3.348

We use the implementation of graph algorithms from Green-Marl [2].349

OPODIS 2020

17:10 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

 10

 100

 1000

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(a) PageRank Twitter

 1

 10

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(b) PageRank LJ

 10

 100

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(c) WCC Twitter

 0.1

 1

 10

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(d) WCC LJ

 1

 10

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(e) BFS Twitter

 0.1

 1

1 2 6 12 24 36

ti
m

e
 (

m
s
,
lo

g
s
c
a
le

)

Threads

(f) BFS LJ

 100

 1000

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(g) Weighted PR Twitter

 1

 10

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(h) Weighted PR LJ

CSR CSR++ LLAMA BGL

Figure 3 Read-only performance of CSR, csr++, LLAMA, and adjacency lists (BGL).

We use the evaluated graphs as follows. For the read-only and deletion workloads, we350

initially load the whole graph structures. For workloads with insertions, we initially load351

80% of the graph and then insert batches of different sizes, generated using the graph-split352

techniques used for loading and testing in the original LLAMA paper [23]. The first split353

contains the 80% of the graph (≈1.1 billion edges for Twitter) that is loaded as a base graph.354

Then, the remaining 20% is split using a random uniform distribution over N files; we refer355

to N as the number of batches. Depending on the workload, we refer in figures to either the356

batch size (e.g., 1% corresponds to splitting the 20% in 20 batches, hence 1% of the overall357

graph), or the number of batches.358

4.1 Read-Only Workloads359

We load the graph in memory and execute the evaluated algorithms. We report the execution360

time taken to complete each algorithm and examine how it scales with multiple threads.361

Figure 3 includes the results for csr++, CSR, BGL adjacency lists, and LLAMA. As362

expected, the read-only CSR provides the best performance in this workload, since with363

CSR, any graph access, for vertices, edges, and properties is as simple and efficient as an364

indexed array access. Still, csr++ delivers performance comparable to CSR, especially in the365

presence of multi-threading. Over all datapoints, csr++ is on average 15% slower than CSR,366

while with 36 threads, csr++ is on average less than 10% slower than CSR.367

As shown in Figure 3, we evaluate BGL adjacency lists only with PageRank. The reason368

for this is that the other algorithms require reverse-to-forward edge mapping, which is369

not supported out of the box in BGL. Still, the results of PageRank are conclusive: plain370

adjacency lists cannot deliver performance comparable to read-friendly structures such as371

CSR and csr++. Based on these results, and for simplicity of presentation, we omit adjacency372

lists from the experiments in the rest of the paper.373

Compared to LLAMA, csr++ is faster for four out of the six configurations by 16% on374

average with 36 threads. Overall, the two systems perform within 1% of each other on375

average. LLAMA is faster than csr++ for Pagerank with Livejournal and for BFS on Twitter.376

For Weighted PageRank, we only evaluate CSR and csr++ and omit LLAMA because it377

S.Firmli et al. 17:11

does not support edge properties out of the box. csr++ still performs close to CSR as shown378

in Figures 3h and 3i. With 36 threads, csr++ is 1% faster than CSR on Twitter and 42%379

slower for Livejournal. The slowdown in Livejournal is due to the small size of the graph:380

with CSR’s representation, all data is served from the last-level cache, while csr++ needs to381

slightly spill to main memory. These results show that the representation of edge properties382

in csr++ performs comparably to CSR, especially on large graphs.383

Overall, csr++ is very fast on read-only workloads, especially in the presence of concur-384

rency, which is the intended use case of graph analytics.385

4.2 Updates: Vertex Insertions386

Vertex insertions in csr++ are very lightweight, mainly due to segmentation (see Section 3.2).387

Table 3 shows the time to insert different number of vertices on a fully loaded Twitter graph388

(the choice of the graph has little impact on the performance of vertex insertions in csr++),389

when the graph contains either no vertex properties or 50 vertex properties. Vertex insertions390

are fast: With 10M insertions, inserting a vertex takes an average of 118 and 126 nanoseconds391

per-vertex with no and 50 properties, respectively. Vertex properties are lightweight in csr++,392

as they require just one memory allocation per property per segment.393

Table 3 Time to add new vertices to Twitter graph in milliseconds.

#Vertices 10K 100K 1M 10M
Time (ms) – 0 vertex properties 1.6 11 120 1188
Time (ms) – 50 vertex properties 10 32 181 1259

4.3 Updates: Edge Insertions394

First, we evaluate the time to insert all edges of one batch in both forward and reverse395

structures (plus edge semi-sorting). Figure 4a shows the results. csr++ completes this full396

batch insertion one order of magnitude faster than CSR. As expected, CSR completes all397

batch insertions in the same amount of time, regardless of the batch size. In contrast, csr++398

performs localized graph updates and thus delivers fast performance that is proportional to399

the batch size.400

Next, we examine the scalability of edge insertions with csr++ using the same workloads401

and exploiting multi-threading. The results are shown in Figure 4b. We isolate insertions402

 1

 10

 100

 1000

1.6% 1% 0.2% 0.02%

ti
m

e
 (

s
,

lo
g

s
c
a

le
)

Batch Size

(a) CSR vs CSR++ Insertion (Sort)

CSR CSR++

 0

 1

 2

 3

 4

 5

 6

 7

1 6 12 24 36

ti
m

e
 (

s
)

Threads

(b) CSR++ Insertion (No Sort)

1.6%
1%

0.2%
0.02%

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 6 12 24 36

ti
m

e
 (

s
)

Threads

(c) CSR++ Deletion

1.6%
1%

0.2%
0.02%

Figure 4 Graph mutations on Twitter. (a) Time to insert batches of edges of different sizes in
CSR and csr++ and sorting the edge arrays using 36 threads; (b) Time to insert different batch sizes
in csr++ without sorting using 1 to 36 threads; (c) Time to delete different batch sizes in csr++.

OPODIS 2020

17:12 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

 0

 100

 200

 300

 400

 500

 600

200 400 600 800 1K

Out of memory

ti
m

e
 (

s
)

batches

(a) Time w/o compaction

 0

 100

 200

 300

 400

 500

200 400 600 800 1K

Out of memory

m
e
m

o
ry

 (
G

B
)

batches

(b) Mem. w/o compaction

 0

 100

 200

 300

 400

 500

 600

 700

 800

200 400 600 800 1K

ti
m

e
 (

s
)

batches

(c) Time w/ compaction

 0

 10

 20

 30

 40

 50

 60

 70

200 400 600 800 1K

m
e
m

o
ry

 (
G

B
)

batches

(d) Mem. w/ compaction

CSR++ LLAMA

Figure 5 Memory consumption and batch-insertion latency of update workloads with 36 threads.
(a) & (b): Comparing csr++ and LLAMA without compaction. (c) & (d): Comparing csr++ and
LLAMA with compaction after every 100th batch insertion.

by removing the edge semi-sorting that takes a significant amount of overall insertion time.403

csr++ achieves good scalability for up to 12 threads. For more threads, performance does404

not improve, in part because of the effects of memory contention and NUMA, but mainly405

because of actual vertex contention: Twitter is a very skewed graph, hence many of the edge406

insertions land in the same high-degree vertices, hindering parallelism. Note that for these407

workloads, due to limited space, we only show the results with Twitter; we reach very similar408

conclusions with the smaller LiveJournal graph.409

We further compare csr++ to LLAMA for graph insertions. In Figure 5, we compare410

the edge-insertion latency and memory consumption. We apply 1000 batches of insertions411

(equivalent to the 0.02% workload in Figure 4), and print the memory usage and timestamp412

after inserting each batch. As shown in Figures 5a and 5b, the memory usage of LLAMA413

explodes after applying 370 batches, causing the system to run out of memory. In contrast,414

csr++ consumes memory proportional to the actual graph size. Additionally, csr++ is up to415

2.7× faster in performing the insertions.416

LLAMA provides a function to compact all snapshots into a single one. Figures 5c417

and 5d show the performance of csr++ and LLAMA with compaction. After every 100418

batches, we compact all 100 snapshots. LLAMA’s memory usage increases until compaction419

is invoked, but it is still higher than csr++, even immediately after compaction. Note420

that the compaction method in LLAMA does not provide instructions for building the421

reverse edges, hence these figures show the performance of inserting only forward edges. In422

principle, building the reverse edges is quite more expensive than building forward edges,423

i.e., if the reverse operation was included, the cost of compacting would be significantly424

higher. Compacting 100 snapshots with only direct edges in LLAMA takes up to 40 seconds425

with a single thread and 5-7 seconds with 36 threads. As shown in Figure 5c, csr++ is still426

consistently faster than LLAMA by a factor of approximately 1.8×.427

4.4 Updates: Edge Deletions428

To support edge deletions, we modify our vertex and edge iterators in csr++ to check whether429

a vertex or an edge is deleted, using the embedded flag in their respective structures. For430

LLAMA, we enable the deletion vector which similarly adds the cost of checking whether431

edges are deleted. Figure 4c shows the time csr++ takes to perform edge deletions. Each432

data point represents the time to delete a whole batch of edges. The scalability is almost433

linear relative to the number of threads, and, as we increase the batch size, the effect of434

multithreading is more noticeable.435

With a single thread, deletions are more computationally heavy, and therefore slower436

S.Firmli et al. 17:13

 10

 100

 1000

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(a) Inserting 100 batches

CSR
CSR++
LLAMA

 10

 100

 1000

1 2 6 12 24 36

ti
m

e
 (

s
,
lo

g
s
c
a
le

)

Threads

(b) CSR++ Applying diff. # of batches

CSR
CSR++ 12
CSR++ 20
CSR++ 100
CSR++ 1K

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 6 12 24 36

re
la

ti
v
e
 t
im

e

Threads

(c) Deleting batches of diff. size

CSR++ 0.2%
CSR++ 0.02%
LLAMA 0.2%

LLAMA 0.02%
CSR++ 0%

Figure 6 PageRank performance after graph updates. (a) Comparing performance of CSR, csr++,
and LLAMA after applying 100 (of size 0.2%) batches of new edges; (b) Performance of csr++ after
applying 12 (1.6%), 20 (2%), 100 (0.2%) and 1000 (0.02%) batches of new edges, CSR is used as a
baseline; (c) Performance of csr++ and LLAMA after deleting one batch of edges of different sizes.

than insertions, as can be seen in Figures 4b and 4c. As we mention earlier, csr++ does437

not store edge indices (it would be very memory consuming), which means that for every438

edge that is deleted, the thread needs to perform a (binary) search to find the target edge to439

delete logically. Note that csr++ can “easily” also support physical deletion of edges, at the440

additional cost of having to reshuffle edge properties to match the new edge array.441

4.5 Analytics After Graph Updates442

To evaluate csr++ in a mutation context, we first load the initial 80% of the graph and443

simulate the insertion of a stream of updates (batches of new edges and new vertices), then444

we evaluate PageRank. For insertions, this workload evaluates the impact of updates on445

the performance of the graph structures, e.g., for csr++ reallocations of edge arrays and the446

added pointers to newly-allocated segments. For deletions, we examine the overhead of the447

extra conditional branch to check the deleted flags and the cost of virtual deletions.448

Figure 6 shows the performance of PagerRank with csr++ and LLAMA after applying449

mutations to the graph. In Figure 6a, we observe that, after inserting 100 batches of new450

edges, the performance of csr++ only decreases by a factor of less than 1.25× as compared451

to CSR, which shows the moderate overhead that is caused by the continuous reallocations452

of edge arrays and the copy-on-write of the indirection layer. Additionally, LLAMA is faster453

than csr++ by a factor of 1.12× but consumes ≈5× more memory than csr++ (see also454

Table 4). This is due to the 100 snapshots LLAMA stores as multi-versioning support. If455

we need to perform analytics on the latest version of the graph (which is the case of most456

real-world scenarios), the significant memory overhead of these snapshots may not be worth457

the minimal performance improvement. Figure 6b shows a breakdown of the performance of458

csr++ when inserting different numbers of new batches: increasing the number of batches459

results in more reallocations and copy-on-write operations. csr++ scales well in all cases and460

keeps the moderate overhead of ≈1.25× over CSR even after inserting 1000 batches.461

Finally, Figure 6c shows the performance of csr++ and LLAMA after deleting one batch462

of edges of different sizes, relative to csr++’s performance without deletions. As we mention463

earlier, we modified the iterators in csr++ to check for deletion flags in vertices and edges. We464

delete up to 23 million edges from the 1.47 billion total edges of Twitter, and as expected, the465

performance is similar to that of the baseline (i.e., without deletions). The extra conditional466

branches in csr++ do not introduce considerable overhead. In case there are only few467

deletions, branch prediction makes sure that these deletion checks have minimal overhead,468

OPODIS 2020

17:14 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

resulting in performance close to the original implementation (i.e., without deletion checks).469

In contrast, LLAMA’s performance significantly suffers when enabling support for deletions470

and makes LLAMA ≈30% slower than csr++.471

4.6 Memory Footprint472

We calculate the memory footprint of Twitter and LiveJournal graphs stored in CSR, csr++,473

and LLAMA (read-optimized), both just after loading them in memory and after applying474

different numbers of batch insertions on Twitter (Table 4).475

Table 4 Memory footprint of different graph structures in GB in read-only workloads and after
inserting a different number of batches (Twitter-x, where x is the number of batches)

Graph Structure LiveJournal Twitter Twitter-12 Twitter-20 Twitter-100
CSR 0.53 11.09 11.09 11.09 11.09
csr++ read-only 0.57 11.54 16.55 16.55 16.55
csr++ 0.82 16.55 21.66 27.03 78.00
LLAMA 0.58 11.56 21.66 27.03 78.00
LLAMA implicit 0.58 11.56 19.02 23.99 73.64
linking

As shown in Table 4, CSR is the most compact representation and consumes the least476

memory—at the cost of mutability. The memory overhead of LLAMA is small when storing477

one snapshot (i.e., before applying mutations), but as can be seen in the same Table 4, this478

overhead increases steeply when applying batches. It is primarily due to storing different479

delta-snapshots of the graph for versioning. As mentioned earlier, for realistic workloads480

such as applying updates at a high frequency and then running analytics on recent versions481

of the graph, this memory overhead may lead to out-of-memory errors. As a reference, we482

include a second variant of LLAMA with implicit linking across snapshot versions, which483

trades performance for memory. The memory savings of this variant are low, however, and484

its performance is significantly worse (hence why our performance figures do not include it).485

The default version of csr++ has a moderate memory overhead of 33% compared to CSR,486

due to the pre-allocation of extra space for edge arrays. When this optimization is disabled,487

memory is allocated in a tight manner and csr++ consumes closely to CSR.488

5 Concluding Remarks489

We introduced csr++, a new concurrent graph data structure that is as fast as the fastest490

existing read-only graph structure, namely CSR, while enabling fast and memory-efficient491

in-place graph mutations. csr++ achieves this sweet spot by combining the array-based492

design of CSR with the mutability of adjacency lists. In practice, csr++ is within 10% of the493

performance of CSR and delivers an order of magnitude faster updates.494

Future work includes using smarter synchronization mechanisms in csr++ (such as e.g.,495

developing lock-free protocols to avoid per-segment locking) as well as improving scalability496

with concurrent updates. Furthermore, we intend to explore smarter, faster, and locality-497

preserving memory reallocations using different memory allocators that are better suited for498

multithreaded applications.499

S.Firmli et al. 17:15

References500

1 Boost Adjacency-List Documentation. https://www.boost.org/doc/libs/1_67_0//libs/501

graph/doc/adjacency_list.html.502

2 Green-Marl Code. https://github.com/stanford-ppl/Green-Marl.503

3 LLAMA Code. https://github.com/goatdb/llama.504

4 OpenMP. https://www.openmp.org.505

5 PGQL: Property Graph Query Language. http://pgql-lang.org/.506

6 Property Graph Model. https://github.com/tinkerpop/blueprints/wiki/507

Property-Graph-Model.508

7 SNAP (2014). Stanford Network Analysis Platform. http://snap.stanford.edu/snap.509

8 SPARQL Query Language For RDF. http://www.w3.org/TR/rdf-sparql-query/.510

9 Tinkerpop, Gremlin. https://github.com/tinkerpop/gremlin/wiki.511

10 Tim Berners-Lee, James Hendler, Ora Lassila, et al. The Semantic Web. Scientific american,512

284(5), 2001.513

11 Raymond Cheng, Enhong Chen, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng,514

Ming Wu, Fan Yang, Lidong Zhou, and Feng Zhao. Kineograph: Taking The Pulse Of A515

Fast-changing And Connected World. In EuroSys, 2012.516

12 Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A Framework For Parallel517

Graph Algorithms Using Work-efficient Bucketing. In SPAA, 2017.518

13 Vinicius Dias, Carlos H. C. Teixeira, Dorgival Guedes, Wagner Meira, and Srinivasan Parthas-519

arathy. Fractal: A General-Purpose Graph Pattern Mining System. In SIGMOD, 2019.520

14 David Ediger, Jason Riedy, David A. Bader, and Henning Meyerhenke. Tracking Structure of521

Streaming Social Networks. In IPDPSW, 2011.522

15 Soukaina Firmli and Dalila Chiadmi. A Review Of Engines For Graph Storage And Mutations.523

In Innovation In Information Systems And Technologies To Support Learning Research, 2020.524

16 Gartner. Gartner Top 10 Data And Analytics Trends For 2019. https://www.gartner.com/525

smarterwithgartner/gartner-top-10-data-analytics-trends/.526

17 Michael Haubenschild, Manuel Then, Sungpack Hong, and Hassan Chafi. ASGraph: A527

Mutable Multi-versioned Graph Container With High Analytical Performance. In GRADES,528

2016.529

18 S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Verstraaten, and H. Chafi. PGX.D: A530

Fast Distributed Graph Processing Engine. In SC, 2015.531

19 Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-Marl: A DSL For532

Easy And Efficient Graph Analysis. In ASPLOS, 2012.533

20 Nikolaos D. Kallimanis and Eleni Kanellou. Wait-Free Concurrent Graph Objects With534

Dynamic Traversals. In OPODIS, 2016.535

21 Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and Semih Salihoglu.536

Graphflow: An Active Graph Database. In SIGMOD, 2017.537

22 Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-Scale Graph Computation538

on Just a PC. In OSDI, 2012.539

23 P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer. LLAMA: Efficient Graph Analytics540

Using Large Multiversioned Arrays. In ICDE, 2015.541

24 K. Madduri and D.A. Bader. Compact Graph Representations And Parallel Connectivity542

Algorithms For Massive Dynamic Network Analysis. In IPDPS, 2009.543

OPODIS 2020

https://www.boost.org/doc/libs/1_67_0//libs/graph/doc/adjacency_list.html
https://www.boost.org/doc/libs/1_67_0//libs/graph/doc/adjacency_list.html
https://www.boost.org/doc/libs/1_67_0//libs/graph/doc/adjacency_list.html
https://github.com/stanford-ppl/Green-Marl
https://github.com/goatdb/llama
https://www.openmp.org
http://pgql-lang.org/
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
http://snap.stanford.edu/snap
http://www.w3.org/TR/rdf-sparql-query/
https://github.com/tinkerpop/gremlin/wiki
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-analytics-trends/

17:16 CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure

25 Mugilan Mariappan and Keval Vora. GraphBolt: Dependency-Driven Synchronous Processing544

of Streaming Graphs. In EuroSys, 2019.545

26 Daniel Mawhirter and Bo Wu. AutoMine: Harmonizing High-level Abstraction And High546

Performance For Graph Mining. In SOSP, 2019.547

27 Neo4j. Neo4j Graph Database. http://www.neo4j.org.548

28 Oracle. Parallel Graph Analytics (PGX). https://www.oracle.com/middleware/549

technologies/parallel-graph-analytix.html.550

29 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The Pagerank Citation551

Ranking: Bringing Order To The Web. Technical report, Stanford InfoLab, 1999.552

30 Marcus Paradies, Wolfgang Lehner, and Christof Bornhövd. GRAPHITE: An Extensible553

Graph Traversal Framework For Relational Database Management Systems. In SSDBM, 2015.554

31 Raghavan Raman, Oskar van Rest, Sungpack Hong, Zhe Wu, Hassan Chafi, and Jay Banerjee.555

PGX.ISO: Parallel And Efficient In-memory Engine For Subgraph Isomorphism. In GRADES,556

2014.557

32 Nicholas P. Roth, Vasileios Trigonakis, Sungpack Hong, Hassan Chafi, Anthony Potter, Boris558

Motik, and Ian Horrocks. PGX.D/Async: A Scalable Distributed Graph Pattern Matching559

Engine. In GRADES, 2017.560

33 Sherif Sakr, Sameh Elnikety, and Yuxiong He. G-SPARQL: A Hybrid Engine For Querying561

Large Attributed Graphs. In ACM CIKM, 2012.562

34 Martin Sevenich, Sungpack Hong, Oskar van Rest, Zhe Wu, Jayanta Banerjee, and Hassan563

Chafi. Using Domain-specific Languages For Analytic Graph Databases. PVLDB, 9(13):1257–564

1268, September 2016.565

35 Julian Shun and Guy E. Blelloch. Ligra: A Lightweight Graph Processing Framework For566

Shared Memory. In PPoPP, 2013.567

36 Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. NetworKit: A Tool Suite568

For Large-Scale Complex Network Analysis. Network Science, 4(4):508–530, 2016.569

37 Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang Hu, and570

Guo Tong Xie. SQLGraph: An Efficient Relational-Based Property Graph Store. In SIGMOD,571

2015.572

38 Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. PGQL: A573

Property Graph Query Language. In GRADES, 2016.574

39 Brian Wheatman and Helen Xu. Packed Compressed Sparse Row: A Dynamic Graph575

Representation. In HPEC, 2018.576

40 Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. A Distributed577

Graph Engine For Web Scale RDF Data. PVLDB, 6(4), 2013.578

41 Kaiyuan Zhang, Rong Chen, and Haibo Chen. NUMA-Aware Graph-Structured Analytics. In579

PPoPP, 2015.580

http://www.neo4j.org
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html

	Introduction
	Background & Related Work
	Graph Representations
	Graph Mutations

	CSR++: Design and Implementation
	Graph Topology and Properties
	Update Protocols
	Algorithms on Top of CSR++

	Evaluation
	Read-Only Workloads
	Updates: Vertex Insertions
	Updates: Edge Insertions
	Updates: Edge Deletions
	Analytics After Graph Updates
	Memory Footprint

	Concluding Remarks

