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Introduction

Endoplasmic reticulum aminopeptidase 2 (ERAP2) is a M1 family zinc metalloprotease playing a key role in antigen presentation pathway [1]. This intracellular aminopeptidase trims peptide precursors resulting from protein degradation by the proteasome and thereby generates mature antigenic epitopes of appropriate length for presentation on the cell surface by major histocompatibility complex class I (MHC-I) molecules [2]. The recognition of the extracellular peptide by cytotoxic T-cell triggers immune response against infected or diseased cells through biological cascades that lead to apoptosis of the target cell. Thereby ERAP2 is a major regulator of adaptive immune responses in humans. In line with this role, common single nucleotide polymorphisms (SNPs) in ERAP2 that affect protein expression or enzymatic activities have recently been associated with predisposition to immune diseases (i.e. ankylosing spondylitis) and infectious diseases [3]. Furthermore, cancer and pathogens can evade the immune system by stopping the generation of antigenic peptides [4,5].

These recent findings establishing the role of ERAP2 in autoimmunity, infections, and cancers have turned the spotlight on this aminopeptidase as pharmaceutical target [6,7]. Thus, it is of paramount importance to find biological tools that can either inhibit or enhance their action, whether for the better understanding of biological mechanisms implying ERAP2 or for the discovery of potential therapeutic compounds. One main challenge of targeting ERAP2 is the development of selective modulators. Indeed, ERAP1 is another major aminopeptidase highly homologous to ERAP2 with 50% sequence identity. These two enzymes process antigen peptides in a concerted and complementary manner [8,9] but display separate substrates specificity [START_REF] Seregin | Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens[END_REF][START_REF] Zervoudi | Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides[END_REF][START_REF] Birtley | The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing[END_REF].

Recent co-crystal structures of the ERAPs with ligands bound in the active site reveal key differences that may help the rational design of selective modulators [13]. Among the common structural characteristics shared by all ERAPs that have been identified, there are the single Zinc(II) ion present in the catalytic site and coordinated by the HExxHx18E zinc-binding motif, as well as the GAMEN aminopeptidase motif responsible for free N-terminus recognition. Nevertheless, at least three specificity pockets, namely S1, S1' and S2', can determine substrate selectivity [START_REF] Zervoudi | Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses[END_REF].S1 specificity pocket is structurally rigid and contains a hydrophobic pocket conserved in both enzymes [START_REF] Zervoudi | Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides[END_REF].

However, non-conserved residues like Glu177, Asp198, Gln447 in ERAP2 (His160, Gln181, Arg430 in ERAP1, respectively) induce a preference of ERAP2 for substrates with a positively charged Nterminal side chain [START_REF] Zervoudi | Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides[END_REF][START_REF] Birtley | The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing[END_REF]. The S1' specificity pocket shows a preference for small hydrophobic groups and S2' specificity pocket is a hydrophobic pocket having a residue Tyr892 unique to ERAP2 that enables additional π-π stacking interactions [START_REF] Birtley | The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing[END_REF][START_REF] Zervoudi | Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses[END_REF].

To date, only a few ERAP2 inhibitors have been identified. By using a rational, structure-based design, aiming to accommodate the specific pockets of these enzymes, Papakyriakou et al. reported a series of diaminobenzoic acid (DABA) derivatives with moderate potency [START_REF] Papakyriakou | Novel selective inhibitors of aminopeptidases that generate antigenic peptides[END_REF][START_REF] Papakyriakou | 3,4-Diaminobenzoic Acid Derivatives as Inhibitors of the Oxytocinase Subfamily of M1 Aminopeptidases with Immune-Regulating Properties[END_REF]. Among them, the most selective compound 1 (IC50 ERAP2 = 0.755 µM) exhibits a 130-fold selectivity against ERAP1 (Fig. 1).

Another well described ERAP2 inhibitors family belongs to the series of pseudopeptides containing a phosphinic group. The best analog 2 reported by Zervoudi et al. displays nanomolar potency toward ERAP2 but lacks selectivity against ERAP1 (Fig. 1) [START_REF] Zervoudi | Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses[END_REF]. Later, optimization by Kokkala et al. varying the side chains that occupy S1' and S2' pockets has identified inhibitors with comparable potency and moderate selectivity, like 3 (Fig. 3) [START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF]. The report by Węglarz-Tomczak et al. also on phosphinic series used the same strategy of structural improvements by modifying substituents that can further fit in the S1 and S1' subsites [START_REF] Węglarz-Tomczak | Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues[END_REF]. However, the described derivatives exhibit less potency for ERAP2.

Overall, only two main scaffolds have been explored for the design of ERAP2 inhibitors and these compounds either lack selectivity against other aminopeptidases and/or show poor druggability properties.

Fig. 1:

Example of hERAP2 inhibitors reported in the literature. a a Substituents filling pockets S1, S'1 and S'2 are colored respectively in red, green and blue. cLogP was calculated using Datawarrior TM Thus, alternative approaches to discover new structures that could serve as starting points for optimization towards ERAP2 inhibitors is still challenging and highly needed. To fulfill the need of new chemical templates able to inhibit ERAP2, we chose to develop a fast, enzyme-efficient 384-well plate HTS assay, and applied it to a focused in-house library. This screening assay allowed us to discover structurally original inhibitors, but also, surprisingly, activators of small peptide hydrolysis by ERAP2.

Results and Discussion

Development of 384-well plate assay

The bioassay used in this study is based on the enzymatic conversion of a fluorogenic substrate, Argaminomethylcoumarine (Arg-AMC) (Km=16µM) into a fluorescent product 7-amino-4-methylcoumarin (λex = 380 nm; λem = 450 nm). Several parameters (V/well, buffer, vehicle …) were pre-fixed, but the nature and concentration of the substrate, as well as the concentration of the enzyme remained to be set. Arg-AMC is more selective of ERAP2 (compared to Leu-AMC), with a Km of 16 µM, and was thus used at a concentration of 5 µM. Several concentrations of the enzyme were then tested, and we chose to work with 0.5 µg/mL of ERAP2. This appeared to be the best compromise between intensity of the signal, and stability or reproducibility, expressed by the Z' factor (Z' = 0.6 for the whole plate), to avoid plate effect at lower concentration. (Supplementary Fig. S1) Fig. 2: Screening cascade a a DRCs: Dose-Response Curves.

2.2.

Screening of a 1920-member library.

Figure 2 summarizes the screening cascade. An in-house library of 1920 drug-like carboxylic acids and bioisosters, aiming at targeting metalloenzymes, was distributed in plates using nanoacoustic dispensing and screened in this fluorescence assay (Supplementary Fig. S2). [START_REF] Charton | Structure-activity relationships of Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human Insulin-Degrading Enzyme[END_REF] Bestatine at 100µM was used as a positive control, and displayed stable activity throughout the screening (Z' > 0.5 for
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each plate) (Supplementary Fig. S3 andS4). Out of the 28 compounds that displayed an inhibition above 30% at 30 µM, half were confirmed (dose-dependent inhibition of ERAP2) and 11 compounds had a measured IC50 below 50 µM and were defined as hits (4)(5)(6)(7)(8)(9)[START_REF] Seregin | Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens[END_REF][START_REF] Zervoudi | Probing the S1 specificity pocket of the aminopeptidases that generate antigenic peptides[END_REF][START_REF] Birtley | The crystal structure of human endoplasmic reticulum aminopeptidase 2 reveals the atomic basis for distinct roles in antigen processing[END_REF](13)[START_REF] Zervoudi | Rationally designed inhibitor targeting antigen-trimming aminopeptidases enhances antigen presentation and cytotoxic T-cell responses[END_REF]. Their IC50 values range from 9 µM to 28 µM. Among these hits (Supplementary Fig. S5), 3 displayed a carboxylic acid as putative zinc binding group, and a singleton bore a tetrazole. More interestingly, 7 compounds with IC50 values around 15 µM displayed less common zinc-binding groups like thio-five-membered ring, either oxa-2, 4-diazol, oxa-3,4-diazol or 1,2,4-triazol, only described for inhibitors of aggrecanase (ADAMTS) or of TACE (Supplementary Fig. S5) [START_REF] Sheppeck | Hydantoins, triazolones, and imidazolones as selective non-hydroxamate inhibitors of tumor necrosis factor-alpha converting enzyme (TACE)[END_REF]21]. Also, 5 compounds also share a 3-pyrazinyl-oxa-2,4-diazol motif and 3 displayed rather hydrophobic groups (either biphenylic, steroidic or long alkyl chain). Out the confirmed hits, 4 compounds ( [4][5][6][7] were available in bulk. Potency of 6 and 7, two compounds that derive from a series we developed as aggrecanase inhibitors [START_REF] Maingot | Aggrecanase-2 inhibitors based on the acylthiosemicarbazide zinc-binding group[END_REF], was lower than the inhibition of ERAP2 by 4-5 and seemed to plateau at 60% (Supplementary Fig. S6). We thus prioritized the study of the best inhibitors 4 and 5 (Fig. 3). Consistently with the interaction of Tyr892 a selective ERAP2 amino-acid (vs ERAP1), compound 4 is inactive on ERAP1 (%inhibition at 100µM < 10%). Two analogues of 4, that were already available in house [START_REF] Papakyriakou | Novel selective inhibitors of aminopeptidases that generate antigenic peptides[END_REF][START_REF] Papakyriakou | 3,4-Diaminobenzoic Acid Derivatives as Inhibitors of the Oxytocinase Subfamily of M1 Aminopeptidases with Immune-Regulating Properties[END_REF], were assayed for their inhibition of ERAP2 (Table 1). Compounds 15 and 16 allowed to study the impact of both the elongation and the shortening of the N-iminodiacetic substituent. Both modifications were deleterious for the activity, suggesting that the phenyl ring at this position is essential for activity and that an N-methyl group is not tolerated at this position. CH3-_ a a (% inh @100µM) below 10%;

2.4.

Binding and selectivity of hit 5.

Docking of 5 in closed hERAP2

Best inhibitor 5 was engaged in a docking study that revealed two putative binding modes (Fig. 5 A,B,C and D,E,F respectively).

In the first docking pose, the putative binding shows that compound 5 interacts in S1, S1' and S2' pockets of ERAP2 (Fig. 5A). The carboxylic acid binds the Zn 2+ ion. In the S1 pocket, the amide group makes a hydrogen bond with the backbone of Asp337, one oxygen of the sulfonamide makes a hydrogen bond with Gln447 and the pyrrolidine ring interacts via an ionic bond with Glu177 (Fig. 5B). To our knowledge, there is no reported binding of an inhibitor that goes that deep in S1 pocket. The benzyl ring adjacent to the carboxylic acid, stacks parallel to His370 and orthogonal to Trp363 (T-shaped) in S1' pocket (Fig. 5C). The fluoro-phenyl ring interacts with amino-acids at the entrance of the S2' selectivity pocket. It pi-stacks with Tyr892 and makes a hydrogen bond with Tyr 455 (Fig. 5C).

In the second possible binding mode, compound 5 interacts deeper in Domain IV (Fig. 5D).

Both the carboxylic acid and the carbonyl of the amide bind the the Zn 2+ ion. The carbonyl group forms also a hydrogen bond with the phenol group of Tyr 455 in the S2' selectivity pocket. In S'1 pocket, the tertiary amine (pyrrolidine) and Glu400 are engaged in an ionic bond and the fluorophenyl group pi-stacks (T-shaped) with Trp363 (closest distance 2.9 Å). This group also pi-stacks interact with new residues like Glu177 or Glu400 through its pyrrolidine substituent. Oxygens, Nitrogens are in red, blue respectively, Carbons are colored according to domains and in gray for 5. Polar hydrogens of 5 are in white. Zinc ion is represented as a magenta sphere. Polar contacts and interactions are represented as black dashed lines.

(

Selectivity of 5

So far, published inhibitors of ERAP2 retain activity on the homologous ERAP1 and/or IRAP. IRAP (Insulin-regulated aminopeptidase) is another protease from the M1-family to which ERAP enzymes belong. It is also implicated in antigen presentation, in particular in the processing of precursors derived of endocytosed proteins in dendritic cells for cross-presentation. All three enzymes share 50% homology in sequence and display very conservative catalytic sites. Several ERAP1 selective inhibitors [START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF] or IRAP selective inhibitors [START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF] have been disclosed. As low selectivity of ligands between the three enzymes, could preclude the understanding their respective implication in pathologies and the preclinical development compounds, we assessed selectivity of hit 5 towards ERAP1 and IRAP (Table 2). Compound 5 is selective of ERAP2 other these two other enzymes. It is indeed completely inactive on ERAP1 and shows a 1-log selectivity towards ERAP1. 5 is thus a good starting point for pharmacomodulation. 

a in parenthesis % inhibition @ 100µM;

2.5.

Design and synthesis of analogues of 5

Design of analogues of 5 to explore binding

Analogues of 5, [START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF][START_REF] Węglarz-Tomczak | Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues[END_REF][START_REF] Charton | Structure-activity relationships of Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human Insulin-Degrading Enzyme[END_REF][START_REF] Sheppeck | Hydantoins, triazolones, and imidazolones as selective non-hydroxamate inhibitors of tumor necrosis factor-alpha converting enzyme (TACE)[END_REF][21][START_REF] Maingot | Aggrecanase-2 inhibitors based on the acylthiosemicarbazide zinc-binding group[END_REF][START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF][START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Toto | a new multicomponent reaction[END_REF][START_REF] Mpakali | Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2[END_REF][START_REF] Stamogiannos | Critical Role of Interdomain Interactions in the Conformational Change and Catalytic Mechanism of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Nguyen | Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1[END_REF][START_REF] Evnouchidou | A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing[END_REF][START_REF] Chang | The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism[END_REF][START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Liddle | Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation[END_REF][START_REF] Ef. Pettersen | Ferrin UCSF Chimera--a visualization system for exploratory research and analysis[END_REF] were designed to validate interactions identified in docking and key structural elements like configuration [START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF], nature of amino-acid ( [START_REF] Węglarz-Tomczak | Discovery of potent and selective inhibitors of human aminopeptidases ERAP1 and ERAP2 by screening libraries of phosphorus-containing amino acid and dipeptide analogues[END_REF][START_REF] Charton | Structure-activity relationships of Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human Insulin-Degrading Enzyme[END_REF][START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Liddle | Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation[END_REF][START_REF] Ef. Pettersen | Ferrin UCSF Chimera--a visualization system for exploratory research and analysis[END_REF], importance of tertiary amine and linker length [START_REF] Maingot | Aggrecanase-2 inhibitors based on the acylthiosemicarbazide zinc-binding group[END_REF][START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF][START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Toto | a new multicomponent reaction[END_REF][START_REF] Mpakali | Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2[END_REF][START_REF] Nguyen | Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1[END_REF][START_REF] Evnouchidou | A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing[END_REF][START_REF] Chang | The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism[END_REF][START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Liddle | Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation[END_REF][START_REF] Ef. Pettersen | Ferrin UCSF Chimera--a visualization system for exploratory research and analysis[END_REF], importance of the methylation of amide ( 27), importance of aryl group [START_REF] Sheppeck | Hydantoins, triazolones, and imidazolones as selective non-hydroxamate inhibitors of tumor necrosis factor-alpha converting enzyme (TACE)[END_REF](21). 
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Scheme 1: Synthesis of analogues 5, 18-33. Reactions and conditions: i) 4-iodobenzoyl chloride (1 eq.), NEt3 (4 eq.), t-butyl ester of amino acid (1 eq.), CH2Cl2, r.t.; 4 h ii) NaH (1.3 eq.)/anh.THF; 0 °C, 1h, then MeI (2.0 eq.), r.t., overnight. iii) CuI (0.1 eq.), K3PO4 (2 eq.), argon, then sulfonamide (1.1 eq.)/anh. 1,4-dioxane, trans-1,2-diaminocyclohexane (0.2 eq.), °C, 36 h, or CuI (0.1 eq.), K2CO3 (2.5 eq.), argon, then sulfonamide (1.1 eq.)/anh. ACN, N,N'-dimethylethane-1,2-diamine (0.7 eq.), 80 °C, 48 h iv) sulfonyl chloride (1 eq.), NEt3 (1.2 eq.) in CH2Cl2, 0 °C, then amine (1.1 eq.), °C to r.t., 12h. v) t-butyl ester (1.0 eq.)/CH2Cl2, iPr3SiH (0.1 mL), TFA, r.t, 1 h, or 4N HCl/1,4-dioxane, CH2Cl2, r.t.,24 h.

Synthesis of analogues of 5

Compound 5 and its analogues 18-33 were synthesized in 4 steps from the corresponding amino-acid via a sequence including an Ullman reaction (Scheme 1). Tertbutylaminoester was reacted with 4- 

Intermediates: Final cpds: R1 R2 R3 n R1 R4= Me- 5a-c benzyl- 5 5d benzyl- 4-fluorophenyl-2-pyrrolidin-1-ylethyl- 18a-c isobutyl- 18 18d isobutyl- 4-fluorophenyl-2-pyrrolidin-1-ylethyl- 19a-c phenethyl- 19 19d phenethyl-4-fluorophenyl-2-pyrrolidin-1-ylethyl- R3 R2 n 20 20d benzyl- Me- 2-pyrrolidin-1-ylethyl- 34a Ph-(CH2)2- Ph- 2 21 21d benzyl- Ph- 2-pyrrolidin-1-ylethyl- 34b Ph-(CH2)2- 4-fluorophenyl-2 22 22d benzyl- 4-fluorophenyl-2-pyrrolidin-1-ylethyl- 34c Ph-(CH2)2- Me- 2 23 23d benzyl- 4-fluorophenyl-2-(diethylamino)ethyl- 34d 2-pyrrolidin-1-ylethyl-4-fluorophenyl-2 24 24d benzyl- 4-fluorophenyl-2-dimethylamino)ethyl- 34e 2-pyrrolidin-1-ylethyl-Me- 2 25 25d benzyl- 4-fluorophenyl-2-(piperidin-1-yl)ethyl- 34f 2-pyrrolidin-1-ylethyl-Ph- 2 26 26d benzyl- 4-fluorophenyl-2-morpholinoethyl- 34g 2-pyrrolidin-1-ylethyl-4-fluorophenyl-3 28 28d benzyl- Ph- Ph-(CH2)2- 34h 2-(diethylamino)ethyl-4-fluorophenyl-2 31 31d isobutyl- Ph- Ph-(CH2)2- 34i 2-dimethylamino)ethyl-4-fluorophenyl-2 29 29d benzyl- 4-fluorophenyl-Ph-(CH2)2- 34j 2-(piperidin-1-yl)ethyl-4-fluorophenyl-2 32 32d isobutyl- 4-fluorophenyl-Ph-(CH2)2- 34k 2-morpholinoethyl- 4-fluorophenyl-2 30 30d benzyl- Me- Ph-(CH2)2- 33 33d isobutyl- Me- Ph-(CH2)2- R4= H- 27 

Structure-activity relationships of inhibitors, analogues of 5

We evaluated structural modifications on 5 while keeping the central scaffold (sulfonamide-aryl-amide) (compounds 17-27, Table 3). Hit 5 derived from S-phenylalanine. Changing the conformation of the Cα (R isomer 17) resulted in a complete loss of activity. Replacement of the R1 benzyl group of 5 by an iso-butyl (derivative of leucine 18) or by the phenethyl homolog group [START_REF] Charton | Structure-activity relationships of Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human Insulin-Degrading Enzyme[END_REF] was deleterious for activity, suggesting that larger groups and/or non-aromatic groups are not tolerated at this position.

The removal of the phenyl ring on the sulfonamide group resulted also in a decrease in activity [START_REF] Sheppeck | Hydantoins, triazolones, and imidazolones as selective non-hydroxamate inhibitors of tumor necrosis factor-alpha converting enzyme (TACE)[END_REF], pointing out a need for an aromatic (or large) group at this position. Interestingly, the fluorine atom in para position on this phenyl ring seems essential for activity as its removal led to a loss of activity (5 vs

21).

Elongation of the chain (n=3) of the R3 substituent leads to a 5-fold decrease in activity [START_REF] Maingot | Aggrecanase-2 inhibitors based on the acylthiosemicarbazide zinc-binding group[END_REF]. The introduced flexibility may compensate partially the increasing size of the linker. Several tertiary amines either cyclic or acyclic [START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF][START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Toto | a new multicomponent reaction[END_REF][START_REF] Mpakali | Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2[END_REF] have been explored to study the impact of the replacement of the Nsubstituted pyrrolidine ring, while keeping a charge. All analogues were less active than reference 5.

Finally, the removal of the methyl group on the amide ( 27) led to a 5 fold decrease in activity, suggesting that a hydrogen-bond donor at this position is not tolerated. All these activities are in line with the docking results were multiple stackings were found between aryl groups and aromatic aminoacids, interactions between hydrogen bonds acceptors CO of the amide or SO2 of the sulfonamide, and ERAP2. The results obtained for compounds 23-26 is further discussed below.

Table 3:

Analogues of hit 5 #cpd C* R1- R2- n R3- R4- IC50 µM (%inh) a 5 S benzyl- 4-F-C6H4- 2 N-pyrrolidinyl- Me- 9.7±5.0 17 R benzyl- 4-F-C6H4- 2 N-pyrrolidinyl- Me- (30) 18 S iso-butyl- 4-F-C6H4- 2 N-pyrrolidinyl- Me- (14) 19 S phenethyl- 4-F-C6H4- 2 N-pyrrolidinyl- Me- (14) 20 S benzyl- CH3- 2 N-pyrrolidinyl- Me- (24) 21 S benzyl- C6H5- 2 N-pyrrolidinyl- Me- _ c 22 S benzyl- 4-F-C6H4- 3 N-pyrrolidinyl- Me- ≈100 b 23 S benzyl- 4-F-C6H4- 2 N-diethylamino- Me- _ c 24 S benzyl- 4-F-C6H4- 2 N-dimethylamino-Me- _ c 25 S benzyl- 4-F-C6H4- 2 N-piperidinyl- Me- _ c 26 S benzyl- 4-F-C6H4- 2 N-morpholinyl- Me- (30) 27 S benzyl- 4-F-C6H4- 2 N-pyrrolidinyl- H- ≈100 b 
a : % inh given @ 100µM; b % inhibition @ 100 µM = 54-55%; c % inhibition below 5% @ 100µM.
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As dockings studies and SAR described in Table 3 emphasize the importance of the basic side chain in R3 position, we decided to challenge this hypothesis by synthesizing analogues bearing a phenyl ring, instead of the pyrrolidine ring, at this position (Compounds 28-33,Table 4). Surprisingly, for analogues of 5 bearing a phenethyl group as the N-substituent of the sulfamide, activity shifted from inhibition to activation in 143% to 184%. If R1 derived of phenylalanine, activation of ERAP2 was slightly greater than the isoleucine analogues (28-29 vs 31-32), in striking difference with inhibitors series where the replacement of the phenylalanine in R1 by isoleucine led to complete loss of potency

(5 vs 18 in Table 3). The R2 position impacts greatly the activator behavior as replacement of the aryl sulfonamide by a methyl-sulfonamide group provides completely inactive compounds, 30 and 33, We hypothesized that phenethyl analogues of 5 might bind to a different pocket in ERAP2 due to the lack of the pyrrolidine ring. We thus docked compound 29 in ERAP2 (Fig. 7). Interestingly, we found that analogue 29 lies nonetheless in the catalytic site (Fig. 7A) but does not interact with the Zn 2+ ion (Fig. 7B,7C). The carboxylic acid function of 29 makes polar contacts with Arg366 and Lys397.

regardless
Furthermore, amide and sulfonamide groups are engaged in hydrogen bonds with Lys397 and Arg895 respectively. 29 adopts a U-shape allowing multiple π-stackings with ERAP2 residues involving both ERAP2 residues and intramolecular phenyl rings (Fig. 7B,7C). More specifically, the aryl ring of the phenethyl moiety, specific of these analogues, stacks with Tyr892 (closest distance 3.2 Å) and benzyl group of 29 (T-shaped 3.5 Å) (Fig. 7B). Also, Tyr455, the para-disubstituted benzene central core, the To explore the inhibition or activation profile of analogues of 5 towards the hydrolysis by ERAP2 of longer, more relevant peptides, we looked at nonapeptides meant to produce SIINFEKL epitope. First, we identified by LCMS-MS, KSIINFEKL and RSIINFEKL as best potential substrates for hydrolysis by ERAP2 as expected in the light of preferences for basic side chain in S1 described for this enzyme. In particular KSIINFEKL was readily hydrolyzed by ERAP2 (Fig. 8A), but not as rapidly hydrolyzed by ERAP1 (Fig. 8B). We checked that the hydrolysis of KSIINFEKL by ERAP enzymes was correlated with the production of the corresponding epitope SIINFEKL (Fig. 8C). Next we evaluated the impact of the presence of inhibitor 5 or activators 28 and 29 on the hydrolysis of KSIINFEKL by ERAP2 and the production of SIINFEKL.

Interestingly all three compounds are inhibitors of the hydrolysis of nonapeptide by ERAP2 in a dosedependent manner (Fig. 9). 5 (IC50 = 98 µM) and 28 (IC50 = 89 µM) are the most potent inhibitors. We checked that the decrease of KSIINFEKL trimming by ERAP2 in the presence of inhibitors was correlated with the decrease of SIINFEKL production (Supplementary Fig. S7). Docking studies showed that they both interact with the Zn 2+ within the catalytic site of the enzyme thanks to a carboxylic acid moiety. Key residues of ERAP2 have previously been highlighted for their role in the catalytic mechanism and/or the binding of inhibitors. For example, Tyr455 next to the catalytic center (interface between S1 and S'2) reorient during ligand binding, stabilizes the transition state during catalysis and is implicated in the open-closed conformation based on results obtained on ERAP1 [START_REF] Mpakali | Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2[END_REF][START_REF] Stamogiannos | Critical Role of Interdomain Interactions in the Conformational Change and Catalytic Mechanism of Endoplasmic Reticulum Aminopeptidase 1[END_REF]. Also, Phe450 is a key residue of the S1 pocket, whose ERAP1 counterpart (Phe433)

has been shown to be disordered or dislocated in the open state of the enzyme [START_REF] Nguyen | Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1[END_REF]. Both hits 4 and 5

interact with either pi-stacking or hydrogen-bonds with these two residues. Trp363 (S'1) and Tyr892 (S'2) are amino-acids selective of ERAP2 vs ERAP1. The interaction of 4 with Tyr892 and of 5 with both residues may explain their selectivity towards ERAP2.

In 5, the N-substituted pyrrolidine is essential for inhibition for both steric and protonation state reasons. Indeed, its replacement by other tertiary amines either cyclic or acyclic [START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF][START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF][START_REF] Toto | a new multicomponent reaction[END_REF][START_REF] Mpakali | Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2[END_REF] led to a complete loss of activity, consistently with the pKa reduction (from pKa=9.85 to 5.9 ≤ pKa ≤ 9.6 for the analogues). Docking revealed that this group is involved in ionic interactions either with Glu177 or Glu400 in the S1 pocket.

This is the first time to our knowledge that an inhibitor binds either of these two residues. Interestingly, whereas Glu400 is conserved in ERAP1 (Glu383), Glu177, a residue of the capping region of S1, is specific of ERAP2 and replaced by a histidine in ERAP1 (His160) or a tyrosine in IRAP (Tyr272).

Furthermore this residue has been shown to be implicated in specific interactions with domain IV (Asp188) in the allele K192N (Fig. 4B), supposedly affecting the open-close conformational equilibrium of the enzyme and thus its catalytic activity [START_REF] Evnouchidou | A common single nucleotide polymorphism in endoplasmic reticulum aminopeptidase 2 induces a specificity switch that leads to altered antigen processing[END_REF]. This opens new perspectives in the exploration of the S1 pocket.

Earlier studies have shown that ERAP1 has an original trimming mechanism ending up with a specificity to hydrolyze 9-16-residue precursors, thanks to the presence of an allosteric pocket that recognize specific C-term amino-acids of substrates (pocket defined by Tyr684, Lys685, and Arg807).

It has also been shown that this mechanism explains the capacity of small peptides to activate the enzyme [START_REF] Mpakali | Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2[END_REF][START_REF] Chang | The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a "molecular ruler" mechanism[END_REF]. Recently, an activator/inhibitor of ERAP1 was discovered by screening and found to bind a pocket (K551, T914) distant from the catalytic site [START_REF] Maben | Discovery of Selective Inhibitors of Endoplasmic Reticulum Aminopeptidase 1[END_REF]. Similarly, a small compound was discovered as activator of the hydrolysis of a small substrate of ERAP1 (Leu-AMC), but inhibitor of the degradation of larger substrates [START_REF] Liddle | Targeting the Regulatory Site of ER Aminopeptidase 1 Leads to the Discovery of a Natural Product Modulator of Antigen Presentation[END_REF]. Docking studies suggested that the latter compound may bind a regulatory site. This binding mode explains why the hydrolysis of short peptides that do not engage the regulatory site is promoted; while the hydrolysis of longer peptides, whose C-terminus normally occupies the same allosteric site, is blocked, due to their binding being hindered by the compound.

The binding of peptides to this allosteric regulatory site promotes the flipping of domains I and IV required for the conformational change of ERAP1 from open form to closed form, as well as for the active-site reorganization [START_REF] Stamogiannos | Critical Role of Interdomain Interactions in the Conformational Change and Catalytic Mechanism of Endoplasmic Reticulum Aminopeptidase 1[END_REF].

This mechanism is thought to be unique to ERAP1 in comparison with ERAP2 and IRAP. For example, it has been shown that ERAP2 is not activated by peptides and prefers to trim shorter peptides [START_REF] Mpakali | Structural Basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2[END_REF]. No allosteric pocket, neither activators have been disclosed so far for ERAP2.

In the course of the exploration of structure-activity relationships around hit 5, we discovered a subseries, namely 28-33, where the pyrrolidine ring of 5 has been replaced by a phenyl group. These analogues are the first activators of small substrates hydrolysis by ERAP2. Surprisingly, docking study did not reveal binding of 29 to a remote site in ERAP2. Indeed, analogue 29 does bind the active site but away from the Zn 2+ catalytic ion and makes no interactions with Domain I at all. In contrast with inhibitors like 4 or 5, which bind the Zn 2+ catalytic ion and slip between this ion and the catalytically important residue Glu200, compound 29 leaves both the Zn 2+ and Glu200 accessible and seems to shape the catalytic site, efficiently for adequate binding of small substrates like Arg-AMC (Fig. 11).

Still, as it is located in the active site, longer peptides cannot bind anymore and thus the activity of 29 shifts from activation of small substrates hydrolysis to inhibition or larger substrate hydrolysis. Interestingly, 5 binds so far untapped amino-acids in S1 pocket and may be useful as a starting point for future optimizations. In the course of analogue design, we identified the first activators of ERAP2.

These act as activators of Arg-AMC hydrolysis, but inhibit the processing of nonapeptides. Based on docking, these activator/inhibitor compounds appear to bind in the catalytic site, but away from the catalytic zinc and Glu200, a completely new binding mode for ERAP2 modulators. Screening using small substrates allows thus to identify ligands with partial occupancy of the binding pocket and which can be used to study the pocket bit by bit and be new starting point for optimization. Still, different substrates including more physiological peptides are necessary to select molecules that will be likely to have in vivo effect consistent with their in vitro effect.

Experimental section

In vitro ERAP2 activity assay.

ERAP2 was prepared as previously described [13]. The enzymatic activity of ERAP2 was assayed using R-AMC (L-Arginine-7-amido-4-methylcoumarin hydrochloride, Sigma). Hepes at 50 mM with 100 mM NaCl at pH 7 was used as buffer. Briefly, 60 nL of test compounds were added in 384-wells plates (dark, non-binding surface) by acoustic dispensing with Echo (Labcyte) and pre-incubated 30 minutes at ambient temperature with 10 μL of ERAP2 1 μg/mL or vehicle. The reaction was then started with the addition of 10 μL of substrate at 10 μM. The final concentration of ERAP2, substrate and DMSO was 0.5 μg/mL, 5 μM and 0.4% respectively. For the kinetic readout a Victor 3V (Perkin-Elmer) was used with excitation at 380 nm and emission at 450 nm. The fluorescence was measured each 3 minutes during one hour.

The Z and Z' factors were calculated according to J. 

Dose-Response Curves.

Percentages of inhibition or activation at different concentrations were obtained as for screening. All measurements were carried out as 8-point dose response curves and reported as the average of at least three independent measurements. Bestatin was used as a reference inhibitor (100% inhibition at 2 mM). Data analysis was performed using Xlfit® v 5.0 or GraphPad Prism® v 4.0. Nonlinear curve fitting and statistical analysis was done using built-in functions.

Selectivity

In vitro ERAP1 and IRAP activity assays were performed as for ERAP2 using L-AMC (L-Leucine 7-Amido-4-MethylCoumarin) from Sigma, as the substrate, recombinant human ERAP1 (PILS/ARTS1 from R&D Systems, ref 2334-ZN-010) at 0.8 µg/mL final concentration or recombinant human IRAP (prepared as previously described [START_REF] Kokkala | Optimization and Structure-Activity Relationships of Phosphinic Pseudotripeptide Inhibitors of Aminopeptidases That Generate Antigenic Peptides[END_REF]) at 0.2 µg/mL final concentration respectively.

Hydrolysis of nonamer-peptides

Enzymatic reactions were performed as previously described using X-SIINFEKL peptides (from Proteogenix, Schiltigheim, FR). The enzymatic reactions were stopped at the desired time-point by dilution using iced acetonitrile (x100 dilution), before injection in LC-MS/MS to measure AUC. LC-MS/MS analysis were performed on an UPLC system Acquity I Class (Waters ® ), combined with a triple quadrupole mass spectrometer Xevo TQD (Waters ® ). The column was an Acquity BEH C18 50*2.1 mm, 1.7 μm column (Waters ® ) and the following mobile phases were used: 5mM ammonium formate pH 3.75 buffer for solvent (A) and 5 mM ammonium formate pH 3.75 in acetonitrile for solvent (B). At a flow rate of 600 µL/min, the analytical method starts at 98% (A) for 10s, then the percentage of B gradually increases at 98% till 2 minutes, hold at 98% (B) for 30s before returning to the initial conditions, hold 1.5 minutes. The injection volume was 1 μL. MS analyses were performed under MRM detection using the parameters optimized for each peptide (capillary voltage, product ions, collision energy, desolvation temperature) (Supplementary Table S1). The control of the equipment as well as the reprocessing of the analyses were carried out using MassLynx software (Waters ® ). For XSIINFEKL, 100% corresponds to the AUC of the peptide at t=0 without enzyme. Dose-response curves with compounds were performed at t= 60 min.

4.1.5. Docking and simulation calculations.

pKa were calculated using PipelinePilot® 8.5 from Dassault systems.

Modeling and simulations were performed using non-aged X-ray crystal structure of ERAP2 PDB 5J6S. The protein was protonated then charged using AM1-BCC in Chimera 1.13 [START_REF] Ef. Pettersen | Ferrin UCSF Chimera--a visualization system for exploratory research and analysis[END_REF]. Then, docking calculations were performed using rDock 2013.1 [34]. A zinc chelation pharmacophore sphere located on the crystal ligand's oxygens positions has been added with a binding energy coefficient of 100 to ensure zinc chelation. Fifty poses have been generated for each molecules. Each poses have been manually inspected. Then, shortlisted poses have been refined using 2018.0101 (Chemical Computing Group, Inc.) to highlight protein-ligand interactions. The refinement process involved a re-protonation

of the system at 310K, pH7. The minimization was performed using the Forcefield optimization with Amber14. When water was kept in the pocket, a first run were done with rigid water, then a second run were done with unfrozen water.

The structures were rendered in PyMOL (Delano, W. L. The PyMOL Molecular Graphics System.

DeLano Scientific LLC: San Carlos, CA, 2002).

4. 1.6. Chemistry. 4.1.6.1. General information.

Solvents for synthesis, analysis and purification were purchased as analytical grade from commercial suppliers and used directly without further purification. Chemical reagents were purchased as reagent grade and used without further purification.

LC-MS Waters system was equipped with a 2747 sample manager, a 2695 separations module, a 2996 photodiode array detector (200-400 nm) and a Micromass ZQ2000 detector (scan 100-800).

XBridge C18 column (50 mm x 4.6 mm, 3.5 µm, Waters) was used. The injection volume was 20 µL. A mixture of water and acetonitrile was used as mobile phase in gradient-elution. The pH of the mobile phase was adjusted with HCOOH and NH4OH to form a buffer solution at pH 3.8. The analysis time was 5 min (at a flow rate at 2 mL/min), 10 min (at a flow rate at 1 mL/min) or 30 min (at a flow rate at 1 mL/min). Purity (%) was determined by reversed phase HPLC, using UV detection (215 nm), and all isolated compounds showed purity greater than 95%.

HRMS analysis was performed on a LC-MS system equipped with a LCT Premier XE mass spectrometer (Waters), using a XBridge C18 column (50 mm x 4.6 mm, 3.5 µm, Waters). A gradient starting from 98% H2O 5 mM Ammonium Formate pH 3.8 and reaching 100% CH3CN 5 mM Ammonium Formate pH 3.8 within 3 min at a flow rate of 1 mL/min was used.

NMR spectra were recorded on a Bruker DRX-300 spectrometer. The results were calibrated to signals from the solvent as an internal reference [e.g. 2.50 (residual ) and 39.52 ( ppm for ¹H and ¹³C NMR spectra respectively]. Chemical shifts (δ) are in parts per million (ppm) downfield from tetramethylsilane (TMS). The assignments were made using one-dimensional (1D) 1 H and 13 C spectra and two-dimensional (2D) HSQC-DEPT, COSY and HMBC spectra. NMR coupling constants (J) are reported in Hertz (Hz), and splitting patterns are indicated as follows: s for singlet, brs for broad singlet, d for doublet, t for triplet, q for quartet, quin for quintet, dd for doublet of doublet, ddd for doublet of doublet of doublet, dt for doublet of triplet, qd for quartet of doublet, m for multiplet, δ for chemical shift, J for coupling constant.

Flash chromatography was performed using a Puriflash®430 with silica columns. UV and ELSD detection were used to collect the desired product.

Reverse flash chromatography was performed using a CombiFlash® C18 Rf200 with C18 silica gel cartridges. UV detection (215 and 254 nm) was used to collect the desired product.

Preparative HPLC was performed using a Varian PRoStar system with an OmniSphere 10 µm column C18 Dynamax (250 mm × 41.4 mm) from Agilent Technologies. A gradient starting from 20% MeCN / 80% H2O / 0.1% formic acid and reaching 100% MeCN / 0.1% formic acid at a flow rate of 80 mL/min was used. UV detection (215 and 254 nm) was used to collect the desired product. Purification yields were not optimized.

4. 1.6.2. Synthesis of Hit 4 and analogues 15-16 4.1.6.2.1. 2-(N-[2-[(2S)-4-benzyl-2-(1H-indol-3-ylmethyl)piperazin-1-yl]- 2-oxo-ethyl]anilino)acetic acid ( 4)

N-phenyliminodiacetic acid (69 mg, 0.33 mmol, 1 eq.) was put in solution in acetic anhydride (2.5 mL) and trifluoroacetic anhydride (50 µL) was added. The resulting blackish mixture was stirred at room temperature for 5h. Solvents were then evaporated under reduced pressure. Anhydrous DMF (3 mL) was added on the crude anhydride under argon and the substituted piperidine (100 mg, 0.33 mmol, 1 eq.) was added, followed by DIEA (230 µL, 1.31 mmol, 4 eq). The resulting mixture was stirred overnight at room temperature. It was then diluted with water and extracted three times with EtOAc.

Organic layers were mixed and solvents were evaporated under reduced pressure. The residue was purified through flash silica gel chromatography (cyclohexane/Et0Ac 4, 169.8, 138.0, 136.3, 128.9, 128.7 (3C), 128.3 (3C), 127.1 (2C), 124.3, 121.1, 118.7, 118.0, 116.6, 111.7, 110.6 (2C), 110.4, 61.9, 54.5 (2C), 53.3, 52.8, 52.6, 37.3, 25.6; minor isomer: 6,170.0,146.4,136.2,129.1,128.8 (3C),128.2 (3C),127.2 (2C),123.4,120.9,118.3,118.2,116.8,111.3,111.2 (2C),110.4,61.9,55.9 (2C),53.1,52.5,50.3,40.7,piperazin-1-yl]- 2-oxoethyl]amino]acetic acid [START_REF] Papakyriakou | Novel selective inhibitors of aminopeptidases that generate antigenic peptides[END_REF] To a stirred solution of commercially available 3 4.1.6.2.3. 2-[[2-[(2S)-4-benzyl-2-(1H-indol-3-ylmethyl) 

[Tapez ici] 22 172.

Synthesis of sulfonamide derivatives 34a-k

Procedure A: To a solution of sulfonyl chloride derivative (10 mmol, 1.0 eq.) and triethylamine ( 12mmol, 1.2 eq.) in dichloromethane (20 mL) was added the amine derivative (11 mmol, 1.1 eq.) at 0 °C.

The reaction mixture was allowed to reach room temperature and stirred for 12 h then diluted with dichloromethane (500 mL). The organic phase was washed with aqueous 5% HCl, dried over MgSO4, filtered and evaporated to give the corresponding sulfonamide.

Procedure B: Sulfonylchloride (2.8 mmol, 1 eq.) was dissolved in 10 mL CH2Cl2 and treated with TEA (1.2 mL, 8.5 mmol, 3 eq.) at rt. To this, while stirring the solution, was added amine (04.3 mmol, 1.5 eq.) and the mixture was stirred overnight. The reaction mixture was then poured onto CH2Cl2/water mixture and washed once. The aqueous phase was back extracted once with fresh CH2Cl2. Organic phases were combined, washed once with brine and dried over MgSO4 then filtered and concentrated in vacuo. 4.1.6.3.15. tert-butyl (2S)-2-[(4-iodobenzoyl)amino]- 4-methyl-pentanoate (18b).

Obtained following the general procedure C. Light brown solid (2.20 g, 94%). LC tr = 7. 6.59 (d,J = 8.3 Hz,1H),4.71 (td,J = 5.3,8.3 Hz,1H),3H),1.48 (s,9H),6H). 13 C NMR (75 MHz, CDCl3) δ: 172.6, 166.3, 137.9 (2C), 133.7, 128.8 (2C), 98.7, 82.4, 51.9, 42.3, 28.2 (3C), 25.2, 23.0, 22.4. 4.1.6.3.16. (S)-tert-butyl 2-(4-iodobenzamido)-4-phenylbutanoate (19b) Obtained following the general procedure C. Yellow solid (2.42 g, 95%). Purity: 98%, LC tR= 3. Hz, 2H), 7. 31-7.26 (m, 2H), 7. 3H),6.66 (d,J = 7.4 Hz,1H),1H),2H),1H), 2.17-2.05 (m, 1H), 1.51(s, 9H). 13 C NMR (75MHz, CDCl3) δ: 171. 7, 166.1, 141.2, 137.8 (2C), 133.6, 128.7 (4C), 128.5 (2C), 126.3, 98.8, 82.8, 53.3, 34.3, 31.8, 28.2 (3C). 4.1.6.3.17. General procedure D for the synthesis of 5c, 18c-19c To a suspension of sodium hydride (4.6 mmol, 1.3 eq.) in anhydrous THF (11 mL) was added amide compound (5b, 18-26b, 28b-33b) (3.5 mmol, 1.0 eq.) at 0°C. The reaction mixture was stirred for 1 h and iodomethane (7.0 mmol, 2.0 eq.) was added. The mixture was stirred at room temperature overnight. Water (200 mL) was then added and the resulting mixture was extracted with EtOAc. The organic phases were combined, dried over MgSO4 and evaporated to give the corresponding methylated product. The crude product was purified by flash chromatography on silica gel (with a gradient in cyclohexane/ethyl acetate or CH2Cl2/MeOH) to afford the pure product.

4. 1.6.3.18. tert-butyl (2S)-2-[(4-iodobenzoyl)-methyl-amino]- 3-phenyl-propanoate (5c).

Obtained following the general procedure D. Yellow oil (1.33 g, 82%). LC tr = 7. 18-2.93 (m, 7H), 2.74 (s, 3H), 1.52 (s, 18H). 13 C NMR (75 MHz, CDCl3) δ: 172.1 (maj), 171.2 (min), 169.8 (min), 169.2 (maj), 137.6 (2C min), 137.4 (2C maj), 136.8, 135.7 (min), 135.3 (maj), 129.4 (2C), 128.9 (4C), 128.9 (4CH), 128.7 (2C min), 128.6 (2C min), 128.4 (2C maj), 127.2 (maj), 126.9 (min), 95.8 (min), 95.5 (maj), 82.9 (maj), 82.1 (min), 64.2 (maj), 58.8 (min), 35.3 (min), 34.7, 29.3 (maj), 28.2 (3C). 4.1.6.3.19. tert-butyl (2S)-2-[(4-iodobenzoyl)-methyl-amino]- 4-methyl-pentanoate (18c).

Obtained following the general procedure D. White solid (1.16 g, 77%). LC tr = 8.1 min. MS (ESI+):

m/z = 376 [M+H-t-Bu] + . 1 H NMR (300 MHz, CDCl3) δ: 7.73-7.75 (m, 4H), 7. .17 (m, 4H), 5.24 (dd, J = 6.2, 9.3 Hz, 1H), 4.17 (dd, J = 6.0, 8.9 Hz, 1H), 2.96 (s, 3H), 2.84 (s, 3H), 1.61-1.77 (m, 6H), 1.48 (s, 18H), 0.99-1.00 (m, 6H), 0.86 (d,J = 6.3 Hz,3H),0.66 (d,J = 6.3 Hz,3H). 13 C NMR (75 MHz, CDCl3) δ: 171.9, 171.5, 170.8, 170.3, 137.7 (4C), 136.1, 135.8, 128.7 (2C), 128.7 (2C), 96.0, 95.8, 82.5, 81.8, 60.7, 55.4, 38.1, 37.2, 33.9, 29.2, 28.2 (3C), 28.2 (3C), 25.4, 24.7, 23.5, 23.2, 21.7, 21.7. 4.1.6.3.20. (S)-tert-butyl 2-(4-iodobenzamido)-4-phenylbutanoate (19c) Obtained following the general procedure D. White solid (1.0 g, 58%). Purity: 95%, LC tR= 3.67 min, MS (ESI+): m/z = 480 [M + H] + . Mixture of 2 amide conformers with a ratio of 1/0.8. 1 H NMR (300MHz, CDCl3) δ: 7.76 (d,J = 7.8 Hz,2H),7.65 (d,J = 7.8 Hz,2H),2H), 7. 23-7.14 (m, 8H),

Fig. 3 :Compound 4

 34 Fig. 3: Structures and IC50s of hits 4-5.

Fig. 4 :

 4 Fig.4: Putative binding mode of 4 in ERAP2 a

  almost T-shaped) with Tyr 892 from the S2' selectivity pocket. In this pose, fewer interactions are seen with the S1 pocket. The benzyl group engages in T-shaped stacking with Phe450 (closest distance 3.4 Å) and the oxygen of the sulfonamide forms hydrogen bond with Gly 334 backbone.

Fig. 5 :

 5 Fig.5: Docking poses of 5 in ERAP2 a

Fig. 6 :

 6 Fig.6: Design of analogues 17 to 33.

Scheme 2 :

 2 Scheme 2: Synthesis of 17.Reactions and conditions: i) p-fluoro-sulfonyl chloride, pyridine, CH2Cl2, 70 °C, 3h ii)1-(2-chloroethyl)pyrrolidine, K2CO3 (3 eq.), DMF, r.t., overnight; iii) 4N HCl/dioxane, CH2Cl2, r.t., overnight; iv) 2-nitrobenzenesulfonyl chloride; K2CO3 (2 eq.), DMF, 0 °C -> r.t, overnight; v) CH3I (4 eq.), K2CO3 (2 eq.), DMF, 0 °C -> r.t, overnight; vi) mercaptoacetic acid (4 eq.), Cs2CO3 (1 eq.), LiOH*H2O (1 eq.), DMF, 60 °C, overnight; vii) HOBt (0.55 eq.), HBTU (0.16 eq.), TEA (2.2 eq.), DMF, r.t., overnight; viii) 4N HCl/1, CH2Cl2, r.t.,24 h. 

Fig. 6 :

 6 Fig.6: DRCs of the 6 phenethyl derivatives (28-33). a a Compounds 28-29 and 31-32 behave as activators of Arg-AMC hydrolysis by hERAP2.2.7.2. Docking study of 29 in ERAP2.

Fig. 7 :

 7 Fig.7: Putative binding mode of 29 in ERAP2 a

Fig. 8 :

 8 Fig.8: Selection of SIINFEKL-derived peptide for hydrolysis by ERAP2 preferably. a a A: Hydrolysis of 9-mer or 10-mer peptides derived of SIINFEKL by ERAP2. KSIINFEKL is the best substrate. B: KSIINFEKL is a better substrate for ERAP2 than for ERAP1. C: Hydrolysis of KSIINFEKL by ERAP enzymes produces epitope SIINFEKL. Peptides were titrated by LCMS-MS after 2 hours. Data are mean of 2 experiments.

Fig. 9 :Fig. 10 :

 910 Fig.9: Dose dependent inhibition of ERAP2-mediated RSIINFEKL hydrolysis by 5, 28 & 29. a

Fig. 11 :

 11 Fig. 11: Zoom of the catalytic chamber in ERAP2 in the presence of activator/inhibitor 29. a a Docking pose of 29 in PDB 5J6S. Oxygens, Nitrogens are in red, blue respectively, Carbons are colored according to domains I, II, III & IV respectively and in gray for 29. Polar hydrogens are in white. Zn2+ion is represented as a magenta sphere. Distances are in Å

  -H. Zhang, T.D.Y. Chung, K.R. Oldenburg, A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays, J. Biomol. Screen., 4 (1999) 67-73. Data analysis was performed using Xlfit® v 5.0 or GraphPad Prism® v 4.0.

  7 min. MS (ESI-): m/z = 416 [M-H] -. 1 H NMR (300 MHz, CDCl3) δ: 7.77 (d, J = 8.5 Hz, 2H) 7.51 (d, J = 8.5 Hz, 2H),

  52 min, MS (ESI+): m/z = 466 [M + H] + .1 H NMR (300MHz, CDCl3) δ: 7.76(d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 

  9 min. MS (ESI+): m/z = 410 [M+H] + . 1 H NMR (300 MHz, CDCl3) δ: Mixture of 2 cis/trans amide isomers (ratio 1/0.9) 7.68 (d, J = 8.1 Hz, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7. 8H), 7.01 (m, 2H), 6.84 (d, J = 7.8 Hz, 2H), 6.47 (d, J = 7.8 Hz, 2H), 4.34 (m, 1H), 3.46 (m, 1H), 3.

  

  

Table 1 : Analogues Hit #4 #cpd R ERAP2 IC50 (µM) 4

 1 

	15	Ph-Ph-CH2-	22±2 _ a
	16		

Table 2 :

 2 Selectivity of 5

	#cpd	ERAP2 IC50 (µM)	ERAP1 IC50 (µM) a	IRAP IC50 (µM) a
	5	9.7±5.0	_ (10)	≈100
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ERAP2 modulators

HTS n = 2; R 3 = Ph-n = 2; R 3 =