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3 Laboratoire de Géologie, Ecole Normale Supérieure, PSL Res. Univ, Paris, France.

SUMMARY

In the Earth’s upper mantle, seismic anisotropy mainly originates from the crystal-

lographic preferred orientation (CPO) of olivine due to mantle deformation. Large-

scale observation of anisotropy in surface wave tomography models provides unique

constraints on present-day mantle flow. However, surface waves are not sensitive

to the 21 coefficients of the elastic tensor, and therefore the complete anisotropic

tensor cannot be resolved independently at every location. This large number of pa-

rameters may be reduced by imposing spatial smoothness and symmetry constraints

to the elastic tensor. In this work, we propose to regularize the tomographic prob-

lem by using constraints from geodynamic modeling to reduce the number of model

parameters. Instead of inverting for seismic velocities, we parameterize our inverse

problem directly in terms of physical quantities governing mantle flow: a temper-

ature field, and a temperature-dependent viscosity. The forward problem consists

of three steps: (1) calculation of mantle flow induced by thermal anomalies, (2)

calculation of the induced CPO and elastic properties using a micro-mechanical

henri
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model, and (3) computation of azimuthally-varying surface wave dispersion curves.

We demonstrate how a fully non-linear Bayesian inversion of surface wave dispersion

curves can retrieve the temperature and viscosity fields, without having to explicitly

parameterize the elastic tensor. Here, we consider simple flow models generated by

spherical temperature anomalies. The results show that incorporating geodynamic

constraints in surface wave inversion help to retrieve patterns of mantle deforma-

tion. The solution to our inversion problem is an ensemble of models (i.e., thermal

structures) representing a posterior probability, therefore providing uncertainties for

each model parameter.

Key words: Seismic tomography; Seismic anisotropy, Surface wave and free oscil-

lations; Inverse theory; Probability distributions.

1 INTRODUCTION

Seismic anisotropy reveals key insights into the Earth’s interior structure and dynamics. In the

upper mantle, the propagation of seismic waves appears to be anisotropic, which has generally

been associated with the preferred alignment of mantle minerals (Nicolas & Christensen 1987;

Montagner 1994). This so-called intrinsic anisotropy relates to the strain history induced by

regional-scale convection and is observable with various seismological tools, including surface

waves.

1.1 Surface wave tomography studies

Surface wave tomography offers a powerful technique to constrain seismic anisotropy and

to image the structure of the upper mantle at both regional and global scales. With growing

amounts of seismic data, tomographers have produced detailed models of azimuthal anisotropy

(e.g., Debayle et al. 2005; Deschamps et al. 2008; Adam & Lebedev 2012; Yuan & Beghein

2013, 2014), and radial anisotropy (e.g., Plomerová et al. 2002; Lebedev et al. 2006; Nettles

& Dziewoński 2008; Chang et al. 2014, 2015). Numerous studies have inverted dispersion

curves by minimizing the difference between observed and synthetic phase and/or group ve-

locities, proving that they can effectively constrain the depth dependence of anisotropy (e.g.,

Montagner & Tanimoto 1990; Ritzwoller et al. 2002).

Seismic anisotropy can be described with 21 independent components of the elastic tensor.
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In practice however, the full tensor cannot be resolved by the seismic data independently at

every location, and generally only a restricted number of parameters are inverted for. This is

done by assuming specific symmetry classes, or by using petrological constraints to impose

relations between some of the parameters. Surface waves in particular are only sensitive to

13 parameters that are just a linear combination of the elastic constants (Montagner & Nataf

1986). General practices in surface wave tomography thus investigate: (1) radial anisotropy

(assuming vertical transverse isotropy, VTI, where the axis of hexagonal symmetry is vertical),

constrained by comparing the speed of Rayleigh waves with that of Love waves, also known

as the Rayleigh-Love discrepancy (Babuska & Cara 1991); or (2) azimuthal anisotropy, which

deals with first-order variations of velocities as function of the azimuth of propagation. For

example, azimuthal anisotropy can be inferred from the azimuthal terms of the Rayleigh wave

phase velocities (Smith & Dahlen 1973).

Simultaneous interpretations of radial and azimuthal anisotropy have been the subject of

extensive research (e.g. Beghein et al. 2014; Burgos et al. 2014). Joint efforts involving the

use of a priori information have already been conducted to reduce the high dimensionality of

anisotropic inversion. Montagner & Anderson (1989) showed that correlations exist between

the elastic constants derived from petrological models, thereby reducing the total number of

free parameters to be inverted for. This motivated the development of ”vectorial tomography”

where it involves inverting for 7 parameters instead of 13: two angles defining the strike and

dip of the symmetry axis, three coefficients defining the strength of anisotropy, and finally two

isotropic coefficients (Montagner & Nataf 1988; Montagner & Jobert 1988). Such a medium is

also known as tilted transverse isotropy (TTI) and describes the 3D distributions of anisotropy.

This further led to studies revealing that deformation-induced anisotropy can be described by

a TTI medium where correlations appear to exist between P and S wave anisotropy (Becker

et al. 2006). Such correlations can then be exploited to further simplify anisotropic inversion.

Panning & Nolet (2008) then laid the groundwork to derive finite-frequency kernels of surface

waves that are explicitly based on a TTI medium. In practice however, constraining the tilt

may still be difficult due to sparse azimuthal sampling, alongside other competing factors such

as non-uniqueness of the solution and poor data quality. Even so, simultaneous inversions for

radial and azimuthal anisotropy using TTI models have already been applied at the regional

scale using probabilistic approaches to combat these shortcomings (Xie et al. 2015, 2017).

Surface wave tomography is an ill-posed inverse problem. This arises from the uneven

distribution of sources and receivers causing limited ray path coverage, and from noise in the

observed seismograms. The type of spatial parameterization may also lead to ambiguity when
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interpreting tomographic results. A conventional technique is to separate the problem into

two steps. The first step is to construct velocity maps for each considered period, which is an

almost linear inverse problem. It is followed by an inversion of each local dispersion curve to

build a model of elastic parameters. The inversion is in general performed using a linearized

technique, which favors a stable and unique solution through regularization, for example by

adding a spatial smoothness constraint on the model parameters.

More recently, the development of probabilistic approaches using direct sampling of the

model space makes it possible to handle the non-uniqueness of the solution and estimate

uncertainties on the inferred parameters. These methods require the evaluation of the forward

model a large number of times, and hence have a high computational cost. Nevertheless,

numerous works have been successful in applying such inversion schemes to seismic data and

in particular to the inversion of surface waves dispersion curves (Shapiro & Ritzwoller 2002;

Shen et al. 2012; Bodin et al. 2016; Ravenna & Lebedev 2017; Xu & Beghein 2019).

In this study, we propose a complementary approach to estimate the full elastic tensor.

This involves the incorporation of geodynamic and mineral physics modeling constraints: the

textural evolution of peridotite aggregates during their deformation in the convective mantle.

We propose a method to invert directly for the temperature field that produces convective

flow and texture evolution. Modeling intrinsic anisotropy in this way removes the issue of low

sensitivity from seismic waves since the elastic tensor is not explicitly inverted for, but instead

computed directly from texture evolution models. Additionally,the inversion is performed

using a Bayesian sampling algorithm, hence provide uncertainties on the obtained temperature

field.

1.2 Deformation-induced seismic anisotropy

In the upper mantle, the existence of large-scale anisotropy appears to be ubiquitous in re-

gions associated with strong deformation (McKenzie 1979). Its interpretation is based on the

development of crystallographic preferred orientation (CPO) in olivine aggregates during their

plastic deformation (Nicolas & Christensen 1987). Due to the physical process at its origin,

seismic anisotropy can be interpreted in terms of the strain history associated with upper

mantle circulation.

Different proxies have then been utilized to interpret seismic anisotropy directly in terms of

mantle flow. First-order seismic observations suggest that the fast axis of azimuthal anisotropy

tends to align with horizontal mantle flow (Ribe 1989; Becker et al. 2003, 2014). However, this

behavior may not always be exhibited due to complex local deformation mechanisms associ-
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ated with CPO evolution. Moreover, it is also important to emphasize that the development

of anisotropy relates to the history of velocity gradients along a flow line, and not to the

velocity field itself. Laboratory experiments of simple shear suggest that, at low strains, the

orientation of the olivine fast axis tends to be aligned with the long axis of the finite strain

ellipsoid (FSE) (Zhang & Karato 1995; Ribe 1992). The amplitude of anisotropy, on the other

hand, can be approximated as a monotonic function relating to the ratio between the long

axis and the short axis of the FSE (Ribe 1992; Hedjazian & Kaminski 2014). At sufficiently

large strains however, CPO evolution deviates from the FSE due to the apparition of dynamic

recrystallization. It tends to align nearly parallel to the direction of shear instead (Zhang &

Karato 1995; Bystricky et al. 2000), although its transient behavior remains complex (Hansen

et al. 2014a). Following this observation, a possible proxy is to interpret the orientation of the

anisotropy fast axis as the infinite strain axis (ISA), that is, the axis of the FSE in the limit

of infinite strains (Kaminski & Ribe 2002). In practice however, this proxy have had limited

success at the global scale (Becker et al. 2014).

For that reason, an adequate interpretation of seismic anisotropy is usually based on

numerical models of texture evolution. They require geodynamic flow models as inputs to

provide the complete strain history. However, in some problems, the complete flow trajectory

is unknown or too costly to compute, and only present-day flow is available. In this case,

we propose to use a steady-state assumption to reconstruct the deformation history. This

approximation is acceptable provided that the time scale of texture evolution is much smaller

than that of the flow fluctuations (Kaminski & Ribe 2002).

1.3 Interpreting tomographic images with geodynamic modeling

In order to explain surface wave anisotropy, particularly in intra-oceanic and young continen-

tal regions, first-order interpretations involve finite strains computed from global circulation

models (Becker et al. 2003). In their work, the density field derived from isotropic tomog-

raphy (Becker & Boschi 2002) is used to compute instantaneous flow solutions in the upper

mantle. Finite strain models derived from the flow are subsequently compared with azimuthal

anisotropy in surface waves. However, as discussed above, finite strain-derived models may fall

short at larger strains due to dynamic recrystallization (Zhang & Karato 1995). This urges

the use of computational strategies that incorporate texture evolution models to estimate the

level of CPO anisotropy.

Texture evolution can be modeled using micro-mechanical models of visco-plastic defor-

mation of upper mantle minerals (Tommasi et al. 2000). One of which in particular uses
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a kinematic formalism to model texture evolution of olivine aggregates by plastic deforma-

tion and dynamic recrystallization (Kaminski et al. 2004). It has been extensively applied

to predict CPO-induced anisotropy from geodynamic flow models in a forward modeling ap-

proach at the regional (Hall et al. 2000; Lassak et al. 2006; Miller & Becker 2012; Faccenda

& Capitanio 2013) and at the global scale (Becker et al. 2006, 2008). Forward models such

as this assist further in the interpretation of seismic tomography models in terms of man-

tle circulation patterns. To cite an example, CPO-induced anisotropy resulting from to 3D

numerical simulations of subducting slabs shows consistency with radial anisotropy patterns

inferred from global tomographic images (Ferreira et al. 2019; Sturgeon et al. 2019). However,

most studies rely on visual comparisons between CPO obtained from numerical simulations

and tomographic images. To the best of our knowledge, no study yet exists where mantle

deformation has been inferred directly from seismic observations using an inverse approach.

1.4 Geodynamic tomography

This motivated us to implement geodynamic tomography, an approach where no symmetry

is imposed to the elastic tensor at the outset, and where seismic observations are inverted

with constraints from geodynamic modeling, in a fully Bayesian parameter search approach.

To constrain the patterns of mantle deformation, we invert Love and azimuthally-varying

Rayleigh phase velocity dispersion curves to retrieve the present-day thermal structure of

the upper mantle. The thermal structure relates to density anomalies through a linear equa-

tion of state. The complete forward problem proceeds as follows (see Figure 1): (1) Given a

temperature field, we first numerically solve an instantaneous 3D convection problem with

temperature-dependent viscosity (Samuel 2012). (2) Using the obtained velocity field and ve-

locity gradient obtained, we track CPO evolution of olivine crystals where the steady-state

assumption of the flow is implied. The result is a complete elastic tensor Sij at each point

in space (Kaminski et al. 2004). (3) The last step involves computing synthetic surface wave

dispersion curves using normal mode summation in a spherical earth (Smith & Dahlen 1973)

and their azimuthal variations from the full Sij (Montagner & Nataf 1986).

The inversion explores the model space using a Markov chain Monte Carlo (McMC) algo-

rithm, and evaluates through Bayesian inference the posterior probability of model parameters.

In opposition to conventional tomography where elastic parameters are to be inverted for, our

method directly inverts for a single scalar field (e.g., temperature anomalies) and extra infor-

mation is driven by the physics of mantle convection. The complete solution to our problem is

a probability distribution of the 3D present-day thermal structure of the upper mantle. Since
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the complete elastic tensor is computed for each sampled model, we can also obtain a pos-

terior distribution of the full elastic tensor. In fact, any variable that is implicitly computed

in the forward model can be expressed as a posterior distribution in their respective model

space (temperature, flow, deformation, and anisotropy). Thus, geodynamic tomography may

be viewed as a technique to reduce model dimension (i.e., the number of inverted parameters)

in the inverse problem. Our goal in this study is to lay its proof of concept by applying it

to simple synthetic temperature fields. In Section 2, we explain how geodynamic tomography

is implemented, starting with the model parameterization, followed by the forward problem,

the data, and finally the Bayesian inversion scheme. This is followed by Section 3, where we

apply the method to synthetic data obtained from prescribed temperature fields. The last sec-

tion discusses current limitations of geodynamic tomography, and its potential applications

to real-Earth problems.

2 METHODOLOGY

Geodynamic tomography involves two main procedures: (1) evaluate the forward model com-

pletely, and (2) implement a fully Bayesian non-linear inversion scheme with an McMC sam-

pling technique. The solution of our inversion scheme is a posterior distribution of thermal

structures and their corresponding uncertainty bounds. Fig. 1 illustrates the complete inver-

sion scheme.

2.1 Model parameterization

To parameterize the 3D thermal structure in a Cartesian domain (x,y,z), we build a basis

containing spherical temperature anomalies, on top of an adiabatic temperature gradient.

Mathematically, this translates to:

T (r) = Tbackground(r) +
M∑
i=1

T i
anomaly(r) , (1)

where the background temperature is assumed to be linear and only a function of depth z:

Tbackground(r) = T0 +

(
z

Ls
− 1

)
(T0 − 1200 K) , (2)

and M is the number of spherical anomalies, r = (x,y, z) defines any point in the 3D volume,

T0 is the temperature at the bottom (i.e., also the reference value), and Ls is the characteristic

length scale. Each anomaly has a distinct size, temperature, and position. We define the basis
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Figure 1. Geodynamic tomography (green) in comparison with traditional tomographic techniques

(red). In geodynamic tomography, the unknown model to be inverted for is the temperature field

denoted by T , whereas in traditional tomography, the model is a fourth-order elastic tensor Sij with

21 independent coefficients. Often, tomographers assume a hexagonally symmetric medium onto Sij

to reduce model complexity. The complete forward model (in green) is cast in a Bayesian McMC

framework. One of the advantages of geodynamic tomography is the reduction of unknown model

parameters due to constraints from geodynamics.

function for one given spherical anomaly as:

Tanomaly(r) = −Tc
2

1− tanh

(
β

Ls

(
‖r− r0‖ −

R

2

)) , (3)

where Tc is maximum temperature anomaly reached at the center of the sphere r0 = (x0, y0, z0),

and R controls its size. These five variables are unknown model parameters to be inverted for in

our problem. The non-dimensional constant β = 20 controls the sharpness of the temperature

gradient. Additional details can be found in Appendix A.

We model the medium rheology by assuming a temperature-dependent viscosity, following

the Frank-Kamenetskii approximation to Arrhenius-type viscosity. Here, we only invert for

a dimensionless scalar constant E, which plays a similar role to the conventional activation

energy (i.e., the sensitivity of viscosity to temperature). The viscosity field is described by:

η(r) = η0 exp

[
−E (T (r)− T0)

T0

]
, (4)

where η0 is a reference value for viscosity. The total number of parameters defining the model
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is therefore 5M + 1, and the corresponding model vector m is defined as:

m = [E, x0
i, y0

i, z0
i, Ri, T c

i, ..., x0
M , y0

M , z0
M , RM , T c

M ] . (5)

2.2 The forward problem

The forward problem involves three main steps: (1) regional flow modeling in 3D Cartesian

coordinates, (2) modeling texture evolution and computation of the full elastic tensor, and

(3) computation of seismic surface wave dispersion curves. We enhance the computational

efficiency in Step 2 by using a surrogate model based on an artificial neural network (ANN)

to compute the deformation-induced anisotropy.

2.2.1 Flow model

For our instantaneous flow models, we consider the buoyancy-driven convection of a highly-

viscous, Newtonian, and incompressible fluid in a 3D Cartesian coordinate system. The flow

is subjected to free-slip boundary conditions. The system of equations describing the flow is

given by:

∇ · u = 0 , (6)

and

−∇P +∇ · [η(∇u +∇uT )] + ρ g êg = 0 , (7)

where u is the flow velocity, P is the dynamic pressure, and êg is a unit vector pointing

towards the direction of gravity. We assume density ρ to be a function of temperature T

using a linear equation of state controlled by a thermal expansion coefficient α, where ρ(T ) =

ρ0−ρ0 α(T−T0). The Rayleigh number, a dimensionless quantity that relates to the level of free

convection, is chosen such that it is representative of the upper mantle (Ra = 1.05 × 106). The

dimensional values of the governing parameters are listed in Table 1. The Stokes equations

are discretized using a finite-volume approach (e.g., Patankar 1980; Albers 2000), and are

solved using the coupled iterative geometric multigrid method using V-cycles (Brandt 1982;

Gerya 2010), yielding linear convergence with the number of unknowns. The complete code

is parallelized with OpenMP. The accuracy of the numerical solution has been benchmarked

against numerical and analytical solutions (Samuel 2012, 2018).

Although the code accommodates sharp viscosity contrasts, the latter tend to reduce

the speed of convergence. Sharp viscosity contrasts are avoided in this study since smooth
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Table 1. Dimensional parameters that define the Rayleigh number.

Symbol Parameter Value

η0 Viscosity 1021 Pa s

α Thermal expansion 2 10−5 K−1

g Gravity 9.81 m/s2

Ls Layer thickness 400 km

T0 Temperature scale 1900 K

k Thermal diffusivity 10−6 m2/s

ρ0 Density 3800 kg/m−3

Ra Rayleigh number 1.05 106

thermal structures are considered in our prior distribution. The velocity gradients are obtained

by second-order finite differences of the computed velocity field.

2.2.2 Modeling intrinsic anisotropy

Upper mantle minerals develop CPO due to progressive shearing along a flow path. We initially

model CPO evolution by employing D-Rex, a kinematic model of strain-induced crystal lattice

preferred orientation of olivine and enstatite aggregates developed by (Kaminski et al. 2004).

The crystal aggregates respond to an imposed macroscopic deformation by two mechanisms:

(1) dislocation creep which induces reorientation of each crystallographic axis, and (2) dynamic

recrystallization, which allows for the evolution of crystallographic volume fractions by grain

nucleation and grain boundary migration. In this study, we only consider pure olivine of

type-A fabric corresponding to dry upper mantle conditions. The raw output of D-Rex is

a set of crystallographic orientations and volume fractions for a given aggregate. Finally,

its effective elastic properties can be estimated with an averaging scheme such as the Voigt

average (Mainprice 1990). In Voigt notation, the elastic tensor can be represented as a 6× 6

matrix with 21 independent elastic coefficients.

D-Rex does not account for pressure and temperature dependence of the single crystal

elastic parameters. We model the temperature and pressure dependence of the isotropic seismic

wave speeds (Vp and Vs) using Perple X, a numerical tool that solves the Gibbs free energy

minimization problem (Connolly 2005, 2009). We use the thermodynamic model from Stixrude

& Lithgow-Bertelloni (2011). We assume olivine mantle composition for isotropic seismic wave

speed calculations. Meanwhile, the elastic tensor given by D-Rex is at a reference temperature

and pressure. It can be decomposed into an isotropic and anisotropic part Siso, and δS(T0, P0),
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respectively:

S(T0, P0) = Siso(T0, P0) + δS(T0, P0) . (8)

We replace the isotropic part of the tensor with the one computed from Perple X. To

account for the pressure and temperature dependence of the anisotropic part, it is scaled by

the ratio between the shear modulus µ(T, P ) at the given pressure and temperature, and the

shear modulus at the reference temperature-pressure µ(T0, P0) (Gallego et al. 2013). Other

methods are available, such as the use of first-order corrections around the elastic tensor at

ambient T and P conditions (Estey & Douglas 1986; Becker et al. 2006). Thus, the full elastic

tensor, whose isotropic part depends on pressure and temperature is:

S(T, P ) = Siso(T, P ) +
µ(T, P )

µ(T0, P0)
δS(T0, P0) . (9)

2.2.3 Fast forward approximation for texture evolution calculations

Sampling-based techniques such as Markov chain Monte Carlo schemes can be applied to most

geophysical inverse problems provided that the parameter space can be sampled efficiently.

In some cases however, the forward model is computationally expensive, and sampling-based

techniques may not be efficient at approximating a multi-dimensional probability distribu-

tion. Fast approximations of the forward model, such as artificial neural networks (ANN)

are sometimes therefore used. Such approximations, however, lead to a theoretical error (also

called modeling error). The form of these errors can be estimated and modeled as a Gaus-

sian probability distribution with its resulting variance being accounted for in the likelihood

function during the inversion process (Hansen et al. 2014b; Köpke et al. 2018). In our case,

the computational bottleneck is clearly the texture evolution modeling, which we addressed

by using an ANN-based surrogate model to approximate seismic anisotropy.

In the field of geophysics, these methods have already been used to approximate the

inverse function in a variety of applications in seismology (e.g., Meier et al. 2007; Käufl et al.

2014; Hansen & Cordua 2017; Hulbert et al. 2019), and in geodynamics (e.g., Shahnas et al.

2018). Among these studies, some have already applied surrogate models for fast forward

approximations in sampling-based techniques (Hansen & Cordua 2017; Köpke et al. 2018;

Conway et al. 2019; Moghadas et al. 2020).

These networks are composed of highly non-linear functions that can be trained to ap-

proximate a non-linear mapping between an input and an output (Bishop et al. 1995). To

approximate such a function, one needs to train this network given a collection of training

data consisting of a set of input and output pairs. In this work, we replicate the operator for
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Figure 2. Vertical cross section of the percentages of total anisotropy obtained from: neural networks

(left), and D-Rex (right). The total anisotropy is derived from the norm of the elastic tensor. The slices

are oriented along the yz− plane, and taken at the center of the x− axis (i.e., x = 200 km)

texture evolution, which we now denote as gCPO. Flow streamlines with assigned local veloc-

ity gradients are fed into the network as training inputs. The training output contains the

anisotropic part of the elastic tensor δS(T0, P0) computed from D-Rex. The package scikit-

learn in Python is used to train the network (Pedregosa et al. 2011)(See Appendix B for full

details of the method).

Once the network is trained, which we denote as the operator gnn, we perform a simple

numerical test of 3D deformation due to a cold spherical temperature anomaly, and applied

both operators to output seismic anisotropy. Fig. 2 shows the percentage of total anisotropy

found by the two methods. We observe comparable levels of anisotropy. Moreover, the approx-

imation also appears to capture some important features such as the absence of anisotropy at

the center, which is ascribed to the larger viscosity of the anomaly in this region. However,

the surrogate model tends to underestimate the total anisotropy, which may be attributed to

the simplicity of the network architecture, and the number of available training data used.

2.2.4 Predicting surface wave data

For any geographical location at the surface, we can extract the 1D velocity profile (e.g., Sij

as a function of depth) and compute dispersion curves for Love and Rayleigh waves. The

azimuthal dependence of surface wave phase velocity can be treated as the sum of a small

anisotropic perturbation around an isotropic phase velocity model (Smith & Dahlen 1973)
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giving:

c(T, θ) = c0(T ) + c1(T ) cos(2θ) + c2(T ) sin(2θ) + c3(T ) cos(4θ) + c4(T ) cos(4θ) , (10)

where T is the period and θ is the azimuthal angle.

In this work, we only invert c0(T ), c1(T ), and c2(T ) for Rayleigh waves and only c0(T )

for Love waves. It is not common to to invert other terms, due to low sensitivity or to high

levels of noise. For convenience, we denote isotropic Rayleigh wave phase velocity as cR(T )

and Love wave phase velocity as cL(T ).

The different terms in eq. (10) can be computed from Sij in a fully non-linear fashion by

normal mode summation with a Runge–Kutta matrix integration (Takeuchi & Saito 1972).

We refer the reader to Montagner & Nataf (1986) and Bodin et al. (2016) for details. The

seismic forward model is computed using a 1D earth assumption beneath each geographical

location. We acknowledge that surface waves velocities depend on 3D heterogeneities, and

particularly the fact that surface wave computations exhibit non-linearities due to mode-

coupling and finite frequency effects (e.g., Sieminski et al. 2007; Ekström 2011). However,

these approximations can be treated as theoretical errors and can be accounted for in the

Bayesian inversion procedure.

2.3 Bayesian sampling scheme

We formulate the problem in a fully non-linear Bayesian framework (Box & Tiao 2011; Smith

1991; Mosegaard & Tarantola 1995), where the predicted surface wave dispersion curves es-

timated for a large ensemble of models (3D temperature fields) are compared to observed

data. The solution of the inverse problem is the posterior distribution p(m|d), the probability

model of parameters m given the data d. According to Bayes’ theorem we have:

p(m|d) ∝ p(m) p(d|m) . (11)

The prior distribution p(m) describes our predetermined knowledge on m (i.e., the posi-

tion and the amplitude of thermal anomalies, as well as the activation energy). The likelihood

function p(d|m) describes the probability of observing the data given our current knowledge

of the model parameters.

Since our forward problem is highly non-linear, the posterior distribution is sampled using

a Markov chain Monte Carlo algorithm. It involves direct sampling of the parameter space

by random iterative search, where the distribution of the sampled models asymptotically

converges towards the posterior distribution.
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2.3.1 The likelihood function

The likelihood function p(d|m) quantifies how well the model parameters explain the observed

data (i.e. the ensemble of local dispersion curves located at the surface). Supposing that each

data-type (i.e. cR and cL for isotropic Rayleigh and Love wave dispersion curves, respectively;

c1 and c2 for Rayleigh wave anisotropy) is measured independently, the likelihood function

gives:

p(d|m) = p(cR|m) p(cL|m) p(c1|m) p(c2|m) . (12)

For all dispersion curves, we assume that the errors are uncorrelated and follow Gaussian

distributions with zero mean, and variances σ2
cR

, σ2
cL

, σ2
c1 , and σ2

c2 . For isotropic Rayleigh waves

and isotropic Love waves cR and cL, respectively, we can express the likelihood function as a

Gaussian distribution:

p(cR,L|m) =
1

(2πσ2
cR,L

)
N
2

exp

[−|| cobs
R,L − cR,L(m) ||2

2σ2
cR,L

]
. (13)

Here, the likelihood function corresponds to a single dispersion measurement where N is

the number of discrete periods. The likelihood functions of the 2θ terms, c1 and c2, can be

written in the same manner as eq. (13).

2.3.2 A maximum likelihood estimate of data errors

In general, it is difficult to estimate σcR,L due to the lack of knowledge on the error distribution.

In particular, approximating an elastic tensor with a neural network may introduce errors that

are difficult to quantify.

In this work, we use a maximum likelihood estimate (MLE) of the noise parameters σcR,L

and σc1,2 following the work of Dettmer et al. (2007). This is performed by maximizing the

likelihood function over the data standard deviation. The strength of this technique is that it is

not necessary to estimate each contribution to the noise parameters individually. Maximizing

eq. (13) over σcR,L yields:

σcR,L =

[
1

N

N∑
i=1

(cobs
R,L − cR,L(m))2

]1/2

. (14)

Substituting eq. (14) onto eq. (13), and taking the log likelihood we obtain:

ln[p(cR,L|m)] = −N
2

ln

[ N∑
i=1

(cobs
R,L − cR,L(m))2

]
. (15)

The log likelihood functions of c1 and c2 can be defined using the same procedure. This

method has two advantages: (1) the absolute value of errors need not be defined, and (2) in
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the case of joint inversion, we do not have to define the relative weights between each data

type. Finally, the full log likelihood function gives:

ln[p(d|m)] = ln[p(cR|m)] + ln[p(cL|m)] + ln[p(c1|m)] + ln[p(c2|m)] . (16)

2.3.3 The prior distribution

In Bayesian inference, one expresses the a priori information in terms of a probability dis-

tribution p(m). In geophysical inverse problems, model parameters are typically given a uni-

form prior distribution with given upper and lower bounds inferred from prior knowledge

(Mosegaard & Sambridge 2002). Adopting the same formulation, the prior can be written as:

p(mi) =


0 mi > mmax, mi < mmin

1
∆m mmin ≤ mi ≤ mmax ,

(17)

where mmax, and mmin are the prior bounds for the model. Assuming that the model param-

eters in our inversion are prior independent, we can express the prior fully as:

p(m) = p(E)
M∏
i=1

[
p(xi0) p(yi0) p(zi0) p(Ri) p(T i

c)

]
, (18)

where p(E) is the prior distribution for the activation energy, and M is the total number of

spherical temperature anomalies. For an ith temperature anomaly, p(xi0), p(yi0) and p(zi0) are

the prior distributions for position; p(Ri) and p(T i
c) are the prior distributions for the size and

temperature, respectively. We choose wide uniform prior distributions. For the prior bounds,

we select: (1) the length of the spatial domain (0 km to 400 km) for the positions x0, y0, and

z0, (2) 40 km to 240 km for R, (3) 500 K to 1200 K for Tc, and (3) 6 to 12 for E. Choosing

wide bounds ensures that the model parameters are loosely constrained from the prior, and

more emphasis is given to the information provided by the data.

2.3.4 A random walk to sample the posterior distribution

We use a Markov chain Monte Carlo algorithm to sample the posterior distribution. It begins

by randomly selecting an initial temperature model followed by the evaluation of the initial

log likelihood. At each iteration, the current model is perturbed to propose a new model. The

proposal proceeds sequentially as follows:

(i) Assign local perturbation: One sphere is randomly picked out of M number of

spheres. Once a sphere is picked, we randomly select one of four possible ways to perturb the

sphere are as follows:
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• Perturb horizontal position; i.e. x0 and y0 together;

• Perturb vertical position z0;

• Perturb the size of the sphere R;

• Perturb the temperature of the sphere Tc.

Each perturbation is drawn from a univariate normal distribution centered at the current

value of the model parameter.

(ii) Perturb the activation energy: We then apply eq. (1) to define the 3D temperature

field. Alongside, we perturb the activation energy E by using a normal distribution centered

at the current value of E, and apply eq. (4) to define the 3D viscosity field. These two scalar

fields are used as inputs in the flow calculation.

If the proposed model lies within the prior bounds following eq. (18), we evaluate the

forward problem completely. The computed dispersion curves from the latter are compared

with the observed data using eq. (15). The resulting likelihood is then compared to the like-

lihood of the current model, and the proposed model is either accepted or rejected according

to an acceptance probability (Metropolis et al. 1953; Hastings 1970). If the proposed model

is accepted, it becomes the current model for the next iteration. After a sufficient number of

iterations, the ensemble of accepted models converges towards the posterior distribution.

3 APPLICATION WITH 3D SYNTHETIC TEMPERATURE FIELDS

3.1 Inversion for One Spherical Anomaly

We demonstrate our proof of concept by setting up a simple temperature field consisting of

one spherical negative temperature anomaly (i.e. negatively buoyant) placed at the middle of

a 400 km × 400 km × 400 km box. The setup is a very simple toy example inspired by the

work of Baumann et al. (2014) where they applied Bayesian inversion to constrain rheology

from gravity anomalies and surface velocities.

Table 2 shows the complete list of true model parameters, and Fig. 3 displays a cross-

sectional view of the temperature field, and its associated instantaneous velocity field.

We simulate the full forward model given the true model parameters to generate synthetic

dispersion curves at periods between 10s and 200s. Fig. 4 shows a map of the computed phase

velocity and azimuthal anisotropy for Rayleigh waves at 100 seconds. In Fig. 4a, the phase

velocity is maximum at the middle of the region, due to the presence of the cold anomaly

underneath.

Fig. 4b shows a map of azimuthal anisotropy in Rayleigh waves. Here, anisotropy is at
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Table 2. True model parameters defining the synthetic temperature field.

Model parameter Assigned value

x0 200 km

y0 200 km

z0 200 km

R 120 km

Tc 800 K

E 11.0

its minimum at the center, above where the cold more viscous anomaly is located. As a

result of this higher rigidity, local velocity gradients are lower, resulting in smaller amounts of

deformation and hence lower anisotropy. Another feature is the presence of strong anisotropy

at certain locations. These regions are points where shear deformation is at its maximum due

to the convergence of flow lines. On top of the level of azimuthal anisotropy is the orientation of

its fast axis. Since we expect the flow direction to converge towards the center when observed

from the top, the fast axis may be interpreted as the horizontal projection of the flow.

The complete data constitute a regular array of 8 × 8 locations containing cR, cL, c1, and

c2 spanning the entire surface. We emphasize that the data generated comes from an elastic

tensor computed with D-Rex whereas during inversion, the estimated data is obtained from

an elastic tensor approximated by neural networks.

(a) (b)

Figure 3. (a) Cross-sectional view in the yz− plane of the 3D temperature field. The slice is taken at

the center of the x− axis. (b) 3D flow velocity due to the sinking anomaly. Largest flow magnitudes

correspond to the cold anomaly.
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(a) (b)

Figure 4. Phase velocity maps resulting from one sinking anomaly at 100s period. (a) Rayleigh wave

phase velocity (km/s). (b) Azimuthal anisotropy in Rayleigh waves (km/s). The solid black lines

correspond to the direction of the fast propagation axis. Surface wave maps always lie along the xy−

lateral plane.

Finally, we added random uncorrelated noise onto cR, cL, c1, and c2. Standard deviations

for Love and Rayleigh are set at σR = 0.05 km/s and σL = 0.05 km/s, whereas σc1 = 0.01

km/s and σc2 = 0.01 km/s. Fig. 5 illustrates the resulting dispersion curves at one given

location with and without noise.

The inversion consists of 20 independent Markov chains each containing 40,000 samples

initiated at a random temperature structure. We demonstrate two cases. First is an isotropic

inversion, where no anisotropy is involved in the forward model. In this case, it is not necessary

to compute instantaneous flow and anisotropy, as isotropic seismic velocities Vp and Vs can be

directly scaled with temperature. The inverted data are the isotropic phase velocities cR and

cL. Secondly, we present an anisotropic inversion (geodynamic tomography). Both isotropic

and anisotropic inversions are given the same wide uniform priors allowing for more mobility

when searching the parameter space. We initiate geodynamic tomography by first employing

an isotropic inversion. Once the chains have converged in this phase, we then start the actual

anisotropic inversion procedure.

The diagonal panels of Figs 6 and 7 illustrate the ensemble of models recovered from

isotropic inversion and anisotropic inversion. The off-diagonal panels depict 2D marginal dis-

tributions as 2D histograms to explore possible trade-offs. The black circles indicate the values

of the true model parameters. Compared to isotropic inversion, the width of the posterior
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(a) (b)

(c) (d)

Figure 5. Synthetic surface wave dispersion curves from 10s to 200s at a given location: (a) Rayleigh

wave phase velocity, (b) Love wave phase velocity, (c) Rayleigh anisotropy c1, (d) Rayleigh anisotropy

c2. Scatter plot: observed dispersion curve with added noise. Line plot: observed dispersion curve

without noise.

distribution inferred from geodynamic tomography has been reduced considerably. More in-

formation is thus added by introducing geodynamic constraints in the tomographic problem.

As expected, the posterior distribution on the activation energy E in the isotropic case is

flat, as isotropic velocities are only sensitive to temperature and not to viscosity. Anisotropic

inversion, on the other hand, constrains E as shown in Fig. 7. The distribution, however,

appears to be distant from the correct value of E. Such a behavior is also evident in its

2D marginal posterior where the true value is outside the inferred distribution. This clearly

exhibits a bias which is deduced from the imperfections of the neural network when computing

anisotropy. This effect is eliminated when one uses the correct forward operator for modeling

anisotropy. Another distinct feature in these figures is the negative trade-off between Tc and

R, which may be attributed to the symmetry of the problem considered. An increase in

temperature of the anomaly compensates for an increase in its radius. Such trade-offs may be

reduced in the case where the true model exhibits less symmetry.
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Figure 6. Posterior probability distribution in the 6-dimensional parameter space inferred from the

isotropic inversion p(m|cR, cL). Diagonal panels show 1D marginal distributions for each model param-

eter. Off-diagonal panels show 2D marginal distributions and depict possible trade-offs between pairs

of model parameters. The red vertical lines and the black markers indicate the true model values for

the diagonal and the off-diagonal panels, respectively. The intensity pertains to the level of posterior

probability (i.e., high intensity means high probability, and thus low misfit).

We also plot the mean temperature models from both inversions (see Fig. 8). The fig-

ures are obtained by averaging the temperature values at each point. By visual inspection,

anisotropic inversion better resolves the 3D thermal structure. This is further supported by

the standard deviation computed around the mean temperature at a given pixel as shown in

Figs 8c and 8d. In both cases, the standard deviations is higher at the center of the box, where

the spherical anomaly is located. This is due to the variations in the location and amplitude of

the sphere in the ensemble of sampled models. In the anisotropic case, the vertical position of

the sphere is less constrained than its horizontal position, as can be seen in the 2D histograms.

The ensemble of sampled spheres therefore share the same horizontal position but have a vari-
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Figure 7. Posterior probability distribution in the 6-dimensional parameter space inferred from the

anisotropic inversion p(m|cR, cL, c1, c2).

able vertical position, which explains the shape of the standard deviation map in Fig. 8c. The

posterior uncertainties are also relatively small compared to the recovered temperature field,

implying that sufficient information can be retrieved from the noisy dispersion curves.

Fig. 9a shows the 1D depth marginal posterior probability profiles (see captions for fur-

ther details) for temperature, and Fig. 9b for radial anisotropy ξ, peak-to-peak azimuthal

anisotropy, and the trend of the fast-axis of azimuthal anisotropy at a given location. Both

methods capture the 1D structures for temperature. However, by adding geodynamic con-

straints (i.e., anisotropic inversion), we observe that the temperature is much better resolved.

Additionally, we successfully recover radial anisotropy and azimuthal anisotropy without hav-

ing to explicitly invert for the elastic tensor (see Fig. 9b). Here, due to the positioning of the

chosen depth profile for temperature (passing nearly through the center of the anomaly), the

azimuthal anisotropy appears to be nonexistent at this location. For that reason, we consider
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(a) (b)

(c) (d)

Figure 8. Upper panel: Cross-sectional view in the yz− plane of the mean temperature field recovered

from (a) isotropic inversion, and (b) anisotropic inversion. Lower panel: Standard deviations around the

mean temperature fields from (c) isotropic inversion, and (d) anisotropic inversion. These cross-sections

are taken at the center of the x− axis.

another depth profile (x = 325 km, y = 225 km) where azimuthal anisotropy is noticeable

(Fig. 9b−middle).

This method also allows us to resolve 3D structures of seismic properties. In fact, any

implicitly computed variable can be restructured in 3D. Figs 10 and 11 show the resulting

structures computed from the mean temperature model placed side by side with that of the

true model. It appears that the value of anisotropy computed with the neural network is

underestimated compared to that of D-Rex when using the same input model. This explains

why the activation energy E resulting from the inversion is lower compared to the true value:

to produce larger anisotropy and replicate the same output as obtained from D-Rex, one

has to reduce the value of E. Indeed, reducing the viscosity of the material allows for a

stronger deformation. The resulting percentage of total anisotropy from both figures are nearly
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(a)

(b)

Figure 9. Upper panel: Probability density plots of temperature with depth. Lower panel: Probability

density plots of radial anisotropy, peak-to-peak azimuthal anisotropy, and its fast axis with depth. The

depth profiles of temperature and radial anisotropy are taken nearly through the center of the sphere.

To show that azimuthal anisotropy is also well-constrained, we took a depth profile at (x = 325 km,

y = 225 km), where azimuthal anisotropy is large. Geodynamic tomography offers the capability to

constrain seismic anisotropy. The solid red lines indicate the true structures.

identical. Fig. 10 shows the presence of positive radial anisotropy at the bottom, indicating

horizontal flow. Due to the imposition of free-slip boundary conditions combined with zero

normal velocities imposed on all surfaces, the flow at the bottom of the box is oriented nearly

horizontally. The negative radial anisotropy we observe implies vertical flow (see Fig. 10

caption for details). This is a result of convection cells forming at the sides of the anomaly

as it sinks. At the top of the anomaly, negative radial anisotropy also indicates vertical flow

due to downwelling. Finally and as we expect, radial anisotropy at the middle is nearly unity

due to the presence of the more viscous anomaly. The difference in the structures may be
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(a) (b)

Figure 10. Cross-sectional view in the yz− plane of the radial anisotropy ξ inferred from (a) true

model, (b) mean model. Radial anisotropy is often used as a proxy to infer flow orientation. A ξ > 1

(positive radial anisotropy) is often interpreted as horizontal flow. A ξ < 1 (negative radial anisotropy)

on the other hand, pertains to vertical flow. A ξ = 1 indicates the absence of radial anisotropy. The

cross sections are taken at the center of the x− axis.

attributed to the following: (1) imperfections of the forward model used in the inversion; (2)

information loss related to data sensitivity, and data noise.

We tested the convergence of the Markov chain by plotting the estimates for data errors

with MC steps. For further details, refer to Appendix C.

(a) (b)

Figure 11. Cross-sectional view in the yz− plane of the percentage of total anisotropy(i.e., norm of

Sij) inferred from (a) true model, (b) mean model. The absence of anisotropy at the center corresponds

to a region of minimal deformation for the cold and highly-viscous anomaly. The cross sections are

taken at the center of the x− axis.
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Figure 12. Isovolumetric view of the temperature fields. Left: True temperature field. Middle: Mean

temperature field from isotropic inversion. Right: Mean temperature field from anisotropic inversion.

3.2 Inversion for Multiple Spherical Anomalies

This section covers the inversion for ten spherical temperature anomalies with different prop-

erties (i.e., temperature Tc and radius R), positioned randomly in 3D space. Such parameter-

ization scheme may be essential to represent anomalies with complex shapes (e.g., subducting

slab) using a collection of several spheres with different characteristics. The synthetic data

is generated from a true temperature model consisting of ten spherical anomalies as well.

We compare the true temperature model with the mean temperature models obtained from

isotropic and anisotropic inversions (Fig. 12). Even with this much more complex structure,

we are able to recover the main features of the temperature field. Also, as in the test of Sec-

tion 3, anisotropic inversion better recovers the structure than isotropic inversion. Posterior

uncertainties are represented in Fig. 13 and support this observation. However, some differ-

ences with the exact true structure remain, even using anisotropic inversion. Surface waves

are long period observations and hence, small and sharp thermal anomalies may not be re-

solved. Other contributing factors involve the very nature of the tomographic problem itself

as enumerated earlier (e.g., data and modeling errors).

In Fig. 14, we choose one depth profile to show the 1D marginal posterior probability

densities for temperature, radial anisotropy, and azimuthal anisotropy. The dashed black lines

represent the true model. Based on the recovered profiles, anisotropic inversion resolves tem-

perature better than the isotropic case again due to the complementing information brought
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Figure 13. Isovolumetric view of the standard deviations around the mean temperature models. Left:

Standard deviation for the isotropic inversion. Right: Standard deviation for the anisotropic inversion.

by geodynamic constraints. Radial and azimuthal anisotropy still appears to be tightly con-

strained; however with some noticeable deviations from the true model.

4 DISCUSSION

4.1 Additional Comments on the Method

Model parameterization. The goal of this study was to test the method in the most simple

cases, and we acknowledge that our parameterization of the temperature field in terms of a

sum of spherical anomalies is simplistic. However, such parameterization can be applied to

invert for more complex geometries such as a detached slab, a homogeneous plume, or upper

mantle structures beneath cratons. A step further will be to test more realistic approaches.

One possible alternative parameterization is the use of initial temperature models inferred

from isotropic tomography, and an iterative update of the structure based on the anisotropy

signature at the surface (i.e., anisotropic surface wave dispersion curves). This, however, may
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(a)

(b)

Figure 14. Upper panel: Comparison between isotropic and anisotropic inversion. Probability density

plots of temperature with depth. The profiles are taken nearly through the center of the sphere. Lower

panel: Anisotropic inverison: probability density plots of radial anisotropy, peak-to-peak azimuthal

anisotropy, and its fast axis with depth. All profiles correspond to the temperature profile above. The

solid red lines indicate the true structures.

only be feasible at the global scale due to boundary effects. It should still be possible to

apply this technique at the regional scale, but the structure of interest should be far from the

borders of the region considered in order to avoid these boundary effects. Another simple yet

effective parameterization would be to invert for constant parameters (e.g., density, viscosity)

within geometrical blocks defined from a priori information regarding the tectonics of the

region (Baumann et al. 2014). In general, the quality of the results will depend on the choice

of the model parameters, and the prior information available for the region of interest.

Neural network-based approach to texture evolution. The computational demands
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of direct sampling techniques such as McMC is high, as it requires evaluating the forward

model a large number of times. Among all routines involved in the forward model, calculating

CPO anisotropy proved to be the most costly. We therefore devised a surrogate model that

computes texture evolution via a neural network, thus reducing the computation time by three

orders of magnitude compared to D-Rex (see Appendix B for absolute computation times of

both methods).

However, the surrogate model introduces theoretical errors, which can be reduced by using

a network architecture or a training procedure more adapted to the problem at hand. More

accurate predictions could be obtained by using a larger training data set, but this has a higher

initial computational cost. We observed that the surrogate model does not generalize well.

It has been trained for a specific type of flow (convective flows due to spherical temperature

anomalies), and thus provides correct predictions only for flow models of the same nature.

However, only these specific flow types are tested in the McMC scheme, and it is therefore

not necessary here to have a general neural network that applies to any type of flows.

The success of our synthetic tests is in some ways a proof of the quality of the neural net-

work. The inverted anisotropic seismic data sets were calculated using the exact D-Rex model.

Therefore, any errors introduced by the network would manifest themselves by producing a

poor fit to the observed data. These theoretical errors have been quantified and accounted

for in the Bayesian inversion (see Section 2.3.2). If we want to treat another problem, such

as a sinking slab with complex geometry, one needs to re-train the surrogate model for the

specific parameterization and prior distribution used. A possible future avenue of geodynamic

tomography that is independent of this specific step would be to directly parameterize man-

tle flow, and build a family of expected convection patterns (together with their predicted

anisotropy) to investigate flow patterns underneath mid-ocean ridges and subduction zones.

Such parameterization can be easily extended to the global scale by treating these patterns

in terms of source and sink models derived from prescribed plate velocities (Bercovici 1995).

The Bayesian formulation is a practical tool to quantify and account for the theoretical

errors introduced by the parameterization choice and the surrogate model. Statistics of these

errors can be studied by comparing responses obtained with the true forward model and the

surrogate model. If the distribution of residuals is approximated as a normal distribution, the-

oretical errors can be accounted for in the likelihood function (Hansen et al. 2014b). However,

the size of the residual vector may not be large enough to properly represent the statistics of

errors. Here instead, we used a maximum likelihood estimation (MLE) to implicitly account

for these theoretical errors (Dettmer et al. 2007).
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The data. In this work, we assume that the measurement errors in the data are uncorre-

lated. In reality however, surface wave dispersion measurements are inherently smooth, and

correlated both in space and in frequency. A simple improvement when modeling noise can be

made by introducing a function that varies with period while still maintaining the assumption

of uncorrelated errors, as in the work of Ravenna & Lebedev (2017). One may proceed a step

further by constructing a covariance matrix of data noise, more importantly when working on

highly spatially-correlated data sets.

It is also worth mentioning that the method is not limited to the use of a single data-

type (i.e., surface wave measurements) to effectively constrain the patterns of upper mantle

deformation. This calls for the inclusion of other data-types such as gravity anomalies, surface

topography, and/or surface velocities in a joint or separate approach. Such strategies have

already been successfully implemented to invert for the 3D density structure of the mantle.

(Ricard & Wuming 1991).

4.2 Physical Assumptions

The trade-off between physical complexity and computational cost is evident in every geo-

physical problem considered. In this work, we chose to decrease the computational cost to

massively explore the parameter space (using an inverse problem formulation) but at the

price of using simplified physical assumptions.

Nature of the flow model. We assumed that the flow is in steady-state in order to trace the

flow streamlines, which is a prerequisite to compute CPO anisotropy. However, this may not

be the case in regions where flow appears to be time-dependent such as migrating trenches

and mid ocean ridges (Heuret & Lallemand 2005; Masalu 2007). A time-dependent flow could

be implemented by accounting for the evolution of the surface tectonics (Ricard et al. 1993)

and the retrodiction of internal heterogeneities (Bunge et al. 2003; Steinberger et al. 2004).

Nevertheless, steady-state assumption is still valid in some places such as intra-oceanic regions

where flow has been observed to be in steady-state over the last 40 Myr (Becker et al. 2003,

2006).

Another limiting factor is the imposition of arbitrary boundary conditions on the sides

of the model domain which strongly impact the nature of the flow. Note that the boundary

conditions could be treated as an unknown parameter to be inverted for. An obvious way to

address this issue is also to work at the global scale. In this case, a fast and reliable method

to compute geodynamic flow in a spherical Earth is indispensable. To cite an example, semi-
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analytical circulation models such as that of Hager & O’Connell (1981) can be computed from

simple density distributions assuming no lateral variations in viscosity. However, the latter

may not render a reasonable assumption within the context of geodynamic tomography since

lateral viscosity variations affect the flow significantly, and thus may also strongly influence

the resulting anisotropy.

In the context of inverse modeling, the inclusion of lateral viscosity variations is indeed

computationally more challenging. However, it remains attainable by performing these calcu-

lations in a coarser grid to obtain the general pattern of the flow. This step can be followed

by interpolating the coarse grid solution on a finer grid prior to the computation of CPO.

Using iterative approaches to flow calculations, another practical approach is to degrade the

accuracy of the solution should convergence be an impediment. When cast in a Bayesian

formulation, the modeling error due the approximation of the flow can be accounted for in

the inversion process, similar to how the errors due to the ANN were dealt with (see Sec-

tion 2.3.2). Consequently, texture evolution modeling at the global scale could reasonably be

achieved from flows of this nature. The availability of global surface wave maps on the other

end should thus make geodynamic tomography feasible at the global scale.

Composition of the mantle. Here, we assumed that the composition of the mantle to be

olivine, with an A-type crystal fabric, corresponding to dry upper mantle conditions. In the

real Earth, seismic wave velocities not only depend on temperature and pressure variations,

but also on the compositional structure of the minerals. Recently, self-consistent thermo-

dynamic models have already been incorporated in seismic inversion schemes to interpret

tomographic images in terms of mantle composition (Ricard et al. 2005; Cammarano et al.

2009). While the bulk properties (i.e., seismic wave speeds) obtained from Gibbs minimization

are isotropic, to our knowledge, deformation-induced anisotropy has not yet been formulated

cohesively with thermodynamic models, let alone casting it in an inverse problem.

In general, intrinsic anisotropy in the upper mantle results from complex deformation

processes, which depend on a plethora of physical parameters that may be linked to one

another. Unlike conventional tomographic techniques, the elastic structure recovered in our

scheme directly depends on the assumptions made on these upper-mantle processes. As an

example, one would expect that the inclusion of enstatite in our models would dilute the

overall amplitude of anisotropy in surface waves. In addition, inversion results depend on

control parameters for CPO modeling such as the choice of the slip systems of olivine. For

the moment, the value of these parameters have been chosen ad hoc, using current available
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knowledge mostly originating from laboratory experiments, and thus can be viewed as prior

(regularization). Ultimately, the flexibility of Bayesian inference would allows us to treat these

parameters as unknown parameters to be inverted for in geodynamic tomography.

5 CONCLUSION

We have laid the groundwork for geodynamic tomography, a novel approach that involves

constraints from geodynamic modeling to invert seismic surface waves. Imposing these geo-

dynamic constraints reduces the number of model parameters to a single scalar field (i.e.,

temperature) and one scalar variable (i.e., activation energy for viscosity). The inverse prob-

lem is cast using Bayesian inference where we directly sample the model space using Markov

chain Monte Carlo algorithm. Here, instantaneous flow, deformation history, and finally seis-

mic anisotropy are computed in our forward problem. The model space is reduced further

by parameterizing the temperature field as a sum of spherical temperature anomalies with

variable position, size, and temperature.

We tested geodynamic tomography in simple cases, where we successfully recovered syn-

thetic 3D temperature fields, by jointly inverting fundamental mode anisotropic Rayleigh wave

and isotropic Love wave phase velocities. In the process, we are also able to constrain the com-

plete deformation pattern, to provide a quantitative interpretation of seismic anisotropy in the

mantle. Given the Bayesian formulation, one may express the ensemble of temperature mod-

els, and any implicitly computed variables (such as deformation or anisotropy) as posterior

probability distributions, and quantify their associated uncertainties. Geodynamic tomogra-

phy is therefore a potentially powerful technique to study the structure of the upper mantle,

and interpret seismic observations in terms of mantle deformation patterns.
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APPENDIX A: PARAMETERIZING TEMPERATURE WITH SPHERICAL

ANOMALIES

For a given anomaly, we define a basis function corresponding to that anomaly using eq. (3).

The negative sign indicates that the anomaly is colder than the background temperature

if Tc is positive (a negatively buoyant anomaly). Should Tc be negative, then the anomaly

adds up with the background temperature resulting to a positively buoyant anomaly. The

function is designed such that: (1) When
∥∥∥r− r0

Ls

∥∥∥ > R
Ls

and tanh returns a value of nearly

one, then the temperature is just the background temperature. (2) When
∥∥∥r− r0

Ls

∥∥∥ = R
Ls

, then

the temperature at just half of the radius of the anomaly is equal to Tbackground − Tc
2 . (3)

Finally, when
∥∥∥r− r0

Ls

∥∥∥ < R
Ls

and tanh returns a value of minus one, this corresponds to the

temperature at the center of the anomaly Tbackground − Tc.

Here, β controls the sharpness of the temperature gradient and is held at a fixed value.

Choosing a very large value for β results in a sharp temperature gradient (see Fig. A1). In

addition, opting for a smooth function such as hyperbolic tangent avoids very sharp viscosity

contrasts when computing for the flow. The advantage of building a basis set is to reduce the

number of model parameters. In conventional inversion schemes of scalar fields, we usually

invert for a scalar at a given grid point. Hence, the number of model parameters depends on

the grid size. In a cube, this would result to N3 model parameters to constrain, where N3 is

the size of the 3D block. In our case, this gives us 5M parameters to be inverted, where M is

the number of spherical anomalies. Finally, we define the 3D scalar temperature field as the

sum of the background temperature and the spherical anomalies as shown in eq. (1).

APPENDIX B: A NEURAL NETWORK-BASED APPROXIMATION TO

D-REX

In this work, we use an ANN as a surrogate model gnn, to approximate the forward operator

for texture evolution gCPO. We consider a simple architecture of feedforward neural network

called a multi-layer perceptron (MLP) with two hidden layers similar to the work of LeCun

et al. (2015) defined by:

gnn(Xl) = Ŷl = a1

( Nh1∑
k=1

w3
kla2

( Nh2∑
j=1

w2
jka3

( Nx∑
i=1

w1
ijXi

)))
. (B.1)
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Figure A1. 1D temperature profiles with depth for different values of R and β. Left: β = 5. Middle:

β = 20. Right: β = 50. Here, we consider a spherical anomaly with Tc = 800 K located at the center of

the 3D volume. The plots refer to 1D depth profiles of temperature through the middle of the sphere at

specified values of R and β. The x and y axes correspond to temperature and depth, respectively. Based

on our parameterization, increasing the value of R at constant β increases the size of the temperature

anomaly. At constant R, the anomalies retain their respective sizes but the temperature gradient

becomes sharper at increasing β. Thus, choosing an appropriate β is important so as to avoid sharp

viscosity contrasts (since η depends on T ) when computing flow. In our inversion, we choose to fix β

= 20, and invert for R.

The output Ŷl of the MLP is an estimate of the 21 independent coefficients of the stiffness

tensor where l is the index pertaining to one element in the tensor. Nh1 and Nh2 are the

sizes of the two hidden layers considered, and Nx is the size of the input vector. We design

the network such that the input X contains the deformation history along a flow streamline.

The streamline is divided into 200 time steps. Each step contains one Lij matrix and one

corresponding dt. Thus, each step has 10 independent components as inputs. The number of

inputs in the neural network first layer is Nx = 2000 (see eq. (B.1)). The functions a1, a2,

and a3 are known as activation functions whose purpose are to introduce non-linearity to the

output of one neuron and to constrain its output to a desired range and distribution. Here, we

choose them as default rectified linear unit functions to allow faster convergence (Pedregosa

et al. 2011). Lastly, the w’s refer to the weights which reflect the significance of a given neuron.

To build a suitable surrogate model to D-Rex, the weights w1, w2, and w3 have to be

adjusted to the proper value. This is performed by minimizing a loss function which is the
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difference between the training outputs gCPO(X) and the output of the network itself gnn(X)

using a stochastic gradient descent algorithm (Rumelhart et al. 1985). Formally, the loss

function is a squared L2 norm and takes the form:

Loss(Y, Ŷ , w) =
1

2
‖Y − Ŷ ‖22 +

λ

2
‖w‖22 . (B.2)

The second term constrains the weights to avoid data over-fitting, where α is a regulariza-

tion parameter that quantifies the degree of penalization. The weights are updated iteratively

by subtracting its current value from the gradient of the loss function with respect to the

weights:

wi+1 = wi − ε∇lossi , (B.3)

where ε is the learning rate which controls the step-size for updating the weights, and i is

the iteration step. The training achieves convergence when the tolerance value tol for the loss

function is reached. However, the algorithm may also be stopped once the maximum number

of iterations is reached.

The network is trained by considering 30 flow models, each comprising M spherical anoma-

lies to drive thermal convection. Each sphere has a random position and size, and can either

be positively or negatively buoyant. This is to ensure that each flow path we define is unique

enough so that the network can learn a variety of input-output combinations. Here, we ac-

knowledge that the choice of flow models is not enough to be able to predict seismic anisotropy

in the most general case. However, in this work, we only attempt to predict anisotropy for a

small class of flow models (convection due to a collection of spherical temperature anomalies).

Since only such classes of models are tested, we can restrict ourselves to this type of model

when training the network.

One training input corresponds to one deformation history along a streamline whereas one

training output corresponds to one stiffness matrix computed with D-Rex. The training set can

be represented as a matrix containing the stiffness coefficients and the input parameters given

by [Yl=1,21, Xi=1,Nx]n=1,Ntrain where Ntrain is the number of training sets. Thus, the training

inputs are of the size [2000, Ntrain] and the training outputs are of the size [21, Ntrain]. In

this problem, 163 input-output combinations for each 3D flow model are used to train the

network. In total, there are M = 1.2288× 105 training sets for the network to learn from.

We adopt the Python package scikit-learn to train the network (Pedregosa et al. 2011).

Table A1 below summarizes the parameters used to design and build the network.

The network is tested by considering a 3D deformation due to a sinking anomaly that is not

part of the training input. Table A2 shows the computation times for computing anisotropy
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Table A1. Neural network parameters.

Ntrain Nx Ny Nh1 Nh2 λ ε tol Max iterations

1.2288 × 105 2000 21 100 50 0.1 1.0 × 10−3 1.0 × 10−4 1000

from both D-Rex and neural networks. The relative speed-up of using neural networks is over

three orders of magnitude compared to performing texture evolution calculations with D-Rex.

For reference, we also give the computation times for network training, flow modeling, as well

as for surface wave dispersion curves calculations. Each routine in the forward problem has

been executed in a serial fashion for the sake of comparison.

The elastic tensor computed from gnn is projected into both a VTI medium, thus having

elastic parameters A, C, F , L, & N , and radial anisotropy strength ξ, φ, & η; and an HTI

medium, with parameters Gs, Gc, Bs, & Bc. Aside from plotting the percentage of total

anisotropy (as in Section 2.2.3), we compare the results further with D-Rex by plotting 1-D

marginal distributions of the residuals of each seismic parameter. Each parameter contains a

small bias very close to zero which is attributed to the minimization of the L2 loss function.

APPENDIX C: A SIMPLE TEST FOR CONVERGENCE

Fig. A3 shows the noise estimate plotted against MC step in the one sphere case. The standard

deviation of data noise is implicitly computed with MLE (see Section 2.3.2), and is simply given

by the level of data fit. The starting point for each plot is the iteration at which anisotropic

tomography commences. The trends exhibit well-mixed random walk behaviors indicating

that convergence has been achieved. This level of noise estimated by MLE represents the

combination of observational errors (white noise added to the data), and theoretical errors

(errors of the surrogate model used for texture evolution).

Table A2. Computation times for each subroutine in the forward model.

Routine D-Rex ANN Flow Dispersion Training

Time (s) 73919.83 21.55 6.6 119.63 603.85
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Figure A2. 1-D marginal distribution of the difference between gCPO(X) and gnn(X) in terms of the

VTI and HTI-projected elastic tensor.

(a) (b)

(c) (d)

Figure A3. Noise estimate with MC step for (a) Rayleigh waves, (b) Love waves, (c) c1, and (d)c2.

Each colored line plot is associated with one independent Markov chain. Solid green line indicates the

standard deviation of random errors added to the data.


