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Abstract. In this paper we will perform a preliminary exploration on
how neural networks can be used for the task of target-based computer-
assisted musical orchestration. We will show how it is possible to model
this musical problem as a classification task and we will propose two
deep learning models. We will show, first, how they perform as classi-
fiers for musical instrument recognition by comparing them with specific
baselines. We will then show how they perform, both qualitatively and
quantitatively, in the task of computer-assisted orchestration by compar-
ing them with state-of-the-art systems. Finally, we will highlight benefits
and problems of neural approaches for assisted orchestration and we will
propose possible future steps.
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1 Introduction

The development of computational tools to assist and inspire the musical com-
position process constitutes an important research area known as Computer-
Assisted Composition (CAC) (Fernandez & Vico, 2013; Ariza, 2005). Within
CAC, target-based computer-assisted orchestration is a compelling case of how
machine learning can be used for enhancing and assisting music creativity (Maresz,
2013).

Target-based computer-assisted orchestration takes a target sound as an in-
put and attempts to find instrumental samples that best match the target given
a specific similarity metric and a set of constraints. A solution to this problem
is a set of orchestral scores that represent the mixtures of audio samples in the
database, ranked by similarity with the target sound.

The approach studied in (Carpentier, Tardieu, Harvey, Assayag, & Saint-
James, 2010) consists in finding a good orchestration for any given sound by
searching combinations of sounds from a database with a multi-objective opti-
mization heuristics and a constraint solver that are jointly optimized. Both the
target sound and the sounds in the database are embedded in a feature space
defined by a fixed feature function and each generated combination of sounds
is evaluated by using a specific metric. This method has been substantially im-
proved in (Cella & Esling, 2018; Cella, 2020) and is implemented in the Orchidea
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Fig. 1. An overview of the proposed method for assisted orchestration with
neural models. Instruments and pitches are determined as peaks of the output
probability distribution, while the dynamics are computed by quantizing the
probabilities.

toolbox for assisted orchestration (www.orch-idea.org), currently considered the
state-of-the-art system for assisted orchestration.

In this paper, we try a different approach to this problem by experimenting
with deep neural architectures. The main idea is to train a model to classify
combinations of real instruments and then use it for orchestration. A typical
solution for assisted orchestration is a set of triples instrument-pitch-dynamics
such as {Flute C6 pp, Bassoon C4 mf, Bassoon G4 ff}. By training a neu-
ral network with real combinations of instrumental notes, it will acquire the
ability to identify the presence of each instrument and its associated pitch by
building the appropriate latent representation. Thus, when an unknown target
sound is given as input, the network will identify which are the best instruments
to match the target sound, and it will be able to deconstruct a complex mixture
of timbres into individual instrument notes. This method is motivated by the
good results obtained in previous research on musical instruments identification
(Benetos, Kotti, & Kotropoulos, 2007; Kitahara, Goto, & Okuno, 2005) and the
more recent use of deep neural networks for musical classification (Lostanlen &
Cella, 2016; Bian et al., 2019).

In this paper we perform preliminary experiments with two deep architec-
tures: a convolutional neural network (CNN) with a long short-term memory
(LSTM) unit and ResNet, a well known residual architecture that already yielded
good results for image classification (He, Zhang, Ren, & Sun, 2015). We chose
to use a CNN because of its success in audio classification (Hershey et al., 2016)
and we decided to include an LSTM unit in it because of its ability to learn
long term dependencies in data (Hochreiter & Schmidhuber, 1997), which is im-
portant given the temporal nature of audio. The codebase for this paper can be
found at: https://github.com/dzluke/DeepOrchestration.
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2 Neural models

2.1 From Orchestration to Classification

In this paper, we model assisted orchestration as a classification problem. The
general methodology is as follows:

1. we train specific models to classify the instruments present in combinations
of sounds from a database of instrument notes, up to ten simultaneous in-
struments;

2. we then pick the best classifier and we feed into it an unknown sound to be
classified;

3. since the output of the classifier will be in the form of the probability that
specific instruments are present in the sound, we use this information to
synthesize an orchestration for the target sound;

4. finally, we evaluate the generated orchestration against state-of-the-art sys-
tems for computer-assisted orchestrations.

In other words, the classifiers learn how to take a complex combination of
pitches and timbres and deconstruct it into its original parts.

A complete orchestration solution, however, would normally be made by
triples of instrument-pitch-dynamics. It is difficult to frame this problem as clas-
sification, since we would need to have a very high number of classes. Moreover,
for the nature of the samples we use (a typical sample is in the form Flute-C4-pp,
as described in 2.2), each class would be represented by a single sample. For this
reasons, our models were not trained to determine instrument-pitch-dynamics
triples but instead instrument-pitch pairs.

2.2 Dataset

To create the input data for training the classifiers, we used the TinySOL
database. TinySOL is a subset of the Studio On Line (SOL) database created
by IRCAM (Cella et al., 2020). TinySOL contains 1,529 samples from 12 instru-
ments. The instruments come from different orchestral families: strings, wood-
winds, and brass. Each sample is one instrument playing a single note in the
ordinario playing style, with one of three dynamics: pp, mf, or ff (for example
Flute-C4-pp or Clarinet-D5-mf).

For a given number of instruments N , each input to our model is a combina-
tion of N TinySOL samples chosen among an orchestra of 10 instruments. The
data is generated by selecting N random TinySOL samples, leading to a variety
of instruments, pitches, and dynamics; we did not allow the same instrument to
be chosen more than three times in order to ensure variety in the mixtures. Then
the chosen samples are combined to be played simultaneously and normalized
by the number of instruments. The resulting combination has a sample rate of
44100Hz and is padded or trimmed to be exactly 4 seconds long. The Mel spec-
trogram of the mixture is computed using an FFT hop length of 2048 samples
(the window of each FFT is 46ms wide) and 128 Mel bins. Therefore, the Mel
features fed to the model are matrices of size 128× 345.
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The choice of using the Mel spectrogram as input features for classification
models is common in music information retrieval (Mckinney & Breebaart, 2003)
and can be considered to be an appropriate representation of sound and musical
signals. Such setup proved to be successful in (Salamon & Bello, 2017).

2.3 Data Augmentation

In order to increase variability in the generated data for the neural models,
we also used two methods of data augmentation as described in (Salamon &
Bello, 2017; Bhardwaj, 2017); more specifically, we used pitch shifting and partial
feature dropout.

Pitch shifting was applied on the TinySOL samples each time they were
selected to generate a new combination. We performed a small pitch shift by
reading the samples with different sample rates: a small difference in sample
rate will slightly modify the duration and the perceived pitch if played at the
normal sample rate. In practice, the sample rates used for this data augmentation
were within 5% of the actual 44100Hz.

Partial feature dropout was performed on the feature matrix itself of input
samples, the Mel spectrogram. We chose random columns and rows of the matrix
to zero out. This method of data augmentation aimed to be more resilient to the
possible variations in the recording of the instruments.

2.4 Baselines

In order to get a better sense on the complexity of the problem, we tested three
baseline classifiers: support vector machine (SVM), random forest (RF), and K-
nearest neighbours (KNN). We used the implementations provided in the scikit-
learn library for Python (Pedregosa et al., 2011). In this case, differently from the
neural models, the features used are the MFCCs of the resulting combination; as
the number of features is more manageable for parametric classifiers. We found
SVM to have the highest accuracy of the three classifiers across all experiments.

We started with a simplification of our problem. We performed experiments
in which two instruments were selected, and the classifier attempted to iden-
tify instrument and pitch class of the samples. For two instruments, SVM had
an accuracy of 39.9% and RF had an accuracy of 17.5%. As the number of in-
struments used in combination increased, the accuracy dropped sharply. With
three instruments, SVM accuracy was 11.1%, with four instruments it was 2.7%.
Clearly, these classifiers were not going to be able to achieve meaningful results
with the full setting of our problem.

2.5 CNN with LSTM

The first deep model we trained as a classifier for musical instruments and pitches
was a CNN with a LSTM unit, whose structure is inspired by the success in
(Salamon & Bello, 2017). The LSTM unit was added in order to provide a way
to learn long term dependencies in the data (Hochreiter & Schmidhuber, 1997),
which is relevant given the sequential nature of audio.
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Our architecture is made of four convolutional layers and two fully connected
layers. Each convolutional layer is followed by a BatchNorm layer, a ReLU ac-
tivation layer and a 2 × 2 MaxPool layer with a stride of 2. The kernel size is
3× 3 with a stride of 1 and a padding of 1. The number of filters are 8, 16, 32,
and 32.

Following the first three convolutional layers, there is an LSTM layer which
outputs 32 matrices. After the LSTM layer, there is a final convolutional layer
yielding a tensor of dimensions 32 × 8 × 21. We flatten the outputs and feed
them into a fully connected layer with Dropout, then another another fully
connected layer. Finally, the sigmoid function is applied to the final layer. Since
each class is independent, we are able to take the sigmoid activation and use
binary classification for each class.

2.6 ResNet

The second and deeper model that we trained as classifier was the well known
deep residual network ResNet (He et al., 2015). Specifically, we used 18-layer
ResNet, which allows information to pass directly from the input to the final
layer of each block. To make the model more suitable to our problem, we decided
to use an architecture with 4 blocks whose outputs are of size 32, 64, 32 and 32
respectively.

2.7 Classification Results

During training, the loss function used to optimize the inner parameters of the
model was binary cross entropy, as it is the common choice for multiclass multi-
label classification frameworks. However, the value of the loss function alone is
difficult to interpret.

Fig. 2. Best overall accuracy for CNN with LSTM (50 epochs, 200k samples
per epoch) and ResNet (20 epochs, 400k samples per epoch) depending on the
number of instruments in the combinations used for training.
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For this reason, the evaluation was done by comparing the proportion of
estimated orchestration samples, chosen among the samples that output the
highest probability, that matched the expected orchestration.

Different experiments were made by varying the number N of samples in each
mixture. We used an orchestra of 10 instruments: French Horn, Oboe, Violin,
Viola, Cello, Flute, Trombone, Bassoon, Trumpet in C and Clarinet in Bb. Then,
for both CNN with LSTM and ResNet, we computed the maximum accuracy over
the epochs. ResNet outperforms the CNN regardless of the number of samples
used in the combination. This result is consistent with previous research (He et
al., 2015), as residual networks usually perform well in classification problems.

(a) CNN with LSTM (b) ResNet

Fig. 3. Best overall accuracy and for each instrument obtained by the CNN
with LSTM and the ResNet depending on the number of instruments in the
combinations

Fig. 3a and Fig. 3b show the maximum test accuracy for each model. For
ResNet, the variance in accuracy is much smaller until N reaches 5, at which
point it becomes similar to the CNN. The results on both figures show consis-
tency on the relative accuracy of instruments, which was for us the first step
towards the validation of this method. Flute, Trombone and Trumpet yield the
worst results for both models.

While it is not easy to explain these differences in accuracy, we hypothesize
this being related to the nature of peculiar spectral and temporal morphology
of each instrument. For example, flute notes tend to exhibit a steep spectral
rolloff, with most of the energy captured by the first few partials. Moreover, the
noisy nature of the transient portions of these notes is not well represented by
frequency-based descriptions such as Mel spectra. These two factors combined,
could make the disentanglement of the flute from the analyzed combination more
difficult.

Strings give similar results across both models. An interesting point to notice
is the very high accuracy of Oboe on both models. This could indicate that there
is an optimal spectral shape that maximizes the probability of being detected in
such classification framework.
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3 Orchestration Experiments

After training the neural models for classification, we finally tested them for the
task of target-based computer-assisted orchestration.

To orchestrate, a target sound is input to the model, and the 10 classes with
the highest probability are extracted. These 10 classes are the instrument-pitch
pairs that are most represented in the target, and can be from any combination
of the 10 instruments.

Since we decided not to train our models to classify the dynamics of a sample,
the dynamics are determined by the probability of each sample as output by the
model. If the model outputs a probability higher than 0.66 for a sample, the
fortissimo version of the sample is used. A probability between 0.33 and 0.66, is
mezzoforte and less than 0.33 is pianissimo. The idea behind this quantization
is that samples that are the most represented in the target should appear as the
loudest in the orchestrated solution.

In order to test our models for orchestration, we used 15 targets from the
Orchidea distribution. These targets represent a variety of signal types but are
mostly static, in the sense that they do not change sensibly over time. Some of
the targets were made of instrumental samples and chords, others are bells or
gongs, and some do not feature any musical instruments

Model Ob + Bn Bn Bass cl. Bell 1 Bell 2 Multiph. 1 Car horn Boat . . .
CNN with LSTM 0.17 0.28 0.70 0.55 0.26 1.10 0.68 1.12 . . .

ResNet 0.34 0.50 0.48 0.59 0.45 0.90 0.49 1.16 . . .

. . . Wind harp Chord 1 Multiph. 2 Chord 2 Gong Scream Brass Average

. . . 0.55 0.79 0.70 0.57 0.73 1.14 0.79 0.71

. . . 0.61 0.86 0.51 0.37 0.71 1.03 1.05 0.66

Table 1. Quantitative comparison of orchestrations as ratios to Orchidea. Eqn.
1 was used to compute distances between orchestrations and targets. What is
shown is the ratio between the distance of Orchidea’s solution to the target and
our solution’s distance to the same target. A value less than 1 means that our
model performed worse (i.e. had a larger distance), and a value greater than 1
means our model performed better than Orchidea. The last column shows the
ratio of the average distances for the model across all targets.

3.1 Evaluation

We evaluated our orchestrations both qualitatively and quantitatively by com-
paring our solutions to the solutions generated by Orchidea, the state-of-the-art
system for computer-assisted orchestration. In order to have a fairer comparison,
we did not allow Orchidea to use any of its advanced features: we did not apply
any symbolic constraints or harmonic analysis and we forced it to use all 10
instruments in each solution.

Qualitative evaluation was done through an acoustic inspection of the solu-
tion, paying close attention to timbre and pitch. For targets that had harmonic
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content, it was noted if the partials present in the target were also represented
in the orchestrated solution.

For quantitative evaluation, we used the distance metric defined in Eqn. 1
to calculate differences in timbre between targets and solutions. This metric is
proposed in (Cella, 2020) as part of the cost function used in Orchidea during
the optimization. The equation takes in the full FFT of the target x and full
FFT of the solution x̃. Then for each bin k of the FFT, it calculates the absolute
difference between the values. The differing values of λ1 and λ2 allow the metric
to penalize the solution in different ways.

d(x, x̃) = λ1
∑
k

δk1(xk − x̃k) + λ2
∑
k

δk2|xk − x̃k| (1)

where δk1 = 1 if xk ≥ x̃k, 0 otherwise; and δk2 = 1 if xk < x̃k, 0 otherwise.
A comparison of distances between our solutions and targets and Orchidea’s

solutions and targets is in Table 1. While our model is not able to outperform Or-
chidea, it shows consistent results. We find that the CNN and ResNet give similar
accuracies during training, but perform differently when tasked with orchestrat-
ing targets. Overall, CNN seems to better emulate the timbre in its orchestra-
tions, where ResNet is better for recreating the harmonic content of the target.
You can listen to the targets and orchestrated solutions from Orchidea, ResNet,
and the CNN with LSTM at https://dzluke.github.io/DeepOrchestration/.

4 Conclusions

Target-based computer-assisted orchestration through deep learning models seems
a promising path, thanks to the ability of deep networks to classify individual
instruments and pitches out of dense combinations of samples. This work, how-
ever, represents only a preliminary study of the potential of these methods for
the task of assisted orchestration.

The first natural extension would be to support sparsity in our models. Our
current models orchestrate all targets using a constant number of instruments
and are not able to drop specific instruments from the solution. This does not
take into account the density of different targets. Sparse solutions, in which the
model decides how many samples should be used to best represent the target,
would allow a small number of samples to be used for sonically sparse sounds
and many to be used for sonically dense sounds.

Another important extension would be to create a more powerful embedding
spaces for the target and combinations. In (Gillick, Cella, & Bamman, 2019) the
authors propose to use LSTM-based models to predict the embedding features for
the combinations used during the optimisation process in assisted orchestration.
We believe that by combining their prediction model with our classification
models we could generate more faithful representations and improve the overall
quality of generated orchestrations.
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