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A Classification and Calibration Procedure for
Gesture Specific Home-Based Therapy

Exercise in Young People With
Cerebral Palsy

Alexander MacIntosh , Nicolas Vignais, Eric Desailly, Elaine Biddiss, and Vincent Vigneron

Abstract— Movement-based video games can provide
engaging practice for repetitive therapeutic gestures
towards improving manual ability in youth with cerebral
palsy (CP). However, home-based gesture calibration
and classification is needed to personalize therapy and
ensure an optimal challenge point. Nineteen youth with CP
controlled a video game during a 4-week home-based
intervention using therapeutic hand gestures detected via
electromyography and inertial sensors. The in-game cali-
bration and classification procedure selects the most dis-
criminating, person-specific features using random forest
classification. Then, a support vector machine is trained
with this feature subset for in-game interaction. The
procedure uses features intended to be sensitive to
signs of CP and leverages directional statistics to
characterize muscle activity around the forearm. Home-
based calibration showed good agreement with video
verified ground truths (0.86 ± 0.11, 95%CI = 0.93-0.97).
Across participants, classifier performance (F1-score) for
the primary therapeutic gesture was 0.90 ± 0.05 (95%CI =
0.87-0.92) and, for the secondary gesture, 0.82 ± 0.09
(95%CI = 0.77-0.86). Features sensitive to signs of CP were
significant contributors to classification and correlated to
wrist extension improvement and increased practice time.
This study contributes insights for classifying gestures in
people with CP and demonstrates a new gesture controller
to facilitate home-based therapy gaming.

Index Terms— Cerebral palsy, exercise therapy, game,
gestures, young adult, machine learning.
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I. INTRODUCTION

HOME-BASED rehabilitation exercises can augment tra-
ditional therapy and lead to improved performance

of daily activities for people with disabilities [1]. Cerebral
palsy (CP) is a disability due to injury or abnormality of
the brain impacting 2.11 in 1000 live births [2]. Occurring
near birth and persisting through adulthood, CP presents
with positive and negative motor signs including spasticity,
weakness, impaired selective control and sensory deficits [3].
To improve manual ability, frequent and intense practice of
specific, therapeutic hand movements is recommended along
with goal or activity-directed tasks. Advances in gesture
recognition offers a way to practice these movements through
engaging virtual environments (e.g. as a video game controller)
and improve home-based training efficacy and engagement.

In typically developing populations, single channel
amplitude-based features have most commonly been applied
to gesture control. These features usually include mean
absolute value, zero crossing, root mean square, variance
and Wilson amplitude [4]. Classification of these types
of features are often done with support vector machines,
decision trees, k-means clustering and hidden Markov models
and increasingly neural networks. With these methods, many
gestures (>10 [5]) can be classified with high accuracy
(>95%) using aggregated data and large training sets [6].
However, in a clinical population a personalized approach
is necessary to address the individual’s abilities, therapy
goals and movement strategies. Accordingly, home setup of
therapeutic movement practice through gesture recognition
has remained challenging. Further, to facilitate therapeutic
practice, myoelectric patterns are preferred here over optical
inputs as myoelectric patterns can support practice even when
someone is capable of only small and inconsistent gestures.
People with CP may have noisy neurological commands
when gesturing [7]. The muscle command to generate a
targeted movement (e.g. hand opening) can be accompanied
by: inconsistent neural drive (spasticity or weakness), atypical
forearm flexor and extensor muscles synergies (undesirable
co-contraction), and movement artifact (impaired selective
control) [3], [6]. For these reasons, muscle activity has
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usually been conveyed as a line or character that moves
in direct proportion with the change in activity or co-
contraction [8]–[11] and researchers have been deterred from
home-based gesture classification of therapeutic activities for
the hand using commercial sensors for young people with CP.
Using features specifically targeted to discriminating signs
of CP may facilitate home-based gesture classification and
calibration. This approach has the added potential benefit
of providing clinical insight. In traditional home-based
therapy activities, the precise quantity and quality of exercise
repetition is unknown. However, with gesture-based activities
discriminated by features of CP, clinicians may review
the activity logs, determine the extent to which certain
neuromotor signs persist and advise accordingly.

Finally, there are practical implications to consider when
designing home-based therapy for young people. Laborious
system configuration can challenge young people’s attention,
reducing motivation and engagement. To address this, we have
previously defined design requirements by consulting with
clinicians and persons with CP [12]. The system needs to
be affordable, address a specific therapeutic movement goal,
have simple hardware, quick semi-automatic gesture training,
be embedded in an activity that keeps the individual’s interest,
and provide high quality feedback to both users and clinicians.

A. Aim

This study demonstrates an in-home calibration and classi-
fication procedure embedded into a rehabilitation video game
for young people with CP. The procedure allows for:

a. Home setup: training data are collected and processed
with minimal adult involvement within the first minutes of
gameplay.

b. Therapeutic practice: Real-time gesture recognition iden-
tifies therapeutic movements for game feedback and control.

c. Clinical insight: Features used for classification are
associated with neuromotor signs of CP.

The article is organized as follows. Section II A. details the
software and hardware components of the system. Section II B.
explains the home-based calibration and classification proce-
dure. Section II C. contains information on 19 participants who
completed the one-month intervention. Section II D. describes
the analysis. Section III show the results of the analysis as
they pertain to each aim of the study (a-c). In section IV the
procedure, intervention and results are discussed, concluding
with limitations to the current study.

II. METHODS

A. Requirements for Use

The system requires hardware: laptop (typically used
machine specifications: 2.67GHz CPU, Intel Core i5-560M,
Intel HD Graphics, 4GB RAM), electromyography (EMG)
and inertial sensor (Myo Armband, sampling at 200 Hz and
50 Hz respectively [13]) and software: adapted commercial
video game (Dashy Square) and custom controller to interpret
movements and command the game (MATLAB 2017b).
Briefly, the objective of the game is to avoid all obstacles
while the character progresses across the level. In the original

commercial version, players tapped the screen at the correct
moment to avoid obstacles. For this work, the tap command
was replaced with the gesture controller. Level difficulty
increased by requiring faster and more precise timing.
Example gameplay can be seen at the link: here. Complete
description of the commercial game adaptation are in an
associated publication [12]. Before playing, participants were
instructed of the game objective and coached by their therapist
on how to perform the therapeutic gesture. To accommodate
smaller arms, the original 8-channel device was cut to 4 or
6 channels and the software adjusts accordingly (see code on:
GitHub). This reduction does not introduce any bias since the
collected signals are statistically independent of each other,
whether there are 4, 6 or 8 channels [14].

B. Home Data Processing Schema

Fig. 1 outlines how participant’s data are collected and
used in this home-based rehabilitation video game. A detailed
description of each step is given.

1) Part 1 – Processed Before Game Play: Before gestures
can be used to control the game, three steps are completed:
calibration, feature selection, and building the online classifier.
Methods for these steps are described next.

a) Calibration: Calibration is done at home, at the begin-
ning of each session and appears to users as part of the game.
To begin, the participant sits in front of the laptop and puts
the sensor on the thickest part of the forearm. The participant
launches the game and sits comfortably with the hand rested.
They were allowed to choose to place the hand either on their
lap or on the table next to the laptop. They were instructed
to not let the sensor hit the table when possible. The game
launches immediately into calibration. Calibration serves to 1.
determine armband orientation, 2. initialize baseline flexor
and extensor muscle activity, 3. collect training data for up
to three gestures. To calibrate, participants follow animation
prompts on-screen. The prompt tells them to keep a rested
hand position for 3-seconds, then transition to a gesture and
hold for 15-seconds. Doing so animates the character (video
example link: here). Then the character stops moving, and they
are promoted to rest again before doing the next gesture. This
is repeated for each gesture.” The actions take one minute in
total. Following calibration, these data are pre-processed to:
A) Determine armband orientation. The channel with the
highest mean is designated as the primary extensor sensor. The
flexor sensor is that furthest away from the extensor. B) Initial-
ize baseline and maximum activity. The 25th percentile of the
rest-phase data is set as the baseline. Similarly, the 80th per-
centile of the local maxima is used as initial maximum activity.
These percentiles can be adjustable to the participant and
were initially determined during preliminary testing [12]. This
testing showed that outside these ranges, gestures were either
erroneously considered attempted even during smallest arm
movements or participants had difficulty repeatedly extending
with sufficient intensity to elicit a command. Finally, data are
prepare for feature selection. Here, raw 8-bit EMG calibration
data are normalized to a 0-1 scale and windowed into 200ms
bins without overlap. This bin size was selected through design
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Fig. 1. Overview of calibration and classification procedure to use EMG and inertial data as controller and feedback in rehabilitation video game.
Phases are divided into steps required before and during game play. Full details of each step are described in corresponding sections with the same
name.

session testing conducted before the home-based trial and
used to develop the system. In development, this was the
largest window length consistently undetectable by partici-
pants while playing [12]. Window lengths between 50-300ms
with overlap at 25, 50 and 75% were tested. No overlap value
showed significant differences in classification performance
and window lengths less than 150ms showed slightly lower
performance [12]. Features described in the next step are
calculated for each of these bins.

b) Feature selection: The most important features, derived
from the EMG and inertial data collected with the Myo
Armband, are selected via a 200 bootstrap-aggregated
(bagged) random forest decision tree algorithm (MATLAB
Treebagger [15]). Preliminary tests were made using
5-15 features and showed that after ten features, classification
performance improvements were marginal. This variable is
adjustable in the software. The measure of importance is
out-of-bag permuted predicted delta error. In this method,
feature importance [16] is evaluated as the difference in test
set (out-of-bag) model error when the value of a feature is
randomly permuted. Permuting the value of an influential
feature indicates it is highly influential. This process is
repeated at each tree for each feature [17]. Before selection,
highly correlated (>0.8) redundant features were removed.

Therapists and participants were consulted to determine the
targeted movements to practice in the game. Based on these
targeted movements, features were selected. Preliminary test-
ing showed that under certain signs of CP, e.g. high flexor tone,
movement variability, extensor weakness, there can be small
differences between gestures when using traditional EMG
features [18]–[20]. We have therefore also included features
expected to be sensitive to two signs of CP. Formulas for all
features can be found in the Appendix and on GitHub. Features
are put into three groups to facilitate clinical interpretation.

1 CI group – the Channel-Independent features, traditionally
applied in typical developing populations or in prosthetic
control. Features in this group include: Root mean square
(RMS), Mean absolute value (MAV), Variance (VAR),
Waveform length (WL), Zero crossing rate (ZC), Willison
amplitude (WAMP), Slope sign changes (SSC) [18]–[20].

2 RA group - we considered features sensitive to uncom-
mon Relative muscle Activities i.e. weakness, spasms,
increased flexor tone, and impaired co-contraction [7].
The domain specific features in this group are:
Co-contraction index (CCI), Scaled co-contraction index
(SCCI), Mean absolute difference normalized (MADN),
Scaled mean absolute value (SMAV) [21].

3 MV group - we considered features related to Move-
ment Variability which may be associated with impaired
selective motor control and compensatory movements [7].
To capture muscle activity precision around the forearm
we employ directional statistics [22]. Directional statistics
characterize the (Von Mises) distribution of muscle activ-
ity around the forearm as a unit circle. Features in this
group include: Circular- mean, resultant, skew, kurtosis,
standard deviation and variance [22]. To our knowledge,
these features are new to EMG-based gesture classification
and could offer a visual link to therapeutic movements
via game control. Additionally, gross forearm movement
was addressed via inertial features (squared sum of 3-axis
acceleration/gyroscopic variability and magnitude).

c) Build on-line classifier: A support vector machine (SVM)
was trained with the selected features [23]. The model was
optimized with 5-fold cross-validation and hyperparameters
(box constraint, kernel scale, kernel function, and polynomial
order) were tuned via grid search [24]. The model is then
used to predict gestures during gameplay. During preliminary
design, alternative classifiers were tested (linear discriminant
analysis, nearest neighbor, ensembles and naïve Bayes) details
described in Section II – Analysis.

2) Part 2 – Processed During Game Play: After game values
are initialized and the on-line classifier is prepared, participants
can practice the targeted therapeutic gesture within the video
game. EMG and inertial data from the Myo Armband are
processed continuously as follows:

a) Buffering & pre-processing: Absolute values of the raw
8-bit EMG data from the Myo Armband are normalized to
a 0-1 scale. For inertial data, the squared sum is calculated
for the 3-axis accelerometer and gyroscopic data respectively.
These are then buffered into a 200ms bin. This window length
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was determined during design session testing with youth with
CP [7]. This was the maximum window length that could be
stored before affecting sensitivity and control as perceived by
participants.

Once data has buffered, it is pre-processed before game
actions can occur. Pre-processing starts by taking the mean
of each channel and scaling it to the current baseline and
maximum range. Baseline and maximum values are deter-
mined by finding the local maxima/minima from the previous
30 seconds. The 80th percentile of the local maxima are used
to avoid unrealistic transient maxima (e.g. sensor contact with
table). Subsequently, the mean of the current bin of data is
scaled to this local range. For instance, if the current baseline
was 0.1, the current maximum was 0.9 and the mean of the
current bin was 0.3, then the scaled value of the current bin
would be (0.3-0.1) / (0.9-0.1) = 0.25.

Baseline and maximum values are updated every ten sec-
onds. This time is programmatically adjustable but was deter-
mined based on user perceived sensitivity and control [7].
Iteratively updating the baseline and maximum values allow
the controller to remain sensitive to the target therapeutic
gesture while avoiding unrealistically high maximums caused
by physical contact with the sensor (e.g. hitting the table
accidently) or irrelevant activity (e.g. fist clenching or flexor
spasms). Inertia data are not locally scaled as they do not
directly dictate if game actions should occur. After data are
scaled, they can be used to evaluate if the user is attempting
a gesture and if game controls should be initiated.

b) Threshold evaluation: Once the mean of the current bin
is pre-processed and scaled, it is compared to pre-defined
thresholds. Under researcher supervision, thresholds are set
weekly to adapt as the user progresses. To do this, all local
maxima in the trial are identified. Design session testing
conducted before the home-based trial and used to develop
the system [12], revealed that when target gestures were
attempted, flexor / extensor local maxima were consistently
above the 10th percentile of all local maxima observed during
the trial. Meanwhile, when the local flexor/extensor maxima
were below the 10th percentile, the hand was at rest. The
minimum local maxima value, after removing those below
the 10th percentile was set as the threshold minimum. The
80th percentile was set as the threshold maximum to avoid
unrealistic transient maxima caused by sensor contact. In this
way, the activity threshold can be set unique to each gesture.
If the current activities of the extensor and flexor channels
are respectively above and below these thresholds, the user
is considered to be attempting a gesture and data will be
processed further to dictate game actions. If the thresholds
are not met, processing stops until a new 200ms bin of data
has buffered.

c) Dictate game actions: When the threshold is exceeded,
game actions occur, i.e. players move, points are awarded,
feedback is presented. Game actions are dictated by movement
quality. Movement quality variables include: extensor-flexor
co-contraction ratio, forearm angular acceleration and the
predicted gesture. Based on these evaluations, commands are
passed to the game and points are awarded.

d) Predict current gesture: To obtain the predicted gesture
for the current 200ms bin of data, first the top 10 features
are calculated (as established in Part 1 – processing before
game play). EMG features are processed through a Bayesian
recursive filter [25]. This reduces noise for on-line prediction
while remaining sensitive to rapid changes as expected to
control the game. Then the SVM is used to predict the current
gesture on-line. This information can be used as feedback (e.g.
higher points scored for the correct gesture) or as a control
mechanism for the game (e.g. to execute a binary operation
such as to jump over an obstacle).

Once game actions are complete and the current gesture
is predicted, game play processing repeats with the newest
buffered 200ms bin of data.

C. Participant Information

Nineteen (19) young people with CP completed a 4-week
home-based intervention in France and Canada. Inclusion cri-
teria were: mild-moderately impaired use of one hand (Manual
abilities classification system (MACS) levels I-II [26]), able
to follow simple instructions and no history of unmanaged
epilepsy, no botulinum toxin treatment within 3 months or
constraint-based movement therapy within 6 months. As the
objective of this article is to detail the calibration and clas-
sification procedure, complete study methodology and clini-
cal findings are presented in an associated publication [27].
A detailed description of the game design and an evaluation
of the biofeedback provided can also be found in a com-
plementary article [12]. Approval was obtained by Holland
Bloorview’s Research Ethics Board (#18-785) and the French
Comité de Protection des Personnes (CPP, #2018-A00536-49).
Caregivers gave written informed consent.

During the game, the participants sat at a table in front of
the laptop with the elbow at 90 degrees and the palm facing
down. They controlled the game using one of the follow-
ing therapeutic gestures: wrist extension-open fingers, wrist
extension-closed fingers, finger-thumb pinch, or supination
(video of gestures can be seen at the link: here). Participants
and therapists decided together which gesture to practice and
set the practice schedule. Most (17/19) participants practiced
wrist extension (open or closed) for the entire activity. In all
cases, participants aimed to keep the wrist in an extended or
neutral position while performing the gesture [27].

D. Analysis

Descriptive summaries of participant characteristics are pro-
vided first. Gestures were verified by visually labelling videos
collected weekly by the researcher during a game play session.
A visual signal emitted from the game software synchronized
video, EMG and inertial data. Initiation and termination of
each gesture were labeled manually (True Labels) as a ground
truth. The number of True Label samples are provided for each
participant in Table I.

1) First Aim, Home Setup: Two measures were used to
show that training data could be collected, processed and
used within the first minutes of gameplay. First, we use the
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TABLE I
PARTICIPANT INFORMATION AND SAMPLE SIZE BY CLASS

agreement (raw and Gwet’s chance-adjusted index agreement
coefficient [28], [29]) between the assumed gesture, prompted
during calibration, and the true gesture, verified by video.
Second, we report processing time for both the calibration
phase and a single loop in-game.

2) Second Aim, Therapeutic Practice: When evaluating
model performance, the classifier’s role (i.e. to determine the
control input or to inform biofeedback) in the system must
be considered. When used to inform biofeedback, balanced
measures are favorable since misclassified observations have
a smaller, less direct effect to the user’s experience. To this
end, we chose the F1-score to consider precision and recall as
it is less influenced by imbalanced data. Mathew’s Correlation
Coefficient (MCC) was reported as the most informative single
score to establish the quality of a classifier prediction [30].
However, when the classifier prediction is used to control the
game, correctly identifying the targeted therapeutic gesture
is paramount. A misclassified, false negative observation of
the target gesture frustrates and reduces the user’s confidence
in the system. Whereas, in the situation of a false positive,
game play continues and there is less risk for negative
effect. Accordingly, three measures (F1-Score, MCC, Sensi-
tivity) are prioritized. Performance across participants for the
whole dataset is presented for randomly partitioned off-line
classification using the SVM procedure described above. To
validate the use of SVM, multiple classifiers on a subsample
of five participants were evaluated. Five participants were
chosen to represent the distribution in functional ability and

performance. Two were at MACS level II and three were
younger than 12 years old. Tested classifiers include decision
trees, linear discriminant analysis, nearest neighbor, ensembles
and naïve Bayes [31]. The top two performing classifiers based
on this subset are presented here. These are the SVM and the
random subspace ensemble classification of k-nearest neighbor
learners (ENS) (MATLAB fitensemble) [23]. Full model spec-
ification are available on GitHub. Reported also are weekly
changes in the true positive and true negative rate (AUC)
during home-based classification. AUC was computed across
classes and then averaged across all participants. Here only
calibration-game data up to the current week were used to train
the model and tested against actual game-play data. To further
evaluate the approach, performance of the SVM models with
personalized features was compared to a model derived from
all participants data combined (e.g. an ‘All-Users’ model).

3) Third Aim, Clinical Insight: First, we assess the value
of feature groups expected to be sensitive to signs of CP
(uncommon relative muscle activities, RA-group, and high
movement variability, MV-group) as compared to traditional
channel-independent features (CI-group). Each group’s rela-
tive importance was calculated as the sum of the reciprocal
rank of each feature within a feature group [32]. For instance,
if features only within the channel-independent group were
used for classification, that group’s relative importance would
be equal to one, and the remaining two groups would be
zero). A one-way analysis of variance (ANOVA) was used
to evaluate differences in relative feature group importance.
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Data were approximately normally distributed as verified
through visual inspection of standardized residuals and
Shapiro-Wilks test (W = 0.97, p =0.25). Homogeneity of
variance was verified by Levene’s test (F = 1.22, p =
0.303). Post-hoc testing with Bonferroni adjustments for mul-
tiple comparisons were used to identify differences between
groups [33]. α risk set to 0.05 was considered significant
for all tests. The most important individual features and the
variability of feature use across participants is also reported.
As an exploratory objective, we evaluated linear correlation
coefficients between the feature group importance and two
clinical measures: a) wrist extension amplitude, and b) grip
strength as related to the amount of practice and number of
repetitions [12], [27].

III. RESULTS

Table I shows participant information and the available
data set size. Detailed demographics can be found in the
complementary clinical publication [27]. Briefly, there were
19 participants (ten females, average age: 11.7 ± 2.5 years).
Twelve participants had mildly impaired hand function and the
remaining were categorized as moderately impaired (MACS
level I and II). Practice dose over the one-month inter-
vention averaged 4 ± 1 days/week (8 - 24 days total),
17 ± 9 minutes/day (37 - 333 minutes total), and 163 ± 59
gesture repetitions/day (997 - 5698 total) [20].

A. Aim 1 Home Setup

All but two participants were able to immediately follow the
calibration prompts presented in-game. They were able to keep
a rested state until prompted to make the required gesture and
then relax at the end of the animation. Two participants (K, N)
had particular difficulty following instructions. They would
begin the gesture early and make excessive arm movements
instead of only the required gesture. Agreement was high
between the assumed gestures, collected during the calibration
game, and the video verified true gesture. Most participants,
16/19 had >80% agreement. Agreement was also >80%
for each class (Table II). Full setup time (including system
start-up, calibration game, and entry to the main game) took
115.4 ± 144.2, 95%CI = 61.3 - 169.5 seconds. Of this,
the time from the end of calibration to the start of gameplay
averaged 9.1 ± 2.2, 95%CI = 8.2 - 9.9 seconds. During
gameplay, on-line processing for each loop (200ms window
of data) took 0.021 ± 0.008, 95%CI = 0.018 - 0.025 seconds
when control thresholds were exceeded. In this time, features
were calculated and classified to command the game. When
thresholds were not exceeded, processing time was shorter
(0.009 ± 0.003, 95%CI = 0.007 - 0.010 seconds). Loop times
were rarely perceived by participants.

B. Aim 2 Therapeutic Practice

Overall participant specific classification accuracy in the
primary target gesture, extension-open fingers averaged:
0.90 ± 0.05, 95%CI = 0.87 - 0.92 and 0.82 ± 0.09, 95%CI =
0.77 - 0.86 in the extension-closed fingers gesture and

TABLE II
RELIABILITY OF IN-HOME CALIBRATION DURING GAMEPLAY

Fig. 2. Target class (wrist extension-open fingers (Ext-O)) AUC (area
under curve of false positive rate ∗ true positive rate) for each training
week averaged across participants (N = 19). Sample sizes listed below
corresponding weeks are cumulative mean ± standard deviation of
training (N train) and testing (N test) set observations across participants.

0.80 ± 0.18, 95%CI = 0.72 - 0.89 for pinch gesture.
Participant J used supination for only one week and therefore
this data removed from the analysis. Table III shows F1, MCC
and sensitivity scores by class and model. Overall accuracy
was 4 ± 2 % higher in the Personalized model compared to
the All-Users model. Table IV shows F1, MCC and Sensitivity
scores by class and model (Personalized versus All-Users).

Fig. 2 shows weekly home-based classification performance
averaged across participants. Home-based classification was
completed with training sets obtained during the 1-minute
calibration. There was a disparity in performance across par-
ticipants yielding high standard deviation. Specifically, low
performance for three participants (mean AUC for participant:
D = 0.43, N = 0.48, Q = 0.48). All remaining participants
averaged an AUC of 0.67 ± 0.9.

C. Aim 3 Clinical Insight

There was an overall difference between feature group
relative importance based on out-of-bag permuted predicted
delta error (Fig.3, (F2,54 = 8.08, p < 0.001). Post-hoc testing
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TABLE III
GROUP-LEVEL CLASSIFICATION PERFORMANCE

TABLE IV
GROUP-LEVEL CLASSIFICATION PERFORMANCE PERSONALIZED VERSUS ALL-USERS MODELS

Fig. 3. Relative feature group importance showing uncommon rela-
tive muscle activities (RA) group and high movement variability (MV)
group with greater importance than traditional, channel-independent
(CI) feature group. † Indicates feature groups with significantly greater
importance compared to the CI feature group (p < 0.01).

showed a lower mean importance in the channel-independent
(CI) feature group (0.19 ± 0.16) compared to both the uncom-
mon relative muscle activity (RA) feature group (0.42 ± 0.21,
p = 0.001) and the high movement variability (MV) feature
group (0.38 ± 0.19, p = 0.009). Of all the possible features
(N = 20), the ten most common features were selected
80% (SD = 14, 95%CI: 38-94%) of the time. The ten
most commonly used features in order of frequency were:

SMAV_Ext, MADN_Ext, SMAV_Flx, MAV_Ext, AccMag,
MADN_Flx, CCI, circMean and circSkew. The three most
important individual features were the top features in 37%
of occurrences across participants.

Table V shows correlations between the relative importance
of each feature group and two clinical measures wrist exten-
sion amplitude and grip strength with respect to the average
number of repetitions/session and the total practice time. In the
accompanying clinical paper [27], outcomes for all measures
of manual capacity are detailed.

IV. DISCUSSION

This study outlines an in-home calibration and classification
procedure used for manual therapy activities of young people
with CP. The procedure was personalized, tested in the homes
of 19 families for one month and integrated into an adapted
commercial video game. We show that participants followed
the game-led calibration procedure with high agreement to
ground truths. The classification methods employed facili-
tated practice of targeted therapeutic gestures. Finally, feature
groups (RA and MV) expected to be sensitive to signs of
CP were significant contributors and correlated with changes
in practice and increased wrist extension capacity. This latter
result strengthens the fact that not only traditional but also
specific features should be considered when classifying move-
ments from people with motor disabilities.
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TABLE V
CORRELATION BETWEEN FEATURE GROUP IMPORTANCE, PRACTICE AND MANUAL CAPACITY

A. Practical Implementation

Practical implementation is a key requirement of this pro-
cedure. While designed to be a fun, seamless experience
blending game and therapy, the individual’s attention on their
movement is still critical. Our participants were 8-18 years
old, some with learning disabilities or attention disorders,
some with little general interest in video games. These factors
influence how consistently one repeats their target gesture,
especially when the gesture is difficult for them (i.e. a therapy
goal). Accordingly, some participants (3/19) had difficulty
following the calibration instructions and correspondingly low
agreement scores and classification performance. Methods
presented here do help implement home-based calibration and
classification, but future work should ensure users can keep
attention (at least 15-minutes) and display some consideration
to how they perform a gesture (i.e. are they aware of the
position/orientation of their hand?).

In addition to attention, out-of-laboratory myoelectric-based
gesture recognition performance is known to be limited
by interference including: electrode shift, muscle fatigue,
unwanted motion and force variation [34]–[36]. To compen-
sate for this, Ding et al. (2019) circumvent the burden of
frequent retraining by using an adaptive incremental hybrid
classifier [37]. The proposed method retrains target gestures in
a semi-automated process by separating classes through resting
and active states [37]. While manual input is still required,
adaptive classifiers like this and others ([38]–[40]) may be a
promising approach to address real-world EMG variability.

Compared to similar works with respect to sensor con-
figuration and target gestures, classification performance was
slightly lower. This can be expected given the unique popu-
lation and that other studies concentrate on classifying more
gestures with healthy adults, usually in the lab. For instance,
k-nearest neighbor and dynamic time warping algorithms
have been used with the Myo to achieve 86% accuracy
across 5 [41]. However, this was completed with healthy
participants in controlled situations. Similarly, 9 gesture clas-
sification in the lab using LDA found 9.86 ± 8.05% overall
error [42]. To our knowledge, this is the first home-based
gesture classification procedure for therapeutic activities for
the hand using commercial sensors for young people with CP.

As these and other classification methods develop, new
models can be implemented to improve the performance of
this procedure. With this in mind, we present performance
of an alternative classifier, ENS. Further, the software allows
alternative classifiers to be called in place of SVM.

B. Feature Groups

Task specific muscle synergies in people with CP are
influenced by neural and biomechanical factors including
flexor spasms, weakness, and pathological reciprocal inhibition
leading to unbalanced co-contraction. RA features characterize
relative activity around the forearm and are person-dependent.
The use of these features indicates that participants create
differential flexor/extensor synergies between gestures. This is
meaningful, as high flexor tone and unbalanced co-contraction
often limits finger extension capacity, particularly when the
wrist is above neutral [43]–[45]. Distinguishing this small
difference (between open and closed finger extension) is an
important quality to RA features and is reflected in their
correlation to improvements in wrist extension.

Similarly, MV features characterize movement isolation
through inertial measures and directional statistics of the fore-
arm muscle activity [22]. In addition to significantly contribut-
ing to classification, these features were used as biofeedback
in the game to help participants improve their ability to
isolate movements at the wrist (a secondary clinical objective
identified by occupational therapists). In this study, the average
number of repetitions per session was correlated to a decreased
use of MV features. This suggests that with increased exposure
to the system, movement variability between gestures would
decrease.

The frequent occurrence of three features (SMAV-Ext,
MADN-Ext and SMAV-Flx) could be expected. First, given
the target gestures the total activity of the extensor sensors
(as represented by the feature SMAV-Ext) and the difference
in activity between sensors on the extensor muscles and those
adjacent (represented by MADN-Ext) would be defining
characteristics of those actions. Second, to repeatedly produce
these gestures, flexor muscle activity (SMAV-Flx) must to be
consistent during each gesture. It is interesting to note that
while among the most common, co-contraction indices were
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used in 6% of occurrences. Originally, it was expected that
co-contraction would be more frequently used, since balancing
extensor-flexor activity is key to opening and closing the
hand. This lower proportion may be because co-contraction
is a derivative of most common features SMAV-Ext and
SMAV-Flx. Further, while ten features were used 80% of the
time, It is worth noting that older (>12 years), less affected
(MACS level I) participants used the top features on average
84% of the time, while younger, more affected participants
used these top features only 62% of the time. This may
indicate the greater difficulty with which these participants
had in consistently producing target gestures.

We expect the method described in this study will be exten-
sible to an increased number and complexity of gestures for
two reasons. First, alternative, improved, classifiers can replace
the SVM algorithm currently employed. Second, the features
used here address the unique biomechanics of the hand.
The feature types (particularly, circular features and relative
activity features) are well suited to identify small differences in
muscle activity across gestures. While the software can be used
in its current form with modification, real-world deployment
would be greatly improved by migrating to a more available
language (e.g. Python) and improving the efficiency of the
scripts. This work is currently being planned.

Clinically relevant feature groups were a key strategy we
used to account for unique neuromuscular profiles. It should
be noted that these features do not necessarily indicate severity
of the disability nor does use of only traditional features
indicate absence of any symptoms. Their benefit in this
context is that these feature values fluctuate more between
target and secondary gestures allowing for classification and
feedback with respect to biomechanically relevant variables.
Alternative strategies may also be effective. Kieliba et al.,
(2018) used Factor Analysis to extract muscle synergies as
features for classification [46]. These synergies can provide
physiological plausible explanations of tasks and may be stable
across participants and conditions [47]–[49]. However, these
methods have yet to be tested on children with neuromuscular
disabilities. It should be noted that feature selection improves
performance while removing irrelevant or low variance char-
acteristics, reducing the complexity of the model. A strength
of the approach presented here is that feature selection was
highly adaptable. Selected features were person-specific and
updated weekly as the participant progressed. This allows for
features of different channels to be included if they play a more
prominent role in the target gesture and irrelevant features to
be removed as gestures become more consistent.

C. Limitations

Weekly visits were used to monitor and adjust the activity
thresholds and ensure calibrations were performed correctly.
Thresholds were automatically adjusted weekly and manually
verified by the researcher. For three participants who had
greater difficulty following instructions during the practice
level, thresholds were manually adjusted. In future work,
calibration would need to be monitored by therapy staff or

family members to ensure the game was facilitating prac-
tice of relevant movements. We recognize that alternative
thresholds may be appropriate for different situations and
as such have included this as a configurable item in the
software.

The subsample of participants used to evaluate classifier
performance, while selected to be representative of the vari-
ability in features used and gesture performance consistency,
could have underestimated performance of some classifiers,
not used within the game. Classifier performance may also be
affected by window length and overlap. We acknowledge that
alternative window lengths and overlap may be appropriate
for different situations and as such have included this as a
configurable item in the software. Additionally, future study
is needed to determine the degree of sensitivity and accuracy in
classification performance yield a noticeable improvement in
user experience. Choosing the top ten features was selected as
a reasonable compromise between on-line processing time and
classifier performance. Minimal improvements were seen after
ten features. However, this could be improved by using feature
selection methods that choose the number of top features
by maximizing prediction accuracy on a participant-specific
basis, for instance Neighborhood Component Analysis (NCA)
feature selection [50]. Further, deep learning methods such
as convolutional neural networks may be promising towards
providing more accurate predictions. These methods were
not tested here since one goal was to provide clinical
insight through features sensitive to neuromuscular signs
of CP.

Ground truths were established manually via synchronized
video evaluation. Distinguishing on video if the participant was
extending with fingers open or closed was not always clear.
Particularly when the person had minimal capacity to open
the hand, how to label a frame can be somewhat subjective.
Multiple raters would help improve confidence here. Further,
closed versus open finger extension may be better evaluated on
a continuum since gesturing with a partially opened hand still
has merit towards therapeutic practice and is a signal of the
user’s intent. Further, differences between how the calibration
game and the main activity are played could yield different
muscle activities and feature distributions. Minimizing and
accounting for the shift between training and real-world data
requires continued investigation.

Finally, the target gesture for most participants was wrist
extension. As such, the main objective in the game was to
distinguish between extension with open and closed fingers.
Some participants identified pinching as a goal. As such,
pinching was included in the weekly calibration but rarely
used in-game. This resulted in substantially lower training and
testing data sets and lower classifier performance for this class.
While the calibration procedure supports three classes. The
in-game performance was based on successfully identifying
open-finger extension. Future work should extend the on-line
controller to three classes, such that each gesture controls
a separate action in the game. The system and game are
currently capable of this, but it has yet to be comprehensively
tested at-home.
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APPENDIX

FEATURE FORMULAE

A. Channel – Independent Group

Root mean square (RMS)

RM S =
√√√√ 1

N

N∑
n=1

x2
n (1)

where xn represents the EMG signal in a segment and N
denotes the length of the EMG signal.

Mean absolute value (MAV)

M AV = 1

N

N∑
n=1

|xn| (2)

Variance (VAR)

V AR = 1

N − 1

N∑
n=1

x2
n (3)

Waveform length (WL)

W L =
N−1∑
n=1

|xn+1 − xn| (4)

Zero Crossing Rate (ZC)

ZC =
N−1∑
n=1

[
sgn (xn × xn+1) |xn − xn+1| > threshold

] ;

sgn (x) =
{

1, i f x ≥ threshold

0, otherwi se
(5)

The threshold condition is used to avoid background noise of
the signal, sgn, and evaluate ZC after given minimal activity
(mean of, n in the current study).

Willison amplitude (WAMP)

W AM P =
N−1∑
n=1

f (|xn + xn+1|) ;

f (x) =
{

1, i f x ≥ threshold

0, otherwi se
(6)

Slope sign changes (SSC)

SSC =
N−1∑
n=1

[
f
[
(xn − xn−1) × (xn − xn+1)

]] ;

f (x) =
{

1, i f x ≥ threshold

0, otherwi se
(7)

B. Relative Activity Group

Mean Absolute Difference of the Normalized (MADN)

M ADN i =
∑wl

n=1 |xi [n] − xi+1 [n]|∑wl
n=1 xi [n]

(8)

where xi [n] is the nth data point from channel i after the
data in the window is normalized (mean value subtracted from

each raw data point, and then the resulting values are divided
by their standard deviation). wl is the window length, or the
number of raw data points in one window.

Scaled Mean Absolute Value (SMAV)

SM AV i = M AV i

M M AV

where

M M AV =
∑N

i=1 M AV i

N
(9)

and i is the channel and N is the number of sensors.
Co-contraction Index (CCI)

CC I =
1
N

∑N
n=1 Xe

1
N

∑N
n=1 X f

(10)

where Xe is activity from the channel designated as the
extensor sensor, and X f is activity from the channel designated
as the flexor sensor.

Scaled Co-contraction Index (SCCI)

SCC I =
1
N

∑N
n=1 SM AV e

1
N

∑N
n=1 SM AV f

(11)

where SM AV e is activity from the channel designated as the
extensor sensor, and SM AV f is activity from the channel
designated as the flexor sensor.

C. Movement Variability Group

Circular mean (CircMean)

r̄ = 1

N

∑
i

ri

where

ri =
(

cos αi

sin αi

)
(12)

And αi is a sample of all data at one instant i .
Circular resultant (CircR)

R = ‖r̄‖ (13)

Circular skew (CircSkw)

b = 1

N

N∑
i=1

sin2 (αi − ᾱ) (14)

Circular kurtosis (CircKrt)

k = 1

N

N∑
i=1

cos2 (αi − ᾱ) (15)

Circular standard deviation (CircStd)

s0 = √−1 ln R (16)

Circular variance (CircVar)

S = 1 − R (17)
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Resultant acceleration magnitude (Accel_Mag)

AM = 1

N

N∑
n=1

√
a2

xn+a2
yn+a2

zn (18)

where a, is the acceleration from each axis x, y, z.
Resultant acceleration variance (Accel_Var)

AV = 1

N − 1

(
N∑

n=1

√
a2

xn+a2
yn+a2

zn − AM

)2

(19)

Resultant gyroscopic magnitude (Gyro_Mag)

GM = 1

N

N∑
n=1

√
g2

xn+g2
yn+g2

zn (20)

where g, is the inertial data from each axis x, y, z.
Resultant gyroscopic variance (Gyro_Var)

GV = 1

N − 1

(
N∑

n=1

√
g2

xn+g2
yn+g2

zn − GM

)2

(21)
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