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Data-Driven System Identification of Linear Quantum Systems

Coupled to Time-Varying Coherent Inputs

Hendra I. Nurdin∗ Nina H. Amini † Jiayin Chen‡

Abstract

In this paper, we develop a system identification algorithm to identify a model for unknown linear
quantum systems driven by time-varying coherent states, based on empirical single-shot continuous
homodyne measurement data of the system’s output. The proposed algorithm identifies a model
that satisfies the physical realizability conditions for linear quantum systems, challenging constraints
not encountered in classical (non-quantum) linear system identification. Numerical examples on a
multiple-input multiple-output optical cavity model are presented to illustrate an application of the
identification algorithm.

1 Introduction

Black-box modelling is a modelling paradigm based on learning about a system by observing its response
to given inputs, without any prior knowledge of the system’s internal structure. It is an important
paradigm in science and engineering, in particular in systems and control. For dynamical systems,
black-box modelling is achieved through system identification and has a long rich history [1]. In system
identification, single-shot (stochastic) measurement data (i.e., a single stochastic observation record) col-
lected from a system of interest is recorded against known inputs injected into it and a mathematical
model, chosen from a class of models with some unspecified parameters, is fitted based on the data.
Stochasticity arises due to internal noise in the system as well as measurement noise.

In the quantum context, parameter estimation and versions of black-box modelling of dynamical
quantum systems have been considered in various contexts; see, e.g., [2, 3, 4, 5, 6, 7] and the references
therein. Parameter estimation for the class of quantum stochastic input-output models [8, 9, 10, 11],
ubiquitous in various physical platforms such as quantum optics, quantum electrodynamical (QED)
systems and superconducting circuits, was initiated by Mabuchi [2]. However, the existing methods share
one or more of the following features: (i) they were developed for models other than quantum stochastic
input-output models (e.g., closed systems with an unknown Hamiltonian) [3, 4, 5, 6, 7], (ii) use repeated
projective measurements and averaging rather than a single continuous measurement record [3, 4, 5, 6, 7]
or (iii) assume everything is known about the system except for one or a number of unknown parameters
[2, 5, 6].

Recent works have investigated fundamental aspects of system identification for quantum input-output
systems [12, 13, 14, 15] but no empirical methods have yet been developed for system identification using
single-shot continuous measurement data. Such methods are crucial for practical applications of system
identification for quantum input-output systems. This paper will begin to close this gap by initiating
the study of empirical system identification for the class of linear quantum systems [16, §6.6] [17] based
on single-shot continuous measurement data, in the spirit of the classical setting [1]. The possibility of
using single-shot measurement data means that quantum input-output systems, such as linear quantum
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systems, could potentially be identified much more efficiently compared to other classes of quantum
models in term of data collection.
Notation. Throughout the paper, we will use the following notation. X⊤ denotes the transpose of a
matrix X , X† denotes the adjoint of a Hilbert space operator X and if X = [Xjk] is a matrix of operators

then X† is the conjugate transpose of X , X† = [X†
kj ]. In will denote an n× n identity matrix.

2 Linear quantum stochastic systems

Linear quantum stochastic systems, or simply linear quantum systems, are the quantum analogue of
linear stochastic systems and represent a collection of quantum harmonic oscillators coupled to one
another through a quadratic Hamiltonian as well as being linearly coupled to external bosonic fields.
They represent various quantum devices that have linear quantum stochastic evolution in the Heisenberg
picture. This includes, for example, optical and superconducting cavities and parametric amplifiers,
and gravitational wave interferometers [8, 9, 11]. They are of interest for linear quantum information
processing with quantum Gaussian states and gravitational wave interferometry.

Figure 1: A linear quantum system driven by m fields each in a coherent state

Linear quantum systems are described by a vector x = (q1, p1, q2, p2, . . . , qn, pn)
⊤ where qj and pj

are the position and momentum operators of oscillator j and n is the number of oscillators, a quadratic
Hamiltonian H = 1

2x
⊤Rx, where R = R⊤ ∈ R2n×2n, a linear coupling operator L = Kx to m external

fields with K ∈ Cm×2n, and a scattering matrix S ∈ Cm×m. When the system is driven by m fields
that are in a coherent state with amplitude vector α̃(t) = α̃R(t) + iα̃I(t) ∈ Cm, with α̃R(t), α̃I(t) ∈ Rm

(see Fig. 1), the joint evolution of the system and field is given by a unitary propagator U(t) solving the
Hudson-Parthasarathy quantum stochastic differential equation (QSDE) [18]:

dU(t) =

(

−i

(

H +
1

2
(L+ α̃)†(L + α̃)

)

dt + dA(t)†(L + α̃(t))− (L + α̃(t))†dA(t) + Tr((S − I)dΛ(t))

)

U(t),

with initial condition U(0) = I. In the above QSDE, A(t) = [ A1(t) A2(t) . . . Am(t) ]⊤ is the vector

of annihilation operators for the m field and Λ(t) = [Λjk(t)]j,k=1,...,m (with Λ†
jk = Λkj) satisfying the

quantum Itō product rule:

dAj(t)dA†
k(t) = δjkdt, dΛjk(t)dΛuv(t) = δkudΛjv(t),

dΛjk(t)dA†
l (t) = δkldA†

j(t),

with all other products between dAj(t), dA†
k(t) and dΛuv(t) and their adjoints vanishing.

Let η(t) = (ηq1(t), η
p
1(t), η

q
2(t), η

p
2(t), . . . , η

q
m(t), ηpm(t))⊤ with ηqj (t) = Aj(t)+Aj(t)

†, ηpj (t) = −iAj(t)+

iAj(t)
† the amplitude and phase quadratures of the j-th field, respectively. The Heisenberg evolution
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x(t) = U(t)†xU(t) of the vector x of position and momentum operators and the vector of output field
y(t) = U(t)†η(t)U(t) are given by the linear QSDE (in the so-called quadrature form [17, Chapter 2]:

dx(t) = Ax(t)dt +B(α(t)dt + dη(t))

dy(t) = Cx(t)dt +D(α(t)dt + dη(t)).
(1)

In the above, A ∈ R2n×2n, B ∈ R2n×2m, C ∈ R2m×2n, D ∈ R2m×2m and α(t) is 2m × 1 vector of real
functions representing the phase and amplitude quadratures of coherent amplitudes driving the system,
α(t) = (α̃R,1(t), α̃I,1(t), . . . , α̃R,m(t), α̃I,m(t))⊤, where α̃s,j is the j-th component of α̃s, s ∈ {R, I}.
Similarly, y(t) = (yq1(t), y

p
1(t), y

q
2(t), y

p
2(t), . . . , y

q
m(t), ypm(t))⊤ is the output field vector containing the

amplitude and phase quadratures of the output fields, where yqj and ypj denote the amplitude and phase
quadratures of the j-th field, respectively. Due to quantum constraints, the matrices A,B,C,D need to
satisfy the physical realisability constraints [19, 17]:

AJn + JnA
⊤ +BJmB⊤ = 0, JnC

⊤ +BJmD⊤ = 0,

where Jn = In ⊗J and J =

[

0 1
−1 0

]

. If only steady-state measurement data are available, the param-

eters will only be identifiable up to a similarity transformation, (A,B,C,D) → (V AV −1, V B,CV −1, D)
for some real invertible matrix V [12, 14]. With this transformation, Jn is replaced with Z = V JnV

⊤

and the physical realizability constraints become:

AZ + ZA⊤ +BJmB⊤ = 0 (I), ZC⊤ +BJmD⊤ = 0 (II). (2)

Note that in the above the matrix Z is skew-symmetric, Z = −Z⊤ and is required to be invertible.
Information about the system can be obtained by performing measurements on its output. For in-

stance, two basic measurements are yq(t) = (yq1(t), y
q
2(t), . . . , y

q
m(t))⊤ and yp(t) = (yp1(t), y

p
2(t), . . . , y

p
m(t))⊤.

These measurements are known as homodyne measurements [16, §4.4]. The vector yq(t) is a homodyne
measurement of the amplitude quadrature of the output, while yp(t) is a homodyne measurement of the
phase quadratures. Note that quantum mechanics does not allow simultaneous measurements of yq(t)
and yp(t) because the elements of these two vectors do not all commute with one another. Thus, it is
only meaningful to measure one of these vectors at any time. It follows that,

dyq(t) = Cqx(t)dt +Dq(α(t)dt + dη(t)),

dyp(t) = Cpx(t)dt +Dp(α(t)dt + dη(t)),

with C = [ C⊤
q C⊤

p ]⊤ and D = [ D⊤
q D⊤

p ]⊤. It is possible to perform heterodyne measurement of
yq and yp [16, §4.5] which would allow noisy simultaneous measurements of yp and yq (but they are not
true simultaneous measurements of both quadratures).

When continuous measurement is performed on the quantum system, say by continuously measuring
yq(t), the observed system undergoes a stochastic evolution according to the quantum Kalman filtering
equation [17, §4.2]:

dx̂q(t) = Ax̂q(t)dt+Bα(t)dt + Lq(t)dνq(t)

dyqm(t) = Cqx̂
q(t)dt +Dqα(t)dt +DqD

⊤
q dνq(t).

Here yqm(t) is the measurement stochastic process (which can be mapped from the operator-valued
quantum stochastic process yq(t) via the Spectral Theorem [20, Theorem 3.3]), x̂q is the conditional
expectation of xq given the measurement yqm(t) 1 and

νq(t) =
(

DqD
⊤
q

)−1
(

yqm(t)−
∫ t

0

(Cq x̂
q(τ) +Dqα(τ))dτ

)

1x̂q is also the best mean square estimate of xq based on yqm(t) [20, 17]
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is the so-called innovation process of the quantum Kalman filter. Note that νq(t) is a classical standard
Wiener process, E[νq(t)νq(t

′)⊤] = min{t, t′}In that is independent of x̂q(s) for all 0 ≤ s ≤ t. In the
quantum Kalman filter, Lq is the Kalman gain and is given by:

Lq(t) = Qq(t)C
⊤
q +BD⊤

q ,

where Qq(t) = Qq(t)
⊤ ≥ 0 satisfies the Riccati differential equation (RDE):

Q̇q(t) = AQq(t) +Qq(t)A
⊤ +BB

⊤
− (Qq(t)C

⊤

q +BD
⊤

q )(DqD
⊤

q )−1(Qq(t)C
⊤

q +BD
⊤

q )⊤.

If the system is asymptotically stable (i.e., the matrix A is Hurwitz), the quantum Kalman filter
converges to the steady-state quantum Kalman filter

dx̂q(t) = Ax̂q(t)dt+Bα(t)dt + Lqdνq(t)

dyqm(t) = Cqx̂
q(t)dt +Dqα(t)dt +DqD

⊤
q dνq(t).

(3)

where Lq is the steady-state Kalman gain given by

Lq = QqC
⊤
q +BD⊤

q , (4)

and Qq = Q⊤
q ≥ 0 satisfies the algebraic Riccati equation (ARE):

AQq +QqA
⊤ +BB⊤ − (QqC

⊤
q +BD⊤

q )(DqD
⊤
q )

−1(QqC
⊤
q +BD⊤

q )
⊤ = 0.

Although the equations above are given for measurement of yqm(t), analogous equations can be obtained
when measurement of ypm(t) is made.

3 Formulation and numerical solution of identification problem

3.1 Problem formulation

In the system identification problem, we are interested in identifying a model of the form (1) but with
system matrices not necessarily of the same dimension, since the true dimensions are not known before-
hand, based on the measurement data yqm(t) or ypm(t). In this paper we do not consider heterodyne
measurement of yq and yp but the approach can be adapted to that case. Throughout, we will consider
the system identification problem under the following assumptions:
Assumptions

1. The matrix A is Hurwitz.

2. The data is collected after the system is at steady-state.

3. The matrix D is known. Hence Dq and Dp are known.

An application of standard identification algorithms using knowledge of the single-shot continuous
measurement record, say, yqm(t), would identify a model in the innovation form (3) with system matrices

(Â, B̂, Ĉq, L̂q). However, the identified system matrices from these algorithms will not necessarily satisfy
the physical realizability constraints (2) as well as the constraints (4) and (5).

Suppose that we have identified system matrices (Â, B̂, Ĉq, L̂q) through some classical identification
procedure, such as ARMAX modelling or subspace identification [1, 21, 22]. The remaining problem is
to identify system matrices (A,B,Cq, Lq) that do satisfy all the constraints required of a linear quantum
system. The following standard results will be useful in the ensuing discussion, we include the proofs
here for the sake of completeness.

Lemma 1 Let Â be Hurwitz. Then the matrix equation ÂZ + ZÂ⊤ = 0, with Z the same dimension as
Â, has the unique solution Z = 0.
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Proof. Let zj denote the j-th column of Z and let vec(Z) be the vectorization of Z by stacking its

columns one on top of the other starting with z1 at the very top. The equation ÂZ + ZÂ⊤ = 0 is
equivalent to the equation (Â ⊗ I + I ⊗ Â)vec(Z) = 0. If λ1, λ2, . . . , λn are eigenvalues of A (including
their multiplicities), which all have negative real parts, then the eigenvalues of Â⊗ I + I ⊗ Â are λi + λj

for i, j = 1, 2, . . . , n. Therefore all eigenvalues of Â ⊗ I + I ⊗ Â also have negative real parts. It follows
that the unique solution of (Â ⊗ I + I ⊗ Â)vec(Z) = 0 is vec(Z) = 0. Therefore, Z = 0 is the unique
solution of ÂZ + ZÂ⊤ = 0.

Corollary 2 Let Â be Hurwitz. Then the matrix equation ÂZ+ZÂ⊤+BJmB⊤ = 0 has a unique solution
Z and this solution is skew-symmetric.

Proof. Following the proof of Lemma 1, ÂZ + ZÂ⊤ + BJmB⊤ = 0 is equivalent to the equation
(Â ⊗ I + I ⊗ Â)vec(Z) = −vec(BJmB⊤). By the same argument as in that proof, when Â is Hurwitz
the equation has a unique solution Z, corresponding to vec(Z) = −(Â ⊗ I + I ⊗ Â)−1vec(BJmB⊤).
Furthermore, we can also inspect that if Z is a solution then so is −Z⊤. Therefore, Z = −Z⊤ and the
unique solution must be skew-symmetric.

In the approach that will be developed below, we first determine (A,B,Cq) (with a Hurwitz A) and

then solve for the Kalman gain Lq. Given estimates (Â, B̂, Ĉq), we introduce a loss function L that

is nonnegative function of ∆A = A − Â, ∆B = B − B̂ and ∆Cq = Cq − Ĉq with the property that
L(∆A,∆B,∆Cq) = 0 ⇒ ∆A = 0,∆B = 0 and ∆Cq = 0.

We formulate a linear quantum system identification problem as follows.

Problem 3

minimize
A,B,Cq,Z,P

L(∆A,∆B,∆Cq)

subject to

P > 0,

P − P⊤ = 0,

A
⊤
P + PA < 0,

AZ + ZA
⊤
+BJmB

⊤
= 0,

ZC
⊤
q +BJmD⊤

q = 0,

Z + Z⊤ = 0,

det(Z)2 > 0.

(5)

For the loss function L, we choose a simple quadratic function,

L(∆A,∆B,∆Cq)

=
1

2

(

‖A− Â‖22 + ‖B − B̂‖22 + ‖Cq − Ĉq‖22
)

,

where ‖X‖2 =
√

tr(X⊤X).
After obtaining a solution (A,B,Cq) to the optimization problem 3, we solve for the corresponding

Kalman gain Lq for the linear quantum system according to (4) and (5).

3.2 Numerical solution

The system identification problem, Problem 3, formulated in the previous section can be viewed as
a matrix polynomial programming problem. The objective function is a quadratic function of matrix
variables and all the variables are matrix-valued. This is a formidable non-convex optimization problem
for which there is no known general solution. Here we borrow a technique proposed in [23] to introduce
matrix lifting variables to transform the original matrix polynomial programming problem to a rank
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constrained LMI problem. The latter problem can be numerically solved with the LMIRank algorithm
[24, 25] (run on the Yalmip toolbox for Matlab [26]) as originally proposed in [23] (see also [17, §5.2.1]).

In the transformation below we will drop the constraint det(Z)2 > 0 as generically this constraint
is expected to be satisfied in the sense that the set where det(Z) = 0 forms a “thin set” in the
set of all skew-symmetric matrices in R2n×2n; for a discussion of the notion thinness, see, e.g., [27].
To transform the problem we introduce two positive semidefinite symmetric matrix lifting variables
G1 ∈ R(10n+3m)×(10n+3m) and G2 ∈ R(4n+2m)×(4n+2m). We will require these two matrices to satisfy
the rank constraints rank(G1) ≤ 2n and rank(G2) ≤ 2m. If these matrices do indeed satisfy the rank
constraints then we can factorize them as Gj = GjG

⊤
j and identify the block elements of Gj as follows:

G
⊤

1 =
[

I2n A
⊤

A B C
⊤

q Z⊤ P⊤

]

,

G
⊤

2 =
[

I2m B
⊤

J
⊤

mB
⊤

]

.
(6)

Now, let Gj(k, l) denote the (k, l)-th block matrix in Gj . If the Gj matrices satisfy the specified rank
constraints then we have the identification Gj(k, l) = Gj(k)Gj(l)

⊤, where Gj(k) denotes the k-th block
element of Gj according to the block partitioning in (6). In terms of these block matrices the cost function
L can be written as

L(∆A,∆B,∆Cq) =
1

2

(

Tr[G1(2, 2) + ÂÂ⊤] + Tr[G1(4, 4) + B̂B̂⊤]

+Tr[G1(5, 5) + ĈqĈ
⊤
q ]− 2Tr[Â⊤G1(2, 1)]

−2Tr[B̂⊤G1(1, 4)]− 2Tr[Ĉ⊤
q G1(5, 1)]

)

and the constraints (5) can be written as

G1(1, 7)−G1(7, 1) = 0,

G1(1, 7) ≥ ǫI2n,

G1(3, 7) +G1(7, 3) ≤ −ǫG1(1, 7),

−G1(2, 6) +G1(6, 2) +G2(3, 2) = 0,

G1(6, 5) +G1(1, 4)JmD⊤
q = 0,

G1(1, 6) +G1(6, 1) = 0.

where ǫ > 0 (we set ǫ = 10−3 throughout) and the last constraint ensures the solution for Z returned
by the algorithm is skew-symmetric. The constant ǫ has been introduced to replace strict inequality
constraints with non-strict ones, as required for the numerical software packages that will be used. From
(6), we obtain the following auxiliary constraints on the block elements of Gj(k, l):

G1(1, 1)− I2n = 0,

G2(1, 1)− I2m = 0,

G1(1, 3)−G1(2, 1) = 0,

G1(1, 4)−G2(2, 1) = 0,

G2(3, 1)−G2(2, 1)Jm = 0,

Gi ≥ 0, i = 1, 2

and the original rank constraints

rank(G1) ≤ 2n, rank(G2) ≤ 2m.

We remark that if the above constraints are satisfied the original variables of the problem can be recovered
from the corresponding block elements of Gj , according to (6). We then solve for the corresponding
Kalman gain Lq for the identified linear quantum system according to (4) and (5).

To solve this rank-constrained LMI problem, we employ the LMIRank algorithm in [25]. The initial

guess for the algorithm is chosen to be Ĝj = ĜjĜ
⊤
j , where Ĝ⊤

j is obtained from G⊤
j by replacing the
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variables (A,B,Cq) with (Â, B̂, Ĉq). We set the initial guess for P as a solution to the LMI Â⊤P +PÂ <
0, P > 0 and the initial guess for Z to be Jn.

The LMIRank algorithm only solves a feasibility problem. To minimize the cost function, we employ
a standard bisection strategy by including L(∆A,∆B,∆Cq) ≤ γ as an additional constraint in the
feasibility problem. Starting with an initial guess, we half γ each time the LMIRank algorithm returns a
feasible solution. Otherwise, we set γ = 1.2γ.

4 Numerical examples

To test the proposed identification method, we will use simulated data of quadrature measurements at
the output of a linear quantum system. This can be done in a standard way by generating a sample
of a band-limited approximation of the standard white noise vector ν̇q(t) (or ν̇p(t) depending on the
measurement being considered) satisfying E[ν̇q(t)ν̇q(t

′)⊤] = δ(t − t′)I, and numerically integrating the
SDE for the quantum Kalman filter (3) with a small sampling time of Ts to generate ẏqm (yqm is just
the integral of ẏqm). We use time derivatives because classical linear system identification algorithms
implemented in Matlab use the derivative ẏqm as the input data.

As a numerical example, we consider identifying a multiple-input multiple-output optical cavity with
position and momentum operators q and p. Here H = ∆(q2 + p2)/2 and

L = [
√
κ1(q + ip)/2

√
κ2(q + ip)/2

√
κ3(q + ip)/2 ]⊤,

with ∆ = 10, κ1 = 5, κ2 = 3, and κ3 = 2, and S = I3, corresponding to the system matrices,

A =

[

−5 20
−20 −5

]

, C =

















2.2361 0
0 2.2361

1.7321 0
0 1.7321

1.4142 0
0 1.4142

















, D = I6.

B =

[

−2.2361 0 −1.7321 0 −1.4142 0
0 −2.2361 0 −1.7321 0 −1.4142

]

,

Using a sampling time of Ts = 10−2 s, we generate the measurement data from the system (ẏpm and
ẏqm) for a total time duration of 80 s, with initial state x̂j(0) = 0, where j ∈ {q, p}. The first 20 seconds
of the data is for driving the system to its steady state and is not used for identification. The next 30
seconds of the data is used for model estimation and the last 30 seconds is for model validation. The
system is excited by a pseudo-random binary sequence (PRBS) generated using the “idinput” Matlab
command, a persistently exciting input signal [1, Chapter 13]. The amplitudes of the PRBS are set to
be Ω = {10/

√
Ts, 50/

√
Ts, 100/

√
Ts} to investigate the effect of different signal-to-noise ratio (SNR) in

the presence of white noise on the estimated models. We employ subspace identification [21, 22] through
the “n4sid” Matlab command to estimate the system matrices. As the order of estimated models is
unknown a priori, classical (non-physically realizable) models of state-space dimension 2n ∈ {2, 4, 6} are
identified and compared using their “relative energy” contributions, as computed and plotted by the
n4sid command. States with small relative energies contribute little to the model accuracy and can be
discarded with little impact. Table 1 and Table 2 show the relative energy contributions of estimated
classical models using measurement data ẏqm and ẏpm, respectively. For all values of Ω, relative energy
suggests that the simplest model with n = 1 is sufficient. As Ω increases, relative energy for n = 1 further
increases.

From the classical models produced by the subspace identification, we then identify system matrices
(

Aj , Bj , Cj

)

that satisfy all constraints (5) of a linear quantum system using the LMIRank algorithm. We

observe that the magnitudes of B̂j estimated by subspace identification are small while the magnitudes of

Ĉj are large. To avoid poor numerical conditioning for the LMIRank algorithm, we perform a similarity

transformation with T = 6ΩI2n. This transformation leaves Âj unchanged but scales B̂j by 6Ω and Ĉj

by 1
6Ω . Using the bisection strategy, LMIRank returns the cost function values γj tabulated in Table 1
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and Table 2. We compute the Akaike final prediction-error (FPE) as in [1, Chapter 16] for the estimated
(physically realizable) quantum models obtained after applying the optimization algorithm in Section 3.2.
The FPE is defined by

FPEj = det

(

1

N

∑

k

ej(kTs)ej(kTs)
⊤

)

1 + d/N

1− d/N
,

where the summation is over ej(kTs) for the validation data (the last 30 s), N is the number of validation
data and d is the number of estimated parameters. The prediction error ej(kTs) is obtained using the
“resid” Matlab command. We also report the percentage fit for each output, defined by

Fitj,l =



1−

√

∑

k e
2
j,l(kTs)

√
∑

k(ẏjm,l(kTs)− µjm,l)2



× 100%,

where l = 1, . . . ,m, ej,l(kTs) and ẏjm,l(kTs) are the l-th component of ej(kTs) and ẏjm(kTs), and
µjm,l =

1
N

∑

k ẏjm,l(kTs). The percentage fits are computed using the “compare” Matlab command.
See Table 1 and Table 2 for FPEj and Fitj,l for j ∈ {p, q}, respectively.

Table 1: Relative energy contributions of estimated classical models, γq, FPEq and Fitq,l for estimated
quantum models according to measurement data ẏqm.

Ω n Relative γq FPEq Fitq,1 Fitq,2 Fitq,3
energy (×106) (%) (%) (%)

10√
Ts

1 7.61 0.0094 1.11 59.8 50.1 42.2
2 5.08 0.65 1.28 59.2 47.8 41.6
3 5.00 1.56 1.16 59.8 50.0 42.2

50√
Ts

1 9.21 0.004 1.15 91.0 88.4 86.3
2 5.08 0.65 6.24 87.5 86.1 80.3
3 5.00 1.56 1.43 90.6 88.4 85.7

100√
Ts

1 9.91 0.001 1.14 95.5 94.2 93.1
2 5.08 0.54 1.17 95.5 94.2 93.1
3 5.01 1.56 2.46 94.6 93.9 92.0

Table 2: Relative energy contributions of estimated classical models, γp, FPEp and Fitp,l for estimated
quantum models according to measurement data ẏpm.

Ω n Relative γp FPEp Fitp,1 Fitp,2 Fitp,3
energy (×106) (%) (%) (%)

10√
Ts

1 7.59 0.015 1.11 58.8 49.3 42.9
2 5.12 0.65 1.12 58.0 48.6 42.7
3 5.05 3.73 1.13 58.1 48.8 41.7

50√
Ts

1 9.20 0.004 1.11 91.0 88.4 86.1
2 5.12 0.65 3.0 89.2 86.0 83.8
3 5.05 3.73 9.5 87.5 82.5 80.3

100√
Ts

1 9.90 0.001 1.11 95.4 94.2 93.0
2 5.12 0.54 1.46 95.3 94.0 92.7
3 5.05 3.73 22.4 91.2 90.8 88.1

For all values of Ω, estimated physically realizable quantum models with n = 1 achieve the smallest γj
and FPEj , as well as the best percentage fits. As the signal amplitude increases, for n = 1, γj decreases
from around 0.01 to 0.001 and the percentage fits increase from around 50% to over 90%. In fact, when
Ω = 100/

√
Ts, the estimated classical models with system matrices below almost satisfy the physical

8



realizability constraints:

Âq =

[

−5.22 −20.05
19.97 −4.78

]

, Ĉq =





1.20 0.20
0.93 0.15
0.76 0.12



× 104,

B̂q =

[

−4.06 −0.67 −3.12 −0.52 −2.55 −0.42
−0.61 4.04 −0.49 3.12 −0.37 2.59

]

× 10−4,

and

Âp =

[

−4.78 −20.16
19.87 −5.24

]

, Ĉp =





−1.19 −0.20
−0.92 −0.16
−0.76 −0.13



× 104,

B̂p =

[

−0.67 4.06 −0.53 3.13 −0.44 2.54
4.01 0.75 3.08 0.54 2.59 0.45

]

× 10−4.

This suggests that when α(t) has sufficiently large amplitude (corresponding to a large SNR ratio of
the input signal to the quantum noise) the classical subspace identification algorithm is able to produce
identified classical models that are close to being physically realizable linear quantum models. To obtain
the physically realizable system matrices, we decompose Zj as Zj = VjJnV

⊤
j for j ∈ {q, p}, where

Zq =

[

0 −1.193
1.193 0

]

, Zp =

[

0 −1.189
1.189 0

]

,

Vq =

[

1.09 0
0 −1.09

]

, Vp =

[

0 −1.09
−1.09 0

]

.

Then the corresponding physically realizable systemmatrices are (Aj , Bj , Cj) = (V −1
j A

′
jVj , V

−1
j B

′
j , C

′
jVj),

where A
′
j , B

′
j , C

′
j are solutions returned by the LMIRank algorithm. Based on measurement data ẏqm,

we obtain

Aq =

[

−5.21 20.05
−19.97 −4.77

]

, Cq =





2.20 −0.36
1.70 −0.28
1.40 −0.23



 ,

Bq =

[

−2.22 −0.36 −1.71 −0.28 −1.40 −0.23
0.34 −2.20 0.27 −1.70 0.20 −1.40

]

,

Lq =

[

−2.04 −0.75 0.68
−0.34 0.34 −0.89

]

× 10−2.

Based on measurement data ẏpm, we obtain

Ap =

[

−5.23 19.88
−20.17 −4.77

]

,

Bp =

[

−2.19 −0.40 −1.68 −0.29 −1.38 −0.25
0.37 −2.23 0.28 −1.71 0.24 −1.42

]

,

Cp =





0.37 2.18
0.29 1.68
0.24 1.38



 ,

Lp =

[

−0.33 1.43 0.81
−2.06 −1.45 −2.09

]

× 10−2.

Furthermore, using the “resid” Matlab command, we observe that the residuals ej(kTs) of the estimated
quantum models are independent of the inputs and the residuals show no autocorrelation (within 99%
confidence interval); see Fig. 2 for the residual sample autocorrelation and [1] for further discussions on
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Figure 2: Residual sample autocorrelation of the estimated quantum models for (a) eq,1(kTs), (b)
eq,2(kTs), (c) eq,3(kTs), (d) ep,1(kTs), (e) ep,2(kTs) and (f) ep,3(kTs). Horizontal blue lines are the
99% confidence bounds. We show the sample autocorrelation up to 50 lags for illustrative purposes and
we observe no sample autocorrelation (within 99% confidence interval) for higher lags.

Figure 3: Predicted outputs of the estimated quantum model with Ω = 100/
√
Ts and n = 1 against

target outputs on the first 100 validation data points, for (a) ˆ̇yqm,1 against ẏqm,1, (b) ˆ̇yqm,2 against ẏqm,2,

(c) ˆ̇yqm,3 against ẏqm,3, (d) ˆ̇ypm,1 against ẏpm,1, (e) ˆ̇ypm,2 against ẏpm,2 and (f) ˆ̇ypm,3 against ẏpm,3. Here
ˆ̇yjm,l is the l-th component of predicted output ˆ̇yjm for j ∈ {q, p}.

residual diagnostics. Fig. 3 plots the predicted outputs of the quantum model with Ω = 100/
√
Ts and

n = 1 for the first 100 validation data.
We remark that the values of γj , FPEj and Fitj,l differ for different measurement data j ∈ {q, p}. This

is due to subspace identification returning different identified system matrices for (Âp, B̂p) and (Âq, B̂q).
The two estimates are not expected to be the same as they are estimated using distinct measurement
data that are in turn also generated, in general, through distinct stochastic evolutions. It may be possible
to develop a technique to merge these two models together to obtain a single identified model but this is
beyond the scope of the present work and is a theme for future research.
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5 Conclusion

In this paper, based on appropriate assumptions on the system to be identified, we develop a method to
identify linear quantum systemmodels based on single-shot continuous stochastic homodyne measurement
data generated by the output of unknown linear quantum systems driven by known coherent input fields.
The approach involves a two-step procedure. First a (non-physically realizable) classical linear stochastic
model is identified using well-established classical system identification algorithms. Then a polynomial
matrix feasibility problem is solved to obtain a physically realizable linear quantum system model that
is in a sense close to the identified classical stochastic model. We develop a numerical algorithm for
solving the polynomial matrix feasibility problem by adopting a matrix lifting technique previously used
to numerically solve the coherent quantum LQG problem [23].

We demonstrate our approach in a numerical example. The numerical algorithm is able to identify
a multiple-input multiple-output optical cavity based on simulated single-shot homodyne measurement
data for varying amplitudes of the coherent input vector α(t). Although classical identification algorithms
cannot in general generate physically realizable linear quantum models, our numerical examples indicate
that for α(t) with sufficiently high amplitude the classical identified models produced by classical sub-
space identification can be close to being physically realizable. That is, the identified system matrices
almost satisfy the physical realizability constraints of linear quantum systems. However, in practice, high
amplitude inputs may not be achievable or consume too much energy to be generated. The case of much
practical interest is the one with lower power inputs and this is where the method developed here will be
of interest.

The current work assumes the simplification of knowing the output feedthrough matrix D, which
in general is not the case. Future work can include generalizing the proposed approach to remove this
assumption, developing improved numerical algorithms and finding a method to combine the two models
obtained by different measurement quadratures in order to identify a single model.
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