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Abstract12

Let T be a triangulation of an orientable surface Σ of genus g. A cycle C of T is splitting if it cuts13

Σ into two noncontractible parts Σ1 and Σ2, with respective genus 0 < g1 ≤ g2. The splitting14

cycle C is called balanced if g1 ≥ g2− 1. The complexity of computing a balanced splitting cycle15

in a given triangulation is open, but seems difficult even for complete triangulations. Our main16

result in this paper is to show that one can rule out in polynomial time the existence of a balanced17

splitting cycle when the triangulation is ε-far to have one. Implementing this algorithm, we show18

that large Ringel and Youngs triangulations (for instance on 22.363 vertices) have no balanced19

splitting cycle, the only limitation being the size of the input rather than the computation time.20
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1 Introduction27

A splitting cycle on a surface Σ of genus at least 2 is a simple cycle (without self-crossing)28

that allows to cut Σ into two parts non-homeomorphic to disks. In a continuous setting,29

such a curve always exists and is easy to find. In the discrete setting, Σ is defined by a30

combinatorial map M which is a graph embedded on Σ such that each face of the graph31

is an open disk. In this case, a splitting cycle is a simple cycle (a cycle with no repeated32

vertex) that separates Σ into two parts non-homeomorphic to disks. It is no more true that33

every surface of genus at least 2 has a splitting cycle and it is NP-complete to decide if a34

given M admits a splitting cycle [3, 2]. However, splitting cycles can be found when M has35

some additional properties. For instance, simple triangulations (i.e. without loops, cycle of36

length 2) are believed to have splitting cycles:37

I Conjecture 1 (Barnette (1982) [14, p. 166]). Every simple triangulation of a surface of38

genus at least 2 has a splitting cycle.39
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This conjecture is known to be true only in the case of the double torus [9]. It is40

formulated for triangulations but has been also investigated for combinatorial maps with41

minimum face-width (the minimum number of faces crossed by a non-contractible curve).42

It is easy to build a combinatorial map of face-width 2 without splitting cycles. Zha and43

Zhao [19] conjectured that a face-width of 3 is sufficient to obtain a splitting cycle and proved44

that 6 is actually enough. Triangulations are a particular case of this second conjecture since45

any simple triangulation has face-width at least 3.46

Recall that a triangulation is called irreducible if none of its edges can be contracted47

without violating the condition of simplicity. It is easy to see that if T has a splitting cycle48

and is obtained by contracting an edge from some T ′ then T ′ also has a splitting cycle.49

Thus, it is sufficient to consider irreducible triangulations. Observe also that irreducible50

triangulations have face-width exactly 3. The number of irreducible triangulations of a51

given genus being finite [1, 15, 10], it is theoretically possible to check the conjecture for52

fixed genus. Sulanke gave an algorithm to compute the set of irreducible triangulations of53

a fixed genus [17] and used it to prove the conjecture for genus 2 with a computer assisted54

approach [18]. Unfortunately, the number of irreducible triangulations with respect to the55

genus grows too fast to hope for a brute force proof, even for genus 3.56

In this paper we consider only orientable surfaces Σ of genus g. Therefore, a splitting57

cycle C cuts Σ into two parts of respective genus g1, g2, where g1 ≤ g2. We call g1 the type58

of C, and C is called balanced if g1 ≥ g2 − 1 (if such a cycle exists for T , we also say that T59

is balanced).60

It was independently conjectured by Zha and Zhao [19] and Mohar and Thomassen [14,61

p. 167] that a triangulation (or a combinatorial map of face-width at least 3) have all the62

possible types of splitting cycles. However, Despré and Lazarus [4] disproved this by showing63

that some triangulations of complete graphs do not have all the possible types of splitting64

cycles. More precisely they could certify that some triangulation of K19 or K43 are not65

balanced. However, the algorithm they use could no rule out the existence of balanced large66

complete triangulations which still could be "smoother" than small ones and allow all types67

of splitting cycles. The key-result of this paper is first to show that existence of balanced68

cycle in a complete triangulation T of Kn can be property-tested, and then to provide an69

efficient implementation of this algorithm to test large Ringel-Youngs triangulations.70

Observe that every splitting cycle C of a complete triangulation T of Kn partitions the71

edges into three classes (R,L,C), where C are the edges of the cycle, R the edges to the right72

of C, and L the one to the left. Moreover, in the cyclic order σv induced by T around the73

edges incident to each vertex v, the order of the types of edges is (R,C,L,C). In particular,74

we never have the cyclic pattern R,L,R,L. This allows a relaxation of the notion of splitting75

cycle. Precisely, for every ε > 0, an ε-cycle of T is a partition of the edges into three classes76

(R,L,U) such that:77

No vertex v have the cyclic pattern R,L,R,L in σv.78

All but εn of the vertices v of T are typical, i.e. every cyclic interval of σv of length εn79

contains an edge R or an edge L.80

We say that an ε-cycle (R′, L′, U) approximates a splitting cycle (R,L,C) if R′ ⊆ R and81

L′ ⊆ L (here U ⊆ C and stands for unknown). Our main result is the following:82

I Theorem 2. There is a randomized algorithm running in time f(ε)poly(|T |) which takes83

as input a complete triangulation T and returns w.h.p. a set X of ε-cycles such that every84

splitting cycle of T is approximated by some element of X. Moreover, the size of X only85

depends on ε.86
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Note that if T has a balanced cycle C, then the previous algorithm will find w.h.p. a87

balanced ε-cycle (in a sense to be defined later). Let us say that T is ε-far to be balanced88

if it does not have a balanced ε-cycle. We have the following corollary:89

I Theorem 3. There is a randomized algorithm running in time f(ε)poly(|T |) which takes90

as input a complete triangulation T which is either balanced or ε-far to be balanced and91

returns w.h.p. either a balanced ε-cycle, or a certificate that no balanced cycle exists.92

The previous algorithms are based on sampling a good set of vertices and can indeed be93

derandomized. However, even in the randomized version, the size of the family X is too large94

to allow any practical use. Luckily, when restricted to finding a set X approximating every95

balanced splitting cycle (hence cutting branches leading to unbalanced cycles), it turns out96

that a mix of random sampling and greedy choices can be implemented in a more efficient97

way. We could use this implementation in order to rule out the existence of balanced cycles98

in large Ringel and Youngs triangulations.99

The fact that all splitting cycles can be ε-approximated by a bounded set Σ is non-100

intuitive if we think of the continuous setting. Indeed, the number of homotopy classes101

corresponding to balanced splitting cycles is infinite on the surface of genus g. By fixing a102

natural constant curvature metric on the underlying surface, it is known that the number of103

homotopy classes corresponding to splitting cycles that can be realized with length at most104

L is asymptotically L6g−6 [13]. In the discrete setting, we cannot reach an infinite number105

of homotopy classes since we only have a finite number of simple cycles. However, it would106

have been natural to expect a K(g) (and thus n) dependency for the size of X.107

The problem of constructing triangulations of complete graphs is a very classical one,108

raised by Heawood in 1890 [8]. The original aim was to find an optimal proper coloring109

of a graph embedded on a surface of genus g > 0. Apart from the case of the sphere (or110

the plane) and the Klein bottle, the Euler formula already gives the exact upper bound of111

γ(g) = b 7+
√

1+48g
2 c colors. Hence, to prove the tightness of the bound, it was necessary to112

produce a graph of genus g with chromatic number γ(g). This has been achieved by Ringel113

and Youngs [16, 7] using complete graphs. The embeddings they provided are minimal in114

the sense that each complete graph cannot be embedded on a smaller genus surface and115

some of them are triangulations. Actually, there are many different triangulations of a116

given complete graph [12, 11, 6, 5]. For the experiments in this paper we will focus on the117

triangulations given by Ringel and Youngs for n ≡ 7[12].118

The major difficulty here is that the size of the sample which gives the certificate is119

too large to allow computation based on a one-step guess. We instead adopt a randomized120

greedy strategy in order to iteratively construct the sample. The algorithm is described121

in details in Section 5. This algorithm is extremely efficient and allow to address huge122

triangulations. Actually, it may be used as soon as the size of the triangulation can be123

stored on the computer. It has been implemented independently by Vincent Despré and124

Michaël Rao and they were able to reach very huge complete triangulations.125

I Theorem 4. The complete triangulation with 22.363 vertices (and 250.040.703 edges)126

given by Ringel and Youngs has no balanced splitting cycle.127

The implementations details along with the different results are developed in Section 6.128

Our algorithm is a new tool to deal with splitting cycles and may be useful in a larger129

spectrum. Indeed, when it fails to prove that the input triangulation has no balanced130

splitting cycles, it gives hints to find possible ones since it outputs balanced ε-cycles which131

can be the seed of some new investigation. This is probably the most appealing open question132
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left by the paper: Given a balanced ε-cycle, how to decide if it can be extended or not into133

a balanced (or near balanced) cycle. If one could design an efficient algorithm in order to134

find balanced splitting cycles, it would lead to efficient divide and conquer algorithms on135

complete triangulations.136

We first describe the background and notations in Section 2 and give some technical137

results about the structure of splitting cycles in Section 4.138

2 Notations and Background139

Combinatorial surfaces140

As usual in computational topology, we model a surface by a cellular embedding of a simple141

graph G (without loops or multiple edges) in a compact topological surface Σ. Such a142

cellular embedding can be encoded by a combinatorial surface composed of the graph G143

itself together with a rotation system [14] that records for every vertex of the graph the144

clockwise order of the incident edges. The facial walks are obtained from the rotation145

system by the face traversal procedure as described in [14, p.93]. We denote by n, e and f the146

numbers of vertices, edges and faces of the combinatorial surface. The genus g of Σ is linked147

to the embedding via a very strong topological property that we call Euler characteristic:148

χ(Σ) = n− e+ f = 2− 2g. A triangulation is a particular kind of combinatorial map whose149

all faces are triangles. The combinatorial maps that we consider in this paper consists of150

triangulations of complete graphs where a complete graph is a graph containing all the151

possible pairs of vertices as edges. Such a triangulation does not trivially exists. It requires152

that n ≡ 0, 3, 4 or 7[12] and even in this case the constructions are not straightforward. We153

consider a triangulation Tn for theoretical construction but the experiments are only done154

for the triangulations given by Ringel and Youngs [16] for n = 12s+7. To summary, we have155

that the rotation scheme around the vertex vi is a cyclic permutations σi of {1, . . . , n} \ i,156

such that: for every triangle ijk, if k is the successor of j in σi, then i is the successor of k157

in σj .158

Data-structure159

To be able to correctly analyze the complexity of our algorithm, it is necessary to describe a160

bit the data-structure we use: the half-edge data-structure. It consists in coding Tn by a set161

of half-edges each having an handle to the opposite half-edge (represented by an involution162

α0) and to the next half-edge in the local σi (we can think of it as a global permutation σ163

whose cycles are the σi). At this point, we can notice that the size of the map is actually164

2e·<size of an half-edge>= O(e). An edge is an orbit of the action of α0 on the set of165

half-edges and can be stored as one element in the orbit. Similarly, the orbits of σ are the166

vertices, it is again sufficient to store one half-edge for each vertex. We need to store on167

each vertex a "reverse" dictionary Revi that associate to every vertex vj for j 6= i its position168

around vi (each vertex is associated to a unique half-edge around vi). The Revs dictionaries169

are not a genaral feature in the half-edge data-structure but is required by our algorithm.170

Finally, the faces can be construct by alternatively applying α0 and σ and storing a half-edge171

for each corresponding orbit. Here, computing the faces is mainly useful to check that Tn172

is a correct triangulation. The construction of the map is considered as a precomputation173

and is clearly done using O(e) operations.174
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Combinatorial curves175

Consider a combinatorial surface with its graph G. A cycle C is a closed walk in G without176

repeated vertex. C may have different topological types. To understand this we need to177

define a (free) homotopy. Two closed continuous curves on Σ α, β : R/Z→ Σ are homotopic,178

if there exists a continuous map h : [0, 1]×R/Z such that h(0, t) = α(t) and h(1, t) = β(t) for179

all t ∈ R/Z. Intuitively it means that two curves are homotopic if one can be continuously180

deformed into the other. We say that C is contractible if it is homotopic to a point and181

separating if its removal leaves two connected components on Σ. C may have three different182

homotopy types which are: contractible and separating, non-contractible and non-separating183

and non-contractible and separating (see Figure 1). If C is of this last type then we called184

it a splitting cycle. We can refine the notion of homotopy types for splitting cycle. Indeed,185

the genera g1 and g2 ≥ g1 of the two connected components defined by a splitting cycle are186

additive in the sense that g1 +g2 = g (this is a direct consequence of the Euler characteristic187

which becomes χ(Σ) = 2 − 2g − b if Σ has b boundaries). We define the type of a splitting188

cycle as the genus g1. For instance, a splitting cycle of type 1 cuts Σ into a torus with one189

boundary and a surface of genus g − 1 with one boundary. We say that C is balanced if it190

has type b g
2c.191

C1

C3

C2

Figure 1 C1 is contractible, C2 is a splitting cycle and C3 is non-separating.

Approximation of cycles192

As said before, a splitting cycle C of Tn induces an edge coloring of the edges of Kn into193

colors (L,R,C) such that C is the cycle and no R and L edges are cyclically adjacent in σv194

for all v. We will now see the splitting cycle C as the partition (L,R,C). In particular, when195

C is balanced, this translates a sparse object (the splitting cycle C) into a dense object (the196

edge coloring (L,R,C)) since both R and L have quadratic size. This allows approximation197

of L and R by sampling. We now say that (L′, R′, U) approximates (L,R,C) if R′ ⊆ R and198

L′ ⊆ L. The partition (L′, R′, U) is an ε-cycle if:199

For every vertex vi, the cyclic order σi does not contain four cyclically ordered edges200

R′, L′, R′, L′.201

All but εn of the vertices v of T are typical, i.e. every cyclic interval of σi of length at202

least εn contains an edge of R′ or an edge of L′.203

3 Efficiently approximating cycles204

Our goal is to prove Theorem 2, which shows that one can efficiently find a set X of ε-cycles205

approximating all splitting cycles.206
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I Theorem 5. For every orientable triangulation Tn of Kn and every ε > 0, there is a set207

X of size f(ε) consisting of ε-cycles such that every splitting cycle of Tn is approximated by208

some element of X.209

Proof. Pick some large constant c > 4/ε2. We implicitly assume here that n is much larger210

than ε and c, otherwise X simply exists by enumeration. Pick uniformly at random a sample211

S of vertices of Tn of size c. For each vi ∈ S, divide the cyclic order σi into c cyclic intervals212

I1, . . . , Ic of approximately the same length (i.e. size b(n − 1)/cc or d(n − 1)/ce). We now213

construct our ε-cycles (R,L,U). We first decide for each vi ∈ S an R,L,U (right, left,214

unknown) coloring of the intervals Ij in such a way that two (possibly identical) intervals215

are U and these two U intervals separates the R intervals and the L intervals. Note that216

when the U intervals are identical or adjacent, the remaining intervals are all colored R or217

all colored L. The total number of such choices for a given vi ∈ S is c2 + c. And we then218

have (c2 + c)c possible ways of coloring the edges adjacent to S according to this local rule.219

Among these coloring, some of then are inconsistent in the sense that they give both colors220

R and L at the two endpoints of some edge between two elements of S. We reject these221

colorings. It can also happen that an edge receives both colors U and R (or U and L) in222

which case the edge keeps the color different from U . We then color U all edges which were223

not incident to vertices of S. We reject all colorings which contain the forbidden pattern224

(R,L,R,L) in some σi. The set of surviving (R,L,U) colorings is denoted by XS , and this225

is our candidate for X. Note that the size of XS only depends on c and hence on ε, and226

that the total number of U edges incident to points of S is at most c.2n/c.227

The key-observation is that every splitting cycle C of Tn is approximated by some element228

of XS . Indeed, for each vertex vi ∈ S one can define the two U intervals of σi as these229

containing an edge of C, and the R and L intervals are the one which are entirely R or L230

according to cycle C. So to reach our conclusion, we just have to show that every element231

of XS is an ε-cycle.232

We claim that this happens if we are lucky enough with our sampling S. Let us say that233

a vertex vi is good if S is well distributed in σi. More precisely if for every cyclic interval234

of σi of size at least εn, the number of elements of S is at least εc/2. Observe that the235

probability that a vertex is good tends to 1, when ε is fixed and c goes to infinity. By236

Markov, we can fix c large enough such that with high probability, our sampling S will be237

such that all vertices save an arbitrarily small proportion are good. We now claim that in238

this case, all (R,L,U) partitions of XS are ε-cycles.239

Assume for contradiction that this is not the case. Then there are more than εn non240

typical vertices vi for which σi contains an interval Iji of size at least εn with no R ∪ L241

edge. Since we can neglect these vertices vi which are either in S or non good vertices, each242

of these intervals Iji contains εc/2 vertices of S, and none of them have created an R ∪ L243

edge with vi. So the total number of U edges incident to vertices of S is at least εn.εc/2,244

which is contradicting the fact that there are at most c.2n/c of them since c > 4/ε2. J245

This concludes the proof of Theorem 2, the algorithm simply returning XS for some246

large enough sample S. The main drawback of this approach is the size of the sampling,247

which makes it very difficult to implement for some practical use. Since our goal is to look248

for balanced splitting cycles, we will only focus on ε-cycles which can be approximations of249

balanced cycles. Let us denote by tr(n) the minimum size of R (or equivalently of L) in a250

balanced cycle (R,L,C) of an orientable triangulation ofKn. Note that tr(n) = n2/4−O(n),251

but a more precise value will be given later when we will discuss the implementation. Thus252

if some ε-cycle (R′, L′, U) approximates (R,L,C), it must have potentially at least tr(n)253
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many R′ or L′ edges. Let us properly define this. The right-potential r(vi) of some vertex254

vi is defined as:255

When vi is incident to some edges of R′ and L′, r(vi) is the size of the longest cyclic256

interval of σi with a point in R′ and no point in L′, minus 2.257

When vi is only incident to edges of R′, we have r(vi) = n− 1.258

When vi is only incident to edges of L′, r(vi) is the size of the longest cyclic interval of259

σi with no point in L′, minus 2.260

The same definition applies for left potential l(vi). The right-potential r(R′, L′, U) is261

the sum of the right potential of all the vertices (same for left-potential l(R′, L′, U)). Note262

that r(R′, L′, U) ≥ 2|R| and l(R′, L′, U) ≥ 2|L| when (R′, L′, U) approximates (R,L,C)263

(the factor 2 in the inequality stands for the fact that we are doubly counting edges in the264

potential). Let us then say that an ε-cycle (R′, L′, U) is unbalanced if r(R′, L′, U) < 2tr(n)265

or l(R′, L′, U) < 2tr(n) (otherwise it is balanced). A triangulation Tn is ε-far to be balanced266

if it has no balanced ε-cycle.267

Proof of Theorem 3. Now let us prove that we can efficiently separate triangulations which268

are either balanced or ε-far to be balanced. For this, we compute a set XS of ε-cycles which269

approximates all splitting cycles of Tn. Note that if Tn admits a balanced cycle (R,L,C),270

then it is approximated by some ε-cycle (R′, L′, U) in XS which hence must be balanced271

and thus a certificate of separation. Now if Tn does not admit a balanced cycle (R,L,C),272

we compute a set XS coming w.h.p. from a lucky sample S. The key point is that we can273

indeed check if S is a good sample or not, just by checking if it is well-distributed in nearly274

all σi. Hence the set XS probably approximate all splitting cycles of Tn, and if we satisfy275

the separation hypothesis of Theorem 3, none of the ε-cycles are balanced. Therefore XS is276

a certificate of the fact that Tn has no balanced splitting cycle. J277

The nice feature of this property-testing algorithm is that if we try to check if a given278

Tn has a balanced cycle, we may be lucky and get a NO-certificate. This is basically what279

happens so far for all Ringel and Youngs triangulations on which the algorithm terminates.280

However, in the present form, the size of XS is way too large to be implemented, and we281

will use a mix of random sampling and greedy choices for S. Also the fact that we divide282

σi into c intervals is convenient for the proof but not for the algorithm, which will only cut283

into 3 parts.284

Another exciting direction of research is when we get a set XS of ε-cycles, some of285

which being balanced. There is possibly a way to investigate if a given balanced ε-cycle can286

be completed into a balanced (or near balanced) cycle. For instance, if some σi contains287

the pattern (R,U,R,L), then the U edge can be turned into an R edge (possibly creating288

forbidden patterns leading to reduction of XS). These closure operations (together with a289

(L,U,L,R) rule) can greatly densify our candidate ε-cycle making it easier to complete or290

not into a splitting cycle.291

4 Properties of Splitting Cycles of Complete Triangulations292

We begin by fixing some specific notations. We need to split the neighborhood of the vertices293

into parts. Mainly, if vi is a vertex we denote by (ev0, ev1, ev2)i a partition of the vertices294

(or equivalently of the half-edges) around vi such that the edges of each evi is consecutive295

with respect to σi. We call a local configuration a couple (i, c)v where i corresponds to the296

part evi and c is a color and a configuration a list of local configurations.297
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I Lemma 6. Let v be a vertex of Tn, (ev0, ev1, ev2) be any partition of the edges in the298

neighborhood of v and (L,R,C) be a splitting cycle of Tn. At least one of the evi is entirely299

colored L or R.300

Proof. C may reach at most two of ev0, ev1 and ev2. It implies that one of the evi has to301

be colored entirely L or R for any splitting cycle. J302

We thus obtain 6 different configurations for v. The following lemma is a direct consequence303

of the previous one.304

I Lemma 7. Let (v0, · · · , vk−1) be a list of vertices of Tn and (ev0, ev1, ev2)j be a fixed305

partition of the edges around vj, for all 0 ≤ j < k. Then, there is a configuration306

((i0, c0)v0 , · · · , (ik−1, ck−1)vk−1) realized by each splitting cycle (L,R,C).307

Let us now consider the particular properties of balanced splitting cycles of complete308

triangulations.309

I Lemma 8. Let C = (L,R,C) be a balanced splitting cycle of Tn. Then,

|C| ≥

⌈
5 +
√

2n2 − 14n+ 25
2

⌉

tr(n) = min(|L|, |R|) ≥
⌈
n2 − 7n+ 8 + 4

√
2n2 − 14n+ 25

4

⌉
Proof. Since we consider complete graphs, it is not possible that there exists two vertices310

colored entirely R for one and L for the other one. Hence, after cutting along C, there is311

a map with one boundary and no interior vertex of genus at least b g
2c. Let k = |C| and312

T ′ be the map without interior vertices obtained after cutting along C. T ′ has genus at313

least
⌊

g
2
⌋
and so χ(T ′) ≤ 2 − 2

⌊
g
2
⌋
− 1 ≤ 2 − (g − 1) − 1 = 2 − g. M ′ has k vertices,314

e ≤ k(k−1)
2 edges and f faces. The double counting of the number of edges gives 3f = 2e−k315

because all the edges are on exactly 2 faces except the k on the boundary. So χ(T ′) =316

k − e + 2 e
3 −

k
3 = 2k−e

3 ≥ 4k−k(k−1)
6 = 5k−k2

6 . By putting together the two inequalities we317

obtain: 2 − g ≥ 5k−k2

6 leading to k2 − 5k + 6 − 6g ≥ 0. ∆ = 25− 4(6− 6g) = 1 + 24g and318

so k = |C| ≥ 5+
√

1+24g
2 = 5+

√
1+2(n−3)(n−4)

2 = 5+
√

2n2−14n+25
2 .319

Let us look back at the Euler formula for T ′. We have, χ(T ′) = 2k−e
3 ≤ 2− g. It implies320

that e ≥ 2k+3g−6 ≥ 5+
√

2n2 − 14n+ 25+ 3(n−3)(n−4)
12 −6 = (n−3)(n−4)+4

√
2n2−14n+25−4

4 =321

n2−7n+8+4
√

2n2−14n+25
4 . J322

It is interesting to notice that e
min(|L|,|R|) = 1

2 − O( 1
n ) for balanced splitting cycles in323

complete triangulations and thus tr(n) = n2

4 −O(n).324

5 Algorithm325

Sketch326

We first describe the sketch of the algorithm. We suppose that a balanced splitting (L,R,C)327

exists and we want to obtain a contradiction. We choose at random a set of k vertices328

(v0, · · · , vk−1) of Tn and (ev0, ev1, ev2)j a balanced partition of the edges around vj , for all329

0 ≤ j < k. By Lemma 7 we have a configuration ((i0, c0)v0 , · · · , (ik−1, ck−1)vk−1) realized by330
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C. Up to a natural symmetry we can assume that c0 = L. Thus, we have 3 · 6k−1 possible331

configurations. We need to show that every configuration is not admissible. We look at332

the other vertices of the graph, we consider the colors induced by a given configuration and333

we have two tools to show that the configuration is not correct. First, if we can find an334

alternated sequence of edges labeled (L,R,L,R) around a vertex, then this vertex violates335

the conditions of (L,R,C). We can also look the biggest number of edges colored R that336

each vertex can admits and use tr(n) given by Lemma 8 to reject the configuration.337

We want to explore the tree of all the possible configurations. We design this tree such338

that the layer i corresponds to the choice of the local configuration for the vertex vi. A339

first approach is to take k big enough to reach a contradiction for all leaves of the research340

tree. This is not reasonable because of the growth of the size of the tree so we decide to341

check all the nodes in the tree where an internal node corresponds to a partial configuration.342

If this partial configuration already gives a contre-example then all the subtrees from the343

corresponding node can be discarded. In addition, we don’t need to use the same vk on all344

the nodes of a given layer. It means that we construct a tree of configurations starting from345

the root which is the empty configuration and we avoid getting deeper in the tree as soon346

as the can prove that the corresponding configurations is not correct.347

Algorithm348

INPUT: A complete triangulation.349

Let C be an empty vector of configurations. We initialize RandV with a random ver-350

tex vi and a random partition of the neighborhood of vi into three consecutive parts351

(ev0, ev1, ev2)i. We put the configuration (vi, (ev0, ev1, ev2)i, 0, L) in C.352

We add a list Lj on each vector vj that stores the position of the vertices already colored.353

At this stage, it means that for all vj ∈ ev0 we call Revj(i) to know the position of vi354

around vj and we put (Revj(i), L) in Lj . Notice that the Lis must be sorted during the355

algorithm.356

While C is non-empty we do:357

1. We test if C is valid. This implies two tests:358

We look at all the Lis to see if there is no cyclic subsequence of the form (L,R,L,R).359

We sum the biggest interval that can be colored L (resp. R) in all the Lis and we360

compare the result to the one of Lemma 8.361

2. If one of the test fails we update C in the following way:362

If the last element of C is of the form (· · · , 2, R) then we discard it and we update363

C again.364

Else we consider the next configuration using the order: (0, L),(1, L),(2, L),(0, R),(1, R)365

and (2, R).366

We update the Lis to make it coherent with the new configuration and the go back367

to step 1.368

3. We compute a new random vertex vi not already used by C with a partition of its369

neighborhood and we add (vi, (ev0, ev1, ev2)i, 0, L) at the end of C. We then update370

the Lis and go back to 1.371

Analysis of the algorithm372

I Theorem 9. If the algorithm terminates then the input triangulation does not have a373

balanced splitting cycle.374
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Proof. If the algorithm terminates then C has described a research tree T rooted at the375

empty configuration. All the leaves of T corresponds to configurations that are incoherent376

(with the existence of a splitting cycle) in step 1. Now, if all the sons of a given node are377

incoherent, it implies that the configuration of the node is incoherent. So, by induction, all378

configurations in T are incoherent and this includes its root. If the empty set is incoherent379

with the existence of a balanced splitting cycle it implies that no such cycle may exist. J380

I Theorem 10. The algorithm describe above requires O(t · d · n) = O(t · d ·
√
e) operations381

where t is the size of the research tree T and d its depth.382

Proof. Each node of T corresponds to one turn in the While. Step 1 requires to read all383

the lists Li. There are n such lists and their size is bounded by the size of C which is less384

than the depth of T . It implies that this step requires O(d · n) operations. Step 2 and 3385

may require an insertion or a deletion in one third of the Li which is clearly done in O(d ·n)386

operations. Since we consider t configurations, we obtain a total of O(t ·d ·n) operations. J387

Optimizations388

When we reach some depth in T it becomes interesting to choose smartly the next local389

configuration. Indeed, if the new vertex vi already has two half-edges colored L pointing to390

vertices v0 and v1, then it should be interesting to consider a local configuration (ev0, ev1)i391

such that ev0 and ev1 are delimited by v0 and v1. Indeed, one of this two sets have to be392

entirely colored L in a (L,R,C) splitting cycle. We obtain only two local configurations to393

check (0, L) and (1, L) instead of 6. To be sure that the ev0 and ev1 both contain enough394

edges, we only use this setting when we find two half-edges of the same color separated by395

at least a fixed distance p.e around vi. After some testing, we decided to set p to 0.35, this396

parameter may be changed but should stay in an interval [0.3, 0.45] to be useful. In addition,397

some minor optimizations can be made, we can check the (L,R,L,R) conditions while we398

update the Lis for instance.399

The algorithm is highly parallelizable since different subtrees can use uncorrelated ver-400

tices. The parallelization works as follows: we first set a value d0 as the initial depth in the401

tree of research and we choose d0 fixed random vertices, then we set a list of tasks corre-402

sponding to the 3 · 6d−1 leaves of the initial tree. Now a master thread send a configuration403

corresponding to a leaf to every other threads as soon as they achieved their previous task.404

To prove that a configuration is impossible, a thread may need to construct its own subtree,405

thus we decide to give to each thread a different copy of the data-structure. To reach bigger406

triangulations, it may be useful to use a unique copy on each node but this will require to407

put it read-only and so extract the Li form the data-structure which may represent a loss408

of performance.409

6 Implementation details and experimental results410

The implementation has been realized in C++ using OPENMPI for parallelization and411

can be downloaded at http://vdespre.free.fr/Splitting.tar.gz. The test had been412

launched on the cluster Grid’50001. Let m be the number of threads for given experiment.413

The choice of d0 can be optimized for each case so we precise what we used in each case.414

1 Experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a
scientific interest group hosted by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr).

http://vdespre.free.fr/Splitting.tar.gz
https://www.grid5000.fr
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We first give results to show the efficiency of the algorithm. Notice that the limit is set415

by the RAM on each node and so the number of threads is set to not break the memory416

limit. The time column shows the average on 10 trys.417

s n e time (s.) CPU time m nodes d0 t
833 10 003 50 025 003 425 21h15m 180 45 6 2 000 000
1863 22 363 250 040 703 2990 37h22m 45 45 5 1 700 000

418

It is interesting to notice that the time of the tests highly depends on the exact value of419

n. It means that the size of the research tree is not smooth with respect to n. It is pretty420

surprising and we have no hint of the reason by now. The following experiments have been421

done using 720 threads on 45 nodes.422

s n time (s.) σ (s.) d0 t

100 1207 18 1 7 1 800 000
101 1219 62 15 7 2 100 000
102 1231 945 224 9 41 000 000
103 1243 970 178 9 42 000 000
104 1255 17 1 7 1 800 000
105 1267 fails in 7200 10
106 1279 35 8 7 1 900 000
107 1291 42 4 7 1 900 000
108 1303 220 45 7 8 200 000
109 1315 17 1 7 1 800 000
110 1327 18 1 7 1 800 000

423

7 Conclusion424

The structure of the splitting cycles in triangulations of complete graphs remains quite425

mysterious. Even for the case of Ringel and Youngs embeddings restricted to n = 12s + 7,426

we do not understand what exactly happens. Our new experimental results give some427

informations on the absence of balanced splittings. In this specific case, we can imagine to428

make tests on bigger triangulations by storing the embedding using O(n) memory. This can429

be done using the extreme symmetry of the embeddings but is not likely to be generalized.430

We can also want to explore other triangulations of complete graphs. A very simple431

question remains open on this subject:432

I Question 11. Is there an unbounded sequence of triangulations of complete graphs admit-433

ting balanced splitting cycles?434

The question is of intrinsic interest and it is difficult to have an intuition about it. The435

constructions of triangulations of complete graphs are pretty intricate and it is not clear436

if one can be modified to ensure the existence of a balanced splitting. In addition, we437

always look for an easy proof that some triangulation does not have a splitting cycle. We438

think that Theorem 5 is the kind of idea that can lead to such a proof. However, it is439

not clear how much the properties of a specific embedding must be used. In case that440

there exists huge triangulations of complete graphs with balanced splittings, embeddings441

become critical. If not, we can imagine to prove the non-existence of balanced splitting in442

complete triangulations without considering a specific embedding which is very convenient,443

in particular for probabilistic arguments.444
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