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Abstract 
 

 The Voigt circuit, which is the serial association of a number of RC parallel elements, 

should provide an adequate description of the finite-length diffusion impedance Zd , as conjectured 

and numerically experimented in previous electrochemical works. In this article, it is proved that 

the Voigt circuit, with infinitely many RC elements, is an exact representation model for Zd . Next, 

a generalization is proposed to establish the appropriate Voigt circuit for the electrode impedance, 

taking into account the electron transfer reaction kinetics and the double-layer charging process at 

the electrode/electrolyte interface. Theoretical derivation of the Voigt circuit parameters in terms of 

the kinetic and mass transport parameters of the electrochemical system makes it possible to discuss 

the dependence of the largest time constant of the circuit on the rate constant of the electrochemical 

reaction, the diffusion parameters of redox species, the double-layer capacitance at the interface, 

and the steady-state potential imposed for EIS calculation or measurement. The theoretical predic-

tions in this article are used in an attempt to analyze some experimental results from the electro-

chemical literature. 

 

Keywords: Modeling; Impedance; EIS; Finite-length diffusion; Finite-length Warburg; Voigt cir-

cuit. 

 

* Tel.: + 33-4-76826582; fax: + 33-4-76826630;   

e-mail: Claude.Montella@lepmi.grenoble-inp.fr;  

Address: Laboratoire d’Électrochimie et de Physico-chimie des Matériaux et des Interfaces (UMR 

5279), Bâtiment Recherche Phelma Campus, 1130 rue de la Piscine, Domaine Universitaire BP 75, 

38402 Saint Martin d'Hères, Cedex, France. 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1572665720310146
Manuscript_eba82d43763fbeb0616701c48bf40674

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1572665720310146
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1572665720310146


- 2 - 

 

1.  Introduction 
 

 The Voigt circuit, also called Foster 1 realization of RC circuits in circuit synthesis theory 

[1], results from n serially connected RC elements, i.e. n Rk Ck( ) elements where R
k
 and C

k
 

denote the k-th resistance and capacitance, respectively, and the symbol ‘/’ means parallel associa-

tion. The Voigt circuit is often employed as a representation model for Electrochemical Impedance 

Spectroscopy (EIS) data [2]. A series resistance R0  is generally added to the circuit1 to take into 

account the Ohmic resistances (electrolyte and connection), thus leading to the impedance: 
 

 ZV ω( ) = R0 + Rk

1+ iωτ kk=1

n

∑  (1) 

 

where i = −1( )1 2
, ω = 2π f  is the angular frequency, f is the frequency, and τ k = RkCk

 is the k-th 

time constant of the Voigt circuit. The condition (τ1 > τ 2 >L> τ
n−1 > τ

n
) is assumed in the above 

equation to order its successive terms. 
 

 In their pioneering work focusing on the so-called measurement model, Agarwal et al. [3] 

postulated that the Voigt circuit is a good representation model for a wide variety of electrochemi-

cal impedance spectra. As an example, starting from synthetic impedance data generated from the 

equivalent circuit proposed for the hydrogen evolution reaction on LaNi5 , which includes a Finite 

Length Warburg (FLW) impedance, these authors demonstrated numerically that such impedance 

data are well fitted by the impedance in Eq. (1). They concluded that, by fitting experimental EIS 

data to the Voigt circuit impedance at an increasing number (n) of RC elements, the fit residuals 

should give access to the measurement noise of the EIS data. This was the starting point for using 

the Voigt circuit as the relevant measurement model to study the error structure of experimental 

impedance data [3-5]. Orazem and Tribollet [2] developed this approach by taking the example of 

EIS measurements for the ferro-ferricyanide redox couple/Pt system. 

                                            

1 The condition ( R0 = 0 ) used below in this article does not affect the theoretical derivations in the following Sections. 
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 Agarwal et al. [3] also noted that the Voigt circuit impedance satisfies the Kramers-Kronig 

transformation. They concluded that, if experimental EIS data are well fitted by the Voigt circuit 

impedance, these data should also satisfy the Kramers-Kronig relationships, which is an alternative 

test for validation of EIS measurements. 
 

 Boukamp [6] proposed a linear fit procedure in the parameters Rk
, so-called linear KK test, 

assuming that the time constants τ k
 of the Voigt circuit are distributed logarithmically according to 

the inverse of the angular frequencies of the input signal. Hence, this author showed that a Voigt 

circuit including n RC elements could exactly represent any linear circuit at n experimental imped-

ance points although no discussion of the values of the circuit parameters was provided.  As pointed 

out by a referee of this article, “Boukamp wrote a KK test program that carries out exact approxi-

mation in all the frequency points of the data file (to check KK transforms). The program 

KKtest.exe might be found on the Boukamp Web page and it is also included in the free Extra 

Material to the EIS book [7]. The above program deals with both diffusion and kinetic-diffusion 

impedances”. 
 

 More recently, Schönleber and Ivers-Tiffée [8] questioned about the approximability of 

impedance spectra by serially connected RC elements, and its implications for impedance analysis. 

They demonstrated that “the impedance of every possible non-oscillating electrochemical process 

can be approximated by a simple serial connection of generalized RC elements”. They also 

acknowledged that RQ-, Gerischer- or Warburg-type elements could also be approximated by 

generalized RC elements, because of the possibility of obtaining approximated integer order models 

for fractional order systems [9]. 
 

 The experimental approach by Lagonotte et al. [10] is quite different. Using a rotating disk 

electrode (RDE) device, these authors evaluated the low-frequency (LF) time constant of the ferri-

ferrocyanide redox couple/Pt-RDE system using the Voigt circuit and factorized modeling to fit 
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their EIS measurements, with application to impedance extrapolation to zero frequency and deter-

mination of the LF capacitance of the electrochemical system. For this purpose, they focused on the 

best-fit estimates of Voigt circuit parameters, and, more especially, on the best-fit estimate of the 

first (largest) time constant τ̂1 of this circuit. They observed that, by increasing the number of RC 

elements to n = 6, τ̂1 seemingly converges to a constant value, unlike the other time constant esti-

mates for k = 2, 3, ... They also noted that τ̂1 is nearly constant under different steady-state polari-

zation conditions, i.e. under equilibrium as well as non-equilibrium conditions, although the associ-

ated resistance and capacitance are potential-dependent components of the Voigt circuit. 
 

 Some questions then arise. Why does the estimate of the first time constant of the best-fit 

Voigt circuit converge to a constant value when the number of RC elements increases to at least 

n = 6, unlike the other time constant estimates? How do the components R1 , C1 and the time con-

stant τ1 connect to the mass transport process near the electrode? In other words, is it possible to 

predict theoretically the numerical values of R1 , C1 and τ1 from the electrochemical system pa-

rameters? An additional question focuses on the invariance (or not) of the time constant τ1 upon the 

steady-state value of potential imposed to the electrode prior to EIS measurements. 
 

 In order to provide some answers to the above questions, we need a model for the diffusion-

convection impedance of RDE. Although the FLW model is a crude approximation of the mass 

transport process near RDE, it provides the simplest way to explain, at least qualitatively, the exper-

imental observations by Lagonotte et al. [10]. This point deserves to be mathematically clarified, 

first in the simple case where the electrode impedance is equal to the FLW impedance, and next in 

the more general case where the FLW impedance is an electrochemical component of equivalent 

circuits involving other components like the electron transfer resistance and the double-layer capac-

itance. It is the aim of the present work, taking the example of a one-step electrochemical reaction. 
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2.  Finite-length Warburg impedance 
 

 The electrochemical reaction dealt with in this work is the E reaction [11] involving two 

soluble species, O and R, in the presence of a large excess of supporting electrolyte: 

 
 O + z e ↔ R  (2) 
 

 The E reaction takes place on the surface of a uniformly accessible electrode, so that edge 

effects can be disregarded and one-dimensional diffusion conditions are satisfied in the electrolytic 

solution. The FLW impedance Zd ω( ) results from the assumption of a constant concentration of 

redox species at the distance δ  from the electrode surface, under static as well as dynamic condi-

tions. This impedance is the sum of the two contributions from species O and R: 

 
 Zd ω( ) = ZdO ω( ) + ZdR ω( )  (3) 
 

 For the sake of simplicity, we assume below that the diffusion coefficient is the same for 

both redox species, DO = DR = D , so that the impedances ZdO , ZdR  and therefore Zd  have the 

same diffusion time constant, τ dO = τ dR = τ d = δ 2 D, where δ  is the diffusion layer thickness. 
 

 The FLW impedance has the well-known formulation [12-14]: 
 

 Zd ω( ) = Rd

tanh iωτ d( )1 2





iωτ d( )1 2  (4) 

 

and the associated diffusion resistance Rd  is defined as the low-frequency real limit: 
 
 Rd = lim

ω→0
Zd ω( ) (5) 

 

 We will first show in Section 3 that the Voigt circuit impedance with infinitely many terms, 

Eq. (1) with R0 = 0  and n = ∞ , is an exact representation model for the FLW impedance, Eq. (4), 

in the ideal case of Nernstian redox systems investigated without double-layer charging complica-

tion. Next, we will investigate in Section 4 the effect of the double-layer charging process on the 
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Voigt circuit parameters. Finally, we will focus in Section 5 on the more general case of slow elec-

tron-transfer reaction kinetics for non-Nernstian redox systems. 

 

3.  Nernstian redox systems investigated without double-layer charging effect 

 

 Further simplification for EIS investigation of the E reaction results from the assumption of 

very fast electron transfer kinetics at the electrode surface, so-called E r  reaction [11] involving a 

Nernstian redox system. The Faradaic impedance for the E r  reaction is equal to the diffusion im-

pedance, in the presence of a large excess of supporting electrolyte. Moreover, in this Section, we 

disregard the Ohmic potential drop in the electrolytic solution, as well as the double-layer charging 

process at the electrolyte/electrode interface, so that the electrode impedance is equal to the Farada-

ic impedance, and, therefore, to the diffusion impedance, Z ω( ) = Zd ω( ) . 
 

 Starting from the infinite product expansions of hyperbolic sine and cosine functions [15], 

the following formulation applies to the function tanh z( ) z, with complex argument2 z: 
 

 
tanh z( )

z
=

1+ z2 kπ( )2

1+ 4z
2 2k −1( )π 

2
k=1

∞

∏  (6) 

 

as used in our previous work [16]. Partial-fraction expansion of the above function follows directly 

from logarithmic differentiation of the infinite product expansion of hyperbolic cosine: 

 

 
tanh z( )

z
= 8

1

2k −1( )2 π 2 + 4z
2

k=1

∞

∑  (7) 

 

 The argument iωτ d( )1 2
 can be substituted for z in the above equation to derive the equiva-

lent formulation of the FLW impedance, Eq. (4), as: 
 

 Zd ω( ) = 8Rd

1

2k −1( )2 π 2 + 4iωτ dk=1

∞

∑  (8) 

 
                                            

2 The usual notation for the complex argument, z ≠ ± 2k − 1( ) iπ 2 , should not be confused with the stoichiometric 

number of electron for the E reaction in Eq. (2). 
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which is the same as the Voigt circuit impedance in Eq. (1) where R0 = 0 , n is infinite, and the 

parameters of the k-th RC element have the relevant expressions: 
 

 Rk = 8

2k −1( )2 π 2
Rd  (9) 

 

and: 
 

 τ k = 4

2k −1( )2 π 2
τ d  (10) 

 

 In addition, because of τ k = RkCk
, the Voigt circuit capacitances have the same formulation 

irrespective of the index k: 
 

 Ck = τ d

2Rd

 (11) 

 

 It is worth noticing that the time constant formulation in Eq. (10) is formally the same as 

that derived recently by Boukamp [17] in his work focusing on the distribution of relaxation times 

for the FLW impedance, although different notation is used in the two articles. In addition, the 

resistances Rk
 and the time constants τ k

 decrease rapidly as the index k rises in Eqs. (9) and (10), 

according to the sequence 1, 1 9,1 25,1 49,1 81, …{ } for both resistance and time constant ratios, 

R
k

R1  and τ
k

τ1 , at k = 1, 2, 3, 4, 5, …, so that a Voigt circuit composed of the serial association 

of a few RC elements should be enough to represent the FLW impedance in practice. 

 

4.  Effect of double-layer charging for Nernstian redox systems 

 

 4.1. Appropriate Voigt circuit 

 

 Disregarding the Ohmic potential drop in the electrolytic solution, the electrode impedance 

for the E r  reaction, with double-layer charging effect, reads: 
 

 Z ω( ) = 1

iωCdl +1 Zd ω( )  (12) 
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where Cdl is the double-layer capacitance and the diffusion impedance Zd ω( )  is given by Eq. (4). 

Introducing the time constant ratio: 
 

 rτ = RdCdl

τ d

 (13) 

 

and using the extension of the Heaviside method [18] to deal with irrational impedances, as pre-

sented in the Appendix, the electrode impedance, Eq. (12), admits the partial-fraction expansion: 
 

 Z ω( ) = 2Rd

1

1+ rτ + rτ
2qk

2( ) qk

2 + iωτ d( )k=1

∞

∑  (14) 

 

where q
k
 is the k-th positive root of the generating equation: 

 

 
cotq

q
= rτ  (15) 

 

 The electrode impedance in Eq. (14) is the same as the Voigt circuit impedance in Eq. (1) 

where R0 = 0 , n is infinite, and the parameters of the k-th RC element have the relevant expres-

sions: 
 

 Rk = 2Rd

qk

2 1+ rτ + rτ
2qk

2( )  (16) 

 

and: 
 

 τ k = τ d

qk

2
 (17) 

 

In addition, because of τ k = RkCk
, the k-th capacitance of the Voigt circuit can be derived as: 

 

 Ck = τ d

2Rd

1+ rτ + rτ
2
qk

2( )  (18) 

 

which depends both on the index k and the steady-state potential imposed to the electrode through 

the diffusion resistance Rd , and, therefore, the time constant ratio rτ  in Eq. (13). 
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 The previous results in Section 3 are recovered setting rτ = 0  in Eqs. (14)-(18). In contrast, 

at large enough rτ  values, Eq. (15) predicts that its first (smallest) positive root tends towards 

1 rτ , while the other positive roots satisfy qk = k −1( )π  for k = 2, 3, … Using Eq. (17), the time 

constant ratio τ1 τ d  approaches rτ , and therefore τ1 is close to RdCdl , while the other time con-

stants satisfy τ k = τ d k −1( )2 π 2



  at k >1. In the same way, a glance at Eq. (16) shows that the 

resistance R1  approaches Rd , while the other resistances of Voigt circuit tend towards zero. Hence, 

at large enough rτ  values, the appropriate Voigt circuit reduces to its first element whose imped-

ance is Rd 1+ iω RdCdl( ) . In a more general way, it can be concluded that the number of RC ele-

ments with non-vanishing impedances should decrease in the Voigt equivalent circuit for the elec-

trode impedance at increasing rτ  values. 

 

 4.2. Effect of the steady-state current/potential 

 

 The FLW resistance has been derived for Nernstian redox systems in our textbook [19]. 

Assuming that DO = DR = D , as indicated above, one obtains the simplified formulation: 
 

 Rd =
2 1+ coshξ( )

z2 fNFAm cO
∗ + cR

∗( )  (19) 

 

 Here z is the stoichiometric number of electron in Eq. (2), F is Faraday’s constant, 

fN = F RT( ) is the Nernst constant, R is the ideal gas constant, T is the absolute temperature, 

ξ = zfN E − E° '( ) is the dimensionless potential, E is the steady-state potential imposed to the elec-

trode, E° '  is the formal potential of redox couple, A is the electrode surface area, cO
∗  and cR

∗  are the 

initial/bulk concentrations of species O and R, respectively, and m = D δ  is the mass transport 

constant for redox species under steady-state conditions. 
 

 The FLW resistance for Nernstian redox systems depends on the steady-state potential 

through the dimensionless potential ξ  in Eq. (19). Exponential increase of Rd  is predicted at large 
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ξ  values, i.e. when the steady-state current approaches the mass-transport-limited current plateau 

in the anodic or cathodic direction. All parameters of the Voigt circuit, Rk
, Ck

 andτ k
, for k = 1, 2, 

..., depend on the steady-state potential through Eqs. (13) and (15)-(19). For shortening reasons, the 

discussion below is limited to the first time constant of the Voigt circuit, which is its largest time 

constant evaluated from Eq. (17) as τ1 = τ d q1
2 , where q1 is the first (smallest) positive root of 

Eq. (15). 
 

 The equality of the diffusion coefficients of redox species has been tacitly assumed in this 

article. If the following additional condition is imposed on the initial/bulk concentrations, 

cO
∗ = cR

∗ = c∗ , for the sake of simplification, the time constant ratio derived from Eqs. (13) and (19) 

can be reformulated as a function of the dimensionless current ψ  as: 
 

 rτ = 2Cdl

z2 fNFAδ c∗ 1−ψ 2( )  (20) 

 

where ψ = I I lim  is the ratio of the steady-state current I to the mass-transport-controlled current 

limit in the anodic direction ( Id,a = I lim), as well as minus the current limit in the cathodic direction 

( Id,c = −I lim ). 
 

 For illustration purpose, let us assume that EIS measurement are carried out at 25 °C for a 

one-electron transfer reaction (z = 1) with very fast electron-transfer reaction kinetics. Using the 

double-layer capacitance per unit of electrode surface area ( Cdl A = 3.5 ×10−5 F cm−2 ), the initial 

concentration of electroactive redox species ( c∗ = 2 ×10−5 mol cm−3) and the diffusion layer thick-

ness (δ = 1.6 ×10−3cm ), we get rτ = 5.825 ×10−4 1−ψ 2( )  from Eq. (20). The minimum rτ  value is 

observed at equilibrium (ξ = 0  and ψ = 0 ). At the opposite, rτ  becomes infinite when ψ → ±1, in 

the direction of oxidation (plus sign) or reduction (minus sign). The time constant ratio, τ1 τ d , can 

be evaluated as a function of ψ  solving numerically Eqs. (15), (17) and (20). The diffusion time 

constant, τ d = δ 2 D , only depends on the diffusion parameters D and δ , which are invariant with 
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the electrode potential. Hence, the graphical plot in Fig. 1 predicts that the first time constant of the 

Voigt circuit is nearly constant along the steady-state current-potential curve, except when the 

current is very close to the diffusion current plateau in the anodic or cathodic direction (ψ → ±1). 

In addition, because of the very small rτ  value observed at equilibrium, i.e. rτ = 5.825 ×10−4 , the 

nearly constant value predicted for τ1 along the steady-state current-potential curve is close to its 

asymptotic value derived in Section 3 in the absence of double-layer charging effect, which is 

τ1 = 4τ d π 2 ≈ 0.4053 τ d . 
 

Please insert Fig. 1 at this place 

  

5.  Effect of slow electron-transfer reaction kinetics 

 

 5.1. Appropriate Voigt circuit 

 

 The E r  reaction is the hypothetical version of the E reaction pertaining to infinitely fast 

electron-transfer kinetics at the electrode surface. Such a condition does not hold for real systems. 

As a consequence, some additional complication for the Voigt circuit representation model should 

result from the assumption of slow electron-transfer reaction kinetics. The electrode impedance 

then includes the electron transfer resistance Rt , which is a potential-dependent impedance compo-

nent. Disregarding the Ohmic potential drop in the electrolytic solution, the electrode impedance for 

the E reaction reads: 
 

 Z ω( ) = 1

iωCdl +1 Rt + Zd ω( ) 
 (21) 

 

where the diffusion impedance is still given by Eq. (4). We introduce the resistance ratio: 
 

 rR = Rt

Rd

  (22) 
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which depends on the electron transfer reaction kinetics, the mass transport conditions and the 

steady-state potential imposed to the electrode. Using the same simplifications as in Section 4, i.e. 

DO = DR = D  and cO
∗ = cR

∗ = c∗ , the resistance ratio is maximum at the equilibrium potential of the 

electrode. This ratio tends towards zero as the current approaches the diffusion current plateau in 

the anodic or cathodic direction (ψ → ±1). Derivation of the Voigt circuit representation model for 

the electrode impedance in Eq. (21) follows the same calculation procedure as in Section 4.1 and in 

the Appendix, although the theoretical formulations are more intricate than the previous ones.  
 

 The successive positive roots qk
 of the following equation, which is the generalization of 

Eq. (15) to the case of non-Nernstian redox systems ( rR ≠ 0 ), generate the poles pk = − qk

2 τ d : 
 

 
cot q

q 1+ rRqcot q( ) = rτ  (23)  

 

while the generating equation for the impedance zeros, zk = −qz,k
2 τ d , is: 

 
 qz cot qz = −1 rR

 (24) 
 

irrespective of rτ . The electrode impedance in Eq. (21) admits the following infinite product expan-

sion where Rp  denotes the polarization resistance, Rp = Rt + Rd : 
 

 Z ω( ) = Rp

1− iω zk

1− iω pkk=1

∞

∏  (25) 

 

 In addition, the locations of poles and zeros in Fig. 2 have the same features as those in 

Fig. A.1 of the Appendix. Hence, the electrode impedance in Eq. (21) and (25) can be realized as a 

RC network. 
 

Please insert Fig. 2 at this place 

 

 In fine, the Voigt circuit, with n = ∞ , is an exact representation model for the electrochemi-

cal impedance Z ω( ) in Eq. (21). Its k-th time constant is given by Eq. (17) using the k-th positive 

root q
k
 of Eq. (23). The k-th resistance can be derived as: 
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 Rk =
2Rd 1+ rRqk cot qk( )

qk

2 1+ cot qk

qk

+ cot qk( )2 − rRrτ qk

2 1− cot qk

qk

+ cot qk( )2















 (26) 

 

used together with Eq. (23). Finally, because of τ k = RkCk
, the k-th capacitance of the Voigt circuit 

is given by: 
 

 Ck =
τ d

2Rd

⋅
1+ cot qk

qk

+ cot qk( )2 − rRrτ qk

2 1− cot qk

qk

+ cot qk( )2






1+ rRqk cot qk

 (27) 

 

also used with Eq. (23). The Voigt circuit parameters formulated from Eqs. (17), (23), (26) and (27) 

depend on the index k, the mass transport parameters, the electron transfer reaction kinetics, the 

initial concentration of redox species, the double-layer capacitance, and the steady-state potential 

imposed to the electrode, which are involved in the time constant ratio rτ , Eq. (13), and the re-

sistance ratio rR
, Eq. (22). The simplified formulations of Rk

, Ck
 and τ k

 derived in Section 3 are 

recovered setting rR = 0  and rτ = 0 , while the intermediate formulations derived in Section 4.1 

result from the condition rR = 0 . 
 

 The approximating (truncated) version of Eq. (25), limited to its first n terms, is: 
 

 Zap,1 n,ω( ) = Rp

1− iω zk

1− iω pkk=1

n

∏  (28) 

 It can be compared to the following approximation resulting from the Voigt circuit represen-

tation model: 
 

 Zap,2 n,ω( ) = Rp − Rk

k=1

n

∑ + Rk

1− iω pkk=1

n

∑  (29) 

 

 The rates of convergence of the two approximations towards the electrode impedance Z ω( ) 

are compared in Fig. 3. Clearly, the approximation based on the Voigt circuit is the most efficient 

because of its higher convergence rate. 
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Please insert Fig. 3 at this place 

 

 5.2. Effect of the steady-state current/potential 
 

 We focus again on the first (largest) time constant of the Voigt circuit, τ1 = τ d q1
2 , where q1 

is the first (smallest) positive root of Eq. (23), which depends both on the time constant ratio rτ  in 

Eq. (13) and the resistance ratio r
R
 in Eq. (22). Usual impedance calculation rules [20] provide the 

theoretical formulations of the resistances Rt  and Rd  for the E reaction, and, therefore, the theoreti-

cal formulations of the dimensionless parameters r
R
 and rτ . For the sake of simplicity, we assume 

below the same diffusion coefficient for both redox species, DO = DR = D , the same initial concen-

tration of redox species, cO
∗ = cR

∗ = c∗ , and the same symmetry factor for the electron transfer reac-

tion in the direction of oxidation (subscript ‘o’) and reduction (subscript ‘r’), α o = α r = 1 2 . The 

resistance ratio, r
R

= Rt Rd , takes on the following simplified formulation where k°  is the standard 

rate constant of the electrochemical reaction, m = D δ  is the mass transport constant of redox 

species under steady-state conditions, and ξ = zfN E − E° '( ) is the dimensionless potential: 
 

 rR = 1

2 k° m( )cosh ξ 2( )   (30) 

 

 Using the same simplifications as above, the time constant ratio, rτ = RdCdl τ d , can be 

derived as: 

 

 rτ =
1+ coshξ( )Cdl

z
2
fNFAδ c

∗ ⋅
2 k° m( ) + sech ξ 2( )
2 k° m( ) + cosh ξ 2( )   (31) 

 

where sech(.) denotes the hyperbolic secant that is the reciprocal of hyperbolic cosine. The first 

time constant of Voigt circuit can be evaluated from Eqs. (17), (23), (30) and (31) as a function of 

the standard rate constant ( k° ) of the electrochemical reaction, the mass transport parameters (D 

and δ ), the initial concentration ( c∗ ) of redox species, the double-layer capacitance ( Cdl) and the 

steady-state potential (E) imposed to the electrode through the dimensionless potential ξ . 
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 Several asymptotic limits are of interest for this time constant. First, τ1 = 4τ d π 2  has been 

predicted in Section 3 for Nernstian redox systems ( r
R

= 0 ) investigated without double-layer 

charging effect ( rτ = 0). Next, τ1 = RdCdl  has been predicted in Section 4.2 at large rτ  values and 

negligible r
R
 values. A third possible expression is τ1 = RtCdl  when the resistance ratio r

R
 is very 

large. Another limiting expression is τ1 = Rt + Rd( )Cdl . The validity domains for those formulations 

can be visualized by plotting the zone diagram in Fig. 4 with log-log coordinates. In each zone of 

Fig. 4, the relative deviation of the time constant τ1 from its asymptotic formulation is less than 

5 %. It is worth noticing that the validity domain for the limiting formulation (τ1 = 4τ d π 2 ) on 

bottom side of the zone diagram covers the case of ideal Nernstian systems ( r
R

= 0 ) investigated in 

Section 3, as well as the case of non-Nernstian systems ( r
R

> 0 ) investigated in this Section, pro-

vided that the time constant ratio, rτ 1+ rR( ) = Rt + Rd( )Cdl τ d , is low enough. 
 

Please insert Fig. 4 at this place 
 

 Given numerical values for the dimensionless kinetic parameter, Λ = k° m , and the dimen-

sionless capacitive parameter, Κ = Cdl z2 fNFAδ c∗( ), the equilibrium condition (ξ = 0 , subscript 

‘eq’) for τ1 is represented in the zone diagram by the dot with coordinates logr
R,eq = − log 2Λ( ) and 

log rτ ,eq = log 2Κ( ) , on bottom side of Fig. 4. If the steady-state potential E is increased or de-

creased with respect to its equilibrium value, which corresponds to increasing ξ  values in 

Eqs. (30) and (31), the characteristic point, with coordinates log r
R

 and log rτ , moves away from its 

equilibrium position in the zone diagram. The trace left by the moving point is the curve, so-called 

trajectory below, whose equation can be derived by elimination of the dimensionless potential ξ  

between Eqs. (30) and (31) as: 
 

 log rτ = log 2Κ( ) + log
1+1 rR

1+ 4Λ2
rR

  (32) 

 



- 16 - 

 

It is worth noticing that the asymptotic moving direction at very small r
R
 values is 

log 2Κ( ) − log rR
, irrespective of the Λ value. 

 

 Three examples of trajectories are plotted in the zone diagram of Fig. 4, for Κ = 10−3  and 

Λ = 10−3, 2 and 8.5 , which corresponds, respectively, to very slow, intermediate and fast electron-

transfer reaction kinetics. The intersections of those trajectories with the limiting zones of the zone 

diagram make it possible to predict the possible sequences of τ1 formulations/values that can be 

observed when the steady-state potential moves away from its equilibrium value. Keeping in mind 

that the electron transfer resistance Rt  and the diffusion resistance Rd  are potential-dependent 

components of the electrode impedance, the first time constant of the Voigt equivalent circuit is 

nearly constant only when it is close to 4τ d π 2  in the bottom zone of Fig. 4. Another information, 

derived from the observation of Fig. 4, is that the asymptotic formulations/values of the first time 

constant, Rt + Rd( )Cdl  and RdCdl , although mathematically predictable, are unlikely to be observed 

in practice. 

 

 5.3. Attempt analysis of previous experimental results from the literature 

 

 Here we focus on the recent article by Lagonotte et al. [10], which is concerned with the 

Voigt circuit representation model of the electrode impedance for the ferro-ferricyanide redox 

couple/Pt-RDE system. As indicated in the introduction Section of this article, the above authors 

investigated this electrochemical system using the Voigt circuit and factorized modeling to fit their 

EIS data. They focused more especially on the best-fit estimate τ̂1 of the first (largest) time con-

stant of the Voigt circuit3. They observed that, by increasing the number of RC elements to n = 6, 

τ̂1 seemingly converges to a constant value, unlike the other estimates of time constants for k = 2, 

                                            
3 In practice, Lagonotte et al. [10] evaluated the estimates of the poles ( p̂k  for k = 1, 2, ..., n ) of the Voigt circuit 

impedance, using an appropriate fitting procedure. The time constant estimate τ̂ k  is equal to minus the reciprocal 

of p̂k . 
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3, … They also noted that the converged value of τ̂1 is nearly constant under different steady-state 

polarization conditions, i.e. under equilibrium as well as non-equilibrium conditions. 
 

 The finite-length diffusion model is often employed as an approximation of the diffusion-

convection process near RDE, with the diffusion layer thickness δ  being replaced by the character-

istic length of diffusion-convection derived by Levich [21]. Thus, the theoretical predictions in this 

work can be applied, at least as a first approach, to the experimental observations by Lagonotte et 

al. [10]. 
 

 Let us consider the Nyquist graph for the electrode impedance Z ω( ) in Fig. 5(a), which has 

been plotted from Eqs. (4) and (21) using the parameter values given in the captions. The frequency 

range explored satisfies −2 ≤ log f Hz( ) ≤ 4( )  at a spacing of 9 impedance calculations per decade. 

The impedance graph mimics, at least roughly, the Nyquist graph plotted by Lagonotte et al. at the 

equilibrium potential of the Pt electrode (see Fig. 3 of Ref. [10]). 
 

 The EIS data can be fitted using the impedance model in Eq. (1). For this purpose, we use 

noise-free4 unweighted5 impedance data together with the Levenberg-Marquardt algorithm imple-

mented in the ‘NonlinearModelFit’ built-in function of Mathematica [22]. The fit residuals are 

shown in Fig. 5(b). 
 

Please insert Fig. 5 at this place 

 

                                            

4 “Noise-free impedance data” means that no random noise has been added before fitting the impedance. Of course, the 

computational noise of the synthetic impedance data is present. The impact of additional random noise on the complex 

nonlinear least squares fit could be evaluated numerically without major difficulty, but it is not the aim of this work. 

The use of noise-free EIS data makes it possible to study the convergence of the best-fit estimates of the Voigt circuit 

parameters to their asymptotic values at large enough numbers of Voigt elements (see Fig. 6). 
5 Proportional and modulus-based weighting strategies yield nearly the same best-fit parameter estimates as unitary 

weighting for the leading RC elements of the Voigt circuit. 



- 18 - 

 

 Good visual agreement is observed between the synthetic EIS data and the Voigt circuit 

impedance at n ≥ 4 , in agreement with Lagonotte et al.’s observations [10]. A Voigt circuit with 6 

serially connected RC elements has been used to fit the impedance data in Fig. 5. At increasing 

values of n, the best-fit estimate τ̂1 converges to its asymptotic value τ1 predicted from the set of 

Eqs. (17), (23), (30) and (31). The rate of convergence is illustrated in Fig. 6 by plotting the decimal 

logarithm of the absolute value of relative deviation of τ̂1 from τ1 as a function of n. Rapid conver-

gence is observed. Similar convergence is noted for R̂1  to R1  (not shown in the Figure). In contrast, 

the convergence rate is slower for the parameter estimates of the second RC element, as illustrated 

for τ̂ 2  in the same Figure. At small values of n, e.g. n = 6 in Ref. [10], the estimate of the first time 

constant approaches its asymptotic value with less than 1 ‰ relative deviation, unlike the estimate 

of the second time constant because of its slower convergence rate. Indeed, the relative deviation of 

τ̂ 2  from τ 2  is close to 5 % at n = 6. This qualitatively agrees with the experimental observations by 

Lagonotte et al. [10]. However, the experimental rate of convergence of τ̂1 to τ1 in Ref. [10] is 

slower than that predicted in Fig. 6 of this article. We should be aware, here, of the weakness of the 

FLW model to accurately describe the diffusion-convection process near RDE. This point deserves 

to be further analyzed in a forthcoming article [23], starting from a more efficient model of the 

diffusion-convection impedance for RDE. 

 

Please insert Fig. 6 at this place 

 

 Next, we look at the dependence of τ̂1 on the steady-state potential imposed for EIS compu-

tation/measurement. The left-side trajectory (blue curve) in the zone diagram of Fig. 4 has been 

plotted using the same parameter values as in Fig. 5. The time constant τ1 evaluated along this 

trajectory is predicted to be nearly constant (with less than 5 % deviation) in the interval ψ ≤ 0.93. 

The same condition applies to the converged value of its best-fit estimate τ̂1. This should explain 
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the nearly constant value of τ̂1 obtained by Lagonotte et al. at the three steady-state potentials 

imposed in Fig. 2 of Ref. [10]. 

  

6.  Conclusion 

 

 First, the Voigt circuit, with infinitely many RC elements, is an exact representation model 

for the electrode impedance pertaining to the E reaction investigated on a uniformly accessible 

electrode under finite-length diffusion conditions for redox species in the electrolyte. This fully 

validates the conjecture in the seminal work by Agarwal et al. [3]. The generalized Heaviside meth-

od presented in the Appendix provides a general way to derive the analytical expressions of the 

Voigt circuit parameters (resistances, capacitances and related time constants) as a function of the 

kinetic rate constant of the electrochemical reaction, the mass transport parameters, the initial con-

centrations of redox species, the double-layer capacitance at the interface, and the steady-state 

potential imposed to the electrode. Application to Nernstian redox systems investigated without or 

with double-layer charging effect, as well as to non-Nernstian redox systems involving slow elec-

tron-transfer reaction kinetics, has been presented in this article as illustration examples. 
 

 Exact representation, at any frequency, of electrochemical impedances involving a finite-

length diffusion component requires infinitely many RC elements in the Voigt equivalent circuit. 

Fairly accurate approximation of such impedances by the Voigt circuit is less demanding and re-

quires only a few RC elements, as illustrated by the complex nonlinear least squares fits of synthet-

ic EIS data performed in this work. The minimum number ( nmin ) of RC elements required for ap-

proximation of the electrode impedance for the E reaction on RDE at any frequency depends on the 

approximation level demanded, and, in addition, on the resistance ratio, r
R

= Rt Rd , and the time 

constant ratio, rτ = RdCdl τ d . As a general rule, the number nmin  of RC elements should decrease at 

increasing values of r
R
 and/or rτ . At the limit, the condition ( nmin = 1) should apply in the upper 
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zones of the zone diagram of Fig. 4 where the Nyquist graph for the electrode impedance approach-

es a semi-circle graph. 
 

 Next, we have been focusing on the first (largest) time constant τ1 of the Voigt circuit, and 

on its dependence on the steady-state potential imposed to the electrode for EIS calculation or 

measurement. Nearly invariance of τ1 with respect to the electrode potential has been predicted for 

Nernstian redox systems investigated without double-layer charging effect, as well as for non-

Nernstian redox systems when the time constant ratio, Rt + Rd( )Cdl τ d , takes on a low enough 

value. This applies in practice to fast or intermediate electron-transfer reaction kinetics when EIS 

measurements are carried out not too far from the equilibrium potential, because of the linear pro-

portionality of τ1 with the diffusion-convection time constant in this case, i.e. τ1 = 4τ d π 2 . Clear-

ly, such conditions were satisfied in the experimental work of Lagonotte et al. [10], which explains 

the nearly constant value of τ̂1 observed by these authors under equilibrium as well as non-

equilibrium conditions. Other asymptotic formulations are possible for this time constant depending 

on the electrochemical system considered and the experimental conditions, as summarized in the 

zone diagram of Fig. 4. Looking at this diagram, all possible sequences of asymptotic formula-

tions/values of the time constant τ1, and therefore of the converged value of its best-fit estimate τ̂1, 

can be predicted when the electrode potential moves away from its equilibrium value. 
 

 The theoretical derivations and conclusions presented in this article apply to finite-length 

diffusion of redox species in the electrolytic solution. In addition, they provide a first (rough) ap-

proach to the Voigt circuit representation model for the impedance of uniformly accessible rotating 

disk electrodes. More elaborate models have been proposed in the electrochemical literature [2,24-

26] to accurately describe the diffusion-convection impedance for RDE. The impact of such models 

on the appropriate Voigt circuit representation model for the electrode impedance will be analyzed 

in a forthcoming article [23]. 
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Appendix 

 

 Using the Heaviside expansion method [18], strictly proper rational functions of the Laplace 

variable p: 
 

 H p( ) =
f p( )
g p( )  (A.1) 

 

whose only singularities are simple real poles pk, for k = 1, 2, ..., n, can be expanded into partial 

fractions as: 
 

 H p( ) =
res pk( )
p − pkk=1

n

∑  (A.2) 

 

where the residue of the k-th pole is given by: 
 

 res pk( ) =
f pk( )
g ' pk( )  (A.3) 

 

provided that g ' pk( ) = dg p( ) dp
p= pk

≠ 0 . Let us consider the class of electrochemical models 

whose impedance Z p( )  can be substituted for H p( )  in Eqs. (A.1) and (A.2). We get the Voigt 

circuit impedance in Eq. (1), with R0 = 0 : 

 

 Z p( ) = ZV p( ) = Rk

1+ pτ kk=1

n

∑  (A.4) 

where the k-th resistance, capacitance and time constant have the following expressions: 

 

 Rk = −
res pk( )

pk

, Ck = 1

res pk( )  and τ k = RkCk = − 1

pk

 (A.5) 

 

 Many irrational transfer functions for spatially distributed systems admit a partial-fraction 

expansion like that in Eqs. (A.1)-(A.5), with infinitely many poles ( n → ∞) [27]. The electrochem-

ical impedances investigated in this article belong to this class. The electrode impedance derived 

from Eqs. (4) and (12) takes on the form of Eq. (A.1) where f p( ) = Rd  and g p( ) is the function: 
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 g p( ) = pRdCdl + pτ d( )1 2
coth pτ d( )1 2




 (A.6) 

 

 The impedance Z p( )  has an infinite number of simple real poles pk
, which are the roots of 

the equation: 
 

 g pk( ) = pk RdCdl + pkτ d( )1 2
coth pkτ d( )1 2





= 0  (A.7) 
 

 Those poles should have negative values so that the condition (τ k > 0) applies to the RC 

elements of the Voigt circuit. Hence, we can write pkτ d( )1 2 = iqk
, with real qk

, and, therefore: 
 

 pk = − qk

2

τ d

 (A.8) 

 

 Using the identity coth iqk( ) = − icot qk
, Eq. (A.7) provides the generating equation for q

k
: 

 

 
cot qk

qk

= rτ = RdCdl

τ d

 (A.9) 

 

and the impedance poles follow from Eq. (A.8) for k = 1, 2, …, while the impedance zeros are 

equal to − k 2π 2 τ d , irrespective of the rτ  value. The locations of poles and zeros in Fig. A.1(b) 

shows that (i) all poles and zeros are simple and lie on the negative real axis of the complex (p) 

plane, (ii) the poles and zeros are interlaced, and (iii) the first location on the negative real axis (i.e. 

the smallest absolute value) is that of a pole. 
 

Please insert Fig. A.1 at this place 
 

 Calculus of residues, from Eq. (A.3), requires the derivative of the function g p( ). One 

obtains from Eq. (A.6): 

 

 g ' p( ) = RdCdl + τ d

2

coth pτ d( )1 2





pτ d( )1 2 − csch pτ d( )1 2





2













 (A.10) 

 

where csch z( ) = 1 sinh z( ) denotes the hyperbolic cosecant. Using again pkτ d( )1 2 = iqk
, and 

coth iqk( ) = − icot qk
, together with Eq. (A.9) and the identity csch iqk( ) = − icscqk = − i sinqk

, the 

residue of the k-th pole can be derived from Eq. (A.3) as: 
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 res pk( ) = 2 Rd τ d

1+ rτ + rτ
2
qk

2
 (A.11) 

 

 From Eq. (A.11), (iv) the residues at the poles of the electrode impedance are real and posi-

tive. The properties (i)-(iv) above are those of RC network impedances [1, p. 73]. The relevant 

expressions for the k-th parameters of the Voigt circuit reported in Eqs. (16)-(18) of the article 

result from Eqs. (A.5), (A.8) and (A.11). Moreover, setting rτ = 0  in the absence of double-layer 

charging effect, we get qk = 2k −1( )π 2  from Eq. (A.9), pk = − 2k −1( )2 π 2 4τ d( )  from Eq. (A.8), 

and res pk( ) = 2 Rd τ d  from Eq. (A.11), so that the partial-fraction expansion of the finite-length 

diffusion impedance in Eq. (8) is recovered using Eqs. (A.4) and (A.5). 

 

Declaration of competing interest 
 

 The author declares that he has no known competing financial interests or personal relation-

ships that could have appeared to influence the work reported in this paper. 

 

CRediT authorship contribution statement 
 

 Claude Montella: Conceptualization, Methodology, Formal analysis, Visualization, Writing 

original draft. 

 

References 

 

[1] G.C. Temes, J.W. LaPatra, Introduction to Circuit Synthesis and Design, McGraw-Hill, Inc., 

New York, 1977. 
 

[2]  M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, second ed., John 

Wiley & Sons, Inc., Hoboken, New Jersey, 2017. 
 

[3]  P. Agarwal, M.E. Orazem, L.H. Garcia-Rubio, Measurement Models for Electrochemical 

Impedance Spectroscopy, I. Demonstration and Applicability, J. Electrochem. Soc. 139 

(1992) 1917-1927. 
 



- 24 - 

 

[4]  P. Agarwal, O.D. Crisalle, M.E. Orazem, L.H. Garcia-Rubio, Application of Measurement 

Models to Impedance Spectroscopy: II. Determination of the Stochastic Contribution to the 

Error Structure, J. Electrochem. Soc. 142 (1995) 4149-4158. 
 

[5]  P. Agarwal, M.E. Orazem, L.H. Garcia-Rubio, Application of Measurement Models to 

Impedance Spectroscopy: III. Evaluation of Consistency with the Kramers-Kronig Rela-

tions, J. Electrochem. Soc. 142 (1995) 4159-4168. 
 
 

[6]  B.A. Boukamp, A linear Kronig-Kramers Transform Test for Immitance Data Validation,  

 J. Electrochem. Soc. 142, (1995) 1885-1894.   
 

[7]  A. Lasia, Electrochemical impedance spectroscopy and its applications, Springer, 2014.   
 

[8] M. Schönleber, E. Ivers-Tiffée, Approximability of impedance spectra by RC elements and 

implications for impedance analysis, Electrochem. Com. 58 (2015) 15-19. 
 

[9] B.V. Vinagre, I. Podlubny, A. Hernández, V. Feliu, Some Approximations of Fractional 

Order Operators used in Control Theory and Applications, J. Fractional Calculus Appl. 

Anal. 4 (2000) 47-66. 
 

[10] P. Lagonotte, V.A. Raileanu Ilie, S. Martemianov, A. Thomas, Extrapolation to zero fre-

quency with first time constant of ferri-ferrocyanide/Pt interface using Foster equivalent cir-

cuit and factorized Modeling, J. Electroanal. Chem. 839 (2019) 256-263. 
 

[11]  A.J. Bard, L.R. Faulkner, Electrochemical Methods. Fundamentals and Applications, second 

ed., John Wiley & Sons, Inc., New York, 2001. 
 

[12] J. Llopis, F. Colom, Study of the Impedance of a Platinum Electrode Acting as Anode, in 

Proceeding of the Eighth Meeting of the C.I.T.C.E., 1956,  Butterworths, London, 1958, 

p. 414-427. 
 

[13] P. Drossbach, J. Schultz, Elektrochemische untersuchungen an kohleelektroden—I: Die 

überspannung des wasserstoffs, Electrochim. Acta 11 (1964) 1391-1404. 
 

[14] D. Schuhmann, Sur l’impédance de diffusion en basse fréquence, Compt. Rend. Acad. Sci. 

(Paris) 262 Série C (1966) 624-627. 
 

[15] https://dlmf.nist.gov/4.36#E2, Accessed 1 February 2020. 
 



- 25 - 

 

[16]  F. Berthier, J.-P. Diard, C. Montella, Hopf bifurcation and sign of the transfer resistance, 

Electrochim. Acta 44 (1999) 2397-2404. 
 

[17] B.A. Boukamp, Derivation of a Distribution of Relaxation Times for the (fractal) Finite 

Length Warburg, Electrochim. Acta 252 (2017) 154-163. 
 

[18]  A. Angot, Compléments de Mathématiques, 6ième ed., Masson et Cie, Paris, 1972. 
 

 

[19]  C. Montella, J.-P. Diard, B. Le Gorrec, Exercices de cinétique électrochimique, II. Méthode 

d’impédance, Hermann, Paris, 2005, p. 211. 
 

[20]  J.-P. Diard, B. Le Gorrec, C. Montella, Cinétique électrochimique, Hermann, Paris, 1996. 
 

[21]  V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Inc., Englewood Cliffs, N. J., 

1962. 
 

[22] https://www.wolfram.com/mathematica/, Accessed 1 February 2020. 
 

[23]  C. Montella, submitted for publication, J. Electroanal. Chem. 
 

[24]  B. Tribollet, J. Newman, The modulated Flow at a Rotating Disk Electrode, J. Electrochem. 

Soc. 130 (1983) 2016-2026. 
 

[25]  R. Michel, C. Montella, Diffusion–convection impedance using an efficient analytical ap-

proximation of the mass transfer function for a rotating disk, J. Electroanal. Chem. 736 

(2015) 139-146. 
 

 [26]  J.-P. Diard, C. Montella, Re-examination of the diffusion–convection impedance for a uni-

formly accessible rotating disk. Computation and accuracy, J. Electroanal. Chem. 742 

(2015) 37-46. 
 

[27]  R. Curtain, K. Morris, Transfer Functions of Distributed Parameter Systems: A Tutorial, 

Automatica 45 (2009) 1101-1116. 



- 26 - 

 

Figures 

 

 

 

 

Fig. 1: Dependence of the time constant ratio (τ1 τ d ) on the normalized steady-state current 

(ψ = I I lim ). The time constant ratio is calculated from Eqs. (15), (17) and (20), using the parame-

ter values given in the text. 

 

 

 

 

Fig. 2: (a) Real-p impedance and (b) the first three poles (crosses) and three zeros (circles) of the 

dimensionless impedance, Z p( ) Rd = pτ drτ +1 rR + pτ d( )−1 2
tanh pτ d( )1 2









{ }−1

, calculated from 

Eqs. (4) and (21) at r
R

= 0.5  and rτ = 0.01. 
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Fig. 3: Convergence test for the two truncated formulations of the electrode impedance either based 

on (a) product expansion of the impedance in Eq. (28), or (b) partial fraction expansion of the im-

pedance in Eq. (29). Parameter values: rR = 0.2 and rτ = 0.01. Nyquist graph of the normalized 

electrode impedance (red curve). Nyquist graphs of the normalized impedance approximations 

(blue curves) with (a) n = 1, 3, 9, 18 from right to left, and (b) n = 1, 3, 7, 9 from right to left. For 

interpretation of the references to colors in the figure captions, the reader is referred to the Web 

version of this article. 
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Fig. 4: Zone diagram for the first (largest) time constant τ1 of the Voigt circuit representing the 

electrode impedance in Eq. (21). Three trajectories are plotted for K = 10−3  and Λ = 10−3 (red 

curve), 2 (purple curve) and 8.5 (blue curve) at increasing ξ  and ψ  values from right to left. The 

associated colored dots correspond to the normalized steady-state current values, ψ = 0 , 0.5, 0.9 

and 0.99, from right to left and bottom to top. For interpretation of the references to colors in the 

figure captions, the reader is referred to the Web version of this article. 
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Fig. 5: (a) Nyquist plot for the impedance data (dots) calculated from Eqs. (4) and (21), and best-

fitting impedance graph (solid line) obtained from a Voigt circuit with 6 RC elements. Parametriza-

tion of the impedance graph with log f Hz( ) . (b) Residual errors (dots) of the complex nonlinear 

least squares fit for the real parts (data N° 1 to 64) and the imaginary parts (data N° 65 to 128) of 

the electrode impedance at increasing frequencies from left to right. Parameter values: Rt = 12.5 Ω, 

Rd = 210 Ω , δ = 1.8 ×10−3cm , D = 6.5 ×10−6 cm2s−1 , and Cdl = 4.0 ×10−6 F . 
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Fig. 6: Decimal logarithm of the absolute value of relative deviation of the best-fit estimates τ̂1 

(filled circles) and τ̂ 2  (open circles) from the time constants τ1 and τ 2 , respectively, plotted as a 

function of the number of RC elements used in the Voigt circuit. Best linear fits (dashed lines). 

Same parameter values as in Fig. 5. 

 

 

 

 

Fig. A.1: (a) Real-p impedance and (b) the first three poles (crosses) and three zeros (circles) of the 

normalized electrode impedance, Z p( ) Rd = pτ drτ + pτ d( )1 2
coth pτ d( )1 2



{ }−1

, calculated from 

Eqs. (4) and (12) at rτ = 0.01. 




