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Sparse moment-sum-of-squares relaxations
for nonlinear dynamical systems with

guaranteed convergence

December 12, 2020

Corbinian Schlosser1, Milan Korda1,2

Abstract

This paper develops sparse moment-sum-of-squares approximations for three prob-
lems from nonlinear dynamical systems: region of attraction, maximum positively in-
variant set and global attractor. We prove general results allowing for a decomposition
of these sets provided that the vector field and constraint set posses certain structure.
We combine these decompositions with the methods from [10], [12] and [20] based
on infinite-dimensional linear programming. For polynomial dynamics, we show that
these problems admit a sparse sum-of-squares (SOS) approximation with guaranteed
convergence such that the number of variables in the largest SOS multiplier is given
by the dimension of the largest subsystem appearing in the decomposition. The di-
mension of such subsystems depends on the sparse structure of the vector field and the
constraint set and can allow for a significant reduction of the size of the semidefinite
program (SDP) relaxations, thereby allowing to address far larger problems without
compromising convergence guarantees. The method is simple to use and based on
convex optimization. Numerical examples demonstrate the approach.

Introduction

Many tasks concerning dynamical systems are of computationally complex nature and often
not tractable in high dimension. Among these are the computations of the region of attrac-
tion (ROA), maximum positively invariant (MPI) set and global attractors (GA), which are
the focus of this work. These sets are ubiquitous in the study of dynamical systems and
have numerous applications. For example the ROA is the natural object to certify which
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initial values will be steered to a desired configuration after a finite time T while the so-
lution trajectory satisfies the state constraint at all times. The question of which initial
values will stay in the constraint set for all positive times is answered by the MPI set. The
GA describes which configurations will be reached by the solutions of the dynamical system
asymptotically. This is of importance for controlled systems with a given feedback control
where one might be interested if the given feedback control forces the solution to converge to
a specific point or whether a more complex limiting behavior may occur. Since these objects
are complex in nature computations of these are challenging tasks. Computational meth-
ods for the ROA have been pioneered by Zubov [25] in the 1960s and have a long history,
summarized in [3]. A survey on the (controlled) MPI set and computational aspects can be
found in [1]. Computations of the GA are typically approached via Lyapunov functions [7],
via finite-time truncation or set oriented methods [5].

Given the curse of dimensionality problem present in computation of these sets, it is im-
portant to exploit structure in order to reduce the complexity. There are several concepts
used for reducing the complexity, as for example symmetries (see, e.g.,[6]) or knowledge of
Lyapunov or Hamilton functions (see, e.g., [22]). Here we investigate specific type of sparsity
found in dynamical systems.

The central concept in this text is decoupling of the dynamical system into smaller subsys-
tems, thereby allowing for computational time reduction, building on the work [2]. Even
though our main goal is to exploit this decoupling computationally, we study the sparse
structure at a rather general level, allowing for our results to be used within other com-
putational frameworks and for other problems than those encountered in this work. The
main novelty is the following: (i) We generalize the method of [2] to far more general graph
structures. (ii) We use the proposed decoupling scheme within the moment sum-of-squares
hierarchy framework, obtaining a sparse computational scheme with a guaranteed conver-
gence from the outside to the sets of interest; to the best of our knowledge this is the first
time sparsity is exploited in the moment-sos hierarchy for dynamical systems without com-
promising convergence. (iii) We treat different problems than [2], namely the computation
of the ROA, MPI and GA rather than the reachable set computation problem.

We follow the approach from [10], [12] and [20] where outer approximations of the ROA,
MPI set and GA are based on infinite dimensional linear programs on continuous functions
approximated via the moment-sum-of-squares hierarchy (see [16] for a general introduction
and [9] for recent applications).

Sparsity exploitation in static polynomial optimization goes back to the seminal work of
[23], providing convergence results based on the so-called running intersection property. The
situation in dynamical systems is more subtle and so far sparsity exploitation came at the
cost of convergence such as in [21] where a different sparsity structure, not amenable to our
techniques, was considered.

The computational benefit of decoupling into lower dimensional subsystems is quantified
by the complexity of the resulting semidefininte programms (SDPs) in the moment-sum-of-
squares hierarchy. As a measure of complexity of such an SDP, we use the number of variables
involved in the largest sum-of-squares (SOS) multiplier. This number is determined by the
dimension of the largest subsystem in the decoupling. To determine the subsystems we
represent the interconnection between the dynamics of the states by the directed sparsity

2



graph of the dynamics f where the nodes are weighted by the dimension of the corresponding
state space. We call a node xj an ancestor of another node xi if there exists a directed path
from xj to xi in the (dimension weighted) sparsity graph of f . With this notation we can
informally state our main result:

Theorem 1 (informal) There exists a convergent hierarchy of sum-of-squares problems
with the largest sum-of-squares multiplier containing ω variables, where ω is the largest
weighted number of ancestors of one node in the dimension weighted sparsity graph of the
dynamics.

This allows for a potentially dramatic reduction in computation time when the dynamics is
very spare in the sense considered in this work.

Not only the moment-sum-of-squares approach can benefit from decoupling into smaller sub-
systems but also other methods such as the set oriented methods [5] enjoy less computational
complexity in lower dimensions. The decoupling procedure proposed here (Algorithm 1) also
applies to any other method for approximating the ROA, MPI set or GA that satisfies certain
convergence properties, as is the case for the set-oriented methods [5] for the GA.

1 Notations

The natural numbers are with zero included and denoted by N. For a subset J ⊂ N we
denote by |J | its cardinality. The non-negative real numbers [0,∞) are denoted by R+. For
two sets K1, K2 we denote their symmetric difference given by K1 \K2∪K2 \K1 by K1∆K2.
The function dist(·, K) denotes the distance function to K and dist(K1, K2) denotes the
Hausdorff distance of two subsets of Rn (with respect to a given metric or norm). The space
of continuous functions on X is denoted by C(X) and the space of continuously differentiable
functions on Rn by C1(Rn). The Lebesgue measure will always be denoted by λ. The ring
of multivariate polynomials in variables x = (x1, . . . , xn) is denoted by R[x] = R[x1, . . . , xn]
and for k ∈ N the ring of multivariate polynomials of total degree at most k is denoted
by R[x]k. We will denote the open ball of radius r with respect to the euclidean metric by
Br(0).

2 Setting and preliminary definitions

We consider a nonlinear dynamical system

ẋ = f(x) (1)

with the state x ∈ Rn and a locally Lipschitz vector field f : Rn → Rn. The following graph
is a key tool in exploiting sparsity of f .

Definition 1 (Dimension weighted sparsity graph) Let the variable x ∈ Rn and the
function f : Rn → Rn be partitioned (after a possible permutation of indices) as x =
(x1, . . . , xN) and f = (f1, . . . , fN) with xi ∈ Rni, fi : Rni → Rni and

∑N
i=1 ni = n. The

dimension weighted sparsity graph associated to f induced by this partition is defined by:
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1. The set of nodes is (x1, . . . , xN).

2. (xi, xj) is an edge if the function fj depends on xi .

3. The weight of a node xi is equal to ni.

.

Remark 1 Without putting weights on nodes we call the graph just sparsity graph of f
(induced by the partitioning). The (dimension weighted) sparsity graph is not unique as it
depends on the partition of x and f . Choosing a good partition is key to maximizing the
computational savings obtained from the sparse SDP relaxations developed in this work in
section 7.

Remark 2 For a dynamical system a sparsity graph describes the dependence of the dynam-
ics of a state on other states. More precisely, there exists a directed path from i to j in the
sparsity graph of f if and only if the dynamics of xj depend (indirectly via other states) on
the state xi.

As an example consider the following function f : R10 → R10

f(y1, . . . , y10) = (y21y2, y1y2, y3y2 + y23, y7 − y44, y7y25, y2y6, y32y6y7, y23y6y28, y6y59, y27).

The grouping x1 = (y1, y2), x2 = y3, x3 = (y4, y5), x4 = (y6, y7) and x5 = (y8, y9, y10)
induces the functions f1(y1, y2) = (y21y2, y1y2), f2(y3) = (y3y2 + y23), f3(y4, y5) = (y7 −
y44, y7y

2
5), f4(y6, y7) = (y2y6, y

3
2y6y7) and f5(y8, y9, y10) = (y23y6y

2
8, y6y

5
9, y

2
7) according to Defi-

nition 1. Figure 1 shows its dimension weighted sparsity graph.

Figure 1: The dimension weighted sparsity graph of the function (2) with respect to the partitioning
x1 = (y1, y2), x2 = y3, x3 = (y4, y5), x4 = (y6, y7, y8, y9) and x5 = (y10, y11, y12)

Definition 2 (Predecessor, leaf, Past) 1. For a sparsity graph we call a node xi a
predecessor of node xj if either xi = xj or if there is a directed path from xi to xj.

2. A node xi is called a leaf if it does not have a successor (i.e., all nodes connected to xi
are its predecessors).
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3. The set of all predecessors of xi is called the past of xi and denoted by P(xi).

4. The largest dimension weighted past ω in a directed graph with weights ni and nodes
xi is given by

ω := max
i

∑
xj∈P(xi)

nj. (2)

For the graph from figure 1, the node x5 has the largest weighted path. Its past is colored
in blue in Figure 2.

Figure 2: Past of x5 in the sparsity graph from Figure 1

In Remark 2 we have seen that the past of a node xi determines all the nodes the dynamics of
xi (indirectly) depend on. Therefore the following definition is closely related to the notion
of the past of a node.

Definition 3 For a dynamical system ẋ = f(x) on Rn we call a set of states (xi)i∈I for
some index set I ⊂ {1, . . . , n} a subsystem of ẋ = f(x) if we have

fI ◦ PI = PI ◦ f (3)

where fI := (fi)i∈I denotes the components of f according to the index set I and PI denotes
the canonical projection onto the states xI , i.e. PI(x) := xI .

Since fI formally depends on x ∈ Rn we mean by the term fI ◦ PI that fI only depends on
the variables xI .

If ϕt denotes the flow of the dynamical system and ϕIt the flow of the subsystem, condition
(3) translates to

ϕIt ◦ PI = PI ◦ ϕIt . (4)

For a given node xi the past P(xi) of this node determines the states of the smallest subsystem
of the dynamical system containing xi, and we refer to this subsystem by the subsystem
induced by P(xi). In acyclic sparsity graphs the nodes with maximal past are leafs, i.e.
nodes with no successor, because a successor has a larger past than its predecessor.
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2.1 Main result summary

With these notations, the main result, informally written, reads

Theorem 2 (informal) There exists a hierarchy of SDPs with all sum-of-squares multipli-
ers depending on at most ω variables such that their solutions provide outer approximations
of the ROA, MPI set and GA with guaranteed convergence as the degree of the sum-of-squares
multipliers tends to infinity.

In order to prove this theorem we first consider a prototype sparse dynamics which allows
a decoupling of the dynamical system. For this prototype system we get decompositions of
the ROA, MPI set and GA, inspired by [2]. Those decompositions allow us to decouple the
computations of those sets as well. We apply this to the linear programs for those sets from
[10], [12] and [20], which describe the desired sets up to a discrepancy of Lebesgue measure
zero.

Dynamics that are not of that prototype type are approached by a generalization of the
decoupling derived from the prototype setting.

3 Sparse dynamics: the prototype setting

The dynamical system we are considering first is as in [2] and has the following form

ẋ1 = f1(x1)

ẋ2 = f2(x1, x2) (5)

ẋ3 = f3(x1, x3)

on the state space Rn1 × Rn2 × Rn3 and we consider a constraint set X ⊂ Rn1+n2+n3 and
locally Lipschitz continuous functions f1 : X → Rn1 , f2 : X → Rn2 and f3 : X → Rn3

where f1 only depends on x1, i.e. is constant in (x2, x3), f2 only depends on (x1, x2), i.e. is
constant in x3 and f3 only depends on (x1, x3), i.e. is constant in x2. The sparsity graph
of the system (5) has the “cherry” structure depicted in Figure 3. This indicates that the

Figure 3: 2-cherry structure.
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system splits into the decoupled dynamics

d

dt
(x1, x2) = (f1, f2)(x1, x2) (6)

with corresponding flow ϕ
(2)
t and

d

dt
(x1, x3) = (f1, f3)(x1, x3) (7)

with corresponding flow ϕ
(3)
t and

ẋ1 = f1(x1) (8)

with corresponding flow ϕ
(1)
t . Let P1,i denote the canonical projection onto (x1, xi) and P1

the canonical projection onto the x1 component. Then the subsystem relations (6), (7) and
(8) read

(f1, f2) ◦ P1,2 = P1,2 ◦ f , (f1, f3) ◦ P1,3 = P1,3 ◦ f , f1 ◦ P1 = P1 ◦ f

and we have for the corresponding flows

ϕ
(2)
t ◦ P1,2 = P1,2 ◦ ϕt

ϕ
(3)
t ◦ P1,3 = P1,3 ◦ ϕt (9)

ϕ
(1)
t ◦ P1 = P1 ◦ ϕt

for all t ∈ R+. Note that the x1-component of the flows ϕ(2) and ϕ(3) are given by ϕ(1) due
to the decoupled dynamics of x1.

The equations in (9) state that the subsystems behave like factor systems, i.e. the projections
map solutions of the whole system to solutions of the subsystems.

The state constraints need to be taken into account more carefully. For instance the con-
straint set for (6) for a fixed x3 is given by

X1,2(x3) := {(x1, x2) ∈ Rn1 × Rn2 : (x1, x2, x3) ∈ X}. (10)

In a similar way we define

X1,3(x2) := {(x1, x3) ∈ Rn1 × Rn3 : (x1, x2, x3) ∈ X}. (11)

and
X1(x2, x3) := {x1 ∈ Rn1 : (x1, x2, x3) ∈ X}. (12)

In order to get that the subsystems (6), (7) and (8) are completely decoupled, we need a
splitting also in the constraint sets, i.e. the sets X1,2(x3), X1,3(x2) and X1(x2, x3) do not
depend on x2 and x3.

Proposition 1 For variable (x1, x2, x3) ∈ X the sets X1,2(x3), X1,3(x2) and X1(x2, x3) are
independent of (x2, x3) if and only if X is of the form

X = X1 ×X2 ×X3 (13)

for some X1 ⊂ Rn1, X2 ⊂ Rn2 and X3 ⊂ Rn3. In particular if (13) holds then (9) holds with
corresponding constraint sets X1 ×X2, X1 ×X3 and X1.
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Proof: If X is of the form (13) then we have for arbitrary x3 ∈ X3

X1,2(x3) = {(x1, x2) ∈ Rn1 × Rn2 : (x1, x2, x3) ∈ X}
= {(x1, x2) ∈ Rn1 × Rn2 : x1 ∈ X1, x2 ∈ X2}

and we see that this is independent of x3. The same argument works also for the sets
X1,3(x2) and X1(x2, x3). On the other hand let all the sets X1,2(x3), X1,3(x2) and X1(x2, x3)
be independent of (x2, x3). Let us denote those sets by X1,2, X1,3 and X1 and let P2, P3 and
P2,3 be the canonical projections onto the x2, x3 and (x2, x3) component respectively. We
have by

X =
⋃

x2∈P2(X)

{(x1, x2, x3) ∈ Rn1 × Rn2 × Rn3 : (x1, x3) ∈ X1,3}

=
⋃

x3∈P3(X)

X1,2(x3)× {x3} = X1,2 × P3(X). (14)

In a similar way we see that

X1 × P2,3(X) = X = {(x1, x2, x3) : x2 ∈ P2(X), (x1, x3) ∈ X1,3} (15)

We claim
X = P1(X)× P2(X)× P3(X).

To check this it suffices to check X ⊃ P1(X)×P2(X)×P3(X). Therefore let x1 ∈ P1(X), x2 ∈
P2(X) and x3 ∈ P3(X). By (15) there exists a pair (x′2, x

′
3) such that (x1, x

′
2, x
′
3) ∈ X. From

(x1, x
′
2, x
′
3) ∈ X it follows (x1, x

′
2) ∈ X1,2. Hence by (14) (x1, x

′
2, x3) ∈ X. It follows

(x1, x3) ∈ X1,3 and so (x1, x2, x3) ∈ X by (15). �

The last proposition states that we can only completely decouple systems if the constraint
set X decomposes as a product. The reason is that otherwise the constraint sets of the
subsystems varies with changing states x2, x3 and x1. We give an example that illustrates
this issue on the maximum positively invariant set defined in Definition 5. Consider the
following system

ẋ1 = 0 , ẋ2 = −x1x2 , ẋ3 = x1x3(1− x3) (16)

on R3 with constraint set X = {(x1, x2, x3) ∈ R3 : x1, x3 ∈ [1
2
, 1], x2 ∈ [0, 1], x2 ≥ x3 − 1

2
}.

Here X does not factor into a product because the x2 component in X depends on the state
x3. Because x2(t) converges to 0 as t → ∞ and x3(t) converges to 1 as t → ∞ for any
initial value coming from X it follows that eventually any trajectory starting in X leaves the
constraint set X. But for fixed x3 = 1

2
we have X1,2(x3) = [1

2
, 1]× [0, 1] and any solution for

the subsystem induced by (x1, x2) starting in X1,2(
1
2
) stays in this set for all times t ∈ R+.

This different behaviour is due the varying of x3(t) and hence the constraint set for (x1, x2),
namely X1,2(x3(t)), is changing in time, which in this case causes that any trajectory with
initial value in X to leave X eventually. This is why we will have the following assumption
for the rest of this text.

Assumption 1 The constraint set X ⊂ Rn is given by X = X1 × · · · × Xk where each
Xi ⊂ Rni is compact.
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If needed it is possible to perform a permutation of coordinates of Rn beforehand in order
to allow a (better) factorization.

In the next chapter we will see that the sparse prototype dynamics lead to a sparse description
of the reachable set, the ROA, MPI set and GA.

4 Sparse representations for the reachable set, the RoA,

MPI set and GA

As long as we do not explicitly refer to the sparse dynamics from (5) by a dynamical system
we will refer to solutions of the ODE (1) with a compact constraint set X ⊂ Rn.

Definition 4 (Region of attraction) For a dynamical system, a finite time T ∈ R+ and
a target set XT ⊂ X the region of attraction (ROA) of XT is defined as

RT := {x0 ∈ X : ∃x(·) s.t. ẋ(t) = f(x(t)), x(0) = x0, x(t) ∈ X on [0, T ], x(T ) ∈ XT} .
(17)

Remark 3 The reachable set from an initial set XI ⊂ X in time T

ST := {x ∈ X : ẋ(t) = f(x(t)), x(t) ∈ X on [0, T ], x(T ) = x, x(0) ∈ XI} (18)

can be obtained by time reversal, i.e. by ST = RT for XT := XI and the dynamics given by
ẋ = −f(x).

Definition 5 (Maximum positively invariant set) For a dynamical system the maxi-
mum positively invariant (MPI) set is the set of initial conditions x0 such that the solutions
ϕt(x0) stay in X for all t ∈ R+.

The MPI set will be denoted by M+ in the following.

Definition 6 (Global attractor) A compact set A ⊂ X is called the global attractor (GA)
if it is minimal uniformly attracting, i.e., it is the smallest compact set A such that

lim
t→∞

dist(ϕt(M+),A) = 0.

Remark 4 An important property of the global attractor is that it is characterized by being
invariant, i.e. ϕt(A) = A for all t ∈ R+, and attractive see [19].

In the following we will see that the sparse structure of (5) is inherited to the ROA, MPI set
and GA. We will start with the ROA and see that it decomposes into the ROA sets for the
subsystems glued together along the (decoupled) x1 component.
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Proposition 2 Let the dynamical system be of the form (5). Suppose that Assumption 1

holds, i.e. X = X1 × X2 × X3, and assume XT = X1,T × X2,T × X3,T. Let R
(2)
T , R

(3)
T and

R
(1)
T be the regions of attraction for the subsystems (6) with target set X1,T ×X2,T, (7) with

target set X1,T ×X3,T and (8) with target set X1,T. Then RT is given by

{(x1, x2, x3) ∈ X : (x1, x2) ∈ R(2)
T , (x1, x3) ∈ R(3)

T }. (19)

Further P1RT ⊂ R
(1)
T , in general they are not equal.

Proof: Let R denote the set from (19). Let (x1, x2, x3) ∈ R with corresponding solu-

tions (x̂1(·), x2(·)) and (x̃1(·), x3(·)), (x1(·)) as in the definition of R
(2)
T , R

(3)
T and R

(1)
T . We

have by uniqueness of solutions of (8) that x1(·) = x̂1(·) = x̃1(·). Hence we see that
(x1(·), x2(·), x3(·)) is a solution of the whole system with initial value (x1(0), x2(0), x3(0)) =
(x1, x2, x3), (x1(t), x2(t), x3(t)) ∈ X for all t ∈ [0, T ] and (x1(T ), x2(T ), x3(T )) ∈ X1,T×X2,T×
X3,T = XT. Hence (x1, x2, x3) ∈ RT . On the other hand let (x1, x2, x3) ∈ RT be initial values
and the corresponding solution of the differential equation (x1(·), x2(·), x3(·)). Since X de-
composes into a product by Assumption (1) we have (x1(0), x2(0)) = (x1, x2), (x1(t), x2(t)) ∈
X1×X2, (x1, x3), (x1(t), x3(t)) ∈ X1×X3 for all t ∈ [0, T ] and (x1(T ), x2(T )) ∈ X1,T×X2,T,

(x1(T ), x3(T )) ∈ X1,T × X3,T. All in all we have (x1, x2) ∈ R
(2)
T and (x1, x3) ∈ R

(3)
T , i.e.

(x1, x2, x3) ∈ R. The inclusion P1RT ⊂ R
(1)
T follows again directly from (19) and (9). For an

example where those sets do not coincide take ẋ2 = 1, ẋ3 = 1, ẋ1 = 0 (without control) and

X = XT = [0, 1]3 and T > 0. Then RT = ∅ and R
(1)
T = [0, 1] = X1. �

We will refer to connecting two sets along a common component as in (20) by saying we glue
the sets together along the x1 component.

And by very similar arguments we get a similar result for the MPI set and the GA.

Proposition 3 Let X = X1 × X2 × X3 be as in (13) for the sparse dynamical system (5)

and let M
(2)
+ and M

(3)
+ denote the MPI sets for the subsystems (6) and (7) then the MPI set

M+ of (5) is given by

{(x1, x2, x3) ∈ X : (x1, x2) ∈M (2)
+ , (x1, x3) ∈M (3)

+ }. (20)

Further P1M+ ⊂M
(1)
+ for the MPI set M

(1)
+ for (8), in general they are not equal.

Proof: Let M denote the set from (20). Let (x1, x2, x3) ∈ M and t ∈ R+. We have

y2 := ϕ
(2)
t (x1, x2) ∈ X1 × X2 and y3 := ϕ

(3)
t (x1, x3) ∈ X1 × X3. Further by (9) the x1

component of y2 and y3 coincide. Hence it follows from the second statement of Proposition
1 that ϕt(x1, x2, x3) ∈ X1 × X2 × X3 = X. That means M is invariant and hence M is
contained in the MPI set. On the other hand let (x1, x2, x3) be in the MPI set. Again by

Proposition 1 we have for all t ∈ R+ that ϕ
(2)
t (x1, x2) ∈ P1,2(X) = X1×X2 and ϕ

(3)
t (x1, x3) ∈

P1,3(X) = X1 ×X3. Hence (x1, x2) ∈ M (2)
+ and (x1, x3) ∈ M (3)

+ , i.e. (x1, x2, x3) ∈ M . Since

ϕt(x1, x2, x3) ∈ X implies ϕ
(1)
t (x1) ∈ X1 the inclusion P1M+ ⊂ P1M

(1)
+ follows immediately.

An example for which M+ = ∅ while M
(1)
+ 6= ∅ is again given by ẋ2 = 1, ẋ2 = 1, ẋ1 = 0 on

[0, 1]3. Here M+,M
(2)
+ and M

(3)
+ are all empty while M

(1)
+ = [0, 1] = X1. �

And a similar result for GAs is stated next.
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Proposition 4 Let X = X1 ×X2 ×X3 be as in (13) and A(2) be the GA for (6) and A(3)

the GA for (7). Then gluing them together along x1 gives the GA for the whole system, i.e.

A = {(x1, x2, x3) ∈ X : (x1, x2) ∈ A(2), (x1, x3) ∈ A(3)}. (21)

Further P1A ⊂ A(1) for the GA A(1) for (8), in general they are not equal..

Proof: Let the set from (21) be denoted by A. Since A is given by

X ∩ P−11,2 (A(2)) ∩ P−11,3 (A(3)) (22)

we see that it is a closed subset of X, and hence compact. By [19] Definition 10.4. and
Theorem 10.6. it suffices to show that A = M+ ∩ M− where M− denotes the maximal
negatively invariant set, or in other words, the maximum positively invariant set for the
dynamics given by ẋ = −f(x). Hence we can apply Proposition 3 to get

A = M+ ∩M−
= {(x1, x2, x3) ∈ X : (x1, x2) ∈M (2)

+ , (x1, x3) ∈M (3)
+ } ∩

{(x1, x2, x3) ∈ X : (x1, x2) ∈M (2)
− , (x1, x3) ∈M (3)

− }
= {(x1, x2, x3) ∈ X : (x1, x2) ∈M (2)

+ , (x1, x2) ∈M (2)
− , (x1, x3) ∈M (3)

+ , (x1, x3) ∈M (3)
− }

= {(x1, x2, x3) ∈ X : (x1, x2) ∈ A(2), (x1, x3) ∈ A(3)}

where also the last equation follows from A(i) = M
(i)
+ ∩ M

(i)
− ([19] Definition 10.4. and

Theorem 10.6.). The inclusion P1A ⊂ A(1) follows from the corresponding inclusion for the
MPI set in Proposition 3. An example for systems for which P1A ( A(1) are systems with
empty MPI sets but non-empty A(1). �

5 A decoupling procedure for approximating the ROA,

MPI set and GA

The approach in this section is based on the structure of the ROA, MPI set and GA for
sparse settings from Propositions 2, 3 and 4 and a (non-specified) method for computing or
approximating those sets. The idea is simple, we use a method for computing or approxi-
mating those sets for the subsystems and Propositions 2, 3 and 4 allow to glue the resulting
sets together to obtain (an approximation of) the desired sets.

Remark 5 (Decoupling procedure) Given a sparse dynamical system and a method for
approximating/computing the ROA, MPI set or GA for an arbitrary dynamical system, we
can compute/approximate the desired set for the subsystems (6) and (7) with corresponding
state constraints X1×X2 and X1×X3 (and repsectively X1,T×X2,T , X1,T×X3,T for the ROA)
due to the given method and glue the resulting sets together along their common component
x1 as in Propositions 2, 3 and 4.
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It is clear that, if a method is able to exactly compute the ROA, MPI set or GA for an
arbitrary dynamical system, the gluing procedure from Remark 5 using this method as well
produces the corresponding set exactly due to the decomposition of those sets by Propositions
2, 3 and 4.
Typically exact representations of those sets are not computable and hence we have to work
with approximations. Depending on how the approximation is measured or what the chosen
methods produces the decoupling procedure from Remark 5 might fail. For example it might
not always be guaranteed that the set

{(x1, x2, x3) ∈ X : (x1, x2) ∈ K1, (x1, x3) ∈ K2} (23)

is non-empty where K1 and K2 denote approximations of the desired sets for the subsystems
constructed by the chosen method . But if the methods produce outer approximations, i.e.
Ki ⊃ RT or M+ or A respectively, then of course (23) gives a superset of the desired set
and hence can only be empty if the desired set is empty. We give two typical examples of
a metric for the quality of the (outer) approximation, one is the Hausdorff distance, i.e. for
S2 ⊂ S1 ⊂ Rn

dH,‖·‖∞(S1, S2) := sup{dist(s1, S2) : s1 ∈ S1} (24)

where the distance is induced by a norm on Rn; the specific choice of norm will not be
important in the following due to equivalence of norms on Rn. The other metric we consider
is the Lebesgue measure of the symmetric difference of two sets S1, S2 ⊂ Rn

dλ(S1, S2) := λ(S1∆S2) (25)

where ∆ denotes the symmetric difference.

In the following proposition, the term “desired set” refers to the ROA or the MPI set or the
GA.

Proposition 5 Let S1
k ⊂ X1 ×X2 ⊂ Rn1+n2 and S2

k ⊂ X1 ×X3 ⊂ Rn1+n3 and let

S1,2
k := {(x1, x2, x3) | (x1, x2) ∈ S1

k , (x1, x3) ∈ S2
k}.

For i = 1, 2 let Si denote the desired set for the subsystems (6) and (7) and S denotes the
desired set for (5) . Then the following holds:

1. Hausdorff distance: If Sik → Si with respect to the Hausdorff distance, i.e. for i = 1, 2

dH(Sik, S
i)→ 0 , as k →∞. (26)

Then
dH(S1,2

k , S)→ 0 , as k →∞. (27)

2. Lebesgue measure: We have

dλ(S, S
1,2
k ) ≤ λ(S1∆S1

k)λ(X3) + λ(S2∆S2
k)λ(X2). (28)

In particular if Sik converges to Si with respect to dλ for i = 1, 2 then S1,2
k converges to

S with respect to dλ.
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Proof: Assume (27) does not hold. Then there exists a ε > 0 and an unbounded subsequence
(km)m∈N such that

dH(S1,2
Km
, S) > ε. (29)

Since by assumption S1
k and S2

k are outer approximations we get by Propositions 2, 3 and
4 that S1,2

k ⊃ S for all k ∈ N and (29) gives a sequence of points xkm = (x1km , x
2
km
, x3km) ∈

S1,2
km

such that dist(xkm , S) > ε. Since S1,2
k ⊂ X and by compactness of X there exists

x = (x1, x2, x3) ∈ X and a subsequence of (km)m∈N which we will still denoted by (km)m∈N
such that xkm → x as m → ∞. By assumption (26) there exist ykm = (y1km , y

2
km

) ∈ S1 and
zkm = (z1km , z

3
km

) ∈ S2 with ‖ykm − (x1km , x
2
km

)‖, ‖zkm − (x1km , x
3
km

)‖ → 0 as m → ∞. Hence
also y1km → (x1, x2), zkm → (x1, x3) as m → ∞. Because S1, S2 are closed it follows from
Propositions 2, 3 or 4 respectively that (x1, x2, x3) ∈ S. In particular we get

ε < dist(xkm , S) ≤ ‖xkm − (x1, x2, x3)‖ → 0

as m → ∞, contradiction. For the second statement from Sik ⊂ X1 × Xi+1 for i = 1, 2 it
follows S1,2

k ⊂ X. From the decoupling of S by Propositions 2, 3 and 4 and the definition of
S1,2
k we get

S∆S1,2
k ⊂ {(x1, x2, x3) ∈ X : (x1, x2) ∈ S1∆S1

k} ∪
{(x1, x2, x3) ∈ X : (x1, x3) ∈ S2∆S2

k}.

Applying the Lebesgue measure to this inclusion gives

λ(S∆S1,2
k ) ≤ λ

(
{(x1, x2, x3) ∈ X : (x1, x2) ∈ S1∆S1

k}
)

+

λ
(
{(x1, x2, x3) ∈ X : (x1, x3) ∈ S2∆S2

k}
)

= λ(S1∆S1
k)λ(X3) + λ(S2∆S2

k)λ(X2).

�

Proposition 5 says that one can compute a converging sequence of approximations to the de-
sired set by computing converging approximations for each subsystem separately, thereby re-
ducing the computational effort. Specific computational methods to do so based on semidef-
inite programming are discussed in Section 7.

In the next chapter we will generalize the decoupling approach based on the sparsity graph
to general dynamics induced by a function f .

6 More general graph structures

By the same arguments we used for the simple cherry structure of the prototype setting
(5), gluing together along x1 works also for more subsystems, i.e. for dynamics of the form
ẋi = fi(x1, xi) for i = 2, . . . , r with ẋ1 = f1(x1). Induction on the branching allows also more
tree-like structures.

But instead of following this specific approach, in this section we are lead by the observation
that Propositions 2, 4 and 3 can be rephrased as

S = {x ∈ X : Pi(x) ∈ Si for i ∈ I} (30)
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where S denotes the desired set – i.e. the ROA, MPI set or GA – and some index set I where
for i ∈ I the set Si denotes the desired set for a (maximal) subsystem and Pi(x) denotes the
projection on Rni for the corresponding subsystem.

We will see that such a result is true for general dynamical systems. To be able to state the
result from Theorem 3 in a more convenient way we assume that the sparsity graph is acyclic.
It follows that the subsystems we need to consider are induced by leafs (Lemma 1), i.e. the
subsystem’s nodes are given by the pasts of the corresponding leafs. We can always achieve
acyclic sparsity graph by choosing a suitable partition. For example, it suffices to choose the
partition in such a way that for each circle all its nodes are assigned to one element of the
partition. This is illustrated in Figure 4.

Figure 4: A circle reduces to one node.

To be more precise we define the reduction of a circle to one node formally in the following
remark.

Remark 6 (Circle reduction) Let J1, . . . , JN be a partition of {1, . . . , n} with correspond-
ing states x1, . . . ,xN . Let xi1 , . . . ,xil form a cycle in the sparsity graph of f with respect
to the partition J1, . . . , JN . Then grouping xi1 , . . . ,xil together means considering the new

partition consisting of J̃ :=
l⋃

r=1

Jir and Ji for i ∈ {1, . . . , N} \ {i1, . . . , il}.

A circle can be detected for example by the depth first traversal algorithm with complexity
O(|V |+ |E|) (see for example [4] p. 543) where V denotes the set of nodes and E the set of
edges. Each detected circle reduces the number of nodes and edges so that the complexity
of finding all circles is less than O(|V |(|V |+ |E|)).
Reducing a circle to one node does not affect our approach. This is because all nodes in the
circle necessarily occur always together in a subsystem containing any of the nodes from the
circle. Hence the subsystems obtained from a sparsity graph and the same sparsity graph
where circles have been reduced to single nodes coincide.

Similar arguments reveal that a system cannot be reduced if for example its corresponding
graph is a path in which each branching is contained in a circle; see Figure 5. For straight
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lines this is even more obvious: The nodes are connected only by one incoming and one
outgoing edge. Exploiting such sparse structures for the ROA is investigated by [21].

Figure 5: Straight paths with circles.

The following lemma contains the basic properties of leafs and their pasts that we need for
the proof of the main theorem.

Lemma 1 Any directed graph without circles has at least one leaf. Furthermore, for directed
graphs without circles we have for the set V of nodes that V =

⋃
x leaf

P(x).

Proof: Let W be a maximal path in the graph, i.e. a path that can’t be extended in G.
Let x be the last node in W . We claim that x is a leaf. If x is not a leaf then there exists
an edge (x, y) in G for some node y. By maximality of W we can’t add y to W , that means
the edge (x, y) has been used before in W . This means that W has visited x before, i.e.
there is a part of W that connects x to itself, i.e. a circle – contradiction. For the remaining
statement let y be an arbitrary node. We can choose a longest path containing this node
which has to end in a leaf x, hence y is contained in the past of x. �

Before proving our main result we proceed as we did before and first establish a description
of the ROA, MPI set and GA by decomposing into subsystems according to the sparse
structure of the dynamics, but now for general dynamics and not just trees as described in
the previous sections.

Theorem 3 (Decomposition of the ROA, MPI set and GA) Assume X = X1×· · ·×
Xr and (for the ROA) XT = X1,T×· · ·×Xr,T for compact sets Xj, Xj,T ⊂ Rnj for j = 1, . . . , r.
Assume the sparsity graph has no circles. Let x1, . . . , xl be the leafs of the sparsity graphs of
f with corresponding pasts P(x1), . . . ,P(xl). For the ROA let T ∈ R+. Then the ROA RT ,
MPI set M+, GA A are given by

RT = {x ∈ X : xP(xi) ∈ Ri
T for i = 1, . . . , l} (31)

and
M+ = {x ∈ X : xP(xi) ∈M i

+ for i = 1, . . . , l} (32)
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and
A = {x ∈ X : xP(xi) ∈ Ai for i = 1, . . . , l} (33)

where Ri
T ,M

i
+,Ai denote the ROA, MPI set and the GA for the subsystem induced by the

past of the leaf xi and xP(xi) denotes the vector of states of x that corresponds to the past of
xi.

Proof: We proceed in the same way as for the basic example (5) in Proposition 2, Proposition
3 and Proposition 4. Hence we only argue for the ROA because the arguments for the other
sets are just adaptions according to the proofs of Propositions 3 and 4. Let R denote the
right hand side of (31). Let x ∈ R. We have to show that for the solution x(·) of the
dynamical system with initial value x we have x(t) ∈ X for t ∈ [0, T ] and x(T ) ∈ XT . If
we write x(t) = (x1(t), . . . , xr(t)) this means we have to show xk(t) ∈ Xk for t ∈ [0, T ] and
xk(T ) ∈ Xk,T for all k = 1, . . . , r. Fix k ∈ {1, . . . , r}, by Lemma 1 and the assumption
that the sparsity graph has no circles it follows that xk ∈ P(xi) for some leaf xi. By
definition of R it follows xk(t) ∈ Xk for all t ∈ [0, T ] and xk(T ) ∈ Xk,T from x ∈ R. Hence
x ∈ RT. For an element x ∈ RT we have x(t) = (x1(t), . . . , xr(t)) ∈ X1 × . . . Xr = X
for all t ∈ [0, T ] and x(T ) = (x1(T ), . . . , xr(T )) ∈ X1,T × . . . Xr,T. Let xi be a leaf then
clearly xP(xi)(t) ∈

∏
xj∈P(xi)

Xj for t ∈ [0, T ] and xP(xi)(T ) ∈
∏

xj∈P(xi)

Xj,T, which exactly means

xP(xi) ∈ Ri
T. �

This allows us to compute the desired sets based on computing them for the subsystems
induced by the leafs.

Algorithm 1 (Decoupling procedure) Given a dynamical system induced by f and a
method for approximating/computing the ROA, MPI set or GA for an arbitrary dynamical
system. Let J1, . . . , JN be any partition of {1, . . . , n}.

i. Reduce the circles in the corresponding sparsity graph of f as in Remark 6.

ii. Compute approximations for subsystems: Let xi1 , . . . , xil be the leafs of the correspond-
ing sparsity graph after reducing the circles. Use the given method to compute approx-
imations Si1 , . . . , Sil of the ROAs, MPI sets or GAs respectively for the subsystems
induced by the pasts of the leafs xi1 , . . . , xil.

iii. Glue Si1 , . . . , Sil together as in Theorem 3 by

S := {x ∈ X : xP(xir )
∈ Sir for r = 1, . . . , l}.

The last ingredient before stating the main theorem is a generalization of the convergence
property of the decoupling procedure from Proposition 5.

Theorem 4 Let a dynamical system on Rn be induced by f with state constraint X =
N∏
j=1

Xj

for compact sets Xj ⊂ Rnj and for the ROA XT =
N∏
j=1

Xj,T for a partition J1, . . . , JN of

{1, . . . , n} with |Jj| = nj. Given a method for approximating the ROA, MPI set or GA for
an arbitrary dynamical system such that
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1. in case of Hausdorff distance (induced by any norm on Rn): If the method gives a
convergent sequence of outer approximations Sk of the desired set S, i.e. Sk ⊃ S and

dH(Sk, S)→ 0 , as k →∞. (34)

Then the decoupling procedure, Algorithm 1, produces a sequence of sets S ′k with

dH(S ′k, S)→ 0 , as k →∞. (35)

for S denoting the desired set for the (sparse) dynamical system.

2. In case of Lebesgue measure: Let the sparsity graph of f be acyclic and let xi1 , . . . , xil
be the leafs. Let S ′r denote an approximation of the desired set Sr for r = 1, . . . , l for
the subsystems induced by the leaf xir . Then we have

dλ(S, S
′) := λ(S∆S ′) ≤

l∑
r=1

λ(Sr∆S ′r)λ(
∏

xk /∈P(xir )

Xk) (36)

where S is the desired set for the sparse dynamical system and S ′ the set obtained from
Algorithm 1. In particular if a method produces approximations of Si that converge
to Si with respect to dλ then the decoupling method produces a set that converges to S
with respect to dλ.

Proof: We proceed in the same way as for the prototype setting. Let xi1 , . . . , xil be the leaf
in the sparsity graph obtained from the decoupling procedure and S1

k , . . . , S
l
k be the corre-

sponding (converging outer) approximations of the desired sets for the subsystems induced
by the leafs. For the first statement assume (35) does not hold. Then there exists a ε > 0
and an unbounded subsequence (km)m∈N such that

dH(S ′Km
, S) > ε (37)

and we find points xkm ∈ S ′km with dist(xkm , S) > ε. By construction of S ′k, boundedness
of S1, . . . , Sl and the assumption (34) it follows that there exists x ∈ Rn and a subsequence
of (km)m∈N which we will still denote by (km)m∈N such that xkm → x as m → ∞. By
assumption (34) there exist yikm ∈ S

i for i = 1, . . . , l with ‖yikm− (xkm)P(xi)‖ → 0 as m→∞.
Hence also yikm → xP(xi) as m→∞ for i = 1, . . . , l. Because S1, . . . , Sl are closed it follows
xP(xi) ∈ Si for i = 1, . . . , l and by Theorem 3 we get x ∈ S. In particular we get

ε < dist(xkm , S) ≤ ‖xkm − x‖ → 0

as m → ∞, which is a contradiction. For the second statement we get by the decoupling
procedure Algorithm 1 that S ′ ⊂ X and

S∆S ′ ⊂
l⋃

r=1

{x ∈ X : xP(xir )
∈ Sr∆S ′r}.
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Applying the Lebesgue measure to this inclusion gives

λ(S∆S ′) ≤
l∑

r=1

λ
(
{x ∈ X : xP(xir )

∈ Sr∆S ′r}
)

=
l∑

r=1

λ(Sr∆S ′r)λ(
∏

xk /∈P(xr)

Xk).

�

In the next section we will state methods from [10], [12] and [20] that give converging (with
respect to dλ) approximations of the ROA, MPI set and GA. Then we have everything we
need to state and prove our main theorem.

Before doing so we first describe how to choose a good partition of nodes for the sparsity
graph of a function f .

6.1 Selecting a partition

The choice of a partition of the states can influence the performance of the method strongly.

First we start with factorizing the state space as fine as possible in order to decouple the
dynamical system as much as possible.

Definition 7 We say X ⊂ Rn factors with respect to a partition J1, . . . , JN of {1, . . . , n} if
there exist sets Xi ⊂ Rni where ni = |Ji| for i = 1, . . . , n such that

X = {x ∈ Rn : PJix ∈ Xi for i = 1, . . . , N}.

We say J1, . . . , JN induces a factorization; the sets Xi are given by PjiX.

This is the natural generalization of the factorization we needed for the prototype setting.
The following Lemma allows us to find a finest factorization of X which will be useful in
order to group only as much nodes in the sparsity graph together as needed.

Lemma 2 There exists a minimal factorization for X; that is a factorization induced by
J1, . . . , JN of X, such that for any other factorization induced by I1, . . . , IM we have for all
i = 1, . . . ,M that Ii =

⋃
k:Jk⊂Ii

Jk.

Proof: We give a proof in the Appendix. �

In order to satisfy Assumption 1 for this factorization, namely that X =
N∏
i=1

Xi, we only need

to perform a permutation of coordinates of Rn.

It is now clear that the partition obtained from Lemma 2 allows the finest decoupling of the
dynamical system into subsystems, i.e. a decoupling into subsystems of smallest dimension.

In the following we focus on finding outer approximations of the ROA, MPI set and GA
based on convex optimization proposed in [10], [12] and [20].
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7 Structured semidefinite programming outer approx-

imations

For the region of attraction, maximum positively invariant set and global attractors there
exist representations in terms of solutions of infinite dimensional linear programs (see for
example [21], [10], [13], [12] and [20]). Those provide converging outer approximations. We
will follow those methods here and combine them with the decoupling procedure which
then allows faster computation. Further we propose similar LPs that exploit the sparse
structure even further but they have the disadvantage that they do not provide guaranteed
convergence which is why we suggest to pair them with the convergent approach obtained
from a hierarchy of SDPs from [10], [12] and [20] with the decoupling procedure, thereby
guaranteeing convergence by design.

At the beginning of this section we consider again general dynamical system on Rn with
compact state constraint set X ⊂ Rn and no sparse structure. Sparse structures will be
considered in the subsections 7.3 and 7.4.

7.1 Linear program representations for the ROA, MPI set and
GA

To state the LP from [10] for the ROA we need the Liouville operator L : C1([0, T ]×X)→
C([0, T ]×X) that captures the dynamics, which is given by

Lv :=
∂

∂t
v +∇v · f. (38)

The dual LP from [10] is given by

d∗ := inf
∫
X

w(x) dλ(x)

s.t. v ∈ C1([0, T ]× Rn), w ∈ C(X)
Lv(t, x) ≥ 0 on [0, T ]×X
v(T, x) ≥ 0 on XT

w(x) ≥ 0 on X
w(x) ≥ v(0, x) + 1 on X

(39)

In [12] an LP that relates to the MPI set was presented. This LP with discounting factor
β > 0 is given by

d∗ := inf
∫
X

w(x) dλ(x)

s.t. v ∈ C1(Rn), w ∈ C(X)
∇v · f ≤ βv on X
w ≥ 0 on X
w ≥ v + 1 on X

(40)
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Based on the (dual) LP for the MPI set the following LP for the GA was proposed in [20]
with discounting factors β1, β2 > 0

d∗ := inf
∫
X

w dλ

s.t. p, q ∈ C1(Rn), w ∈ C(X)
−p− q + w ≥ 1 on X
w ≥ 0 on X
β1p−∇p · f ≥ 0 on X
β2q +∇q · f ≥ 0 on X

(41)

Remark 7 The dual problem (39), (40) and (41) have the advantage that they give rise
to outer approximations by the sets w−1([1,∞), which get tight as feasible points (v, w)
or (p, q, w) respectively get optimal. But this is typically not the case for primal feasible
elements, this is why we don’t state the primal LPs here. Inner approximations can be
approached in a similar way by using the LPs for inner approximations from [14] and [17]

7.2 Semidefinite programs for the ROA, MPI set and GA

In the previous subsection we have presented infinite dimensional LPs on the space of con-
tinuous functions – whose minimizers, or more precisely minimizing sequences, allow repre-
sentations of the ROA, MPI set and GA. In this section we state a well known approach
to such LPs that reduces the LP to a hierarchy of semidefinite programs (SDPs). Those
SDP tightenings for the dual problems can be found in the corresponding papers (for exam-
ple [10], [12], [20]). Combining the SDP approach with the decoupling procedure from section
5 we get a sparse approach towards approximating the ROA, MPI set and GA. We state the
SDP procedure here to have a selfcontained sparse approach to convergent approximations
for those sets.

For this approach it is necessary to assume additional algebraic structure of the problem
because the dual LP tightens to a sum-of-squares problem, which leads to hierarchy of
SDPs. This is a standard procedure and we refer to [16] or [15] for details.

Assumption 2 The vector field f is polynomial and X ⊂ Rn is a compact basic semi-
algebraic set, that is, there exist polynomials p1, . . . , pi ∈ R[x] such that X = {x ∈ Rn :
pj(x) ≥ 0 for j = 1, . . . , i}. Further we assume that one of the pj is given by pj(x) =
R2 − ‖x‖22 for some large enough R ∈ R. And similar for XT ⊂ Rn for polynomials qj for
j = 1, . . . , l.

If there are no such polynomials of the form R2 − ‖x‖22 then by compactness of X,XT we
can add the redundant inequality R − ‖x‖22 ≥ 0 for the smallest radius R such that BR(0)
contains X,XT . This will be needed in order to apply Putinar’s Positivstellensatz (see [18]).

The idea for the SDP tightenings is first to reduce the space of continuous functions to the
space of polynomials. The fact that the optimal value for the LP is not affected is justified
by the Stone-Weierstraß theorem (and the existence of strictly feasible points). For the space
of polynomials there is a natural way of reducing to a finite dimensional space, namely by
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bounding the total degree. That gives a sequence of finite dimensional optimization problems
(in the coefficients of the polynomials). But those optimization problems are not tractable
because testing non-negativity is a difficult task. The replacement of non-negativity as a sum-
of-squares conditions allows a representation as an SDP. Finally convergence is guaranteed
by Putinar’s positivstellensatz.

In the following k will always denote the maximal total degree of the occurring polynomials
and df the total degree of the polynomial f .

We start with the SDP tightening for the ROA for a (non-sparse) dynamical system with
constraint set X with finite time horizon [0, T ]

d∗k := inf〈w,λ〉
s.t. v ∈ R[t, x]k+1−df , w ∈ R[x]k

−Lv = s1 +
i∑

j=1

ajpj + bt(T − t)

v(T, ·, ·) = s2 +
l∑

j=1

cjqj

w = s3 +
i∑

j=1

dlpj

w − v(0, ·, ·)− 1 = s4 +
i∑

j=1

ejpj

(42)

for sum-of-squares polynomials s1, aj, b
1
l , b ∈ R[t, x], s2, s3, s4, cj, ej ∈ R[x] for j = 1, . . . , i;

such that all occurring polynomials in the SDP (42) have degree at most k. The vector λ
denotes the vector of moments of the Lebesgue measure on X and w denotes the coefficients
of the polynomial w, such that

〈w,λ〉 =

∫
X

w(x) dλ.

And similar for the MPI set.

d∗k := inf〈w,λ〉
s.t. v ∈ R[x]k+1−df , w ∈ R[x]k

βv −∇v · f = s1 +
i∑

j=1

ajpj

w = s2 +
i∑

j=1

bjpl

w − v − 1 = s3 +
i∑

j=1

cjpj

(43)

with sum-of-squares polynomials s1, s2, s3, aj, bj, cj ∈ R[x], for j = 1, . . . , i, such that all
occurring polynomials in (43) are of degree at most k.
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And analogue for the GA.

d∗k := inf〈w,λ〉
s.t. p, q ∈ R[x]k+1−df , w ∈ R[x]k

β1p−∇p · f = s1 +
i∑

j=1

ajpj

β2q −∇q · f = s2 +
i∑

j=1

bjpj

w = s3 +
i∑

j=1

cjpl

w − p− q − 1 = s4 +
i∑

j=1

djpj

(44)

with sum-of-squares polynomials s1, s2, s3, s4, aj, bj, cj, dj ∈ R[x], for j = 1, . . . , i such that
all occurring polynomials in (43) are of degree at most k.

By [10], [12] and [20] the sequences d∗k from (42) for the ROA, (43) for the MPI set and (44)
for the GA converge monotonically from above to the Lebesgue measure of the corresponding
sets. Further the sets

Sk := w−1([1,∞)] = {x ∈ X : w(x) ≥ 1} (45)

are outer approximations that get tight (with respect to Lebesgue measure discrepancy)
when (v, w), respectively (p, q, w) gets optimal.

7.3 The main algorithm and main theorem

Now we have everything we need to state our main algorithm and prove our main theorem.
The main ingredients are Theorem 4 and convergence properties for the hierarchy of SDPs.

Algorithm 2 Let J1, . . . , JN be a partition of {1, . . . , n} with |Jj| = nj and a dynamical

system on Rn be induced by a polynomial f with state constraint X =
N∏
j=1

Xj, for compact

basic semialgebraic sets Xj ⊂ Rnj satisfying Assumption 2 (and for the ROA XT =
N∏
j=1

Xj,T

for compact basic semialgebraic XT,j ⊂ Rnj) for j = 1, . . . , N . Fix the maximum degree
k ∈ N of polynomials occurring in the SDPs.

i. Reduce the circles in the corresponding dimension weighted sparsity graph of f as in
Remark 6.

ii. Compute outer approximations of the ROA, MPI set or GA for subsystems by the
SDPs (42), respectively (43) or respectively (44): Let xi1 , . . . , xil be the leafs of the
corresponding sparsity graph after reducing the circles. Use the SDPs (42), (43) or (44)

respectively for polynomials up to degree k to compute approximations S
(k)
1 , . . . , S

(k)
l of

the ROAs, MPI sets or GA respectively for the subsystems induced by the pasts of the
leafs xi1 , . . . , xil.
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iii. Glue S
(k)
1 , . . . , S

(k)
l together as in Theorem 3 by

S(k) := {x ∈ X : xP(xir )
∈ S(k)

r for r = 1, . . . , l} (46)

= {x ∈ X : wik(xP(xi)) ≥ 1 for i = 1, . . . , l}.

The second equality in (46) follows immediately from (45).

Before stating the main theorem we remind of the definition of the largest dimension weighted
past ω defined in (2).

Theorem 5 Algorithm 2 produces converging outer approximations of the ROA, MPI set
or GA respectively, i.e.

S(k) ⊃ S for all k ∈ N and dλ(S
(k), S) = λ(S(k)∆S)→ 0 as k →∞

where S denotes the ROA, MPI set or GA respectively for the dynamical system. The
complexity of the corresponding SDPs that need to be solved in Algorithm 2 is determined by
ω.

Proof: This follows immediately from the convergence results of [10], [12], [20] and Theorem
4 because the largest SDP, i.e. the SDP involving the most variables, that occurs is induced
by the subsystem whose leaf has the largest weighted past and this SDP acts on sum-of-
squares multipliers on ω variables. �

That the complexity of the SDPs is determined by ω is the reason why this approach is
useful to reduce complexity. The SDPs obtained by SOS hierarchies grow combinatorically
in the number of variables and the degree bound k. The number of variables used in each
branch of the tree reduces the number of variables for the remaining problems. To make this
more precise let us have a look at the basic branching as in Figure (3). Let n1, n2, n3 be the
number of variables in x1, x2, x3. Let k be the degree used for the SDPs. Then the size of
the largest sum-of-squares multiplier for the full system is(

n1 + n2 + n3 + k
2

k
2

)
while for the subsystems it is(

n1 + n2 + d
2

k
2

)
and

(
n1 + n3 + k

2
k
2

)
.

For general graphs it follows similarly that the more the graph separates into subsystems
the more effective this approach gets.

Let’s precisely count the number of variables in the SDP for degree bound k. Here in case
of the MPI set. Let x1, . . . , xl be the leafs of the dimension weighted sparsity graph of f
and the total set of nodes {x1, . . . , xN}. Let n(P(xi)) =

∑
j∈P(xi)

nj be the dimension of the

state space for the past of xi. Let νj be the number of constraints defining the set Xj and
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φi :=
∑

xj∈P(xi)

νj the number of constraints defining the state constraint for the subsystem

induced by by the past of xi. Let Φ :=
N∑
j=1

νj be the total number of constraints defining X.

The number of variables in the non-sparse SDP for the full system is given by

3 (1 + Φ) ·
(
n+ k

2
k
2

)
(47)

while for the sparse SDP we get

3
l∑

i=1

(1 + φi) ·
(
n(P(xi)) + k

2
k
2

)
(48)

Hence we see that the reduction in the number of variables is significant if the dynamics
is strongly separated, i.e. pasts of the leafs overlap less, i.e. ni and φi are small compared
to n and Φ. Which is what we would expect because strong separation tells us that fewer
interactions are needed in order to describe the system.

Remark 8 Treating the subsystems separately by the decoupling procedure has another ad-
vantage. Namely it allows to take properties of the subsystems into account. Particularly for
the SDP approach this allows for example the use of different degrees for the hierarchies of
different subsystems. This can be useful if the hierarchy for some subsystems allow the use
of low degrees to already capture the dynamics well while for other subsystems high degrees
are required to obtain accurate approximations. For the whole system this typically means
that also a high degree for the SDP hierarchy is needed (in order to capture the dynamics of
the more complex subsystem).

7.4 Sparse improvement

We propose a slightly adapted LP that allows a further (sparse) improvement on the outer
approximation while maintaining the reduced computational complexity.

For the rest of this section assume that the sparsity graph of f with respect to a given
partition is acyclic and has leafs xi1 , . . . , xil . Let I1, . . . , Il be the set of indices corresponding
to the nodes in the past of xi1 , . . . , xil . And let XIr :=

∏
j∈Ir

Xj denote the constraint space for

the subsystem induced by the past of xir for r = 1, . . . , l. The set xIr denotes the projection
of x ∈ X onto XIr , i.e. the components of x corresponding to Ir, similar for the function f let
fIr denote the components of f corresponding to the index set Ir. Let nr be the dimension
of the state space for the subsystem induced by the past of xir , i.e. XIr ⊂ Rnr .

It is possible to combine the LPs for the subsystems but such that the constraints only act
on functions on XIr for r = 1, . . . , l.

We propose the following dual sparse LP for the ROA
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d∗s := inf
l∑

r=1

∫
XIr

wr(y) dλ(y)

s.t. vr ∈ C1([0, T ]× Rnr), wr ∈ C(XIr) 1 ≤ r ≤ l
l∑

r=1

Lrvr(t, xIr) ≥ 0 on [0, T ]×X
l∑

r=1

vr(T, xIr) ≥ 0 on XT

l∑
r=1

wr(xIr) ≥ 0 on X

l∑
r=1

wr(xIr)− vr(0, xIr) ≥ l on X

(49)

Where Lr denotes the Liouville operator (38) on the subsystem induced by the past of xir .

The LP is sparse because the functions wr, vr only depend on xIr instead of x. For the
corresponding SDP we choose the SOS multiplier to only depend on the variables xIr .

Remark 9 We have summed the corresponding inequalities of the LP (39) for the subsys-
tems. This has the advantage that the set of feasible points for the LP (and the corresponding
SDP) is larger. On the other hand it enforces less structure on the feasible points. This can
potentially hamper convergence of the approximations. This undesirable property can be
avoided by intersecting with the approximations coming from the fully decoupled approach;
this is formally stated in Theorem 6.

Similar to the set constructed by the decoupling based on the SDP hierarchy in (45) we can
construct a superset of the ROA based on feasible sets for the sparse LP (49).

Proposition 6 Let (w1, v1, w2, v2, . . . , wl, vl) be feasible. Then

{x ∈ X :
l∑

r=1

wr(xIr) ≥ l} ⊃ RT . (50)

Proof: We can apply Lemma 2 from [10] to the functions v(x) :=
l∑

r=1

vr(xIr) and w(x) :=

l∑
r=1

wr(xIr) and it follows the conclusion. �

Similar arguments for the LPs (40) and (41) for the MPI set and the GA lead to the following
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sparse LPs for discounting factors β1, . . . , βl > 0

d∗s := inf
l∑

r=1

∫
XIr

wr(y) dλ(y)

s.t. vr ∈ C1(Rnr), wr ∈ C(XIr) 1 ≤ r ≤ l
l∑

r=1

(∇vr · fIr − βrvr) (xIr) ≤ 0 on X

l∑
r=1

wr(xIr) ≥ 0 on X

l∑
r=1

(wr − vr)(xIr) ≥ l on X

(51)

for the MPI set and

d∗s := inf
l∑

r=1

∫
XIr

wr(y) dλ(y)

s.t. pr, qr ∈ C1(Rnr), wr ∈ C(XIr)
l∑

r=1

(∇pr · fIr − βrpr) (xIr) ≤ 0 on X

l∑
r=1

(∇qr · fIr + βrq
r) (xIr) ≤ 0 on X on X

l∑
r=1

wr(xIr) ≥ 0 on X

l∑
r=1

(wr − pr − qr)(xIr) ≥ l on X

(52)

for the GA.

And as for the region of attraction we get the following proposition.

Proposition 7 Let (w1, v1, w2, v2, . . . , wl, vl) be feasible for (51) or (w1, p1, q1, . . . , wl, pl, ql)
be feasible for (52) respectively. Then

{x ∈ X :
l∑

r=1

wr(xIr) ≥ l} ⊃M+ (53)

or respectively

{x ∈ X :
l∑

r=1

wr(xIr) ≥ l} ⊃ A. (54)

Proof: For the MPI set we can apply Lemma 3 from [12] to the functions v(x) :=
l∑

r=1

vr(xIr)

and w(x) :=
l∑

r=1

wr(xIr) and for the GA we apply Lemma 1 from [20] to the functions

v1(x) :=
l∑

r=1

pr(xIr), v
2(x) :=

l∑
r=1

qr(xIr) and w(x) :=
l∑

r=1

wr(xIr). �
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We can enforce the sparse structure of the LPs (49), (51) and (52) to the corresponding
hierarchy of SDPs; by that we mean that instead of replacing the non-negativity constraint
by an SOS constraint with polynomials on X we only use SOS polynomials on the spaces
XIr . This reduces the complexity due to the possibility to work with the smaller spaces
R[xI1 ], . . . ,R[xIl ] ⊂ R[x] similar to treating the subsystems separately as in the previous
subsection.

Even though this approach has similar computational complexity – because the largest SOS
multiplier acts on ω variables – we can’t guarantee convergence. This is why we need to pair
this method with the convergent method based on the decoupling the dynamical systems to
obtain a convergent sequence of outer approximation.

Theorem 6 Under the assumption of Theorem 5 let S(k) for k ∈ N be the outer approxima-
tion of the ROA, respectively the MPI set, respectively the GA from (46) and Y (k) be the sets
obtained from (50), respectively (53) or respectively (54) by optimal points (wr, vr)r=1,...,l,
respectively (wr, pr, qr)r=1,...,l, of the corresponding sparse SDPs for (49), respectively (51),
respectively (52). Then S(k)∩Y (k) is a converging (with respect to dλ) outer approximation of
the ROA, respectively the MPI set, respectively the GA. The largest occurring SOS multiplier
acts on ω variables.

Proof: By Propositions 6 and 7 we have S(k) ⊃ S(k) ∩ Y (k) ⊃ S where S denotes the
desired set. Hence convergence follows from convergence of S(k) stated in Theorem 5. By
the enforced sparse structure of the SDPs for the sparse LPs (49), (51) and (52) the largest
SOS multiplier occurs corresponding to the subsystem induced by a leaf with the state space
of largest dimension; hence it acts on ω variables. �

8 Discrete systems

All concepts from the previous chapters can also be applied to discrete systems

xk+1 = f(xk) , x0 ∈ X (55)

for a function f : Rn → Rn and a compact constraint set X ⊂ Rn.

The definition of a subsystem is the same and the (dimension weighted) sparsity also is
defined the same way.

By the same arguments as for continuous time systems the decomposition of the region of
attraction, maximum positive invariant set and GA is proven. And the convergence property
for the decoupling procedure in Theorem 4 follows immediately because the only ingredients
there are the decomposition of these sets and a well working method for approximating them.

Also the LPs and corresponding hierarchies of SDPs for those sets have counterparts for
discrete systems [10], [12] and [20].
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9 Numerical examples

9.1 Cherry structure

As an example we consider the interconnection of Van der Pol oscillators as in Figure 6. For

Figure 6: Interconnection of Van-Der Pol oscillators in a cherry structure.

the leaf nodes x2, . . . , xN , the dynamics is

ẋi1 = 2xi2

ẋi2 = −0.8xi1 − 10[(xi1)
2 − 0.21]xi2 + δix

1
1.

For the root note x1, the dynamics is

ẋ11 = 2x12
ẋ12 = −0.8x11 − 10[(x11)

2 − 0.21]x12.

We illustrate the decoupling procedure by computing outer approximations of the MPI set of
this system with respect to the constraint set [−1.2, 1.2]2N . We carry out the computation
for degree k = 8 and N = 10, resulting in a total dimension of the state-space equal to
20. The optimal decoupling in this case is into subsystems (x1, xi), i = 2, . . . , N , each of
dimension four. Figure 7 shows the sections of the MPI set outer approximations when the
value at the root node is fixed at [0.5,-0.1]. The computation time was 12 seconds.1 Next we
carried out the the computation with k = 8 and N = 26, resulting in state-space dimension
of 52. Figure 8 shows the sections of the MPI set outer approximations when the value at
the root node is fixed at [0.5,-0.1]. The total computation time was 40.3 seconds. It should
be mentioned that these problems in dimension 20 or 52 are currently intractable without
structure exploitation. Here the sparse structure allowed for decoupling in 9 respectively 25
problems in 4 variables, which were solved in less than a minute in total.

9.2 Tree structure

As our second example we consider a network of Van der Pol oscillators as in Figure 9. The
coupling is as in the previous example from the first component of the predecessor state to
the second component of the successor state. The coupling intensity δ is set to 0.1 for each

1All computations were carried out using Yalmip and MOSEK running on Matlab and 4.2 GHz Intel
Core i7, 32 GB 2400MHz DDR4.
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Figure 7: Van der Pol oscillators in a cherry structure: Sections of the outer approximations of the MPI
set for k = 8 and N = 10.

Figure 8: Van der Pol oscillators in a cherry structure: Sections of the outer approximations of the MPI
set for degree k = 8 and N = 26.
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edge. The goal is to compute the MPI set with respect to the constraint set [−1.2, 1.2]10.
The optimal decoupling is now into 3 subsystems given by (x1, x2, x4), (x1, x2, x5), (x1, x3);
the respective dimensions are 6, 6 and 4. Figure 10 shows six random sections of the ten
dimensional MPI set outer approximation computed by our approach with degree k = 8.
Even though the the overall state-space dimension 10 is less than it was in our previous
example, the computation time of 285 seconds is higher since the maximum dimension of
the subsystems is higher.

Figure 9: Interconnection of Van-Der Pol oscillators in a tree structure.

Figure 10: Van der Pol oscillators in a tree structure: Random projections of the outer approximation to
the ten dimensional MPI set.
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10 Conclusion

We presented a decomposition of several important sets related to nonlinear dynamical sys-
tems based on their correspondences for subsystems of the dynamical system. This was
motivated by [2] and extended from the region of attraction to also the maximum posi-
tively invariant set as well as GA. We focused on the uncontrolled but state constraint case
and showed how this concept can be generalized for general dynamical systems on Rn. We
showed that this decomposition gives rise to methods for computing these sets from their cor-
respondences for the subsystems. Using the works [10], [12] and [20] we presented a method
that provides a converging sequence of outer approximations based on convex optimization
problems, while exploiting the underlying structure.

We believe that decomposing the dynamical system into subsystems as presented here can
be beneficial for other objectives such as constructions of Lyapunov functions or invariant
measures to name just two. It may also be of interest to exploit sparsity for extreme value
computation, building on [8]. Another direction of future work is the inclusion of control, i.e.,
the computation of the region of attraction with control, the maximum controlled invariant
set and optimal control. Utilizing this approach in a data-driven setting, building on [11], is
another possible generalization.

Sparsity in the dependence of the dynamics of the states is not the only structure of f that
can be exploited. If for example f is a polynomial, then the algebraic structure of f can
be investigated, leading possibly to further reduction of complexity, in analogy to the static
polynomial optimization (e.g., [24]). In addition, more general sparse structures should be
investigated as we have seen that our approach treats straight paths or circles as subsystems
– in the same way as if all the corresponding nodes were fully connected. Work in this
direction was done in [21].

Finally this approach depends on the explicit description of f – it is not coordinate free.
This can be seen for example by a linear dynamical system ẋ = Ax for diagonalizable matrix
A ∈ Rn×n with non-zero entries. Since every entry of A is non-zero the sparsity graph is the
complete graph while after a change of coordinates that diagonalizes A the corresponding
sparsity graph for this dynamical system consists of isolated nodes, i.e. there are no edges at
all. Therefore it would be interesting to understand the intrinsic, coordinate free situation,
taking into account the presence of constraints that need to decouple simultaneously with
the dynamics.

11 Appendix: proof of Lemma 2

Proof: of Lemma 2.
We look at the set T := {J ⊂ {1, . . . , n} : J and {1, . . . , n}\J induces a factorization of X}.
The set T is the collection of all partitions consisting of only two sets, such that they induce a
factorization of X. We will see that T contains minimal elements (with respect to inclusion);
these will give rise to the desired factorization of X. We start with the following properties
of T .
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1. T is non-empty.
J = {1, . . . , n} is contained in X because in induces the trivial factorization X of
factoring into itself.

2. T is closed with respect to taking the complement in {1, . . . , n}.
Let J ∈ T then J c := {1, . . . , n} \ J ∈ T because J c, J is a partition that induces the
same factorization as J, J c.

3. T is closed with respect to intersections.
Let J1, J2 ∈ T with corresponding sets X1 := PJ1(X), X2 := PJc

1
(X) and Y1 :=

PJ2(X), Y2 := PJc
2
(X). Let J := J1 ∩ J2 and I := {1, . . . , n} \ J . We claim J, I induces

a factorization. Therefore let Z1 := PJ(X) and Z2 := PI(X). We need to show that
we have

X = X ′ := {x ∈ Rn : PJ(x) ∈ Z1, PI(x) ∈ Z2}. (56)

For any x ∈ X we have x ∈ X ′ by definition of Z1 and Z2. Let x′ ∈ X ′. By
definition of Z1 there exists x1 ∈ X with PJ(x1) = PJ(x′). From J1 ∈ T it follows
PJ1(x1) ∈ X1. Since I ⊃ J c1 it follows PJc

1
x1 ∈ PJc

1
(PI(X)) = PJc

1
(X) = X2. Since

J1, J
c
1 induces a factorization we get that the element x2 ∈ Rn with PJ1(x2) = PJ1(x1)

and PJc
1
(x2) = PJc

1
(PI(x

′)) belongs to X. If we repeat this process with J1 replaced
by J2 we find an element x3 ∈ X such that PJ(x3) = PJ1∩J2(x3) = PJ1∩J2(x

′) and
PI(x3) = PJc

1∪Jc
2
(x3) = PJc

1∪Jc
2
(x′), i.e. x′ = x3 ∈ X.

4. T is closed with respect to taking union.
Let J1, J2 ∈ T . Then J1 ∪ J2 = (J c1 ∩ J c2)c ∈ T .

It follows that T is a (finite) topology and hence there exists a minimal basis of T (consisting
of the smallest neighbourhoods of each point), i.e. for each i ∈ {1, . . . , n} define Ui :=⋂
J∈T :i∈J

J ∈ T . Those Ui are minimal elements in T containing i, and hence their unions

covers {1, . . . , n}. Further for i 6= k the sets Ui and Uk are either identical or disjoint,
otherwise intersecting them would create smaller non-empty elements in T . Let J1, . . . , JN
be the partition induced by the sets Ui, i.e. for all k = 1, . . . , N the set Jk is given by some Ui
and J1, . . . , JN is a partition. We claim that this defines the finest partition that factorizes
X. First let I1, . . . , IM induce a factorization of X. Let 1 ≤ k ≤ M . Then Ik, I

c
k induces a

partition because I1, . . . , IM already induces a partition. That means Ik ∈ T and since the
Ui build a basis we have Ik =

⋃
i∈Jk

Ui. It remains to show that J1, . . . , JN defines a partition.

For each 1 ≤ k ≤ N there exist sets Xk (and X ′k) such that

X = {x ∈ Rn : PJk(x) ∈ Xk, PJc
k
(x) ∈ X ′k}. (57)

We claim X = {x ∈ Rn : PJi(x) ∈ Xi for i = 1, . . . , N}. It suffices to show that {x ∈ Rn :
PJi(x) ∈ Xi for i = 1, . . . , N} ⊂ X. Therefore let x ∈ Rn such that PJi(x) ∈ Xi. From
J2 ∈ T it follows from PJ2(x) ∈ X2 that there exists a x2 ∈ X with PJ2(x

2) = PJ2(x) because
J2 ∈ T . Hence it follows PJc

1
(x2) ∈ X ′1. In particular the element

x̃2 = (x̃2i )i=1,...,n with x̃2i =

{
xi, i ∈ J1
x2i , i ∈ J c1

(58)
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belongs to X and satisfies x̃2i = xi for i ∈ J1 ∪ J2. Now we can continue this process for the
new partition (J1∪J2), J3, . . . , JN and find an element x̃3 ∈ X with x̃3i = xi for i ∈ J1∪J2∪J3.
Continuing until we have reached JN we find that finally x = x̃N ∈ X. �

12 Acknowledgement

This work has been supported by European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie Actions, grant agreement 813211 (POEMA),
by the Czech Science Foundation (GACR) under contract No. 20-11626Y and by the AI
Interdisciplinary Institute ANITI funding, through the French “Investing for the Future
PIA3” program under the Grant agreement n◦ ANR-19-PI3A-0004.

References

[1] Blanchini, F. (1999). Set invariance in control. Automatica, 35(11):1747-1767.

[2] Chen, M., Herbert, S. L., Vashishtha, M. S., Bansal, S., & Tomlin C. J. (2001). ”De-
composition of Reachable Sets and Tubes for a Class of Nonlinear Systems,” in IEEE
Transactions on Automatic Control, vol. 63, no. 11, pp. 3675-3688.

[3] Chesi, G. (2011). Domain of attraction; analysis and control via SOS programming.
Lecture Notes in Control and Information Sciences, Vol. 415, Springer-Verlag, Berlin.

[4] Cormen T. H., Leiserson C. E., Rivest R. L. & Stein C. (2001). Introduction to Algo-
rithms, Second Edition. MIT Press and McGraw-Hill.

[5] Dellnitz, M., & Junge, O. (2002). Set oriented numerical methods for dynamical systems,
in Handbook of Dynamical Systems, Vol. 2 , North-Holland, Amsterdam, 221-264.

[6] Fantuzzi, G., & Goluskin, D. (2020). Bounding Extreme Events in Nonlinear Dynamics
Using Convex Optimization. SIAM J. Appl. Dyn. Syst., 19(3), 1823–1864.

[7] Giesl, P., & Hafstein, S. (2015). Review on computational methods for Lyapunov func-
tions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8), 2291-2331.

[8] Goluskin, D. (2018). Bounding extreme values on attractors using sum-of-squares opti-
mization, with application to the Lorenz attractor. arXiv preprint arXiv:1807.09814.

[9] Henrion, D., Korda, M., & Lasserre J. B. ”Moment-sos Hierarchy, The: Lectures In
Probability, Statistics, Computational Geometry, Control And Nonlinear PDEs”. Vol.
4, World Scientific, 2020.

[10] Henrion, D., & Korda, M. (2014). ”Convex Computation of the Region of Attraction of
Polynomial Control Systems” in IEEE Transactions on Automatic Control, vol. 59, no.
2, pp. 297-312, Feb. doi: 10.1109/TAC.2013.2283095.

33



[11] Korda, M. (2020). Computing controlled invariant sets from data using convex opti-
mization. SIAM Journal on Control and Optimization, vol. 58, no. 5, pp. 2871-2899.

[12] Korda, M., Henrion, D., & Jones, J. N. (2014). Convex computation of the maximum
controlled invariant set for polynomial control systems. SIAM J. CONTROL OPTIM.,
52(5), pp. 2944-2969.

[13] Korda, M., Henrion, D., & Jones, C. N. (2014). Controller design and region of attraction
estimation for nonlinear dynamical systems. IFAC Proceedings Volumes Volume 47,
Issue 3, Pages 2310-2316.

[14] Korda, M., Henrion, D., & Jones, C. N. (2013). Inner approximations of the region of
attraction for polynomial dynamical systems. IFAC Proceedings Volumes Volume 46,
Issue 23, pages 534-539.

[15] Lasserre, J. B. (2001). Global optimization with polynomials and the problem of mo-
ments. SIAM Journal on optimization, 11(3), 796-817.

[16] Lasserre, J. B. (2009). Moments, positive polynomials and their applications. Imperial
College Press, London, UK.

[17] Oustry, A., M. Tacchi, M., & Henrion, D. (2019). Inner approximations of the
maximal positively invariant set for polynomial dynamical systems. arXiv preprint
arXiv:1903.04798.

[18] Putinar, M. (1993). Positive polynomials on compact semi-algebraic sets. Indiana Univ.
Mathematics Journal, 42, pp. 969-984.

[19] Robinson, J. C. (2001). Infinite-Dimensional Dynamical Systems. An Introduction to
Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University
Press.

[20] Schlosser, C., & Korda, M., (2020). Converging outer approximations to global attrac-
tors using semidefinite programming. arXiv preprint arXiv:2005.03346

[21] Tacchi, M., Cardozo, C., Henrion, D., & Lasserre, J. B. (2019). Approximating regions of
attraction of a sparse polynomial differential system. arXiv preprint arXiv:1911.09500.

[22] Valmorbida, G., & Anderson, J. (2017). Region of attraction estimation using invariant
sets and rational Lyapunov functions. Automatica, Elsevier, 2017, 75, pp.37-45.

[23] Waki, H., Kim, S., Kojima, M., & Muramatsu, M. (2006). ”Sums of squares and semidef-
inite program relaxations for polynomial optimization problems with structured spar-
sity”. SIAM Journal on Optimization, 17(1), 218-242.

[24] Wang, J., Magron, V., Lasserre, J.B., & Mai, N.H.A. (2020). CS-TSSOS: Cor-
relative and term sparsity for large-scale polynomial optimization. arXiv preprint
arXiv:2005.02828.

[25] Zubov, V. I. (1964). Methods of A. M. Lyapunov and their application. Noordhoff,
Groningen.

34


	Notations
	Setting and preliminary definitions
	Main result summary

	Sparse dynamics: the prototype setting
	Sparse representations for the reachable set, the RoA, MPI set and GA
	A decoupling procedure for approximating the ROA, MPI set and GA
	More general graph structures
	Selecting a partition

	Structured semidefinite programming outer approximations
	Linear program representations for the ROA, MPI set and GA
	Semidefinite programs for the ROA, MPI set and GA
	The main algorithm and main theorem
	Sparse improvement

	Discrete systems
	Numerical examples
	Cherry structure
	Tree structure

	Conclusion
	Appendix: proof of Lemma 2
	Acknowledgement

