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MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Cr�eteil, F-77454 Marne-la-Vall�ee, France

ABSTRACT:
Analytic analysis and parametric investigation are employed to study and compare metamaterial properties of two

types of composite metasolids. Metasolids are composed of either an elastic inclusion or a rigid core coated by an

elastic material, embedded in a stiff matrix. For these types of materials, results related to cylindrical as well

as spherical inclusions are presented. Such mono-inclusion two-component and bi-inclusion three-component

metasolids have been previously known to exhibit negative mass density near local-resonance frequencies. Through

a unified formulation, it is analytically shown how and why adding a rigid mass inside the elastic inclusion to make

a bi-inclusion three-component material can dramatically change the homogenized property of the resultant inclusion

and increase the tunability of the composite, particularly in terms of local-resonance frequencies and the associated

metamaterial-effect frequency bandwidth. In this way, concerning distinctly sound and vibration insulation, a low-

frequency metamaterial effect with larger bandwidth can be designed via an inverse problem using a simplified

mass-spring model. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0002424

(Received 30 January 2020; revised 7 October 2020; accepted 8 October 2020; published online 25 November 2020)

[Editor: Michael R. Haberman] Pages: 3065–3074

I. INTRODUCTION

Elastic metamaterials or metasolids are composite struc-

tures with subwavelength units that exhibit extreme

frequency-dependent macroscopic parameters. In particular,

the first metasolid has been designed through locally resonant

structural units made of high-density and stiff lead sphere

coated with a soft material that are embedded in a stiff mate-

rial.1 This three-component composite has been shown by an

analytic model to produce negative mass density near local-

resonance frequencies.2 The model is based on the assump-

tion that the solid core as well as the host medium are rigid

and only the soft cladding is elastic. The first step to perform

homogenization according to this scheme is to obtain the

effective mass density qe of the entire inclusion that includes

the hard lead (medium 3) and the soft coating (medium 2).

To do so, dynamic equilibrium is considered between the

homogenized medium (coreþcladding), which undergoes an

acceleration of �x2Ub, e.g., in the direction ex for the cylin-

der or ez for the sphere (Fig. 1), and the resultant of the con-

tact forces on the interface of the matrix and the inclusion.

This is translated into the following equation:

�x2 q3c
e ðxÞVe Ub ¼

ð
S
r:n dS; (1)

where Ve is the volume of the entire inclusion, n is the nor-

mal vector outward from the surface of the medium 2 to the

medium 1, and the integration is performed over the surface

of the inclusion S, which is the interface between the

medium 1 and medium 2. The superscript 3c is used to refer

to three-component materials. The stress tensor in the elastic

medium 2, r, is related to the displacement field u in the

same medium, via r ¼ l2ð$uþ $uTÞ þ k2ð$:uÞI , with uT

the transpose of u, I the identity matrix, and k2 and l2 are

the Lam�e parameters. The effective parameter q3c
e can be

calculated once the stress tensor and, thereby, the micro-

scopic displacement field in medium 2 is determined. This

can be achieved by solving the microscopic elastodynamic

equation of motion in the coating material. The second and

final step is to specify the effective mass density of the

whole structural unit, including the matrix, through a simple

mixing law,

q3c
eff ðxÞ ¼ ð/2 þ /3Þq3c

e ðxÞ þ /1q1; (2)

where /1; /2, and /3 are the filling fraction of the matrix,

the cladding, and the rigid core, respectively, such that

/1 þ /2 þ /3 ¼ 1. In our previous paper, the same model

and homogenization method was employed in order to study

the rotational modes.3

A commonly used technique for determining effective

properties of metasolids is based on plane wave expansions

(PWE) of fields and Fourier space representation of material

properties.4,5 Recent homogenization development6 employ-

ing PWE involves space nonlocality7,8 according to the

Willis viewpoint of constitutive equations.9 Another broad

effective medium method for homogenization to capture

local resonances in metasolids is through coherent potential

approximation (CPA)10 based on multipole expansion mini-

mizing scatterings in the long-wavelength limit.11,12 With

similar ideas, an enhanced scheme has been developed to

obtain the effective properties of the same type of materials
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in a wider frequency band by matching the lowest-order

scattering amplitudes that arise from the unit cell with that

of the homogenized material.13 By multipole expansion,

scattered waves from structural units can be displayed by

superposition of modes with different angular momenta.

Within this representation, effective mass density can be

associated with the dipole term, and the bulk modulus has

the monopole symmetry. Although the multipole method is

less flexible than the PWE method in terms of the geometry

of the structural unit, it may be more appropriate to obtain

analytic results regarding effective-medium parameters.

Recently, asymptotic homogenization methods have been

developed to describe the dynamics of a two-component com-

posite material made of spherical or cylindrical soft inclusions

embedded in a stiff matrix.14,15 In this paper, it will be shown

that these results at microscopic scale can be obtained as the

particular case of elastodynamic analytical results from three-

component materials. To do so, the analytic model that has

been previously studied2,3 and elements of which were men-

tioned above is briefly recalled and then employed to show

that existing results for two-component materials can be

derived from those for three-component materials in the limit

the geometrical form factor c � b=a� 1 [Fig. 1(a)]. It will

be then demonstrated that, within this geometrical limit, at

macroscopic scale, where the material is homogenized, the

analytical expressions of the frequency-dependent effective

densities of the two-component materials results from those of

the three-component ones. As such, using this approach, the

dynamics of the two and three component materials are

explicitly described through a unified and coherent formula-

tion, and the difference between the physics emerged from

these material types can be grasped. The comparative analy-

sis is carried out for materials with spherical inclusions con-

stituting a three-dimensional (3D) system, as well as with

cylindrical inclusions in the form of a two-dimensional (2D)

system.

Also, the systematic comparison of the two-component

and three-component materials presented in this paper high-

lights the practical advantages of the latter compared to the

former. In particular, it will be shown that contrary to the

three component materials, the desired elastic properties for

the inclusion of two-component materials, if not impossible,

are difficult to obtain with a single elastic medium.

It is now well known that local resonances can create

metamaterial phenomena at macroscale: in this case, nega-

tive effective mass density near the resonance frequencies

where bandgaps appear. By comparing the two- and three-

component materials, it will be also clarified how the three-

component materials can produce a macroscopic dynamic

response richer than that of the two-component ones; includ-

ing in particular the generation of a low-frequency reso-

nance that is associated with the motion of the rigid core.

This resonance phenomenon may be more interesting for

applications such as sound and vibration insulation because

it can occur at lower frequencies and, at the same time, with

a possible wider frequency band. It will be explained that

local-resonance frequencies are relatively high with two-

component materials, because even in the case where the

elasticity coefficients related to the matrix and the inclusion

are sufficiently contrasted, the contrast may not exist for the

mass densities and vice versa. With such materials, it is

indeed very difficult to find, in practice, a low rigidity, and

at the same time, a high mass density for the elastic material

used as inclusion inside the stiff matrix. It will be shown

that this could be feasible by dissociating these two material

properties, i.e., softness for the cladding and mass density

for the coated rigid core, with a three-component material

whose inclusion is composed of two phases.

Additionally, the discrete mass-spring model3,16,17 that

was validated in Ref. 3 allows the quick construction of ana-

lytical analysis in terms of determination of the first (lowest)

resonance frequency as well as estimation of the bandgap

FIG. 1. Illustration of a unit cell with cylindrical or spherical inclusion in the xy plane (a), and coordinate system in 3D space (b). The position vector

OM ¼ rer þ zez in media with cylindrical inclusions (2D system) and OM ¼ ReR in media with spherical inclusions (3D system). The gradient operator in

the 2D system is written as $ ¼ erð@=@rÞ þ ehð1=rÞð@=@hÞ þ ezð@=@zÞ, and in the 3D system, $ ¼ eRð@=@RÞ þ euð1=RÞð@=@uÞ þ ehð1=R sin uÞð@=@hÞ.
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width created by the material local resonance. This aspect

will be demonstrated in the paper through a parametric

study. The method facilitates the design of the structure via

solving the inverse problem and also makes it possible to

properly optimize the acoustic properties of such a structure

with respect to an application of interest, particularly in

terms of the resonance frequency and the frequency band-

width where the metamaterial effect occurs. Indeed, the

mass-spring model enables us to find the micro-structural

characteristics (inverse problem) in order to then produce

via the elasto-dynamic model a metasolid with the targeted

macro-structural properties (direct problem). Thus, in brief,

the goal of this paper is to compare the homogenized

dynamic properties of two-component and three-component

materials in terms of first origin and physical modeling, and

second, parametric study. The latter leads to the formulation

of an inverse problem that allows the design of a metasolid

with the desired properties.

In Sec. II, the results arising from analytic modeling

based on microscopic elastodynamic equations, related to

three-component and two-component metamaterials both in

2D and 3D systems, are presented and compared, followed

by the comparative analysis of effective mass densities

based on analytic modeling at macroscale associated with

these two material types. In Sec. III, the analytic results and

their consequences are illustrated through an example, and a

parametric study is presented before its application to clarify

a method to design optimal structures in Sec. IV.

Concluding remarks are given in Sec. V.

II. COMPARISON OF TWO-COMPONENT
AND THREE-COMPONENT MATERIALS

Concerning two-component metasolids, based on an

asymptotic method, it has been demonstrated in Ref. 14 that,

in the long-wavelength regime, where � � ‘=L� 1, with ‘
being the size of the structural unit and L the order of the

magnitude of the wavelength of the wave propagating in the

material, the local resonances occur under certain conditions

with respect to microscopic material properties. In particu-

lar, the mass densities of the matrix and the inclusion must

be of the same order of magnitude, while the ratio of the

bulk moduli of the matrix and the inclusion must be of the

order Oð�2Þ.18–20 This means the stiffnesses of matrix and

the inclusion should be highly contrasted. In other words,

the mass density of the inclusion must be close to that of the

matrix while being much softer than the matrix. Indeed,

practically in terms of choice of the materials in a two-

component composite, it is not easy that these two condi-

tions are satisfied simultaneously.

Here, it is investigated if the results from two-component

material can be found as the limit of those from the three-

component material. To do so, wherever the explicit results

related to two-component material are available in Refs. 14

and 15, in particular concerning the microscopic displacement

fields in the monophasic elastic inclusion as well as the mate-

rial local-resonance frequencies, a comparison is carried out

between them and those arising from taking the limit of the

dynamics of three-component materials. It is expected that

the three-component material is transitioned to the two-

component material when the diameter of the lead core a
becomes much smaller than the diameter of the whole inclu-

sion b [Fig. 1(a)]. This limit can be expressed in terms of the

form factor c ¼ b=a as c� 1.

A. Microscopic description

In thee-component material, the equation of motion in

the elastic coating is written as

ðk2 þ 2l2Þ$ð$ � uÞ � l2$� ð$� uÞ ¼ �q2x
2u; (3)

where q2 is the mass density of medium 2. The displacement

fields can be calculated from two potential fields U and W,

defined such that2,3

u ¼ $Uþ $�W ð$ �W ¼ 0Þ; (4)

which are solutions to the following Helmholtz equations

when the relation [Eq. (4)] is substituted into Eq. (3):

$2Uþ h2U ¼ 0; (5a)

$2Wþ j2W ¼ 0: (5b)

In the above equations, h ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=ðk2 þ 2l2Þ

p
and j

¼ x
ffiffiffiffiffiffiffiffiffiffiffiffi
q2=l2

p
are the wavenumbers associated with the lon-

gitudinal and transverse elastic waves, respectively. In the

following, analytic solutions shall be provided to Helmholtz

Eq. (5) with the displacement-continuity boundary condi-

tions for two special cases of major interest. It is convenient

to use the coordinate system shown in Fig. 1 for both cylin-

drical and spherical coordinates, applied for materials with

cylindrical and spherical inclusions, respectively, as these

materials are studied in the paper in parallel. Thus, notice

that in the coordinate system of Fig. 1(b), the angle h is used

in an unusual way in spherical coordinates with its operator

r defined in the figure’s caption; in addition, the position

vector and its associated unit vector are denoted by R and

eR, respectively. Owing to their symmetry property, materi-

als with cylindrical inclusions are only studied in a cross-

sectional plane perpendicular to their symmetry axis, here in

the x–y plane. That is why they will be often called 2D

systems in the paper. The boundary conditions for the dis-

placement field in the 2D system are written as Uaex; a ¼ a;
b, at the surfaces r ¼ a. This can be expressed according to

cylindrical coordinates as

ujr¼a ¼ Ua cos her � sin hehð Þ: (6)

For the 3D systems, the boundary conditions are Uaez at the

surfaces R ¼ a; a ¼ a; b, which becomes

ujR¼a ¼ Ua cos ueR � sin ueuð Þ (7)

in a spherical coordinate system.
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The form of the solutions to the Helmholtz boundary

value problems are given in Appendix A, involving the

unknown constants fA1;B1;E1;F1g for the 2D system, and

fa1; b1; e1; f1g for the 3D system to be determined by using

the boundary relations at the interfaces of each two phases

in the structural unit.

The components of the displacement field are found,

according to cylindrical coordinates, for the 2D system as

ur ¼
@U
@r
þ 1

r

@Wz

@h
¼ LðrÞ cos h; (8)

with

LðrÞ ¼ 1

r

�
hr A1J01ðhrÞ þ B1Y01ðhrÞ
� �

þE1J1ðjrÞ þ F1Y1ðjrÞ
�

uh ¼
1

r

@U
@h
� @Wz

@r
¼ �MðrÞ sin h; (9)

with

MðrÞ ¼ 1

r

�
A1J1ðhrÞ þ B1Y1ðhrÞ

þjrðE1J01ðjrÞ þ F1Y01ðjrÞÞ
�
:

In the above equations and in the following, the derivatives

of the Bessel functions are kept, but it is known that these

derivatives can be easily expressed in terms of the Bessel

functions, e.g., xZ01ðxÞ ¼ xZ0ðxÞ � Z1ðxÞ ¼ Z1ðxÞ � xZ2ðxÞ.
The components of the displacement field for the 3D

system according to spherical coordinates are expressed as

uR ¼
@U
@R
þ 1

R sin u
@

@u
sin uWhð Þ ¼ lðRÞ cos u; (10)

with

lðRÞ ¼ 1

R
hR a1j01ðhRÞ þ b1y01ðhRÞ
� ��

þ2 e1j1ðjRÞ þ f1y1ðjRÞð Þ�;

uu ¼
1

R

@U
@u
� 1

R

@

@R
RWhð Þ ¼ �mðRÞ sin u; (11)

with

mðRÞ ¼ 1

R
a1j1ðhRÞ þ b1y1ðhRÞ þ e1ðj1ðjRÞ½

þjR j01ðjRÞÞ þ f1ðy1ðjRÞ þ jR y01ðjRÞÞ�:

As before in the above, the derivatives of the spherical

Bessel functions can be expressed in terms of the Bessel

functions, e.g., xz01ðxÞ ¼ xz0ðxÞ � 2z1ðxÞ ¼ z1ðxÞ � xz2ðxÞ.
By using the relations associated with the boundary

conditions in 2D materials, i.e., LðaÞ ¼ Ua ¼ MðaÞ, and 3D

materials, i.e., lðaÞ ¼ Ua ¼ mðaÞ, with a ¼ a; b, it is easy to

deduce the linear algebraic systems allowing the complete

determination of the constants that are involved in the

solutions to Helmholtz equations and subsequently in the

above expressions of the displacements fields in 2D and 3D

systems (Appendix B).

Finally, the resonance frequencies are obtained by set-

ting the determinants of the matrix D [see Eq. (B1)] and the

matrix d [see Eq. (B2)] in Appendix B, equal to zero,

regarding the 2D system and 3D system, respectively. It is

noted that these resonance frequencies are related to

medium local-resonances that occur in the soft cladding.

To find exactly the corresponding expressions of Eqs.

(A2) and (A3) solutions to Helmhotz Eq. (5) in Appendix A,

for the case of two-component materials as in Ref. 14, it is

only needed to make the functions Y1 and y1 disappear in

these equations. Indeed, given that the displacement fields

must be finite at the center of the unit cell, when the rigid

core disappears, in two-component materials following the

same procedure, there will be only two unknown constants

to be determined instead of four constants involved in

Eqs. (A2) and (A3) in Appendix A for the three-component

materials. As such, in the case of two-component materials,

the order of the equations to be solved and the associated

matrices [Eqs. (B1) and (B2) in Appendix B] is reduced,

and thereby it is easier to obtain explicit analytic expres-

sions for the displacement fields. It is also to be noted that in

two-component materials, the interfaces between different

phases are reduced to only one interface (c ¼ b=a� 1),

which results in only one boundary condition inside the

structural unit. When c� 1, the following expressions are

obtained for the 2D system:

LðrÞ ¼ � hjb2Ub

D2D
J01ðhrÞJ2ðjbÞ þ J1ðjrÞ

jr
J2ðhbÞ

� �

MðrÞ ¼ � hjb2Ub

D2D

J1ðhrÞ
hr

J2ðjbÞ þ J01ðjrÞJ2ðhbÞ
� �

;

where

D2D ¼ �
hjb2

2
J0ðhbÞJ2ðjbÞ þ J0ðjbÞJ2ðhbÞ½ �;

and for the 3D system,

lðRÞ ¼ � hjb2Ub

D3D
j01ðhRÞj2ðjbÞ þ 2j1ðjRÞ

jR
j2ðhbÞ

� �

mðRÞ ¼ � hjb2Ub

D3D

j1ðhRÞ
hR

j2ðjbÞ þ ðxj1Þ
0ðjRÞ

jR
j2ðhbÞ

� �
;

where

D3D ¼ �
hjb2

3
j0ðhbÞj2ðjbÞ þ 2j0ðjbÞj2ðhbÞ
� �

:

For materials with cylindrical inclusions, it should be

pointed out that the above expressions for L(r) and M(r) are

used in Eqs. (8) and (9) to describe the translational dis-

placement fields inside the inclusion, only in the x–y plane

(Fig. 1).
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B. Macroscopic description

As it was explained earlier in Sec. I, the first step of the

homogenization approach for three-component material

consists of finding the effective mass density of the core and

the cladding, i.e., qe, through Eq. (1). After taking into

account the equation of motion for the core material and

finding the microscopic displacement field, the following

results are obtained for the 2D system:

q3c
e ðxÞ ¼

�1

px2bUb

ð2p

0

rrr cos h� rrh sin hð Þ dh

¼ q2

bUb
A1J1ðhbÞ þ B1Y1ðhbÞ½

þ E1J1ðjbÞ þ F1Y1ðjbÞ�; (12)

and for the 3D system,

q3c
e ðxÞ ¼

�3

2x2bUb

ðp

0

rRR cos u� rRu sin uð Þ sin u du

¼ q2

bUb
a1j1ðhbÞ þ b1y1ðhbÞ þ 2e1j1ðjbÞ½

þ 2f1y1ðjbÞ�: (13)

As it was mentioned before, the ensembles of constants

ðA1;B1;E1;F1Þ and ða1; b1; e1; f1Þ involved in the above

equations are known through solving Eqs. (B1) and (B2),

respectively. Then, for both 2D and 3D systems, it is imme-

diate to determine the effective mass density of the whole

structure by the simple mixing law [Eq. (2)].

Applying the limit c� 1, leads to the following

explicit expressions that are related to two-component mate-

rials. For the 2D system, it reads

q2c
e ðxÞ¼q2 1þ 2J2ðhbÞJ2ðjbÞ

J0ðhbÞJ2ðjbÞþ J0ðjbÞJ2ðhbÞ

	 

; (14)

and for 3D system,

q2c
e ðxÞ¼q2 1þ 3j2ðhbÞj2ðjbÞ

j0ðhbÞj2ðjbÞþ2j0ðjbÞj2ðhbÞ

	 

; (15)

where the superscript 2c refers to two-component materials.

As it is expected, in the static regime when x! 0, the

effective mass density of the biphasic inclusion q3c
e ð0Þ

¼ ½1=ð1� /1Þ�ð/2q2 þ /3q3Þ, and that of the monophasic

inclusion q2c
e ð0Þ ¼ q2. Indeed, in the static regime, it is clear

that q3c
0 � q3c

eff ð0Þ ¼ /1q1 þ /2q2 þ /3q3 and q2c
0 � q2c

eff ð0Þ
¼ /1q1 þ ð1� /1Þq2. Regarding the relation in Eq. (2),

obviously, in the absence of the rigid mass (medium 3), the

frequency-dependent effective mass density of the whole

structure of the two-component material reads

q2c
eff ðxÞ ¼ /1q1 þ ð1� /1Þq2c

e ðxÞ: (16)

III. MATERIAL EXAMPLE AND PARAMETRIC STUDY

Here, we illustrate the analytical results of Sec. II by

taking an example of the three-component as well as the

two-component materials both with spherical inclusions

and, with the appropriate material-property and geometrical

similarities, allowing for a comparison of their metamaterial

characteristics. We then proceed to perform a parametric

study to analyze metamaterial properties in terms of geomet-

rical configuration of this class of metasolids.

Figure 2 shows the effective density of a two-

component metasolid and a three-component one with

spherical inclusions. The structural properties of the two-

component metasolid, composed of a stiff matrix and an

elastic inclusion, are presented in Table I. The components

of this material are chosen as in Ref. 14. Obviously, these

properties are chosen such that they satisfy the conditions

that were explained in Sec. II, allowing us to consider the

matrix as a rigid body. The length of the unit cell [see

Fig. 1(a)] ‘ ¼ 4:06 cm, the radius b of the spherical inclu-

sion is 2 cm, and its volume fraction is 50%. Regarding the

three-component material, the same material properties are

chosen as those for the two-component one, and a lead core

(Table I) of radius a¼ 1.32 cm with a volume fraction of

/3 ¼ 14:2% is added at the center of the unit cell

[Fig. 1(a)]. Effective mass densities for the three-component

and the two-component materials are calculated via Eqs.

(13) and (15), respectively. The first resonance frequency

for the two-component material is at 937 Hz, whereas that

produced by the three-component material is at 367 Hz.

Thus, it can be seen that while keeping the same geometrical

parameters in terms of the size of the unit cell and the inclu-

sion, adding a rigid mass at the center of the unit cell could

make the metamaterial effect—that means the emergence of

the negative mass density—occur at a significantly lower fre-

quency. Indeed, in a three-component metasolid, this particular

local-resonance effect is due to the motion of the rigid core. It

is worth noting that this is not necessarily a general result.

Indeed, when c is decreased, according to the mass-spring

FIG. 2. (Color online) Normalized effective mass density related to two-

component and three-component materials with spherical inclusions. First

metamaterial bands Df1 and Df2, where the effective mass densities become

negative, are shown by green lines for both types of metasolids.
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model,3 both the mass and the stiffness of the spring (analo-

gous to the cladding) are decreased. As the mass in the mass-

spring model decreases with c faster than the stiffness, the res-

onance frequency associated with the motion of the rigid mass

is shifted to higher frequencies (see the expression of the reso-

nance frequency for spherical inclusions in Table II and Fig.

8 in Ref. 3), while the resonance frequency related to the

motion inside the cladding is relatively stable.

Given the size of the unit cell and the inclusion, the rigid

mass has been placed inside the inclusion so that the first res-

onance frequency, and thereby the frequency of the first meta-

material effect, would be minimized. To do so, the mass-

spring model and the explicit expression of the resonance fre-

quency within this model in Table II (Ref. 3) are used to

determine the form factor c that here is found to be 1.52.

It is also to be noted that within the frequency band

shown in Fig. 2, there are more resonance effects associated

with the two-component metasolid compared with the three-

component one; all, evidently, are caused by the motion

inside the homogeneous soft inclusion. It has been previ-

ously explained that the second resonance effect at about

2407 Hz for the three-component material occurs inside the

cladding.3 The greater number of resonance effects with the

two-component metasolid is simply due to the fact that the

volume of the soft elastic material, capable of generating

several resonances at low frequencies in such composite, is

larger than that involved in three-component material.

Remarkably, it can be further observed that not only the first

local resonance of the three-component material appears at

lower frequency compared with that of the two-component

material, but also its metamaterial frequency band Df , is

larger (see Fig. 2, Df1 ¼ 132 Hz, Df2 ¼ 53 Hz).

These results show the relevance of introducing an

additional tuning parameter, that is the volume fraction of

the biphasic inclusion, in order to optimize the homogenized

properties. Let us see through Fig. 3 how far we can pursue

optimal tunability. The curve in Fig. 3 shows the evolution

of the metamaterial frequency bandwidth Df as a function

of the resonance frequency f0 of the rigid body mode for the

three-component metasolid, with f0 being the lower limit of

the frequency band where the effective mass density is nega-

tive. The curve is parameterized by the form factor c, which

evolves increasingly by starting from 1.01 (top right) to 6.2

(bottom right). The starting value for c clearly corresponds

to the configuration where the cladding is filled by the lead

core and the inclusion is almost entirely rigid. It is seen that

for a given choice of inclusion components and its volume

fraction in a given matrix, it is not possible to achieve, at the

same time, both the lowest resonance frequency and the

maximum of bandwidth. Indeed, if the aim is to have the

resonance frequency as low as possible, then there is an

optimal c value, c ¼ 1:52; however, in this case, the band-

width is far from its largest possible value. To have a larger

bandwidth, the size of the rigid mass in the inclusion should

be increased, accepting that the resonance frequency is

shifted upwards in the spectrum. Furthermore, as c increases

up to the value 1.52, with a fixed volume fraction of the

inclusion the size of the rigid core is decreased, and thereby

the metasolid becomes lighter. In this case, both the reso-

nance frequencies and their associated metamaterial band-

widths decrease. For large values of c and in the limit

c� 1, the inclusion consists of only elastic material and the

metasolid produces low-frequency negative mass densities

with very small bandwidths, in accord with what was seen

earlier through Fig. 2 with the red curve. These observations

TABLE I. Material properties of the three-component unit-cell.

Material Aluminaa (matrix) Polystyrene (cladding) Lead (core)

k (Pa) 1:4� 108 2:54� 105 4:23� 1010

l (Pa) 1:4� 108 9:01� 105 1:49� 1010

q (kg:m�3) 3:95� 103 9� 102 11:6� 103

aOxide of aluminum (Al2O3).

TABLE II. Expressions of the resonance frequencies and their frequency bandwidths. The quantity �f0 is defined as �f0 ¼ ð1=2pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2=ðq3b2Þ

p
.
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FIG. 3. (Color online) Evolution of the metamaterial bandwidth with the

resonance frequency. The curve is parameterized by the form factor c. The

red arrows indicate the direction of increasing c.
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imply a compromise to be found depending on the type of

application of such metasolids; however, this predictive tool

allows targeting the values in question without heavy calcu-

lations, as it is based on the mass-spring model that was val-

idated in our previous paper.3

IV. DESIGN OF OPTIMAL STRUCTURES

The observations and analysis of Sec. III leads to sum-

marize a methodology describing the inverse problem

(downscaling) to determine the optimal material parameters

at the micro level. At the macro level, via solving the for-

ward problem (upscaling), the change in the performance of

the optimal metasolids is then shown compared to some typ-

ical cases that are reported in the literature. This suggests a

choice of material components and certain geometrical

parameters at the micro level. It is shown that by keeping

the initial material choices, the tunability and performance

of the metasolids can be significantly improved with respect

to the resonance frequency and width of the frequency band

for the metamaterial effect.

The methodology is based on the links established

between data at micro level of the structure and those at the

macro level where the material is considered as homoge-

neous. The micro-level data are the geometrical ones: three

independent parameters among fa; b; ‘; c;/ig and material

properties fdensities qi;moduli of elasticity ki; lig, i¼ 1, 2,

3, i.e., three constants per phase that should, indeed, satisfy

the conditions of contrast reported within the first para-

graphs of Sec. II). The macro-level data of interest are con-

tained in the evolution of the effective density qeff with x—

in particular, the resonance frequency f0 and metamaterial

frequency bandwidth Df , which will be investigated here.

In order to compare the performance of the two-compo-

nent14,15 versus three-component metasolids, or simply opti-

mize the behavior of the three-component effective

metasolids,2 the micro parameters should be determined in

accordance with a targeted macro-structural behavior. This

raises a downscaling or inverse problem that is quite diffi-

cult to solve by the continuous elastodynamic description

that was presented in Sec. II B. The simplified mass-spring

model3 is therefore used to circumvent this difficulty, adopt-

ing the following algorithm:

(1) For the homogenized medium, criteria are imposed on

the selected target quantities [here, f0 and Df from

qeff ðxÞ=q0].

(2) These target quantities are imported to the associated

homogeneous medium that is homogenized based on the

mass-spring model within which we have ½meff ðxÞ�=m0

¼ ½1� ðx=xcÞ2�=½1� ðx=x0Þ2�, with xc ¼ x0 þ Dx

¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m3=m1

p
, x0 being the angular frequency of

the first local resonance, Dx the bandwidth of the metama-

terial effect, m1 (respectively, m3) the mass of the rigid

inclusion (respectively, matrix), and m0 � m1 þ m3 the

static limit of the effective mass meff ðxÞ. It is through this

relation that the link between the two homogeneous media,

homogenized by the elastodynamic model (Sec. II B) and

that by the mass-spring model,3 is established. Indeed,

ðmeff ðxÞ=m0Þmass-spring ’ ðqeff ðxÞ=q0Þelastodynamic at low

frequencies including the first resonance frequency,3

which makes it possible from now on to envisage solving

the inverse problem in a much easier way.

(3) Downscaling is performed then from the effective

medium homogenized by the mass-spring model; for

example, searching c which minimizes f0. The minimi-

zation of f0 with respect to c is carried out through the

simple explicit relation given in the first row of Table II

(search for a minimum of a function of a single

variable).

(4) Once the micro parameters are determined (by the mass-

spring model), an iterative process is initiated to obtain

the properties of the effective medium homogenized in

the sense of elastodynamic model by using Eqs. (12)

and (13) to find f0 and Df according to the elastody-

namic homogenization scheme. In fact, since the inverse

problem in the elastodynamic model is too complicated

to solve, we thus simply calculate several solutions iter-

ating the forward elastodynamic problem in the neigh-

borhood of a “good” initial value provided by the

solution of the inverse problem based on the mass-

spring model. The mass-spring model has precision

issues, especially for predicting Df , which requires

returning to the macroscale via the elastodynamic model

to examine the effective behavior imposed by the choice

of the micro-structure, such as c minimizing f0. In what

follows in the paper, this step is operated in two ways:

(4-a). The inverse problem is to find c as a micro

parameter minimizing f0 as a macro target quantity; all

other parameters being fixed. An example is presented

in Fig. 2. In this case, one single iteration from this

value of c is enough to obtain the desired f0 based on

the elastodynamic model. It is shown that a three-

component material is more efficient than a two-

component material since, with the same material

components and geometrical parameters, a much lower

f0 can be achieved.

(4-b). The target macro quantities are f0 and Df , while

c is the only micro parameter. A compromise for a rela-

tively low f0 and a relatively large Df is searched.

Several iterations are performed from the initial c and

by decreasing it (as suggested by the parametric study

of the type presented in Fig. 3). Fixing thresholds in

advance, the iterations are stopped when a sufficiently

large Df and f0 that is not too high are reached.

Comparing two-component and three-component mate-

rials, a first example was discussed in Sec. III in which

material components (Table I) the length of the periodic unit

cell ‘ and the size of the mono-phasic spherical inclusion

represented by b have been extracted from Ref. 14. Based

on these inputs, the three-component material is made by

adding a lead core at the center of the inclusion. In order to

have the minimum resonance frequency for the new three-

component material (see step 4-a of the above algorithm),
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the inverse problem leads to the micro-parameter c ¼ 1:52.

Thus, initial values in the two-component metasolid are

improved from ðf0;Df Þ ¼ ð937; 25ÞHz to the values in the

optimized case for the three-component one: ðf0;Df Þ
¼ ð367; 64ÞHz. As such, f0 is divided by almost 3 and Df is

multiplied by more than 2. The bandwidth becomes larger at

the end without being considered as an optimization param-

eter in this procedure.

The same optimization procedure is applied with input

quantities from Ref. 15 for a two-component metasolid.

Material components are reported in Table III, with ‘ ¼ 1

mm and b¼ 0.415 mm, i.e., volume fraction of 54% for, this

time, the cylindrical inclusions. As before, to construct the

three-component metasolid, we add a lead core (Table III)

at the center of the inclusion. Comparison of the two-

component and the optimized three-component materials

makes it possible to change the values of the resonance fre-

quency and metamaterial bandwidth to ðf0;Df Þ ¼ ð129; 75Þ
kHz from those in Ref. 15ðf0;Df Þ ¼ ð268; 23Þ kHz. Again,

it is seen that the resonance frequency is decreased, and

the width of the metamaterial-effect frequency band is

increased.

The third example relates to the three-component meta-

solid discussed in Ref. 2 with material properties shown in

Table IV. The geometrical configuration for spherical inclu-

sions are ‘ ¼ 15:5 mm and b¼ 7.5 mm (volume fraction of

40%) and for cylindrical inclusions, ‘ ¼ 21 mm and

b¼ 7.5 mm (volume fraction of 47%). With these materials

and geometrical parameters, for spherical inclusion, ðf0;Df Þ
¼ ð374; 230ÞHz, the form factor being c ¼ 1:5, while the

optimized value of the form factor c ¼ 2:04 minimizing the

resonance frequency leads to ðf0;Df Þ ¼ ð337; 83ÞHz. Hence,

with the choices in Ref. 2, a relative increase in the resonant

frequency of 11% but also a relative increase in bandwidth of

177% are observed. Comparison with Ref. 2 for the case of

cylindrical inclusions where c remains the same at 1.5 and

ðf0;Df Þ ¼ ð356; 280ÞHz, using the same optimization criteria

as before, results in ðf0;Df Þ ¼ ð312; 105ÞHz. That is, accord-

ing to the choices in Ref. 2, there is a relative increase of

14.1% in the resonance frequency with respect to the opti-

mized material and, at the same time, a relative increase of

167% in the bandwidth. It can be noted that the form factor

found as c ¼ 2:04 allows the resonance frequency to be

lowered compared to that corresponding to the initial three-

component configuration. However, it can be seen that

increasing the resonance frequency slightly higher than its

possible minimum value corresponds to a configuration

(c ¼ 1:5), which allows the bandwidth to be widened signifi-

cantly. This behavior with c and f0 could be noted through the

example illustrated in Fig. 3 in Sec. III.

This suggests exploiting a new optimization criteria

(see step 4-b of the algorithm) by setting a compromise for

low resonance frequency and wide bandwidth based on the

numerical values reported in Ref. 2. The new inverse prob-

lem can be thus defined as finding c such that f0 is 11% for

cylindrical and 14.1% for spherical inclusions, higher than

its minimum value, while increasing the metamaterial band-

width. If the first two examples, i.e., two-component materi-

als from Refs. 14 and 15 are reconsidered with the new

optimization criteria, the inverse problem generates a form

factor c ¼ 1:23 (instead of 1.52) regarding the optimized

tree-component version of the two-component metasolid

discussed in Ref. 14 (Table I), which by using the direct

elastodynamic equations yields ðf0;Df Þ ¼ ð408; 123ÞHz.

That means a relative increase of f0 of 11.2% and simulta-

neously a relative increase of Df of about 92% with respect

to the values produced by the initial optimization. Similarly,

with the metasolid from Ref. 15 (Table III), the new inverse

problem provides c ¼ 1:31 (instead of 1.79) to then achieve

the values of ðf0;Df Þ ¼ ð147; 145Þ kHz for the three-

component composite, which means a relative increase of

about 14% for f0 and that of 91% for Df with respect to the

values that were obtained based on minimization of the reso-

nance frequency.

V. CONCLUDING REMARKS

Further analyses were performed on metasolid proper-

ties of composite materials with structural units made of a

stiff matrix with either an elastic inclusion or an elastic

inclusion embedding a rigid mass inside itself. The essence

of this paper concerned the comparison of the homogenised

dynamics of a soft monophasic inclusion that is statically

homogeneous and a biphasic inclusion constituted of a rigid

core coated by an elastic material, each of which is embed-

ded in a stiff matrix. The effective-medium parameter that

describes the macroscopic behavior of these structures is the

effective mass density, which becomes negative near the

resonance frequency of the unit cell.

Thus, it was shown by an analytic model and parametric

analysis that bi-inclusion three-component materials could

provide a scope of material dynamics much larger compared

with that of the mono-inclusion two-component materials. It

was clarified that local-resonance frequencies are relatively

high with two-component materials because, even in the

case where the elasticity coefficients related to the matrix

and the inclusion are sufficiently contrasted, the contrast

may not exist for the mass densities and vice versa. With

such materials, it is indeed very difficult to find, in practice,

a low rigidity and, at the same time, a high mass density for

TABLE III. Material properties of the three-component unit-cell (Ref. 15).

Material Al (matrix) Polyvinyl chloride (cladding) Lead (core)

k (Pa) 5:74� 1010 1:6� 105 4:23� 1010

l (Pa) 2:7� 1010 4� 107 1:49� 1010

q (kg:m�3) 2:5� 103 1:5� 103 11:6� 103

TABLE IV. Material properties of the three-component unit-cell (Ref. 2).

Material Epoxy (matrix) Silicone (cladding) Lead (core)

k (Pa) 4:43� 109 6� 105 4:23� 1010

l (Pa) 1:59� 109 4� 104 1:49� 1010

q (kg:m�3) 1:18� 103 1:3� 103 11:6� 103
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the elastic material used as an inclusion inside the stiff

matrix. It was shown that this could be feasible by dissociat-

ing these two material properties, i.e., softness for the clad-

ding and mass density for the coated rigid core, with a three-

component material whose inclusion is composed of two

phases.

Additionally, in order to increase the bandwidth of the

metamaterial effect where the effective mass density is neg-

ative, a large volume fraction is required for the vibrating

part in opposition of phase with the matrix, which is easier

to implement with a three-component material. Also, a para-

metric study was performed to analyze the interplay

between the form factor—specifying the volume fraction of

the rigid mass and cladding, the metamaterial-effect band-

width, and the resonance frequency—which ultimately

allows, via an inverse problem, the design of metasolid with

desired properties.

Conclusively, adding a rigid mass inside the elastic

inclusion of the two-component material will significantly

increase the tunability of the composite material via enlarg-

ing the domain of inclusion dynamic properties and widen-

ing remarkably the range of values of material effective

mass density. This is interesting for various applications

such as acoustic and vibration insulation. The analysis

employed in this paper can be straightforwardly generalized

to treat poly-inclusion multi-component materials.
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APPENDIX A: SOLUTIONS TO HELMHOLTZ
EQUATIONS

Solving the resulting Helmholtz Eq. (5) and regarding

the mirror symmetry about the x-axis (U as an odd function

and W is an even function of h), we have

Uðr; hÞ ¼
X1
n¼0

An JnðhrÞ þ Bn YnðhrÞ½ � cos ðnhÞ;

Wðr; hÞ ¼
X1
n¼0

En JnðjrÞ þ Fn YnðjrÞ½ � sin ðnhÞez (A1)

for the 2D system, where Jn (respectively, Yn) stands for the

Bessel function of the first (respectively, second) kind. The

boundary conditions [Eq. (6)] select only the terms corre-

sponding to n¼ 1 in the above expansions,

Uðr; hÞ ¼ A1 J1ðhrÞ þ B1 Y1ðhrÞ½ �cos h; (A2a)

Wðr; hÞ ¼ E1 J1ðjrÞ þ F1 Y1ðjrÞ½ �sin hez: (A2b)

By following the same procedure including the bound-

ary conditions [Eq. (7)], we obtain the expression of the

potentials for the 3D system,

UðR;uÞ ¼
X1
n¼0

an jnðhRÞ þ bn ynðhRÞ
� �

P0
nðcos uÞ

¼ a1 j1ðhRÞ þ b1 y1ðhRÞ½ �cos u; (A3a)

WðR;uÞ ¼ �
X1
n¼1

en jnðjRÞ þ fn ynðjRÞ
� �

P1
nðcos uÞeh

¼ e1 j1ðjRÞ þ f1 y1ðjRÞ½ �sin ueh; (A3b)

where jn (respectively, yn) stands for the spherical Bessel

functions of the first (respectively, second) kind, and Pk
n are

the associated Legendre polynomials of order k.

In these solutions, A1, B1, E1, F1, a1, b1, e1, and f1 are

unknown constants to be determined by using the boundary

relations at the interfaces of each two phases in the struc-

tural unit.

APPENDIX B: ALGEBRAIC SYSTEMS

The following linear algebraic systems allow the deter-

mination of the constants and are involved in Eqs. (A2) and

(A3), respectively. For the 2D system, we have

ha J0ðhaÞ ha Y0ðhaÞ ja J0ðjaÞ ja Y0ðjaÞ
ha J2ðhaÞ ha Y2ðhaÞ �ja J2ðjaÞ �ja Y2ðjaÞ
hb J0ðhbÞ hb Y0ðhbÞ jb J0ðjbÞ jb Y0ðjbÞ
hb J2ðhbÞ hb Y2ðhbÞ �jb J2ðjbÞ �jb Y2ðjbÞ

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

�

A1

B1

E1

F1

0
BBBB@

1
CCCCA ¼

2a Ua

0

2b Ub

0

0
BBBB@

1
CCCCA; (B1)

and for the 3D system,

ha j0ðhaÞ ha y0ðhaÞ 2ja j0ðjaÞ 2ja y0ðjaÞ
ha j2ðhaÞ ha y2ðhaÞ �ja j2ðjaÞ �ja y2ðjaÞ
hb j0ðhbÞ hb y0ðhbÞ 2jb j0ðjbÞ 2jb y0ðjbÞ
hb j2ðhbÞ hb y2ðhbÞ �jb j2ðjbÞ �jb y2ðjbÞ

0
BBBB@

1
CCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
d

�

a1

b1

e1

f1

0
BBBB@

1
CCCCA ¼

3a Ua

0

3b Ub

0

0
BBBB@

1
CCCCA: (B2)
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