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Robust engineering of phonon squeezed states in optically excited solids has emerged as a promising tool to
control and manipulate their properties. However, in contrast to quantum optical systems, detection of phonon
squeezing is subtle and elusive, and an important question is what constitutes an unambiguous signature of it.
The state of the art involves observing oscillations at twice the phonon frequency in time-resolved measurements
of the out-of-equilibrium phonon fluctuation. Using the Keldysh formalism we show that such a signal is a
necessary but not a sufficient signature of a squeezed phonon, since we identify several mechanisms that do
not involve squeezing and yet produce similar oscillations. We show that reliable detection requires a time- and
frequency-resolved measurement of the phonon spectral function.

DOI: 10.1103/PhysRevB.102.174316

I. INTRODUCTION

Recent advances in ultrafast pump-probe techniques have
opened the possibility of controlling quantum materials
by light [1–4]. This includes manipulating electronic or-
ders [5–10], as well as controlling the lattice dynamics. Thus,
it is well known that femtosecond pumping can create a coher-
ent phonon, which manifests in the transient optical properties
as oscillations with the phonon frequency ω0 [11–16], or
induce changes to the electronic structure [17–20].

An intriguing newer goal is to engineer phonons
into nonclassical states such as squeezed states [21,22]
that can be described by a density matrix ρsq ≡ S†ρthS,
where S = exp[ir(b2 + (b†)2)], with (b, b†) the phonon
annihilation/creation operators, r the squeezing parameter,
and ρth the thermal density matrix. This can be promising
for light-induced superconductivity [23,24]. Engineering of
squeezed states is also a major goal in quantum technologies,
with broad applications from metrology to quantum informa-
tion [25,26].

A related important goal is to unambiguously detect a
squeezed state once it has been created. Several pump-probe
experiments have reported a signature of phonon squeezing,
based on measurements of the fluctuation NX (t ) ≡ 〈X (t )2〉 −
〈X (t )〉2 of the displacement X of a phonon showing oscilla-
tions with frequency 2ω0 [27–35]. Indeed, theoretically, when
a harmonic oscillator is squeezed impulsively at time t = 0,
it leads to NX (t ) ∼ sin(2ω0t ) at subsequent times t > 0. In
contrast, since the average 〈X (t )〉 is subtracted in NX (t ), per
se, the fluctuations of coherent phonons do not have such
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oscillatory noise, unless interaction effects induce it via higher
harmonic generation [see case (iii) below].

The purpose of the current work is twofold. (i) We bring
into question the above state of the art that relates 2ω0 noise
oscillation with squeezing. As we show below, there are
out-of-equilibrium mechanisms that do not involve phonon
squeezing and yet lead to NX (t ) ∼ sin(2ω0t ). Thus, by itself,
such a signal is not sufficient to conclude having a phonon
squeezed state. In fact, the main ingredient for a 2ω0 oscil-
latory signal appears to be the breaking of time translation
symmetry by a quench, which may or may not involve squeez-
ing the phonon. (ii) We identify a more reliable method to
detect a squeezed phonon state, which involves both time- and
frequency-resolved Raman measurement.

II. MODEL

We consider a Brillouin-zone-center Raman-active opti-
cal phonon with dimensionless canonical variables (X, P),
coupled to a spinless fermionic bath with dispersion εk,
with momentum k, and described by operators (c†

k, ck ) [see
Fig. 1(a)]. The equilibrium Hamiltonian is

H = h̄ω0

2
(X 2 + P2) +

∑
k

(
εk + V X√

2N
Fk

)
c†

kck. (1)

V is the phonon-bath interaction energy, assumed to be low
enough that it can be treated perturbatively. Fk is a form
factor that reflects the point-group symmetry of the phonon,
and N is the total number of bath variables. The role of
the bath is simply to provide a finite inverse lifetime γ

to the phonon and to define a temperature T for the sys-
tem. We assume ω0 > γ . The system is subjected to a laser
pump pulse of femtosecond duration at time t = 0, and we
consider three possible outcomes of this out-of-equilibrium
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FIG. 1. (a) Sketch of the system: a Raman phonon, frequency
ω0, in a bath. (b) A pump-induced impulsive second-order Raman
process at time t = 0 squeezing the phonon’s thermal density matrix
ρth → ρsq, with r the squeeze parameter. ωi (ωs) is the incident
(scattered) pump photon frequency.

perturbation that can manifest at a picosecond scale. (i) We
consider the outcome that the phonon is squeezed by the
pump via an impulsive resonant second-order Raman scatter-
ing process which leads to the generation/absorption of two
phonon quanta [see Fig. 1(b)]. The perturbation is described
by δH(i) = rδ(t )(X 2 − P2)/2, where r is the dimensionless
squeezing factor. (ii) We consider the outcome that the pump
leads to heating of the bath, such that the bath temperature
becomes time dependent. We model the thermal quench as
T (t ) = TL for t < 0, and T (t ) = TL + (TH − TL )e−t/τe , with
TH � TL [see Fig. 2(a)]. Here τe is the thermal relaxation
time scale of the bath. In this case the bath density ma-
trix is perturbed. (iii) We consider the outcome that the
phonon, assuming it has a symmetry-allowed cubic anhar-
monic potential, is coherently excited by the pump pulse
[see Fig. 2(b)]. The generation mechanism of the coherent
phonon, either via impulsive Raman scattering [15] or via
displacive excitation [14], is unimportant here. This outcome
is described by δH(iii) = h̄ω0 f (t )X + λX 3/3, where f (t ) is
the time-dependent force that excites the phonon coherently,
and λ is the energy scale of the cubic anharmonic potential.
Importantly, such a cubic anharmonicity is relevant in most
systems that have been studied to date in the context of
squeezing. These include fully symmetric Ag phonons in all
systems, as well as Eg phonons in bismuth and α-quartz with

FIG. 2. Two out-of-equilibrium processes that do not involve
creating a squeezed phonon with density matrix ρsq, but whose noise
signal NX (t ) ∼ sin(2ω0t ) has the same oscillatory component as in
the squeezed case. (a) The bath temperature is quenched by the
pump. (b) A phonon, with a cubic anharmonic potential, is excited
coherently by the pump.

a D3 point group. Note that for a low enough pump fluence,
the signatures of all three of these outcomes depend linearly
on the fluence.

Our goal is to study the fluctuation/noise NX (t ) generated
for each of the above three outcomes separately. We work
using the Keldysh formalism, where the phonon coordinate
is defined on a two-branch real-time contour, X±(t ). We inte-
grate out the bath variables, treating the coupling V to second
order, and write the phonon action in the more physical clas-
sical and quantum basis Xcl/q = (X+ ± X−)/

√
2 as [36,37]

S[X ] =
∫ ∞

−∞
dt ′

∫ ∞

−∞
dt X T (t ′)D̂inv(t ′, t )X (t ), (2)

where X T (t ) ≡ (Xcl(t ), Xq(t )), and the matrix

D̂inv(t ′, t ) ≡
[

0 D−1
A (t ′, t )

D−1
R (t ′, t ) −
K (t ′, t )

]
.

D−1
R/A(t ′, t ) = D−1

0,R/A(t ′, t ) − 
R/A(t ′, t ) are the inverse re-

tarded (advanced) phonon propagators and D−1
0,R/A(t ′, t ) are

those of a free phonon. The self-energy contributions

R/A/K (t ′, t ) from the fermionic bath are given by


R(t ′, t ) = 
cl,q(t ′, t ) ≡ −iV 2
∑

k

F 2
k 〈nk,cl(t

′)nk,q(t )〉S0
b
,


A(t ′, t ) = 
q,cl(t ′, t ), and 
K (t ′, t ) = 
cl,cl(t ′, t ). S0
b is

the action of the bare bath, and nk,cl/q ≡ (c†
k,clck,cl/q +

c†
k,qck,q/cl )/

√
2. From Eq. (2) we get

〈Xcl(t )2〉S[X ] = i
∫ ∞

−∞
dt ′′dt ′DR(t, t ′′)DR(t, t ′)
K (t ′′, t ′), (3)

which is the out-of-equilibrium generalization of the
fluctuation-dissipation relation. Our task is to obtain DR(t ′, t )
and 
K (t ′, t ) and, from these, to calculate the noise NX (t ) for
the above three cases.

III. RESULTS

Our main results are as follows. (1) We show that for all
three cases the noise signal has a 2ω0 oscillatory component
with NX (t ) ∼ sin(2ω0t ). Yet, only in case (i) is the signal from
a phonon squeezed state. Thus, a 2ω0 oscillatory noise signal
is not sufficient to conclude whether or not the phonon is in
the squeezed state ρsq. (2) By comparing the phonon spectral
function for the three cases, we obtain a reliable method to
detect a squeezed phonon state ρsq which involves time- and
frequency-resolved Raman measurement.

A. Case (i): Noise from squeezing

As the bath itself is at equilibrium with temperature T ,

K (t ′, t ) is a function of (t ′ − t ), and its Fourier trans-
form 
K,eq(ω) satisfies standard fluctuation-dissipation the-
orem 
K,eq(ω) = [
R,eq(ω) − 
A,eq(ω)] coth[ω/(2T )]. As
we are interested in the long-time dynamics of the
phonon, it is enough to expand 
R,eq(ω) in frequency.
Since charge excitations are gapless in a good fermionic
bath, we get Im
R,eq(ω) ≈ −ωγ /ω0 and 
K,eq(ω) ≈
−2iωγ coth[ω/(2T )]/ω0. Next, due to δH(i) the squeezing
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perturbation, DR(t ′, t ), satisfies[
h(t )∂2

t + ḣ(t )∂t + 2γ ∂t + rω0δ(t ) + ω2
0

]
DR(t ′, t )

= −2ω0δ(t ′ − t ),

where h(t ) ≡ ω0/[ω0 − rδ(t )] and ḣ(t ) = ∂t h(t ), while γ

plays the role of phonon damping induced by the fermionic
bath. The solution of the above equation with the initial con-
ditions DR(t+, t ) = 0 and ∂t DR(t+, t ) = −2ω0 is described in
detail in Appendix A. Here we simply quote the final answer.
Before that, for convenience, we introduce the notation

FT [ f (x1, x2, . . . ); xi; ki] ≡
∫ ∞

−∞
dxie

ikixi f (x1, x2, . . . ).

In terms of �R(t, ω) ≡ FT [DR(t, t − τ ); τ ; ω] we get

�R(t, ω) =
[
1 + i

2ω0
θ (t )K (t, ω)eiωt−γ t

]
DR,eq(ω), (4)

where DR,eq(ω) ≡ 2ω0/[ω2 + 2iγω − ω2
0] is the equi-

librium propagator, and K (t, ω) ≡ A(t )(ω − ω0 +
iγ )eiω0t + Ā(t )(ω + ω0 + iγ )e−iω0t . The function A(t ) ≡
sinh r cos(2ω0t ) + i[cosh r − sinh r sin(2ω0t ) − 1] has
information about squeezing. Reexpressing Eq. (3) in terms
of �R(t, ω) and 
K,eq(ω) we get (see Appendix A)

NX (t ) = 1

2
e−2γ t sinh 2r[tanh r − sin(2ω0t )] coth

ω0

2T
. (5)

Thus, NX (t ) has a 2ω0 oscillatory component.

B. Case (ii): Noise from thermal quench of the bath

Here we assume that the effect of the pump on the bath
can be encoded by a slowly varying effective temperature,
T (s) = TL + θ (s)(TH − TL )e−s/τe , for time scales much longer
than those relevant for the internal electronic dynamics. Thus,
we disregard the processes by which the bath itself thermal-
izes to an effective time-dependent temperature, and we study
the consequences of such a pseudoequilibrium environment
on the phonon noise.

The first effect of the pseudoequilibrium is that the
Keldysh self-energy 
K (t ′, t ), sensitive to the occupa-
tion of the bath modes, loses time-translational invari-
ance and acquires a dependence on the average time
s ≡ (t ′ + t )/2 via the temporally varying temperature. It
is convenient to define 
K (s, ω) ≡ FT [
K (s + τ/2, s −
τ/2); τ ; ω]. We expect that 
K (s, ω), in analogy with

K,eq(ω), satisfies the fluctuation-dissipation relation with
the time-dependent temperature T (s). This implies that

K (s, ω) ≈ −2iωγ coth[ω/(2T (s))]/ω0. In principle, the
retarded phonon propagator DR(t ′, t ) also acquires s depen-
dence through the temperature dependence of damping γ (s).
However, to leading order in the temperature quench (TH −
TL ) this slow variation can be ignored, and one can use the
equilibrium form DR,eq(ω). Note that the above simplification
does not affect the final conclusion qualitatively.

From the above considerations, it is simple to evaluate the
fluctuations in terms of 〈Xcl(�)2〉S[X ] ≡ FT [〈Xcl(t )2〉S[X ]; t ; �]
from the relation

〈Xcl(�)2〉S[X ] = i

4π

∫ ∞

−∞
ds

∫ ∞

−∞
dωDR,eq(ω + �/2)

× D∗
R,eq(ω − �/2)
K (s, ω)ei�s.

We assume that γ is the lowest energy scale and, in particular,
γ � TL. Then

〈Xcl(� ∼ ±2ω0)2〉S[X ] ∝ 1

z1z2

∫ ∞

−∞
dsei�s
K (s, ω → 0),

where z1,2 ≡ �/2 ± ω0 + iγ . This implies that 〈Xcl(�)2〉S[X ]

has poles at � = ±2ω0, which in the time domain translate
as sin(2ω0t ) oscillations. Note that the origin of these poles is
an equilibrium property of a damped oscillator. However, at
equilibrium time translation symmetry ensures that 
K (s, ω)
does not depend upon the average time s. In this case the s
integral above gives δ(�), and therefore, at equilibrium the
finite-� poles are “inaccessible.” Keeping the s dependence
of 
K (s, ω) we get

NX (t ) = −γ (TH − TL )

2ω2
0

e−2γ t sin(2ω0t ) + . . . , (6)

where the ellipsis implies nonoscillatory contributions. Thus,
we demonstrate that NX (t ) can have a 2ω0 oscillatory signal
simply due to pump-induced thermal quench of the bath.
In fact, any out-of-equilibrium perturbation of the bath that
breaks time translation symmetry will lead to a 2ω0 oscillatory
noise signal.

C. Case (iii): Noise from phonons with cubic anharmonicity
coherently excited

This is relevant for Ag phonons in all systems and, also, for
Eg phonons in D3 symmetric systems such as α-quartz and
bismuth. The pump leads to 〈Xcl(t )〉S[X ] ≡ u(t ) �= 0, where
u(t ) describes the coherent excitation. To study the fluctua-
tions around the average we expand the action in terms of
δX ≡ X − u(t ). This gives Eq. (2), with Xcl replaced by δXcl

and with the propagator DR(t ′, t ) satisfying the equation[
∂2

t + 2γ ∂t + ω2
0 + 4λω0u(t )

]
DR(t ′, t ) = −2ω0δ(t ′ − t ).

In the above the crucial ingredient is the λu(t ) term, which
acts as a time-dependent potential for the fluctuations. We
assume λ/ω0 � 1, such that it is sufficient to solve the
above equation to linear order in λ. We expand DR(t ′, t ) =
DR,eq(t ′ − t ) + λDR,1(t ′, t ) with

DR,1(t ′, t ) = 2
∫ ∞

−∞
dsDR,eq(t ′ − s)u(s)DR,eq(s − t ).

On the other hand, the bath is at equilibrium with temperature
T , and therefore the Keldysh self-energy is the one at equilib-
rium 
K,eq(ω). Ignoring the equilibrium contribution to noise
we get

NX (t )noneq

= −iλ
∫ ∞

−∞
dsds′DR,eq(t − s)DR,1(t, s′)
K,eq(s − s′)

= 4λ coth

(
ω0

2T

) ∫ t

0
ds u(s) sin[2ω0(t − s)]e−2γ (t−s).

In the last line the s integral starts from s > 0 because the
coherent excitation is triggered by the pump at s = 0. This
element of time translation symmetry breaking is crucial.
Irrespective of the details of the coherent motion u(s), it is
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clear from the above that there is an oscillatory 2ω0 signal
in the noise. The precise form of NX (t ) depends on the force
f (s), which determines u(s). An impulsive excitation leads to
u(s) = u0 sin(ω0s)e−γ s, and

NX (t )noneq = −4λu0 coth[ω0/(2T )]

3ω0
e−2γ t sin(2ω0t ) + . . . ,

(7)
where the ellipsis implies terms not relevant for the current
discussion. For a displacive coherent excitation the sine signal
is replaced by a cosine, which reflects the property of coherent
phonons that the phase of the oscillation is determined by
the generation mechanism [14–16]. Thus, as in case (ii), we
obtain an oscillatory 2ω0 noise signal without having created
the density matrix ρsq. However, in contrast to case (ii), which
involves only incoherent excitations, in (iii) the 2ω0 signal
is built out of a coherent excitation at ω0. Consequently, the
latter is analogous to higher harmonic generation.

D. Reliable signature of a squeezed phonon

Next, we identify a measurable quantity that can distin-
guish a squeezed phonon, i.e., case (i) from cases (ii) and (iii).
Since the noise NX (t ), which is a time-resolved but frequency-
integrated quantity, has the same oscillatory property for the
three situations, a promising direction is to look for a quantity
which is both time and frequency resolved. With this intuition
we define the time- and frequency-resolved spectral function

A(t, ω) ≡ ImDR(t, ω), (8)

where DR(t, ω) ≡ FT [DR(t + τ/2, t − τ/2); τ ; ω] is the
Wigner transform of the two-time retarded propagator. Note
that DR(t, ω) is to be distinguished from �R(t, ω) defined
earlier. At equilibrium, A(t, ω) is t independent and is peaked
at ω = ±ω0. Thus, A(t, ω0) describes how the spectral peak
varies with time t after the pump.

We find that, indeed, the t dependencies of A(t, ω0) for
the three cases are distinct, since the phonon propagators
DR(t, ω) in the three cases are quite different (for details see
Appendix B). In case (i) squeezing leads A(t, ω0) to oscillate
at frequency 4ω0 as a function of t for the following reason.
Since squeezing involves excitation of two phonon quanta,
DR(t + τ/2, t − τ/2) ∼ cos(2ω0t )θ (τ − 2t ). The constraint
τ � 2t is crucial and follows from the fact that squeezing
is an impulsive process occurring at time 0 [see Fig. 1(b)],
and so the two time arguments in DR(t + τ/2, t − τ/2) must
have opposite signs [see Eq. (A19) in Appendix A]. Next,
the Wigner transform involves multiplication of the phase
exp(iωτ ), and therefore, imposing the constraint leads, via
phase accumulation, to A(t, ω0) ∼ cos(4ω0t + φ), where φ is
a phase that depends on details. Thus, the 4ω0 oscillation is
a consequence of impulsive excitation of two phonon quanta,
which is the hallmark of squeezing. In case (ii) A(t, ω0) is
practically t independent, since the weak t dependence of the
phonon self-energy induced by the electronic bath can be dis-
regarded. In case (iii) A(t, ω0) has oscillations at frequencies
4ω0, but also at ω0. The latter is due to the fact that in this
scenario the phonon is excited coherently. This exemplifies
that processes involving higher harmonic generation invari-
ably will have a signature at a frequency lower than 4ω0, and
thus, they can be distinguished from squeezing.

FIG. 3. The time dependence of the spectral function peak
�A(t, ω0) ≡ A(t, ω0) − A(0, ω0) [see Eq. (8) for definition] and its
Fourier transform �A(�,ω0) have distinct signatures for the three
cases studied here. A distinguishing feature of squeezing is a single
peak in |�A(�, ω0)| at � = 4ω0.

These three distinct t dependencies can be conveniently ex-
pressed in terms of �A(�,ω0) ≡ FT [�A(t, ω0); t ; �], where
�A(t, ω0) ≡ A(t, ω0) − A(0, ω0) is the time-dependent part
of the spectral function peak. Thus, as shown in Fig. 3,
a distinguishing feature of squeezing is a single peak in
|�A(�,ω0)| at � = 4ω0.

Finally, we discuss how the time-dependent spectral func-
tion A(t, ω) can be measured. At equilibrium this is standard
since the Raman scattering cross section is proportional to
the correlation function, from which the spectral function
can be deduced using the fluctuation-dissipation relation. The
issue is nontrivial in an out-of-equilibrium situation since the
standard fluctuation-dissipation relation is not valid. How-
ever, we can generalize the relation in the following manner.
According to the theory of time- and frequency-resolved Ra-
man spectroscopy the scattering intensity I (t, ω) ∝ D>(t, ω),
where D>(t, ω) is the Wigner transform of the two times
greater function [38,39]. Then, from standard Keldysh theory
it follows that I (t, ω) − I (t,−ω) ∝ A(t, ω) (see Appendix C).
In other words, the time-dependent spectral function can be
extracted from the difference in the Stokes and anti-Stokes
Raman intensities. In practice, the probe cycle will require
two pulses, one which is time resolved and a second which
is frequency resolved [40,41].

IV. CONCLUSION

To summarize, we studied the fluctuations of a phonon
coupled to a bath in a pump-probe setup. We argued that the
noise or the variance associated with the atomic displacement
oscillates at twice the phonon frequency ω0, i.e., NX (t ) ≡
〈X (t )2〉 − 〈X (t )〉2 ∼ sin(2ω0t ), due to pump-induced break-
ing of time translation symmetry. Thus, such oscillations
cannot be taken as proof of having prepared the phonon in a
squeezed state with density matrix ρsq. A reliable way to iden-
tify squeezed phonons involves a study of the time-dependent
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spectral function of the phonon, which can be achieved by a
time- and frequency-resolved Raman measurement.
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APPENDIX A: RETARDED GREEN’S FUNCTION
OF A SQUEEZED PHONON

The retarded phonon Green’s function of a squeezed
phonon coupled to a thermal bath satisfies the equation of
motion

1

2ω0

(
h(t )∂2

t + ḣ(t )∂t + 2γ ∂t + ω2
0 + g(t )ω0

)
DR(t, t ′)

= δ(t − t ′), (A1)

where h(t ) = ω0/(ω0 − rg(t )), and g(t ) describes the enve-
lope of the pump pulse. We assume that the width of the pump
pulse is the smallest time scale of the problem and, hence,
that it can be well approximated by a Dirac distribution. It is,
however, uncomfortable to deal with the nonanalyticity of the
Dirac distribution in path integrals. Indeed, for a delta-shaped
pump pulse centered at time t = 0, the displacement Xcl/q(t )
and momentum Pcl/q(t )(t ) fields are not well defined at initial
time t = 0. In practice, however, the shape of a physical pump
pulse is a smooth function with a finite width τp, and the
approximation with a Dirac distribution is just a practical
mathematical description. Therefore, to avoid complication,
we solve the problem for a general pulse with a smooth enve-
lope g(t ) centered at time t = 0 and a finite width τp and only
take the limit τp → 0 for which g(t ) → rδ(t ) at the end of the
calculation.

The Dirac delta function δ(t − t ′) is vanishing for t �= t ′,
hence, for time t �= t ′ the Green’s function satisfies the homo-
geneous equation

(
h(t )∂2

t + h′(t )∂t + 2γ ∂t + ω2
0 + g(t )ω0

)
DR(t, t ′) = 0.

(A2)
The retarded Green’s function has a causal structure, i.e., it
vanishes for t < t ′, and satisfies a second-order differential
equation whose boundary conditions are given by the defini-
tion of the retarded Green’s function at equal time,

DR(t+, t ) = −i〈[X̂ (t+), X̂ (t )]〉 = 0, (A3)

and the jump condition imposed by the delta function,

∂t DR(t+, t ) = −2ω0, (A4)

where t+ = t + 0+.

We replace the equation of the retarded Green’s function,
Eq. (A1), by a set of two coupled first-order equations and
write

∂t DR(t, s) = [ω0 − g(t )]K (t, s), (A5a)

∂t K (t, s) = −[ω0 + g(t )]DR(t, s) − 2
γ

ω0
∂t DR(t, s), (A5b)

where K (t, s) is a function that we introduce as a mathemati-
cal tool. Note that for g(t ) = 0, the equation of the retarded
Green’s function, Eq. (A5), is that of a damped harmonic
oscillator. Therefore, we propose the following ansatz for the
solution:

DR(t, s) = X0(t, s) cos(�t )e−γ t

+ 1

�
[ω0P0(t, s) + γ X0(t, s)] sin(�t )e−γ t , (A6a)

K (t, s) = P0(t, s) cos(�t )e−γ t

− 1

�
[ω0X0(t, s) + γ P0(t, s)] sin(�t )e−γ t , (A6b)

where �2 = ω2
0 − γ 2. This form of the solution ensures that

for constant X0(t, s) and P0(t, s), the functions DR(t, s) and
K (t, s) satisfy the equation of motion of a damped harmonic
oscillator. The fact that the phonon is a well-defined excitation
implies that γ � ω0. Thus, we write the equations of motion
for X0(t, s) and P0(t, s) in this limit and find that[

∂t X0(t, s)
∂t P0(t, s)

]
= −g(t )

[− sin (2�t ) cos (2�t )
cos (2�t ) sin (2�t )

][
X0(t, s)
P0(t, s)

]
.

(A7)

We take the limit where the width of the pump pulse goes to
0, τp → 0, and recover the Dirac delta function, g(t ) → rδ(t ).
Using the properties of the Dirac distribution, we have that

sin(�t )g(t ) = sin(0)g(t ) = 0, (A8a)

cos(�t )g(t ) = cos(0)g(t ) = g(t ), (A8b)

hence Eq. (A7) further simplifies, and we obtain[
∂t X0(t, s)
∂t P0(t, s)

]
= −g(t )

[
0 1
1 0

][
X0(t, s)
P0(t, s)

]
. (A9)

The solution of this equation of motion is straightforward,
and after some algebraic manipulations we find that

X0(t, s) = ch[F (t, s)]K1(s) − sh[F (t, s)]K2(s), (A10a)

P0(t, s) = ch[F (t, s)]K2(s) − sh[F (t, s)]K1(s), (A10b)

with

F (t, s) =
∫ t

s
g(t ′)dt ′, (A11)

where ch(x) and sh(x) denote the cosine and sine hyperbolic
functions, respectively. K1(s) and K2(s) are arbitrary functions
independent of time t , which are calculated using the bound-
ary conditions; see Eq. (A3) and Eq. (A4). We take the limit
γ � ω0 and write the propagator in a more convenient form,

DR(t, s) = (ch[F (t, s)] sin [�(t − s) − φ(s)]

− sh[F (t, s)] cos [�(t + s) + φ(s)])A(s)e−γ (t−s),

(A12)
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where we have replaced the functions K1(s) and K2(s) with
two other unknown functions, A(s) and φ(s), defined as

K1(s) = −A(s) sin
(
�s + φ(s)

)
eγ s, (A13a)

K2(s) = A(s) cos
(
�s + φ(s)

)
eγ s. (A13b)

The functions A(s) and φ(s) can be evaluated using the bound-
ary conditions. We use the continuity condition, Eq. (A3), of
the retarded Green’s function,

sin [−φ(t )]A(t ) = 0, (A14)

together with the jump condition, Eq. (A3), at time t �= 0,

A(t )X (� − δ(t ) cos (2�t )) = −2ω0, (A15)

and find that

φ(s) = 0, (A16a)

A(s) = −2, (A16b)

which gives, for the retarded Green’s function,

DR(t, s) = − 2θ (t − s)(ch[F (t, s)] sin [�(t − s)]

− sh[F (t, s)] cos [�(t + s)])e−γ (t−s). (A17)

In the limit of a delta-shaped pump pulse g(t ) = rδ(t ), we
have that

F (t, s) = r
∫ t

s
δ(t ′)dt ′ = r, sign(t ) �= sign(s), (A18a)

F (t, s) = r
∫ t

s
δ(t ′)dt ′ = 0, sign(t ) = sign(s), (A18b)

with sign(t ) the sign function. Thus, the retarded phonon
Green’s function is defined piece-wise and reads

DR(t, s) =
{

DR
eq(t, s), sign(t ) = sign(s),

DR
sq(t, s), sign(t ) �= sign(s),

(A19)

with

DR
eq(t, s) = −2θ (t − s)e−γ (t−s) sin [�(t − s)], (A20a)

DR
sq(t, s) = −2e−γ (t−s)θ (t − s)(ch(r) sin [�(t − s)]

− sh(r) cos [�(t + s)]), (A20b)

where DR
eq(t, s) and DR

sq(t, s) stand for the equilibrium and
squeezed retarded Green’s function. The fact that the squeezed
propagator is not a function of the time difference DR

sq(t, s) �=
DR

sq(t − s) is a consequence of breaking the time translational
symmetry.

We now evaluate the function �R(t, ω) discussed in the
text and defined as

�R(t, ω) =
∫

�R(t, t − τ )eiωτ dτ. (A21)

In the time domain, the phonon propagators DR(t1, t2) of the
squeezed phonon are defined piecewise [see Eq. (A20)]. Thus,
we split the integral, Eq. (A21), over the two time domains and

write

�R(t, ω) =
∫ ∞

−∞
DR

eq(t, t − τ )eiωτ dτ

+
∫ ∞

t

(
DR

sq(t, t − τ ) − DR
eq(t, t − τ )

)
eiωτ dτ,

(A22)

where we have added and subtracted
∫ ∞

t DR
eq(t, t − τ )eiωτ dτ

to extend the limits of the first integral to +∞. The first
term of the integral is the equilibrium contribution and is
time independent. The second term is the out-of-equilibrium
contribution to the retarded propagator �R(t, ω) and vanishes
for a vanishing squeezing parameter r = 0 or for negative
times t < 0. For positive times after the pump pulse t > 0,
we have

I (t, ω) ≡
∫ ∞

t

(
DR

sq(t, t − τ ) − DR
eq(τ )

)
eiωτ dτ

= −2
∫ ∞

t
(g2(t ) sin (�τ ) − g1(t ) cos (�τ ))

× e(iω−γ )τ dτ, (A23)

where the complex functions g1(t ) and g2(t ) are defined as

g1(t ) = sh(r) cos (2�t ), (A24a)

g2(t ) = ch(r) − sh(r) sin (2�t ) − 1, (A24b)

with � =
√

ω2
0 − γ 2. We define the complex function A(t ) =

g1(t ) + ig2(t ) and express the nonequilibrium part of the re-
tarded Green’s function I (ω, t ) in a compact exponential form,

I (t, ω) =
∫ ∞

t

(
A(t )ei�τ + Ā(t )e−i�τ

)
e(iω−γ )τ dτ

= i

2�

(
A(t )(ω − � + iγ )ei(ω+�+iγ )t

+ Ā(t )(ω + � + iγ )ei(ω−�+iγ )t
)
DR

eq(ω),

where DR
eq(ω) denotes the equilibrium retarded Green’s func-

tion. Henceforth, we take the limit γ � ω0 for which � ≈ ω0,
and we write the function �R(t, ω) as

�R(t, ω) =
(

1 + i

2ω0
θ (t )e−γ t K (t, ω)eiωt

)
DR

eq(ω), (A25)

so that

DR
eq(ω) = 2ω0

ω2 + 2iγω − ω2
0

, (A26a)

K (t, ω) = A(t )(ω − ω0 + iγ )eiω0t

+ Ā(t )(ω + ω0 + iγ )e−iω0t . (A26b)

This gives Eq. (4) in the text. The out-of-equilibrium part of
the retarded Green’s function, as defined in Eq. (A21), has a
2ω0 oscillatory component. This follows from the definition
of the function A(t ), whose real and imaginary parts oscillate
as cos(2ω0t ) and sin(2ω0t ), respectively.

We insert the Fourier transform of the retarded Green’s
function �R(t, ω) in the expression of the equal-time
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correlation function and write for time t > 0

〈
X 2

cl(t )
〉 = i

2π

∫ +∞

−∞
�R(t, ω)DR(t,−ω)
K (ω)dω

= 1

2π

∫ +∞

−∞
(1 − y(ω, t ))DK

eq(ω)dω, (A27)

where y(ω, t ) is the nonequilibrium part of the Keldysh
Green’s function and is given by

y(ω, t ) ≡ 1

4ω2
0

e−2γ t K (t, ω)K (t,−ω)

− i

2ω0
e−γ t (K (t,−ω)e−iωt + K (t, ω)eiωt ).

(A28)

We recall that the equilibrium Keldysh Green’s function is
given by

DK
eq(ω) = 8γω0ω coth [ω/2T ]

([ω − ω0]2 + γ 2)([ω + ω0]2 + γ 2)

= 2γ coth [ω/2T ]

(ω − ω0)2 + γ 2
− 2γ coth [ω/2T ]

(ω + ω0)2 + γ 2
,

where we see that it is peaked at ω = ±ω0 with a width γ .
Therefore, in the limit where γ � ω0, the coth [ω/2T ] is

a slow function of the frequency and the Keldysh Green’s
function can be approximated by

DK
eq(ω) ≈ 2γ coth [ω0/2T ]

(ω − ω0)2 + γ 2
+ 2γ coth [ω0/2T ]

(ω + ω0)2 + γ 2
, (A29)

where we have used coth [−ω0/2T ] = − coth [ω0/2T ]. Using
the above three equations we obtain

〈
X 2

cl(t )
〉 = 2

π
coth [ω0/2T ]

∫ +∞

−∞

γ

(ω − ω0)2 + γ 2

×
[

1 − 1

4ω2
0

e−2γ t K (t, ω)K (t,−ω)

+ i

2ω0
e−γ t (K (t,−ω)e−iωt + K (t, ω)eiωt )

]
dω.

(A30)

We integrate over the frequency ω and obtain for the equal-
time correlation function

〈
X 2

cl (t )
〉 = 2 coth [ω0/2T ]

[
1 − 1

4ω2
0

e−2γ t K (t, ω0 + iγ )K (t,−ω0 − iγ )

+ i

2ω0
e−2γ t (K (t,−ω0 − iγ )e−iω0t + K (t, ω0 + iγ )eiω0t )

]
. (A31)

We take the limit γ � ω0 and write the correlation function
as 〈

X 2
cl(t )

〉 = 2 coth [ω0/2T ]
[
1 + e−2γ t Ā(t )A(t )

+ ie−2γ t (Ā(t ) − A(t ))
]
. (A32)

We replace the complex function A(t ) with its expression in
Eq. (A24) and obtain for the variance after simplification

�2X (t ) = coth [ω0/2T ]
[
1 + e−2γ t (ch(2r) − 1)

− sh(2r) sin (2ω0t )e−2γ t
]
, (A33)

where r is the squeezing parameter. The variance of the atomic
displacement oscillates at twice the frequency of the mode
2ω0. This is Eq. (5) in the text.

APPENDIX B: TIME-RESOLVED SPECTRAL FUNCTION

Here, we discuss the calculation details of the time-
resolved spectral function defined as

A(t, ω) ≡ ImDR(t, ω), (B1)

where

DR(t, ω) =
∫

DR(t + τ/2, t − τ/2)eiωτ dτ (B2)

is the Wigner transform of the retarded Green’s function. We
derive the expression of A(t, ω) in the two scenarios discussed
in the text, namely, a squeezed phonon and a phonon, with a
cubic anharmonic potential, excited coherently by the pump.
We show that the time-resolved spectral function is qualita-
tively different for these two cases and can therefore be used
to detect phonon squeezed states.

Case (i)

Let us first discuss the signature of a squeezed phonon
[case (i) in the text] on the spectral function A(t, ω). The
out-of-equilibrium part of the Wigner transform is defined as

�DR(t, ω) ≡ DR(t, ω) − DR
eq(ω)

=
∫ +∞

−∞

(
DR(t + τ/2, t − τ/2) − DR

eq(τ )
)
eiωτ dτ,

(B3)

where DR
eq(ω) is the equilibrium retarded Green’s func-

tion. At equilibrium, the Wigner transform coincides with
its Fourier transform, hence, the retarded Green’s function
DR(t + τ/2, t − τ/2) of a squeezed phonon is different from
equilibrium only for times where Sign(t + τ/2) �= Sign(t −
τ/2). Therefore, the integral in Eq. (B3) is nonvanishing only
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for time τ > 2t , where it can be written as

�DR(t, ω) =
∫ ∞

2t

[
DR

sq

(
t + τ

2
, t − τ

2

)
− DR

eq(τ )

]
eiωτ dτ

= −2(ch(r) − 1)
∫ ∞

2t
sin(ω0τ )e−γ τ eiωτ dτ

+ 2sh(r) cos(2ω0t )
∫ ∞

2t
e−γ τ eiωτ dτ. (B4)

We get

�DR(t, ω) = +2sh(r) cos(2ω0t )
∫ ∞

2t
e−γ τ eiωτ dτ

+ i(ch(r) − 1)
∫ ∞

2t

× [
ei(ω+ω0+iγ )τ − ei(ω−ω0+iγ )τ

]
dτ. (B5)

We integrate over time τ and find

�DR(t, ω) = (1 − ch(r))e−2γ t

[
e2i(ω+ω0 )t

ω + ω0 + iγ
− e2i(ω−ω0 )t

ω − ω0 + iγ

]
+ 2ish(r) cos(2ω0t )e−2γ t e2iωt

ω + iγ
. (B6)

Thus the spectral function A(t, ω0) evaluated at frequency ω0

has a 4ω0 oscillatory component in the time domain, coming
from the first and third terms above.

Case (iii)

We now calculate the spectral function of a phonon, with
a cubic anharmonic potential, excited coherently by the pump
[case (iii) in the text). The first-order correction of the retarded
Green’s function, discussed in the text, is given by

DR,1(t, t ′) = 2
∫

DR,eq(t − s)DR,eq(t ′ − s)u(s)ds. (B7)

We Wigner transform the retarded Green’s function and write

DR,1(t, ω) = 2
∫

DR,eq(t + τ/2 − s)

× DR,eq(t − τ/2 − s)u(s)eiωτ dτds. (B8)

For simplicity, we discuss the case of an impulsive stimula-
tion for which the retarded Green’s function and the average
atomic displacement u(t ) are given by

DR,eq(t, t ′) = −2θ (t − t ′)sin[ω0(t − t ′)]e−γ (t−t ′ ),

u(t ) = θ (t )Q0sin(ω0t )e−γ t = −Q0

2
DR,eq(t ), (B9)

where Q0 denotes the amplitude of the coherent phonon oscil-
lation. We Fourier transform and obtain

DR,1(t, ω) = Q0

2π

∫
DR,eq(�)DR,eq(ω − �/2)

× DR,eq(ω + �/2)e−i�t d�. (B10)

Finally, we integrate over frequency � and find that

DR,1(t, ω) = Q0ie−γ t

[
4ω2

0e−iω0t

A(ω,ω0)
− 4ω2

0eiω0t

A(ω,−ω0)

]

+ 8Q0ie−2γ t

[
4ω2

0e2it (ω+ω0 )

B(ω,ω0)
− 4ω2

0e2it (ω−ω0 )

B(ω,−ω0)

]
,

(B11)

with

A(ω,ω0) =
(

ω − 3ω0

2
+ i

3γ

2

)(
ω + 3ω0

2
+ i

γ

2

)

×
(

ω + ω0

2
+ i

3γ

2

)(
ω − ω0

2
+ i

γ

2

)
,

(B12a)

B(ω,ω0) = (4ω + 4ω0 + 4iγ )(4ω + 4iγ )

× (2ω + 3ω0 + iγ )(2ω + ω0 + iγ ). (B12b)

From the above expression, we see that the spectral function
A(t, ω0) evaluated at frequency ω0 has both a 4ω0 (third term
above) and an ω0 oscillatory component (first and second
terms above) in the time domain.

APPENDIX C: SPECTRAL FUNCTION OUT
OF EQUILIBRIUM

In this Appendix, we show that the time-dependent spectral
function can be extracted from the difference between the
Stokes and the anti-Stokes Raman intensities. Following the
theory of time- and frequency-resolved Raman spectroscopy,
the scattering intensity I (t, ω) ∝ D>(t, ω), where D>(t, ω)
is the Wigner transform of the two times greater function.
The relevant references can be found in the text. Here, we
derive a relation that connects the greater and retarded Green’s
function out of equilibrium.

The greater component of the Green’s function satisfies the
relation

D>(t, t ′) = 1
2 (DK (t, t ′) + DR(t, t ′) − DA(t, t ′)). (C1)

We use the linear property of the Wigner transformation and
find that

D>
W (t, ω) = 1

2

(
DK

W (t, ω) + DR
W (t, ω) − DA

W (t, ω)
)
. (C2)

The Keldysh Green’s function is symmetric with respect
to its two time arguments. Therefore, its Wigner transform
satisfies the relation DK

W (t, ω) = DK
W (t,−ω). Similarly,

the advanced and retarded Green’s function are related
by the identity DR(t, t ′) = DA(t ′, t ), which implies that
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DR
W (t, ω) = DA

W (t,−ω). Thus, we have that

D>
W (t, ω) − D>

W (t,−ω) = (
DR

W (t, ω) − DR
W (t,−ω)

)
= 2i Im

[
DR

W (t, ω)
]
, (C3)

where we have used DR
W (t, ω) = DR

W (t,−ω)∗. Finally, we use
the fact that the intensity of the Raman spectrum is propor-

tional to the greater Green’s function I (t, ω) ∝ D>(t, ω) and
find that

A(t, ω) ∝ I (t, ω) − I (t,−ω). (C4)

The above relation shows that the out-of-equilibrium spectral
function A(t, ω) can be measured using time-resolved Raman
spectroscopy.
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