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Abstract—Cloud computing is being embraced more and more
by telecommunication operators for on-demand access to com-
puting resources. Knowing that 5G Core reference architecture
is envisioned to be cloud-native and service-oriented, we propose,
in this paper, offloading to the cloud, some of 5G delay-tolerant
Network Functions and in particular the Network Data Analytics
Function (NWDAF). The dynamic selection of cloud resources
to serve off-loaded 5G-NWDAF, while incurring minimum cost
and maximizing utilization of served next generation Node-Bs
(gNBs) requires agility and automation. This paper introduces
a framework to automate the selection process that satisfies
resource demands while meeting two objectives, namely, cost
minimization and utilization maximization. We first formulate the
mapping of gNBs to 5G-NWDAF problem as an Integer Linear
Program (ILP). Then, we propose a heuristic to solve it based
on branch-cut-and-price technique combining all of branch-and-
price, branch-and-cut and branch-and-bound. Results using pric-
ing data from a public cloud provider (Google Cloud Platform),
show that our proposal achieves important savings in cloud
computing costs and reduction in execution time compared to
other state-of-the-art frameworks.

Index Terms—Cloud Computing, 5G Core Network Offload-
ing, Branch-Cut-and-Price, Multi-objective optimization, Google
Cloud Platform

I. INTRODUCTION

Cloud Computing (CC) is getting popularity among Tele-
phone Companies (telcos). AT&T stated that it is becoming
a ‘public cloud first’ company by migrating its workloads to
Microsoft public cloud by 2024. They advocate that this allows
them to focus on core network capabilities, accelerate their in-
novation cycle, and empower their workforce while optimizing
costs [1]. TM-Forum claims that telcos cannot afford not to
embrace the public clouds [2]. Surveys show that enterprises
are divesting their data centers and moving application work-
loads, both testing and production to the public cloud [3]. As
of January 2017, 46.1% of business-critical applications are in
the public or hybrid cloud [3]. Gartner forecasts cloud services
industry to grow exponentially through 2022 [4]. Furthermore,
a leading research and consulting business mandates that in
order to be able to compete in the digital world, the adoption
of public cloud by telcos is inevitable [5]. It is also predicted

that telcos will be one of the fastest-growing users of public
cloud computing in 2020 as they look to accelerate their new
service delivery plan [5]. Indeed, usage of CC allows telcos
to move faster, focus on their core business, minimize their
hardware footprints, and keep pace with increasing demands
of resources. This is due to inherent cloud elasticity and
versatility to provide resources as needed. In addition, by
leveraging auto-scaling capabilities of the public cloud, telcos
will pay only for what they need when they need it. With
the competition from Over-The-Top providers, telcos have to
minimize their costs to maintain profitability [6]. To afford the
tremendous communications infrastructure overhaul that 5G
requires, telcos need to create additional revenue generating
services such as data analytics. One way to achieve this goal is
by exploiting the cloud to deploy remote Network Functions
(NFs) for delay-tolerant services [6]. Not only offloading to
the cloud is a way to cut costs, but also, it serves as a
driver for new business models for telcos, especially in data
analytics. Network Data Analytics Function (NWDAF) [7],
part of 5G Core, is supposed to crunch huge amounts of data
and report analytics outcomes to multiple NFs. As of today, the
Network Slice Selection Function (NSSF) and Policy Control
Function (PCF) are consumers of NWDAF, but according to
3GPP standard, any NF or NF-service can consume it too
[8]. In this paper, we use “Compute” resources in public
clouds, expressed in Virtual Central Processing Units (vCPUs)
and Virtual Memory (vMEM) to implement 5G-NFs and in
particular, edge NWDAFs.

Our objective is to dynamically deploy Virtual Machines
(VMs) on the cloud to implement 5G-NF at minimum cost
with maximum utilization.

Our contributions are summarized as follows:

• We model the selection of 5G-NF VMs, while minimizing
CC cost and maximizing utilization to serve next gener-
ation Node-Bs (gNBs) and formulate this problem as an
Integer Linear Program (ILP).

• We propose a heuristic algorithm using the best of several
algorithms, namely branch-and-bound, branch-and-price



and branch-and-cut to solve our ILP problem.
• We show the effectiveness of our proposal compared to

other solutions using pricing data from Google Cloud
Platform (GCP).

The remainder of this paper is organized as follows. In
section II, we discuss related works. Section III describes the
system model and formulates our problem as an ILP. Our
proposed heuristic to solve the ILP problem is presented in
section IV. Section V provides performance evaluation includ-
ing assumptions validation and simulation results discussion.
We conclude this paper in Section VI.

II. RELATED WORKS

Minimizing cost when using CC has triggered considerable
interest among researchers.

Authors in [9] focused on cost minimization due to stor-
age across multiple cloud providers, while meeting multiple
Service Level Objectives. Also, authors in [10] proposed to
minimize cloud storage costs, while achieving latency and
availability objectives across multiple Cloud Service Providers
(CSPs). Both of these papers treated the cost optimization
from “Storage” resources minimization perspective. Differ-
ently from them, we focus on “Compute” resources minimiza-
tion.

Authors in [11] proposed a dynamic approach to predict
the load using Autoregressive (AR) model to calculate the
number of instances to be reserved for average computation
requirements.

Authors in [12] proposed a CC cost saving by exploiting the
discounts resulting from scheduling reservation of resources on
recurring basis in advance. Unlike these two approaches, we
do not rely on prediction to save costs but on dynamically
optimizing cloud resource selection over time.

In [13], authors proposed dynamic placement of virtual
Deep Packet Inspection (vDPI) function in NFV infrastruc-
ture to minimize Operational Expenditures (OPEX) including
licensing cost and power consumption. They formulated this
problem as multi-commodity flow Integer Linear Programming
(ILP) and proposed a centrality-based greedy heuristic that
runs in polynomial time. Unlike this work, we consider in this
paper, utilization in addition to cost to meet telcos optimization
strategy.

Authors in [14] proposed a Branch and Bound (BB) ap-
proach for resource constrained scheduling in two phases to
reduce the computation time.
Authors in [15] proposed a multilevel generalized assignment
problem for minimizing the assignment cost of jobs to ma-
chines using Branch and Cut (BC).
Authors in [16] formulated Cloud Radio Access Network
Assignment problem as an ILP and used Branch and Price (BP)
to solve and evaluate different strategies for a multi-objective
optimization. Different from these works, we focus, in this
paper, on minimizing CC costs and maximizing utilization
of gNBs and propose an efficient heuristic to solve the 5G-
NF selection problem using a Branch, Cut and Price (BCP)
approach.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a simplified 5G architecture consisting of three
domains, including: Radio Access Network (RAN), 5G-NF
and a backhaul transport network for interconnecting the RAN
to the 5G-NF. A 5G-NF Service overlaying a number of N
gNBs needs to be deployed on a pool of M VMs. The pool
of VMs is denoted by V = {i|1 ≤ i ≤ M}. We assume that
the latency imposed by hosting the 5G-NF for delay tolerant
services on the cloud is acceptable when backhauling gNBs
to the cloud. Indeed, according to the requirement R48 of
the NGMN alliance [17], maximum guarantee of end-to-end
latency of 10 milliseconds is considered fine for most critical
applications such as voice and video over IP. This is easily
achievable nowadays in most public clouds as we will confirm
in the performance evaluation section (cf. section V). The
set of gNBs is denoted by G = {j|1 ≤ j ≤ N}. A group
of gNBs is associated to one 5G-NF VM pool. We define a
binary variable denoted by rij to decide if VMi is associated
to gNBj or not. The average utilization yi of the VM pool i
is formulated as follows.

yi =
1

C

N∑
j=1

rij .lj (1)

where lj denotes the traffic utilization in vCPUs on the gNBj

and C denotes the maximum capacity in vCPUs of the VM
implementing a 5G-NF. We model the price of instantiating
VMs to implement the 5G-NF pool i as a function of the
average utilization of VMs yi expressed in (1). We use a linear
model [18] with a proportionality slope (λ) as: Pi = λ.yi+P0.
P0 is the fixed price portion imposed by the CSP. To normalize
the price, we denote by Pmax the highest value of the VM in
the CSP pricing list. We consider two sets of gNBs, formed
according to the traffic load of each gNB. They are GL for
low-load gNBs and GH for high-load gNBs. We propose this
segregation of gNBs based on traffic load, because we assume
to have asymmetrical traffic between day and night in addition
to differences between business and residential areas in term of
processing capacity requirement for services. We also define
a binary mapping variable xi to express the active state of a
VMi such that xi = 0 when

∑N
j=1 rij = 0, meaning that no

gNBj is mapped to a VMi for all i, j and xi = 1 otherwise.

B. Problem Formulation

We define two parameters α and β as weighting coefficients
with values ranging between 0 and 1 so that we scalar-
ize our multi-objective Minimum Cost, Maximum Utilization
(MCMU) problem. We assume that these parameters are set
by the operator to specify the sought optimization strategy
according to the choice of prevailing factors (CC cost or uti-
lization maximization from low-loaded gNBs). We formulate



our MCMU problem as a weighted optimization problem with
two homogenized objective terms as follows.

min
r

α

M∑
i=1

xiP0 + λyi
Pmax

− β
M∑
i=1

∑
j∈GL

rij lj∑
j∈GL

lj
(2a)

s.t.
M∑
i=1

∑
j∈GH

rij lj =
∑
j∈GH

lj (2b)

N∑
j=1

rij lj ≤ C, ∀i ∈ {1 . . . ,M} (2c)

M∑
i=1

rij ≤ 1, ∀j ∈ {1 . . . , N} (2d)

xi ∈ {0, 1}, ∀i ∈ {1, . . . ,M} (2e)
rij ∈ {0, 1}, ∀i, j (2f)

The proposed objective function in (2a) consists of minimizing
the total VM pool operation cost and maximizing the traffic
utilization resulting from the low load traffic gNBs, while en-
tirely satisfying the high-load traffic gNBs. Indeed, constraint
(2b) specifies that the traffic of highly loaded gNBs is totally
handled by the VMs implementing the 5G-NF. Constraint (2c)
ensures that the capacity (C) of the VM is not surpassed by
the sum of load of its children gNBs. Constraint (2d) stipulates
that no gNB could be associated to more than one VM pool
of 5G-NF. Constraints (2e) and (2f) stipulate that the decision
variables are binary.

IV. PROPOSED HEURISTIC

Our MCMU problem, formulated in (2), is an ILP and
hence cannot be solved directly using convex optimization
techniques. It is NP-hard and the optimal solution can only be
found by exhaustively figuring out all MN possible combina-
tions of VM/gNB assignments which is impractical for large-
scale networks [16]. Therefore, we propose a heuristic based
on the BCP framework [19], by combining column generation
starting from linear relaxation, along with using cut planes
before resorting to branch-and-bound to compute the optimal
solution of our MCMU problem. Linear relaxation is about
disregarding the integrality constraint of integer variables. Cuts
attempt to restrict the feasible region of the linear relaxations
so that their solutions are closer to integers. In the BCP
algorithm, sets of columns are left out of the linear relaxation
in order to handle the problem more efficiently by decreasing
the computational complexity. Columns are then “priced” and
added back to the linear relaxation as needed. To decide
which column will be added, a sub-problem called the “pricing
problem” is created to identify which columns should enter the
basis in an aim to decrease the objective function in case of
minimization. When such column is found, the Linear Program
(LP) is then re-optimized. Next, we detail the steps of our BCP
algorithm first by formalizing the steps for Column Generation
on our MCMU problem by means of a problem transformation,

described next, and then decomposing it into Master (MP) and
Pricing (PP) problems.

A. Problem Transformation

Based on the structure of our original problem and using
Minkowski-Weyl’s representation theorem stating that every
polyhedron P can be represented in the form of a convex
linear expression of extreme points v and extreme rays w,
we transform our original problem as follows. Recall first that
this theorem states that P = {∀r ∈ Rn,∃ (ρ, µ) ∈ R2 : r =∑
ρ.v+

∑
µ.w} where ρ, µ are linear coefficients. Instead of

the initial decision variable rij , we use two binary variables vij
and wij , for the gNBs with low (denoted as lLj ) and high traffic-
load (denoted as lHj ), respectively. Same definition remains for
xi after this transformation, i.e., xi = 0 if VMi is inactive
(
∑
j∈GL

vij +
∑
j∈GH

wij = 0) and 1 otherwise. This way, our
MCMU problem becomes as follows.

min
v, w

Φ

M∑
i=1

xi + Ω

M∑
i=1

∑
j∈GL

vij l
L
j + Ψ

M∑
i=1

∑
j∈GH

wij l
H
j (3a)

s.t.
M∑
i=1

∑
j∈GH

wij l
H
j =

∑
j∈GH

lHj (3b)∑
j∈GL

vij .l
L
j +

∑
j∈GH

wij .l
H
j ≤ C, ∀i ∈ {1 . . . ,M} (3c)

M∑
i=1

vij ≤ 1, ∀j ∈ GL (3d)

M∑
i=1

wij ≤ 1, ∀j ∈ GH (3e)

vij ∈ {0, 1}, ∀i,∀j ∈ GL (3f)
wij ∈ {0, 1}, ∀i,∀j ∈ GH (3g)

where Φ = αP0

Pmax
, Ω = αλ

C.Pmax
− β∑

j∈SL
lLj

and Ψ = αλ
C.Pmax

.
Let the two sets of feasible possible assignments of low and
high-traffic load gNBs to VM pool i be ΞLi = {vi1, vi2, . . . , viki}
and ΞHi = {wi1, wi2, . . . , wiki}. We suppose that two par-
ticular variables of ΞLi and ΞHi , vik = {vi1k, vi2k, . . . , viSk}
and wik = {wi1k, wi2k, . . . , wiSk} are a valid solution to our
transformed problem formulated in (3). Based on Dantzig-
Wolfe’s decomposition [19] that sub-divides the problem into
a Master and Pricing Problem, we define a new variable
zik = (żik, z̈

i
k) as a two-dimensional decision variable, that

reflects the feasibility of the selected solution. Accordingly,
zik would be equal to (1,1) when (vik, w

i
k) is feasible and (0,0)

othwerwise. The Master Problem (MP) is a sub-version of
the transformed problem, where we disregard the complicating



(coupling) constraints (3c). MP is then expressed as follows.

(MP) min
z

ki∑
k=1

M∑
i=1

(Φxi + Ω
∑
j∈GL

vij l
L
j ż

i
k + Ψ

∑
j∈GH

wij l
H
j z̈

i
k)

(4a)
s.t.
ki∑
k=1

M∑
i=1

∑
j∈GH

z̈ikw
i
jkl

H
j =

∑
j∈GH

lHj (4b)

ki∑
k=1

żik ≤ 1,

ki∑
k=1

z̈ik ≤ 1, ∀i (4c)

ki∑
k=1

M∑
i=1

żikvij ≤ 1, ∀j ∈ GL (4d)

ki∑
k=1

M∑
i=1

z̈ikwij ≤ 1, ∀j ∈ GH (4e)

żik, z̈
i
k ∈ {0, 1}, ∀i, k (4f)

In MP, zik represents a feasible assignment of gNBs to a VM.
Note that this decomposition is performed to obtain a problem
formulation that yields better bounds compared to when the
relaxation of the original formulation is solved. However, as
we get many variables, MP cannot be solved directly due to
its large number of columns. Therefore, we define a Restricted
Master Problem (RMP) that considers a subset of the columns
to be solved. In RMP, the values of variables that do not figure
in the equations are padded as zero. For RMP, we consider
z∗ as the corresponding dual solution. We add a number of
columns with positive reduced price that results from solving
the following sub-problem:

min
1≤i≤ M

{ui − z∗i} (5)

where ui = (u̇i, üi) is the optimal solution of our Pricing
Problem (PP), that is expressed as follows.

(PP) min
v, w

Φxi + Ω
∑
j∈GL

vij(l
L
j − v∗j ) + Ψ

∑
j∈GH

wij(l
H
j − w∗j )

(6a)
s.t.∑
j∈GL

vij l
L
j +

∑
j∈GH

wij l
H
j ≤ C, ∀i (6b)

vij , wij ∈ {0, 1}, ∀i, j (6c)

The two values v∗j and w∗j correspond to the optimal dual
price resulting from solving the RMP associated with the
partitioning constraints of low and high traffic load gNBs. In
the PP, we get the optimum mapping of gNBs to VM pool i.

B. Proposed MCMU heuristic

To find a solution to our original problem, we propose a
heuristic that achieves near optimal results with a noticeable
gain in computation time, especially for large problem in-
stances depending on the values of M and N . Our heuristic is

Algorithm 1: BCP-based MCMU
Data: Objective function and constraints
Result: gNBs to VM pool mapping solution
Initialize our problem
Solve LP with relaxed constraints
Get Lower-Bound (LB) solution

(A) Choose a new node
(B) Solve Restricted Master Problem (RMP)

Evaluate a new node
if (reduced value found) then

Add such column to the basis of RMP
end
Solve PP to optimality
if (solution with reduced value found) then

Add to RMP;
goto (B)

end
if (no solution with negative reduced value found) then

update lower bound
end
if (∃ LB of other branch < computed LB) then

remove this node;
goto (A)

end
if (integer coefficient is not met) then

Generate cuts; Add them to the RMP;
goto (B)

end
if (Solution is integral) then

Update upper bound
else

branch and add children nodes to unprocessed
end
goto (A)
if stop criteria is reached then quit;

described in Algorithm 1. We start by generating an initial
set of configurations. Next, we apply LP relaxation to our
problem (P) and solve the LP. We iterate to complement found
columns to the basis of our solution. Then, we proceed to
cut generation, and we try to find integer-feasible solutions
before we use branch-and-bound to systematically search for
the optimal solution as long as the stop criterion is not reached.
Stop criterion could be either a time-limit or a relative gap
tolerance between the found value and LP value.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our MCMU
heuristic using CPLEX Optimizer [20]. Note that, according to
the values of α and β used in the objective function formulated
in (2a), we refer to our heuristic as MCMUαβ omitting
decimal points from α and β.

Simulation parameters are reported in Table I. On the
RAN Side, we consider a total of N = 2000 gNBs, including
1500 business and 500 residential gNBs, adapted from an
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hourly traffic load from [16] and [21] by considering a
linear relation between the load in Mbps and the number
of needed vCPUs as shown in Fig. 1. We conducted 200
experiments with changing VM pool size in vCPUs from
200 vCPUs to 2200 with a step of 10 vCPUs. For ease
of interpretation, we split these 200 experiments into three
categories and we average each category and denote it by:
small, medium and large setup, respectively. GCP offers
different machine types: standard (std), micro and small
in addition to types that are highly performing in terms
of vCPUs or vMEM. For each type, different discrete
options exist in term of count of vCPUs (1..96). Accordingly,
hourly prices are charged as functions of chosen specifications.

A. Data preparation and assumption validation

Pricing is fetched from Google Compute Engine (GCE)
[22] that is the “compute” service from GCP. Same data is
found for other cloud providers such as Amazon AWS or
Microsoft Azure. We have chosen to conduct our simulations
using GCE pricing data because GCP offers low latency within
the stipulated limit of NGMN on the backhaul. To validate
this assumption, we instantiated the smallest VM instance,
called (f1-Micro), using Ubuntu 16.04 on major European
regions covered by GCP and generated within each VM 100
ping messages to other public IPs of instantiated VMs. After
averaging, we found that the ping takes less than 10 ms
between several points of presence in Europe, as reported in
Table II.

A default setup is proposed by GCE [23] for VMs. It has
a Standard Price (SP) which we use as our baseline. We also
computed the lower-bound solution of VM minimizing the cost
and maximizing the utilization by solving the LP problem.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Machine type std, highcpu, highmem, megamem,

ultramem, micro and small
VM vCPUs standard sizes 1, 2, 4, 8, 16, 32, 40, 64, 80, 96
Memory (GB) 0.6 .. 3844
Hourly Price (USD) 0.0076 . . . 27.7557
(α, β) (0.9, 0.1), (0.5, 0.5), (0.1, 0.9)
small/medium/large setup 525/1185/1855 (vCPUs)
Count of gNBs (N) 2000
Business gNBs 1500
Residential gNBs 500
Max Capacity C per VM 96 (vCPUs) [22]
Number of Experiments 2000
stop criteria 120 seconds

TABLE II
LATENCY IN MILLISECONDS FOR SOME REGIONS IN EUROPE IN GCP

From\To Belgium London Frankfurt Netherlands
Belgium N/A 6.1 7.8 107.7
London 6.2 N/A 13.4 10.5
Frankfurt 7.7 12.7 N/A 7.4
Netherlands 107.7 11.9 8.8 N/A

B. Results

Fig. 2 depicts the categorized hourly average costs for
all schemes (Baseline, LP, and MCMU91). We can see that
MCMU91 dramatically decreases the average cost compared
to the baseline (SP) and provides values that are close to the
LP. The reason is that the baseline scheme selects the standard
VM by default without considering the gNBs load and the
matching VM capacity.

In order to assess the effectiveness of our heuristic, Fig. 3
compares the average computation time for 600 experiments
with two well-known algorithms: BB [14], and BC [15], for
the three setups of VM pool sizes (small, medium and large).
We can see that our MCMU heuristic is faster than BB and BC
approaches, especially for large setups. For the small setups,
as the constraints are aggressive in term of gNBs to VM pool
mapping, we found that for some cases, the three evaluated
heuristics (BB, BC, and MCMU91) were not able to find
a solution in a timely manner and thus the stop criteria of
120 seconds is reached which explains the increase in time.
For medium setups, the ability to find a solution for all the
heuristics is comparable. Note that BC performs worst than
BB in the large scenario case and it could not find a solution
before the stop criterion for several experiments.

To further show the effectiveness of our proposal, we plot
in Fig. 4 the time taken by our heuristic compared to BB and
BC in the last 30 experiments of large setups. We measured
the time in milliseconds and plotted them in logarithmic scale
as there is one order of magnitude difference. We see that for
the majority of the experiments, BB and BC could not find a
solution before the chosen stop criterion, while MCMU based
on BCP could find it, thanks to its faster convergence resulting
from combining column generation and cuts on top of BB.

Fig. 5 shows the impact of the two parameters α and β
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on the performance of our MCMU heuristic. We considered
different optimization strategies according to the chosen values
of these two parameters as summarized in table III. We can see

TABLE III
OPTIMIZATION STRATEGIES

Scheme Values of α, β
Prevailing Cost over Utilization (MCMU91) 0.9, 0.1
Equal-Importance of Cost and Utilization (MCMU55) 0.5, 0.5
Prevailing Utilization Maximization (MCMU19) 0.1, 0.9

that MCMU91 performs the best as the importance is given
to the cost. MCMU55 gives equal importance to each of the
weight factors and consequently lags behind MCMU91 and
comes ahead of MCMU19 where the cost is maximum. The
reason is that MCMU55, although it provides proportional
fairness in regard to each of the objectives but it increases
the incurred cost.
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VI. CONCLUSION

This paper addressed the minimum cost maximum utiliza-
tion optimization problem for offloading delay tolerant 5G
Network Functions (e.g. NWDAF) to public clouds. We formu-
lated this problem as an Integer Linear Program and proposed

a simple yet efficient heuristic based on the branch-cut-and-
price framework to solve it. Results show that our heuristic
performs well compared to optimal solution by providing
considerable cost saving compared to the standard problem
of VM provisioning with default VM selected. Also, using
simulations, we found that our heuristic is faster and more
likely to find a solution compared to other state-of-the-art
heuristics.
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