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Cloud computing is being embraced more and more by telecommunication operators for on-demand access to computing resources. Knowing that 5G Core reference architecture is envisioned to be cloud-native and service-oriented, we propose, in this paper, offloading to the cloud, some of 5G delay-tolerant Network Functions and in particular the Network Data Analytics Function (NWDAF). The dynamic selection of cloud resources to serve off-loaded 5G-NWDAF, while incurring minimum cost and maximizing utilization of served next generation Node-Bs (gNBs) requires agility and automation. This paper introduces a framework to automate the selection process that satisfies resource demands while meeting two objectives, namely, cost minimization and utilization maximization. We first formulate the mapping of gNBs to 5G-NWDAF problem as an Integer Linear Program (ILP). Then, we propose a heuristic to solve it based on branch-cut-and-price technique combining all of branch-andprice, branch-and-cut and branch-and-bound. Results using pricing data from a public cloud provider (Google Cloud Platform), show that our proposal achieves important savings in cloud computing costs and reduction in execution time compared to other state-of-the-art frameworks.

I. INTRODUCTION

Cloud Computing (CC) is getting popularity among Telephone Companies (telcos). AT&T stated that it is becoming a 'public cloud first' company by migrating its workloads to Microsoft public cloud by 2024. They advocate that this allows them to focus on core network capabilities, accelerate their innovation cycle, and empower their workforce while optimizing costs [START_REF] Boutaba | AT&T and Microsoft announce a strategic alliance to deliver innovation with cloud[END_REF]. TM-Forum claims that telcos cannot afford not to embrace the public clouds [START_REF] Glass | Telcos will embrace public cloud -they can't afford not to[END_REF]. Surveys show that enterprises are divesting their data centers and moving application workloads, both testing and production to the public cloud [START_REF] Csa | WP custom apps IaaS trends[END_REF]. As of January 2017, 46.1% of business-critical applications are in the public or hybrid cloud [START_REF] Csa | WP custom apps IaaS trends[END_REF]. Gartner forecasts cloud services industry to grow exponentially through 2022 [START_REF] Gartner | Gartner forecasts worldwide public cloud revenue to grow[END_REF]. Furthermore, a leading research and consulting business mandates that in order to be able to compete in the digital world, the adoption of public cloud by telcos is inevitable [START_REF] Ovum | Understanding the Business Value of Re-architecting Core Applications on the Public Cloud[END_REF]. It is also predicted that telcos will be one of the fastest-growing users of public cloud computing in 2020 as they look to accelerate their new service delivery plan [START_REF] Ovum | Understanding the Business Value of Re-architecting Core Applications on the Public Cloud[END_REF]. Indeed, usage of CC allows telcos to move faster, focus on their core business, minimize their hardware footprints, and keep pace with increasing demands of resources. This is due to inherent cloud elasticity and versatility to provide resources as needed. In addition, by leveraging auto-scaling capabilities of the public cloud, telcos will pay only for what they need when they need it. With the competition from Over-The-Top providers, telcos have to minimize their costs to maintain profitability [START_REF] Mckinsey | Creating value with the cloud[END_REF]. To afford the tremendous communications infrastructure overhaul that 5G requires, telcos need to create additional revenue generating services such as data analytics. One way to achieve this goal is by exploiting the cloud to deploy remote Network Functions (NFs) for delay-tolerant services [START_REF] Mckinsey | Creating value with the cloud[END_REF]. Not only offloading to the cloud is a way to cut costs, but also, it serves as a driver for new business models for telcos, especially in data analytics. Network Data Analytics Function (NWDAF) [START_REF] Etsi | Policy and Charging Control Framework for the 5G System[END_REF], part of 5G Core, is supposed to crunch huge amounts of data and report analytics outcomes to multiple NFs. As of today, the Network Slice Selection Function (NSSF) and Policy Control Function (PCF) are consumers of NWDAF, but according to 3GPP standard, any NF or NF-service can consume it too [START_REF]3GPP[END_REF]. In this paper, we use "Compute" resources in public clouds, expressed in Virtual Central Processing Units (vCPUs) and Virtual Memory (vMEM) to implement 5G-NFs and in particular, edge NWDAFs.

Our objective is to dynamically deploy Virtual Machines (VMs) on the cloud to implement 5G-NF at minimum cost with maximum utilization.

Our contributions are summarized as follows:

• We model the selection of 5G-NF VMs, while minimizing CC cost and maximizing utilization to serve next generation Node-Bs (gNBs) and formulate this problem as an Integer Linear Program (ILP). • We propose a heuristic algorithm using the best of several algorithms, namely branch-and-bound, branch-and-price and branch-and-cut to solve our ILP problem. • We show the effectiveness of our proposal compared to other solutions using pricing data from Google Cloud Platform (GCP). The remainder of this paper is organized as follows. In section II, we discuss related works. Section III describes the system model and formulates our problem as an ILP. Our proposed heuristic to solve the ILP problem is presented in section IV. Section V provides performance evaluation including assumptions validation and simulation results discussion. We conclude this paper in Section VI.

II. RELATED WORKS

Minimizing cost when using CC has triggered considerable interest among researchers.

Authors in [START_REF] Liu | Minimum-cost cloud storage service across multiple cloud[END_REF] focused on cost minimization due to storage across multiple cloud providers, while meeting multiple Service Level Objectives. Also, authors in [START_REF] Wu | Spanstore: Cost-effective geo-replicated storage spanning multiple cloud[END_REF] proposed to minimize cloud storage costs, while achieving latency and availability objectives across multiple Cloud Service Providers (CSPs). Both of these papers treated the cost optimization from "Storage" resources minimization perspective. Differently from them, we focus on "Compute" resources minimization.

Authors in [START_REF] Ran | Dynamic IaaS computing resource provisioning strategy[END_REF] proposed a dynamic approach to predict the load using Autoregressive (AR) model to calculate the number of instances to be reserved for average computation requirements.

Authors in [START_REF] Wang | Minimizing cost in IaaS clouds via scheduled instance reservation[END_REF] proposed a CC cost saving by exploiting the discounts resulting from scheduling reservation of resources on recurring basis in advance. Unlike these two approaches, we do not rely on prediction to save costs but on dynamically optimizing cloud resource selection over time.

In [START_REF] Bouet | Cost-based placement of vDPI functions in NFV infrastructures[END_REF], authors proposed dynamic placement of virtual Deep Packet Inspection (vDPI) function in NFV infrastructure to minimize Operational Expenditures (OPEX) including licensing cost and power consumption. They formulated this problem as multi-commodity flow Integer Linear Programming (ILP) and proposed a centrality-based greedy heuristic that runs in polynomial time. Unlike this work, we consider in this paper, utilization in addition to cost to meet telcos optimization strategy.

Authors in [START_REF] Chen | Efficient resource constrained scheduling using parallel two-phase branch-and-bound[END_REF] proposed a Branch and Bound (BB) approach for resource constrained scheduling in two phases to reduce the computation time. Authors in [START_REF] Avella | A branch-and-cut algorithm for the multilevel generalized assignment[END_REF] proposed a multilevel generalized assignment problem for minimizing the assignment cost of jobs to machines using Branch and Cut (BC). Authors in [START_REF] Lyazidi | A Novel Optimization Framework for C-RAN BBU Selection[END_REF] formulated Cloud Radio Access Network Assignment problem as an ILP and used Branch and Price (BP) to solve and evaluate different strategies for a multi-objective optimization. Different from these works, we focus, in this paper, on minimizing CC costs and maximizing utilization of gNBs and propose an efficient heuristic to solve the 5G-NF selection problem using a Branch, Cut and Price (BCP) approach.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a simplified 5G architecture consisting of three domains, including: Radio Access Network (RAN), 5G-NF and a backhaul transport network for interconnecting the RAN to the 5G-NF. A 5G-NF Service overlaying a number of N gNBs needs to be deployed on a pool of M VMs. The pool of VMs is denoted by V = {i|1 ≤ i ≤ M }. We assume that the latency imposed by hosting the 5G-NF for delay tolerant services on the cloud is acceptable when backhauling gNBs to the cloud. Indeed, according to the requirement R48 of the NGMN alliance [START_REF] Alliance | NGMN optimised backhaul requirements[END_REF], maximum guarantee of end-to-end latency of 10 milliseconds is considered fine for most critical applications such as voice and video over IP. This is easily achievable nowadays in most public clouds as we will confirm in the performance evaluation section (cf. section V). The set of gNBs is denoted by G = {j|1 ≤ j ≤ N }. A group of gNBs is associated to one 5G-NF VM pool. We define a binary variable denoted by r ij to decide if VM i is associated to gNB j or not. The average utilization y i of the VM pool i is formulated as follows.

y i = 1 C N j=1 r ij .l j (1) 
where l j denotes the traffic utilization in vCPUs on the gNB j and C denotes the maximum capacity in vCPUs of the VM implementing a 5G-NF. We model the price of instantiating VMs to implement the 5G-NF pool i as a function of the average utilization of VMs y i expressed in [START_REF] Boutaba | AT&T and Microsoft announce a strategic alliance to deliver innovation with cloud[END_REF]. We use a linear model [START_REF] Murthy | Pricing models and pricing schemes of IaaS providers[END_REF] with a proportionality slope (λ) as: P i = λ.y i +P 0 . P 0 is the fixed price portion imposed by the CSP. To normalize the price, we denote by P max the highest value of the VM in the CSP pricing list. We consider two sets of gNBs, formed according to the traffic load of each gNB. They are G L for low-load gNBs and G H for high-load gNBs. We propose this segregation of gNBs based on traffic load, because we assume to have asymmetrical traffic between day and night in addition to differences between business and residential areas in term of processing capacity requirement for services. We also define a binary mapping variable x i to express the active state of a VM i such that x i = 0 when N j=1 r ij = 0, meaning that no gNB j is mapped to a VM i for all i, j and x i = 1 otherwise.

B. Problem Formulation

We define two parameters α and β as weighting coefficients with values ranging between 0 and 1 so that we scalarize our multi-objective Minimum Cost, Maximum Utilization (MCMU) problem. We assume that these parameters are set by the operator to specify the sought optimization strategy according to the choice of prevailing factors (CC cost or utilization maximization from low-loaded gNBs). We formulate our MCMU problem as a weighted optimization problem with two homogenized objective terms as follows.

min r α M i=1

x i P 0 + λy i P max -β M i=1 j∈G L r ij l j j∈G L l j (2a) s.t. M i=1 j∈G H r ij l j = j∈G H l j (2b) N j=1 r ij l j ≤ C, ∀i ∈ {1 . . . , M } (2c) M i=1 r ij ≤ 1, ∀j ∈ {1 . . . , N } (2d) x i ∈ {0, 1}, ∀i ∈ {1, . . . , M } (2e) r ij ∈ {0, 1}, ∀i, j (2f) 
The proposed objective function in (2a) consists of minimizing the total VM pool operation cost and maximizing the traffic utilization resulting from the low load traffic gNBs, while entirely satisfying the high-load traffic gNBs. Indeed, constraint (2b) specifies that the traffic of highly loaded gNBs is totally handled by the VMs implementing the 5G-NF. Constraint (2c) ensures that the capacity (C) of the VM is not surpassed by the sum of load of its children gNBs. Constraint (2d) stipulates that no gNB could be associated to more than one VM pool of 5G-NF. Constraints (2e) and (2f) stipulate that the decision variables are binary.

IV. PROPOSED HEURISTIC

Our MCMU problem, formulated in [START_REF] Glass | Telcos will embrace public cloud -they can't afford not to[END_REF], is an ILP and hence cannot be solved directly using convex optimization techniques. It is NP-hard and the optimal solution can only be found by exhaustively figuring out all M N possible combinations of VM/gNB assignments which is impractical for largescale networks [START_REF] Lyazidi | A Novel Optimization Framework for C-RAN BBU Selection[END_REF]. Therefore, we propose a heuristic based on the BCP framework [START_REF] Barnhart | Using branch-and-price-andcut to solve origin-destination integer multicommodity flow problems[END_REF], by combining column generation starting from linear relaxation, along with using cut planes before resorting to branch-and-bound to compute the optimal solution of our MCMU problem. Linear relaxation is about disregarding the integrality constraint of integer variables. Cuts attempt to restrict the feasible region of the linear relaxations so that their solutions are closer to integers. In the BCP algorithm, sets of columns are left out of the linear relaxation in order to handle the problem more efficiently by decreasing the computational complexity. Columns are then "priced" and added back to the linear relaxation as needed. To decide which column will be added, a sub-problem called the "pricing problem" is created to identify which columns should enter the basis in an aim to decrease the objective function in case of minimization. When such column is found, the Linear Program (LP) is then re-optimized. Next, we detail the steps of our BCP algorithm first by formalizing the steps for Column Generation on our MCMU problem by means of a problem transformation, described next, and then decomposing it into Master (MP) and Pricing (PP) problems.

A. Problem Transformation

Based on the structure of our original problem and using Minkowski-Weyl's representation theorem stating that every polyhedron P can be represented in the form of a convex linear expression of extreme points v and extreme rays w, we transform our original problem as follows. Recall first that this theorem states that

P = {∀r ∈ R n , ∃ (ρ, µ) ∈ R 2 : r = ρ.v + µ.
w} where ρ, µ are linear coefficients. Instead of the initial decision variable r ij , we use two binary variables v ij and w ij , for the gNBs with low (denoted as l L j ) and high trafficload (denoted as l H j ), respectively. Same definition remains for x i after this transformation, i.e., x i = 0 if VM i is inactive ( j∈G L v ij + j∈G H w ij = 0) and 1 otherwise. This way, our MCMU problem becomes as follows.

min v, w Φ M i=1 x i + Ω M i=1 j∈G L v ij l L j + Ψ M i=1 j∈G H w ij l H j (3a) s.t. M i=1 j∈G H w ij l H j = j∈G H l H j (3b) j∈G L v ij .l L j + j∈G H w ij .l H j ≤ C, ∀i ∈ {1 . . . , M } (3c) M i=1 v ij ≤ 1, ∀j ∈ G L (3d) M i=1 w ij ≤ 1, ∀j ∈ G H (3e) v ij ∈ {0, 1}, ∀i, ∀j ∈ G L (3f) w ij ∈ {0, 1}, ∀i, ∀j ∈ G H (3g) 
where

Φ = αP0 Pmax , Ω = αλ C.Pmax - β j∈S L l L j
and Ψ = αλ C.Pmax . Let the two sets of feasible possible assignments of low and high-traffic load gNBs to VM pool i be 

Ξ L i = {v i 1 , v i 2 , . . . , v i ki } and Ξ H i = {w i 1 , w i 2 ,
(Φx i + Ω j∈G L v ij l L j żi k + Ψ j∈G H w ij l H j zi k ) (4a) s.t. ki k=1 M i=1 j∈G H zi k w i jk l H j = j∈G H l H j (4b) ki k=1 żi k ≤ 1, ki k=1 zi k ≤ 1, ∀i (4c) ki k=1 M i=1 żi k v ij ≤ 1, ∀j ∈ G L (4d) ki k=1 M i=1 zi k w ij ≤ 1, ∀j ∈ G H (4e) żi k , zi k ∈ {0, 1}, ∀i, k (4f) 
In MP, z i k represents a feasible assignment of gNBs to a VM. Note that this decomposition is performed to obtain a problem formulation that yields better bounds compared to when the relaxation of the original formulation is solved. However, as we get many variables, MP cannot be solved directly due to its large number of columns. Therefore, we define a Restricted Master Problem (RMP) that considers a subset of the columns to be solved. In RMP, the values of variables that do not figure in the equations are padded as zero. For RMP, we consider z * as the corresponding dual solution. We add a number of columns with positive reduced price that results from solving the following sub-problem:

min 1≤i≤ M {u i -z * i } ( 5 
)
where u i = ( ui , üi ) is the optimal solution of our Pricing Problem (PP), that is expressed as follows.

(PP) min v, w

Φx i + Ω j∈G L v i j (l L j -v * j ) + Ψ j∈G H w i j (l H j -w * j ) (6a) s.t. j∈G L v i j l L j + j∈G H w i j l H j ≤ C, ∀i (6b) 
v ij , w ij ∈ {0, 1}, ∀i, j (6c) 
The two values v * j and w * j correspond to the optimal dual price resulting from solving the RMP associated with the partitioning constraints of low and high traffic load gNBs. In the PP, we get the optimum mapping of gNBs to VM pool i.

B. Proposed MCMU heuristic

To find a solution to our original problem, we propose a heuristic that achieves near optimal results with a noticeable gain in computation time, especially for large problem instances depending on the values of M and N . Our heuristic is described in Algorithm 1. We start by generating an initial set of configurations. Next, we apply LP relaxation to our problem (P) and solve the LP. We iterate to complement found columns to the basis of our solution. Then, we proceed to cut generation, and we try to find integer-feasible solutions before we use branch-and-bound to systematically search for the optimal solution as long as the stop criterion is not reached. Stop criterion could be either a time-limit or a relative gap tolerance between the found value and LP value.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our MCMU heuristic using CPLEX Optimizer [START_REF]IBM ILOG CPLEX Optimization Studio[END_REF]. Note that, according to the values of α and β used in the objective function formulated in (2a), we refer to our heuristic as M CM U αβ omitting decimal points from α and β.

Simulation parameters are reported in Table I. On the RAN Side, we consider a total of N = 2000 gNBs, including 1500 business and 500 residential gNBs, adapted from an hourly traffic load from [START_REF] Lyazidi | A Novel Optimization Framework for C-RAN BBU Selection[END_REF] and [START_REF]C-RAN, The road towards green RAN[END_REF] by considering a linear relation between the load in Mbps and the number of needed vCPUs as shown in Fig. 1. We conducted 200 experiments with changing VM pool size in vCPUs from 200 vCPUs to 2200 with a step of 10 vCPUs. For ease of interpretation, we split these 200 experiments into three categories and we average each category and denote it by: small, medium and large setup, respectively. GCP offers different machine types: standard (std), micro and small in addition to types that are highly performing in terms of vCPUs or vMEM. For each type, different discrete options exist in term of count of vCPUs (1..96). Accordingly, hourly prices are charged as functions of chosen specifications.

A. Data preparation and assumption validation

Pricing is fetched from Google Compute Engine (GCE) [START_REF]GCP Pricing[END_REF] that is the "compute" service from GCP. Same data is found for other cloud providers such as Amazon AWS or Microsoft Azure. We have chosen to conduct our simulations using GCE pricing data because GCP offers low latency within the stipulated limit of NGMN on the backhaul. To validate this assumption, we instantiated the smallest VM instance, called (f1-Micro), using Ubuntu 16.04 on major European regions covered by GCP and generated within each VM 100 ping messages to other public IPs of instantiated VMs. After averaging, we found that the ping takes less than 10 ms between several points of presence in Europe, as reported in Table II.

A default setup is proposed by GCE [START_REF] Gcp | Considerations when choosing a VM[END_REF] for VMs. It has a Standard Price (SP) which we use as our baseline. We also computed the lower-bound solution of VM minimizing the cost and maximizing the utilization by solving the LP problem. 

B. Results

Fig. 2 depicts the categorized hourly average costs for all schemes (Baseline, LP, and MCMU91). We can see that MCMU91 dramatically decreases the average cost compared to the baseline (SP) and provides values that are close to the LP. The reason is that the baseline scheme selects the standard VM by default without considering the gNBs load and the matching VM capacity.

In order to assess the effectiveness of our heuristic, Fig. 3 compares the average computation time for 600 experiments with two well-known algorithms: BB [START_REF] Chen | Efficient resource constrained scheduling using parallel two-phase branch-and-bound[END_REF], and BC [START_REF] Avella | A branch-and-cut algorithm for the multilevel generalized assignment[END_REF], for the three setups of VM pool sizes (small, medium and large). We can see that our MCMU heuristic is faster than BB and BC approaches, especially for large setups. For the small setups, as the constraints are aggressive in term of gNBs to VM pool mapping, we found that for some cases, the three evaluated heuristics (BB, BC, and MCMU91) were not able to find a solution in a timely manner and thus the stop criteria of 120 seconds is reached which explains the increase in time. For medium setups, the ability to find a solution for all the heuristics is comparable. Note that BC performs worst than BB in the large scenario case and it could not find a solution before the stop criterion for several experiments.

To further show the effectiveness of our proposal, we plot in Fig. 4 the time taken by our heuristic compared to BB and BC in the last 30 experiments of large setups. We measured the time in milliseconds and plotted them in logarithmic scale as there is one order of magnitude difference. We see that for the majority of the experiments, BB and BC could not find a solution before the chosen stop criterion, while MCMU based on BCP could find it, thanks to its faster convergence resulting from combining column generation and cuts on top of BB. on the performance of our MCMU heuristic. We considered different optimization strategies according to the chosen values of these two parameters as summarized in table III. We can see 

Scheme

Values of α, β Prevailing Cost over Utilization (MCMU91) 0.9, 0.1 Equal-Importance of Cost and Utilization (MCMU55) 0.5, 0.5 Prevailing Utilization Maximization (MCMU19) 0.1, 0.9 that MCMU91 performs the best as the importance is given to the cost. MCMU55 gives equal importance to each of the weight factors and consequently lags behind MCMU91 and comes ahead of MCMU19 where the cost is maximum. The reason is that MCMU55, although it provides proportional fairness in regard to each of the objectives but it increases the incurred cost. 

VI. CONCLUSION

This paper addressed the minimum cost maximum utilization optimization problem for offloading delay tolerant 5G Network Functions (e.g. NWDAF) to public clouds. We formulated this problem as an Integer Linear Program and proposed a simple yet efficient heuristic based on the branch-cut-andprice framework to solve it. Results show that our heuristic performs well compared to optimal solution by providing considerable cost saving compared to the standard problem of VM provisioning with default VM selected. Also, using simulations, we found that our heuristic is faster and more likely to find a solution compared to other state-of-the-art heuristics.
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