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Abstract—The enhanced Interference Mitigation and Traffic
Adaptation (eIMTA) mechanism is a key enabler for 5G networks
and beyond. Knowing that a User Equipment (UE) cannot
transmit more than the maximum power allowed by its power
class. The level of available Transmission Power (TP) in each
UE is an essential input for the Uplink (UL) scheduler of the
next Generation Node-B (gNB). Scheduling higher data rate than
what is supported by the available TP is a waste of resources. In
the Downlink (DL), the power level is known by the gNB that
manages the power amplifier and the DL-scheduler. Conversely,
in the UL, the available power is estimated by the UE and sent to
the gNB as a key input for eIMTA, known as Power Head-Room
(PHR). In this context, we propose in this paper, a Deep Neural
Network (DNN) based model to predict the PHR and reduce
dependency on reported measures. We evaluate the effectiveness
of our proposal in a 5G experimental prototype, based on
Open Air Interface (OAI). Obtained results show that using
DNN outperforms state-of-the-art machine-learning approaches
in terms of prediction accuracy, computation complexity and
throughput.

Index Terms—Deep Neural Networks, Machine Learning, En-
hanced Interference Mitigation and Traffic Adaptation eIMTA,
5G, OpenAirInterface OAI, Power Head-Room prediction.

I. INTRODUCTION

In Long Term Evolution-Advanced (LTE-A) and fifth Gener-
ation of mobile communication (5G) New Radio (NR), Power
Head-Room (PHR) is a type of Medium Access Layer (MAC)
Control Element (CE). It reports the headroom between the
current User Equipment (UE) Transmission Power (TP) and
the nominal power. The Evolved Node-B (eNB) in LTE-A and
next Generation Node-B (gNB) in 5G use this reported value
to estimate the Uplink (UL) bandwidth that a UE can use for a
specific subframe [1]. The more resource blocks the UE uses,
the higher UE TP gets, without exceeding the maximum power
defined in the UE class specification. Consequently, a UE
cannot use allocated resource blocks from assigned bandwidth
if it does not have enough PHR.

The “enhanced Interference Mitigation and Traffic Adapta-
tion” (eIMTA) allows for very dynamic adaptation of the Time
Division Duplexing (TDD) pattern in response to capacity
requirements in the UL and Downlink (DL). eIMTA was
standardized in Third Generation Partnership Project (3GPP)
Technical specification for LTE-A Release 12 [2]. “eIMTA-
like” functionality is considered to be one of the key enablers
for 5G technologies and beyond [3]. Even though the PHR is

reported per subframe, the eIMTA time division duplexing has
two sets of UL power control subframes configured. Therefore,
PHR can also be very different between the two subframe sets
[4]. According to [5, 6], a power headroom report can only
be sent in sub-frames in which a UE has an UL transmission
grant. Furthermore, the reported value corresponds to the sub-
frame in which it is sent. Therefore, it is well-suited to predict
the PHR value. Indeed, the UE cannot directly measure its
actual transmission power headroom for the subframe in which
the report is to be transmitted. In this context, we propose in
this article to use deep neural networks (DNNs) in order to
predict future PHR values in 5G. These DNNs are formed
by the accumulated wealth of data in the gNB from previous
measurements.

Our contributions can be summarized as follows:
• We provide an analytical PHR model to identify the

predictors for a feature-based prediction.
• We formulate different Machine Learning (ML) ap-

proaches to predict the PHR values and evaluate them.
• We show the effectiveness of our proposal based on real

measurement of PHR values using our 5G experimental
prototype based on OpenAirInterface™ (OAI) [7].

The remainder of this paper is organized as follows. In
section II, we present the related works. Section III describes
our system model followed by our Problem Formulation and
complexity Analysis in Section IV. In section V, we present
the performance evaluation and we discuss obtained results.
We finally conclude this paper in section VI.

II. RELATED WORK

In this section, we discuss a selection of relevant papers that
investigated PHR reporting for 5G networks and beyond.

Authors in [3] analyzed the main characteristics of eIMTA
and illustrated its behavior using system-level simulations.
The center for Advanced Technology in Telecommunications
(CATT) along to multiple telecommunications suppliers [4]
discussed the possibility of getting PHR for a set of two
subframes. The goal is to use the current PHR mechanism
in an eIMTA context. They concluded by emphasizing on the
importance of having the eNB in control of individual PHR
for each set.

Authors in [8] proposed a power-efficient resource allocation
scheme using power headroom reports. They elaborated an
adaptive Open-loop power control scheme based on the Signal-
To-Interference-Ratio (SINR) and the UL interference in anISBN 978-3-903176-28-7©2020 IFIP



aim to improve cell capacity. They also detailed a fast closed-
loop power control based on received SINR.

Authors in [9] relied on PHR to design autonomous cell-
centered self-optimizing-network. All of these papers exploited
the PHR and did not address aforementioned eIMTA chal-
lenges using a proactive PHR computation approach.

Authors in [10] proposed an inter-cell radio frame coordina-
tion scheme based on sliding codebook for fully dynamic TDD
5G networks. They formulated a two-objective optimization
problem aimed at minimizing the average Inter-cell cross link
interference while maximizing the achievable UL/DL capacity
leveraging eIMTA for flexible TDD adaptation.

Authors in [11] proposed an optimization of the Physical
Uplink Shared Channel (PUSCH) closed loop power control
algorithm based on PHR. They developed an algorithm that
calculates the power of each resource block once PHR mea-
surement is received by the eNB/gNB.

Authors in [12] investigated how to leverage PHR to detect
outages in LTE network in an aim to minimize costly drive-test
missions for mobile network operators. They used a dynamic
LTE system simulator to validate their proposal. However, they
did not leverage the advents in ML based prediction.

Authors in [13] proposed a prediction scheme for channel
stability using machine learning for application in 5G net-
works.

Finally, authors in [14] investigated dual connectivity in LTE
networks by allowing UEs to connect to multiple eNBs in an
aim to improve user throughput and mobility. They emphasized
on the resulting technical challenges including PHR calculation
and reporting. They relied on a system level simulation study
to quantify their analysis.

III. SYSTEM MODEL

PHR reporting provides the serving eNB/gNB with informa-
tion about the difference between the nominal UE maximum
transmit power and the estimated power for Uplink Shared
Channel (UL-SCH) transmission for the serving cell.

According to the standard [15], the UEs transmit buffer sta-
tus and PHR reports on the PUSCH in the following four cases.
The first case is when the path loss changes above a predefined
threshold (dl− PathlossChange in dB) at each time window
defined by prohibitPHR− Timer. The second case is at the
expiration of a certain periodic timer (periodicPHR− Timer).
The third case is when the configuration or reconfiguration
of the PHR by the upper layers occurs. And finally, when a
secondary servicing cell is activated.

Note that the PHR reporting range is from -23 to +40 dB
[15]. Positive values indicate that there is still some headroom
under the maximum allowed power. It implies that the UE can
transmit more data if required and if approved by the eNB/gNB
UL scheduler. In contrast, negative power headroom values
indicate that the per-carrier transmit power was limited at the
time of the power headroom reporting. This meaning that the
network has scheduled a higher data rate than the terminal can
support, given the available transmission power. In such case,
allocated resources are wasted.

In what follows, we provide the analytical model of PHR
to identify the parameters that affect it for use in our ML
engineering models.

A. Analytical Model for PHR

According to the standard on physical layer procedures [16],
the UE computes its UL Transmission Power PTX as follows:

PTX = min

{
Pmax,

P0 + 10log10(M) + α.PL + ∆MCS + fc

}
It is the minimum between required power and Pmax. On
first hand, the maximum possible output power of the UE
is fixed according to its category or class that defines its
performance specifications. For example, Pmax is of 23, 20, or
14 dBm for UE class 3, 5, or 6, respectively [17]. On second
hand, the required power is proportional to all of: P0 (SINR
per single Physical Resource Block (PRB)), the number of
transmitting PRBs (M), the estimated Path-loss (PL) weighted
by a pre-configured fractional PL compensation factor (α), the
adjustment factor for higher Modulation and Coding Schemes
(∆MCS) and finally, the closed loop power-control adjustment
factor (fc). Parameter fc is the value commanded by the
eNB/gNB to the UE to adjust its transmission power accord-
ing to received signal strength and quality indicators at the
eNB/gNB. We consider P0 to be constant for an operator
in homogeneous environment and fc ∼ 0 for a fine-tuned
cell [16]. We assume parameter α to be constant per type
of environment (urban, suburban or rural) as it relates to the
UE used frequency band and the number of neighbor cells
to a hosting cell, which is our case [16]. From the PTX, the
PHR is calculated as PHR = P̃max − PTX [16], where P̃max
is a computed transmission power set by the UE based on
requirements elaborated in [17].

B. ML Models

We employ multiple ML models having different com-
plexities to evaluate the prediction efficiency for the PHR.
In addition, we used the neural networks-based models. We
evaluated two exogenous models with selected features and
two endogenous models with no required external feature
engineering to be attached to the model.

Let D = {(X(1), y(1)), (X(2), y(2)), . . . , (X(N), y(N))} be a
dataset of N records. X = (x1, x2, . . . , xd) ∈ Rd is a vector
with d features used as predictors. Variable y is our response
for a predicted PHR value.

1) Trees and Random-Forest based Models: A tree T is a
form of a directed graph with a Vertex set (V) and Edge set
E, such that E ⊆ V × V. It is a particular graph that has no
simple cycles and is completely connected. Let T = (V,E),
where each v ∈ V has up to two descendants {vl, vr} for left
and right. For each vertex v ∈ V, we denote by val(v) a value
of the vertex v, by idx(v), the feature index of vertex v, and
by desc(v), the number of descendants of v. Thus, we define
the vertex function f(v, x) as follows.

f(v, x) =


f(vl, x) , xidx(v) ≤ val(v) ∧ desc(v) = 2

f(vr, x) , xidx(v) > val(v) ∧ desc(v) = 2

val(v) , otherwise

Operator ∧ denotes the logical “And” operator between the
conditions. The growing function of a single tree T starting
from vertex v0 is T (x) = f(v0, x). In practice, regression trees



are grown such that we have minimum squared error between
the value y and the estimated value by the tree T (x). A random
forest F is a set of M trees T = {T1, T2, . . . , TM}, where each
tree Ti is grown on a subset of the original dataset D used for
the training of the ML model.

2) Neural Networks: Nonlinear Auto-Regressive (NAR) is
a neural network based ML technique. It may be used with
Exogenous input (NARX) or without relying on hand-crafted
features and parameters. In this case, it is only based on
previous values of the time series.
NAR uses differentiable functions to model the system lever-
aging numerical optimization methods. When used without
exogenous input, NAR might discover unknown high-level
features from the data itself. It is a kind of dynamic filtering, in
which past values of one or more time series are used to predict
future values. These dynamic neural networks, which include
tapped delay lines are widely used for nonlinear filtering and
prediction. Provided d past values (delay parameter), on first
hand, NARX predicts the series ỹt based on a series of features
Xt. On the other hand, NAR predicts series values ỹt given
only d past values of ỹt or yt, in an open-loop or closed-loop
scenario, respectively.

Recursive Neural Network (RNN) is a form of DNN that
is well-suited for time-series prediction. Due to its recurrent
structure, a cell state variable ct is updated according to current
input it and previous state ct−1. Given a time series se-
quence x = (x1, x2, . . . , xt), the joint probability is given by:
p(x1, x2, . . . , xt) = p(x1).p(x2|x1) . . . .p(xt|x1, . . . , xt−1).
The hidden layer of the RNN model provides an output which
is ht ∼ p(xt|x1, . . . , xt−1). RNNs are trained using stochastic
gradient descent or its similar variants. Long Short Term
Memory (LSTM) was proposed [18] to avoid having vanishing
or exploding gradient. Differently from the RNN, where a
repeating module has a single hyperbolic tangent tanh layer,
LSTM has four layers (forget ft, input it, candidate ĉt, and
output ot). They are used to calculate the new cell state (ct)
and the new hidden output (ht). Each layer uses an activation
function that is either the logistic sigmoid (σ) or tanh of the
weighted entry (w) topped by a bias (b). Thus, it is capable of
learning Long-term dependencies using Short-Term Memory.
The LSTM unit is depicted in Fig. 1 and formulated as follows.

ft = σ(wf [ht−1, xt] + bf ) (1a)
it = σ(wi[ht−1, xt] + bi) (1b)
ĉt = tanh(wc[ht−1, xt] + bc) (1c)
ot = σ(wo[ht−1, xt] + bo) (1d)
ct = ft.ct−1 + it.ĉt (1e)
ht = ot. tanh(ct) (1f)

IV. PROBLEM FORMULATION AND COMPLEXITY ANALYSIS

In this section, we formulate the problem of predicting PHR
values as an optimization problem and analyze the complexity
of each of the studied ML models. Recall that our goal is
to estimate a function ỹ = 〈β,X〉 such that (ỹ ≈ y) where
the regularized error is minimum. Using Ridge regression
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Fig. 1: Long Short Term Memory Modular Diagram

formulation, the controlled version of the objective function
Z can be expressed as follows.

min
β∈Rd

Z = λ‖β‖2 +
1

N

N∑
i=1

(ỹi − yi)2 (2)

where β ∈ Rd is the regression parameter vector and λ ∈ R
is a scalar allowing to control the complexity of the forecast
according to the chosen set of parameters. We notice that for
λ = 0, the effect of the parameters is neglected and only the
Mean Squared Error (MSE) is considered (the second term),
while for high values of λ, the null β leads us to our goal.

Let us now assess the complexity of each of the studied
models. Starting from ML-based regressions, and denoting
by Y all the y(i), i = 1..N , the computation of β is about
completing the following matrix operation (XTX)−1XTY .
Thus, the time complexity is: O(Nd2 + d3), where Nd2

results from the product XTX and the d3 results from the
matrix inversion of XTX . As for the space complexity, it is
O(Nd + d2), as storing XTX and its inverse is O(d2) and
storing X costs O(Nd) floats.

As for the tree-based regressions: we denote by D the depth
of the deepest tree in the forest F. Knowing that the number
of nodes in a binary tree is (2D+1 − 1), we can say that the
forest F has a worst space complexity of O(2DM). Access
time complexity is O(log(n)), where n is the number of nodes.

Finally, for the Neural Networks (NN) complexity, recall
first that the computation of NN consists of two parts: a
forward and a backward pass. In the forward pass, the compu-
tation consists of additions, subtraction and multiplication or
memory operations. In the backward pass, there is a need to
compute the difference between the output and target value,
and propagate the gradient all the way back to the beginning.
Working on N rows, a matrix multiplication has a asymptotic
run-time of O(N3). Denoting by nlayers the number of layers,
the time complexity in the forward pass is O(N3.nlayers). The
complexity of activation operations is O(N.nlayers). Knowing
that ∀N ≥ 1, N3 + N ≤ 2N3, we simplify the summation
(N3 + N).nlayers) to conclude that the total run-time com-
plexity in the forward pass is O(N3.nlayers). Similarly, the
time complexity of the backward pass is O(N3.nlayers.ngi),
where ngi is the count of gradient iterations.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
models using an OAI-based [19] 5G experimental prototype.
We present our methodology to generate the dataset used in
our simulations, followed by a presentation of the results.



A. Dataset Generation and Simulation Environment

Using our 5G prototype [7], a test dataset has been generated
as follows. During simulation time (Sim. time), Metrics, col-
lected every second from FlexRAN [19], include configuration
data of the two UEs and the hosting cell/slice parameters in
addition to performance data of the MAC layer. We extracted
a subset of the collected data, including all of: PHR, Channel
Quality Indicator (CQI), MCS, number of PRBs and Trans-
port Block Size (TBS). The ML models are implemented in
MATLAB [20].

B. Simulation Scenarios

Fig. 2 depicts the features importance in terms of the pre-
dictor variables. In order to cater different prediction models
including offline and online scenarios, we identified three
features subsets as follows. 1) Full set of Features (FF)
in which the prediction process depends on all features. 2)
Reduced set of Features (RF), where the prediction process
depends only on the two most important features. And 3) No
Features set (NF) where the model is independent from any
engineered feature and just relies on previous observed values.
We note that for ML-based regressions, and in particular the
tree-based ones, the algorithm, proposed in our earlier work
[7] tends to split predictors with many unique values (levels). It
prioritizes continuous variables, over discrete ones with fewer
levels as depicted in Fig. 2a. As our data is heterogeneous,
we considered using the curvature, known as interaction tests
for split-predictor selection. To decrease the features from
our dataset, we compute the predictors importance values by
permuting Out-Of-Bag (OOB) observations among the trees
and summing gains in the MSE due to splits on each predictor,
as depicted in Fig. 2b. Since prediction time increases with
the number of predictors in trees and forests, we created a
model using as few predictors as possible. Thus, we evalu-
ated the performance of Random forests using the best two
predictors only (RF) and the neural networks with NF. We
considered the neural networks with NF and we evaluated
the (NAR) with 3 delays using multiple training methods.
Note that the delay number is equal to the number of stored
previous values of y. Finally, we considered the RNN LSTM
using multiple optimizers. We evaluate the Prediction accuracy
based on the MSE, Root-Mean Squared Error (RMSE), Mean
Absolute Error (MAE), coefficient of determination R-squared
(R2) that are all centered around calculating the gap between
the predicted value and the observed one. Unlike the MAE
that treats all errors uniformly, the RMSE stresses on large
prediction errors and de-stresses on small ones. Finally, the R2

measures the proximity of data to the fitted regression line.
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Fig. 2: Deducing Reduced Features out of Full Features

TABLE I: Simulation Parameters and Values

Parameter Value Parameter Value
k 10 NL 30
q (Fine) 4 ker (Fine) 0.71
q (Medium) 12 ker (Medium) 2.8
q (Coarse) 36 ker (Coarse) 11
q (Ensemble) 8 LR 0.1
d 2 ‖ 3 ILR 0.005
Nh 200 LRDP 125
Nepoch 30 LRDF 0.2
GT 8 Sim. time (s) 37073

TABLE II: Full Features (FF) Simulation Results

Class Forecast RMSE R2 MAE
Linear Linear 5.2874 0.59 4.0795

Interaction Linear 5.0786 0.62 3.8216
Robust Linear 5.3929 0.57 3.989
Stepwise Linear 5.0209 0.63 3.8134

Tree Fine 4.3661 0.72 30953
Medium 4.4468 0.72 3.1601
Coarse 4.4964 0.7 3.227

SVM Linear 5.4060 0.57 3.9732
Quadratic 5.0878 0.62 3.6559
Cubic 16.438 0.297 9.7541
Fine Gaussian 4.7019 0.68 3.3028
Medium Gaussian 4.8889 0.65 3.5253
Coarse Gaussian 5.3101 0.59 3.975

Gaussian Rational Quadratic 4.3581 0.72 3.1127
Process Square Exponential 4.4555 0.71 3.1712

Matern 5/2 4.4401 0.71 3.1657
Exponential 4.3712 0.72 3.1203

Ensemble Boosted Trees 4.6415 0.68 3.5402
of Trees Bagged Trees 5.3909 0.57 4.1355
Random Full Features (FF) 4.3293 0.73 3.0778
Forests Reduced Features (RF) 5.0287 0.63 3.8435
NARX Levenberg-Marquardt 5.86 0.9 4.941
3 delays Bayesian Regulation 5.8934 0.9 4.672

Scaled Conjugate Gradient 6.5338 0.9 4.651

C. Simulation Results

In order to validate our predicted output with the FF, we
used k-fold cross-validation that consists of partitioning the
original sample of data into k equal sized sub-samples. A
single sub-sample is retained as the validation data for testing
the model, and the remaining (k − 1) sub-samples are used
as training data. The cross-validation process is then repeated
k times, with each of the k sub-samples used exactly once
as the validation data. The k results are then averaged to
produce a single estimation. The advantage of this method over
repeated random sub-sampling is that all observations are used
for both training and validation, and each observation is used
for validation exactly once.

For single trees, we considered different values q of mini-
mum leaf size to denote the type of the tree (Fine, Medium
or Coarse). As for the ensemble of trees (Boosted or Bagged),
we used a number of learner NL and a learning rate LR. For
Gaussian Support Vector Machine (SVM), we used different
kernel scales (ker) according to its type (Fine, Medium or
Coarse). For LSTM, we considered a number of hidden
units (Nh), Number of Epochs (Nepoch), Gradient Threshold
(GT ), Initial Learning Rate (ILR), Learning Rate Drop Period
(LRDP), and Learning Rate Drop Factor (LRDF). Simulation
parameters are listed in Table I.

Tables II and III report the RMSE, R2 and MAE perfor-
mance metrics for the used prediction models. We can see



TABLE III: No Features (NF) Simulation Results

Class Forecast RMSE R2 MAE
NAR Levenberg-Marquardt 5.8700 0.90 4.198
3 delays Bayesian Regulation 4.2000 0.89 4.489

Scaled Conjugate Gr. 6.6500 0.88 4.91
RNN ADAM Optimizer 2.9652 0.69 2.0538
LSTM SGDM Optimizer 3.1063 0.63 2.2143

RMSProp Optimizer 3.0281 0.66 2.1658
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Fig. 3: Observed vs Predicted and Error Comparison over time

that LSTM using ADAM optimizer provides the lowest RMSE.
LSTM are efficient at extracting patterns in input feature space
that spans over long sequences, as it leverages its memory state
to predict, which is ideal for our recurrent PHR prediction.

Fig. 3 depicts the observed PHR using OAI and predicted
PHR using LSTM for 682 seconds (∼10 minutes). Visually,
inspecting the trends, we can see that the evolution of both
graphs are very close except when it comes to sudden changes
shown in high peaks or drops triggered by external environ-
mental factors. This is clearly seen in the bottom subplot
showing that the instant value of the error with less than 10
units in magnitude, during these first ∼10 minutes.

In addition, we can observe in Fig. 4a that the RMSE is
decreasing over time, as a result of continuous improvement
on the long run, which proves its suitability for application.
Indeed, when additional training data are accumulated, the
prediction accuracy will be enhanced.

Finally, we plot in Fig. 4b the PUSCH throughput versus
the Received Signal Reference Power (RSRP). We can see
that the RSRP value of -100 dBm acts as an inflection level
separating two zones of throughput value. The throughput
is enhanced with prediction as a consequence of an early
awareness by the eNB/gNB of required PRBs corresponding to
the UE output power. We can explain this behavior as follows.
When the RSRP is less than -100 dBm (poor radio conditions),
the transmitted power of the UE is increased. This causes
higher interference and thus the number of PRBs is decreased,
limiting the data rate. Conversely, for higher values of RSRP
(above -100 dBm), the throughput is increased till reaching a
saturation level as it is affected by the MCS and the buffering
of the operating system. All in all, we can conclude that the
prediction of the PHR helps in increasing the throughput and
reducing the probability of wasted resources.

VI. CONCLUSION

In this paper, we have presented several ML-based ap-
proaches to predict the power headroom, for an enhanced
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Fig. 4: RMSE convergence with DNN and impact on the Throughput

Interference Mitigation and Traffic Adaptation (eIMTA) ap-
plication. We formulated Machine Learning Feature-based
prediction, in addition to neural networks approaches with and
without features. We also considered a reduced set of features
and found that it results in minor deteriorated performance.
Particularly, we have observed that deep neural networks,
Long Short Term Memory (LSTM) requiring no features,
outperforms other ML models in terms of prediction accuracy
and feature independence. Implementing the LSTM in our 5G
prototype using OpenAirInterface (OAI), we observed that the
Root Mean Square Error between real and predicted PHR
decreases with time and the throughput is enhanced.
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