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I N F O

g

A B S T R A C T
To expand our knowledge of the climate in the Lesser Antilles, we attempted to identify the
spatio-temporal configurations of daily weather. We noticed certain pitfalls that can lead to poor
results when using clustering algorithms and have proposed some steps towards the solution.
These advancements might prove interesting for climate informatics, as well as for many appli-
cations that cluster physical fields. We illustrated the pitfalls with a dataset of cumulative rainfall
from NASA’s Tropical Rainfall Measuring Mission for the period 2000 to 2014. First, the pitfall
is the lack of numerical evaluation of the clusters found by the algorithms, which prevents the
comparison of algorithms. We used silhouette index for this evaluation and to demonstrate other
problems. Second, algorithms like K-means cluster the points around their barycentre. For many
physical fields, this barycentre is trivial, which may lead to poor performances. Third, the L2
norm used in conventional clustering methods, such as K-means and hierarchical agglomerative
clustering, focus on the exact location of fields, which leads to poor evaluations of similarity
between fields. We replaced it by a similarity measure called the expert distance (ED) that com-
pares the histograms of four zones, based on the symmetrised Kullback–Leibler divergence. It
integrates the properties of the observed physical parameter and climate knowledge. With these
improvements, the results revealed five clusters with high indexes. The algorithms now discrim-
inate the daily scenarios favourably, thereby providing more physical meaning to the resulting
clusters. The interpretation of these clusters as weather types is discussed.

ction
atic identification of spatio-temporal structures that are indicative of the atmosphere’s low frequency

s long been known as an important research objective (Michelangeli et al. (1995); Burlando (2009);
Roussew (1990); Ayrault et al. (1995); Ghil and Robertson (2002); Jury and Malmgren (2012)). Called
(WTs), these structures can be recurrent, nearly stationary (Michelangeli et al. (1995); Brunet and Vau-
nd have their own identity (Vautard (1990)). The approach used in all these studies (except for Jury and
12) that will be discussed later), is as follows: for a selected physical parameter, a day is characterised

eld that can be visualised as a map. The days that constitute the database are processed by a clustering
eates clusters of similar days (Tian et al. (2014); Hadzimejlic et al. (2013); Monteleoni et al. (2013)). The
d centroid) of each cluster of days is considered to be a WT. The two methods of clustering commonly
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ss climate clustering data are the K-Means (KMS) and Hierarchical Agglomerative Clustering (HAC)
et al. (2014)).

rticles share another common point, namely, the absence of a numeric evaluation of the clusters’ quality.
of the clusters’ quality can be carried out with a multiplicity of considerations, ranging from the physical
the centroids of the resulting clusters, intra class and extra class variance, and analysis of the temporal
the clusters’ days to deduce the composition of the seasons in terms of WTs (Chadee and Clarke (2015)).
(Moron et al. (2016)) chose to establish correlations with other physical parameters to evaluate the

hese clusters. All these considerations make sense when it comes to the physical analysis of the climate,
iplicity hinders the comparisons among methods.
, we resort mainly to a single performance measure in this study (namely, the silhouette index, Rousseeuw
veal the major flaws with traditional clustering methods. Specifically, our results indicate that they do

elevant clusters. To confirm this assertion, we illustrated that these clusters are characterised by a low
(producing clusters that contain very distinct situations) and low separation (producing clusters faintly
each other). When this point has been established, we analyse the origin of the problems with these
h have two main causes.
se of L2 as a similarity measure between two spatial fields raises questions. We show that the distance
mpare two days, does not show the following basic characteristic: the proximity of two days in the sense
distance must be equivalent to the proximity between them from a physical point of view. To overcome

se a pseudo-distance to cluster spatio-temporal rainfall fields. We provide a physical explanation for the
t led to the definition of this pseudo-distance and show how incorporating it will enable further realistic

e use of a field average of a cluster days (its centroid) as the main representative of a cluster (Jain (2008);
2016)) also raises questions. The rainfall dataset used in this study has many spatial discontinuities that
explain the poor results obtained by traditional methods. All the previous researchers used algorithms
aggregate days around centroids on more continuous datasets. The majority of the studies describe the
of the clusters as a WT. However, for the type of data used in this study, this is trivial because this

ot be the representative of an existing physical scenario. The pseudo-distance that we propose improves
on when clustering.

e the resulting clusters, we present the most representative days of each cluster (not an average), which
re relevant endpoint. These clusters are related to the WTs and circulation types (CTs) presented in the
. We consider their intra- and interannual dynamics to understand their links with the seasons and the
al.: Preprint submitted to Elsevier Page 2 of 20
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A specific analysis by island allowed us to understand the impact of these rainfall patterns on the Lesser
e also compared satellite observation data (used for clustering) with data from ground rainfall stations.

sed and the methodology developed are presented in section 2. Section 3 provides an evaluation of the
d for the study and a discussion of the important aspects of the results. It is divided into the following
rst, we present a numeric comparison of methods, discuss our choices of parameters, and evaluate the
resulting clusters to show that our method gives significantly better results than traditional methods;
ide a physical analysis by relating the clusters produced by this method to the existing knowledge on
the Caribbean region. The last section is dedicated to the conclusions and perspectives.

l and methods

s
data consist of rainfall measured by the satellites of the Tropical Rainfall Measuring Mission (TRMM)
. (2007). These data were spatialised with a grid of 0.25◦ longitude × 0.25◦ latitude. The geographic
rom −66.25 to −20.25◦𝐸 and from 5 to 30◦𝑁 . It includes the Lesser Antilles islands along with the
art of South America and a part of the Central Atlantic Ocean with the Cape Verde archipelago (cf Fig
was thus represented by a field of 101 × 187 values, which were transformed into a vector of 18, 887
The data covered the period from 2000 to 2014, representing a base of 5, 415 days.
ine recurring situations from the rainfall field, we used conventional clustering methods such as the HAC
teleoni et al. (2013); Rokach and Maimom (2010); Parmar and Saket (2017)). Notably, in the climate

ld is a vector in a space with very large dimensions (18, 887 pixels in our case), which made the search
formation relatively complex. To assess the study area, surface rainfall data supplied by Meteo France
nd Martinique) from 1979 to 2014 were used in the design of the expert distance (ED) (Section 2.4). To
nalysis and interpretation of the clustering results, atmospheric circulation data at 850hPa from ERA-5

adiosondes from Wyoming Weather from 1979 to 2014, and tropical storm and hurricane tracking data
2014 indexed on Unisys Weather were used (Section 3).

ing performance measures
d out in Section 2.4, current publications in the field lack an important element, namely, they do not
le, quantitative performance measures that indicate the quality of the resulting clusters. For example,
by Chadee and Clarke (2015), only the centroids of the clusters were evaluated and the clusters were
be correct because the centres were plausible and physically interpretable. However, the dispersion of
al.: Preprint submitted to Elsevier Page 3 of 20
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as not evaluated.
f such quantitative quality measurements is particularly problematic when it comes in comparing the

thods. It is necessary to implement a way to measure the quality of the clusters, even if quality is recog-
terature as a challenging problem, primarily in the cases where it is difficult to form hypotheses on the
lusters searched for Tibshirani et al. (2001); Halkidi et al. (2001); Lallich and Lenca (2015).
nce of ground truth information, here is a list of some internal quality measurements that can be used with
he silhouette index (Rousseeuw (1987)), Calinski–Harabasz index (Caliski and Harabasz (1974)), and
in index (Davies and Bouldin (1979)). All of them combine the following two essential qualities expected
resenting different physical situations: compactness (homogeneity) as well as distance (separation). We

lhouette index because it has the following benefits:

des a quality measure for each day within its cluster, for each cluster, and for the method through all its
g clusters,

y to interpret in terms of the pertinence of clusters.

a clustering algorithm 𝑘 that divides a dataset into 𝑘 clusters. At the end of the clustering process,
f the data is assigned to a specific cluster 𝐶𝑖. The silhouette index 𝑆(𝑖) for each 𝑖 is obtained as follows:

𝑏(𝑖) − 𝑎(𝑖)
𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖))

, (1)

the average of the distances between 𝑖 and the other elements in its cluster and 𝑏(𝑖) is the minimum of
f the computed distances between 𝑖 and the elements of every other cluster. In equations 2 and 3, 𝑑(𝑖, 𝑗)
distance used to compare two elements 𝑖 and 𝑗, as shown below:

1
𝑖| − 1

∑
𝑗∈𝐶𝑖,𝑗≠𝑖

𝑑(𝑖, 𝑗), (2)

𝑛𝑖≠𝑗 1
|𝐶𝑗|

∑
𝑗∈𝐶𝑗

𝑑(𝑖, 𝑗), (3)
e cluster of 𝑖 and |𝐶𝑖| the size of 𝐶𝑖. By default, this distance 𝑑(𝑖, 𝑗) is the L2 norm. In this work, we

al.: Preprint submitted to Elsevier Page 4 of 20
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e L2 distance with ED (Equation 9). Two other criteria may be estimated. The first, which indicates the
y of a cluster 𝐶𝑖, can be calculated by using the following formula:

= 1
|𝐶𝑖|

∑
𝑗∈𝐶𝑖

𝑆(𝑗). (4)

aluate all of the clusters obtained by applying a clustering method 𝑘 to our data, we can consider the
h cluster’s coefficients, namely:

) = 1
𝑘

𝑘∑
𝑖=1

𝑆𝑐(𝐶𝑖). (5)

each coefficient is between −1 and 1. The coefficient reflects the combined evaluation of the proximity
to the elements of its cluster and the distance of this element to all the other clusters.
ides an indication of the quality of the result of a clustering method. For more information, readers can
eeuw (1987). Here are some commonly accepted reference values that we will use later:

reater than 0.20 indicate good performance (existence of relevant and well separated clusters),

ess than 0.10 indicate the opposite,

e values indicate that many points are assigned to clusters that do not represent the best possible choice.

s related to the L2 distance
rk we were able to review in this domain uses the same distance measurement to compare two fields,

istance associated with the L2 norm. For the record, this distance between two vectors of daily data
𝑛) and 𝐷2(𝑣1, 𝑣2, .., 𝑣𝑛) is calculated as follows:

, 𝐷2) =

√√√√ 𝑛∑
𝑖=1

(𝐷1(𝑣𝑖) −𝐷2(𝑣𝑖))2, (6)

is the i-th value 𝑣 of the vector of daily data 𝐷𝑥 and 𝑛 is the length of vectors of daily data. This
s to be partly responsible for the difficulties encountered by the clustering methods in the field of climate
onteleoni et al. (2013). Figure 2(a) shows this property schematically, in which the distance L2 found
eference (in black) and the two fields is the same. In addition, for fields such as rainfall, which show
al.: Preprint submitted to Elsevier Page 5 of 20
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ial and temporal irregularities, a day 𝐷1 with a low spatial disparity relative to the reference (Fig 2(b))
rm L2 equivalent to a day 𝐷2, red curve, with a bigger spatial disparity. Thirdly, when data are described
or space, a multitude of small fluctuations that are spatially spread across the field can be considered as
ne single big and very localised fluctuation.

of the expert distance
tion, as with other authors in different application fields before (Pandit and Gupta (2011); Parmar and
Gibbs and Su (2002); Shraddha and Suchita (2011)), we propose an alternative similarity measure based
t the correction, even slight, of L2’s biggest weaknesses should result in significant improvements. The
f the proposed measure will reduce the influence of the spatial location by a suitable subdivision and a
.

l management of spatialization

l computer vision applications, the image can be analysed at the patch level rather than at the individual
arnes et al. (2011); Dinu et al. (2012); Amelio and Pizzuti (2016)). Image patches contain contextual
nd have advantages in terms of computations and generalisations (Guo and Dyer (2007)). From this
the decomposition of an image into patches or zones that do not overlap provides a simple but effective
ming the curse of dimensionality (Xin (2017)).
dy, we subdivided the rainfall field of the North Atlantic tropical zone into four patches (Fig 1) to limit
on time and demonstrate the value of the approach without seeking to optimise it. The definition of these
n important purpose, namely, to take the knowledge of field experts into consideration. Thus, each zone
o a specific and known centre of action. In Fig 1, A1 is the zone in which the cold surges originate;
th Atlantic Subtropical High (NASH) zone; A3 is influenced by the continental zone and the arc of the
s; and A4 is the zone of low pressure that is linked to the presence of the Intertropical Convergence Zone
mpare two fields, we subdivided the fields according to these four zones and then compared each of them
respondent.

arison of the distribution of intensities

field had been spatially subdivided, we no longer had to pinpoint the exact location of the phenomena
It seems relatively reasonable to ignore their position down to the exact mesh, and instead we looked at
n of the rainfall intensities of the observed field, ignoring the notion of spatial location. In the absence
of the form of the distribution of rainfall intensities, the Kullback–Leibler divergence appears to be a
al.: Preprint submitted to Elsevier Page 6 of 20
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ce (Kwitt and Uhl (2008); Kullback and Leibler (1951); Walker et al. (2004)). It is expressed as follows:

, 𝑄) =
∑
𝑐
𝑃 (𝑐)𝑙𝑜𝑔 𝑃 (𝑐)

𝑄(𝑐)
, (7)

𝑄 are two distributions of discrete probabilities and c is the index of possible values taken from each
o obtain a metric for ℝ+ that also has the symmetry property, we will use the symmetrised divergence
eibler, namely:

, 𝑄) = 𝐷𝐾𝐿(𝑃 ,𝑄) +𝐷𝐾𝐿(𝑄,𝑃 ). (8)

possible to define a measure of the Kullback–Leibler divergence adapted to continuous fields, we pre-
tify the data differently because estimating the probability densities of the intensities raises parametri-
s. Moreover, such quantification might help to reduce the effects of the small fluctuations noted in

ven though edge effects around the boundaries of the selected intensity classes remain. The histogram
rmined from the rainfall data collected in the area. We selected eight bins of possible intensities. The
these bins were selected from the rainfall data collected in the area such that the distribution of the bins
cf. Table 1).

tensity distributions obtained were then used to compute the Kullback–Leibler divergence in each zone.
f the divergences by zone provides the distance between two days. We call this the expert distance, which
s ED, and the quantity is defined by:

, 𝐷2) =
1
𝑛
×

𝑛∑
𝑖=1

𝐷𝐾𝐿𝑆 (𝐷1𝑍𝑖, 𝐷2𝑍𝑖), (9)

2 are days and 𝐷𝑥𝑍𝑖 is the histogram of the zone with reference 𝑖. In our case, the number of zones 𝑛
presented in Fig 1. All the operations listed above are summarised in Fig 3.

and discussion
tion, we present the results and discuss the results at first from a computer science point of view. The
will be dedicated to an analysis of the results for the specific application considered.
al.: Preprint submitted to Elsevier Page 7 of 20
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ance measurements of clustering methods
lgorithms such as HAC and KMS with which we separately linked L2 and ED. To reveal the possibilities
two distances, the evaluation of the quality of the clusters obtained by HAC-L2, KMS-L2, HAC-ED,
was performed by computing the silhouette coefficients (Equation 5). Figure 4 shows the evolution of
coefficient as a function of the number 𝑘 of clusters.
owed several interesting points for the comparison between KMS and HAC, which are summarised
ly, the methods based on the HAC algorithm produced coefficients that were significantly lower than
by KMS algorithms. Additionally,

C-ED, the silhouette coefficient approached 0 for 𝑘 > 3, thus indicating the irrelevance of the clusters
.

2 exhibited negative silhouette coefficients, thus indicating that the points were affected by suboptimal
.

D produced results superior to HAC-L2, although the performance of both remained very weak.

liminate the HAC algorithms and focus on KMS. This choice is in line with the literature Chadee and
, in which HAC has been used only to define the initial centroids of the KMS algorithm by ruling out
lection of these centroids. Here,

D largely outperformed KMS-L2.

D exhibited values mainly over 0.2 for a significant number of clusters, thus indicating the presence of
t structures within the data.

2 exhibited values under 0.1 for 𝑘 > 2, thus indicating irrelevant clusters.

h the shape of the curves generally decreased with 𝑘, a slight inflection was observed around 𝑘 = 5 in
ses.

value of 𝑘 = 5, KMS-L2 had a silhouette value of 0.08, whereas KMS-ED had a value of 0.26.

ion of the optimal 𝑘 was not as clear-cut as we had hoped, in spite of the noted inflection around 𝑘 = 5 in
is led us to choose this number of clusters for the following analyses. When considering large maritime

le land surface, such as the Caribbean region (Fig 1), according to authors of earlier works Vigaud and
17); Moron et al. (2016); Chadee and Clarke (2015); Sáenz and Durán-Quesada (2015), the number
ed by using KMS or HAC can range from 7 to 11. Hence, five WTs seems a bit low in regard to the
al.: Preprint submitted to Elsevier Page 8 of 20
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inspection of the clusters found
esent time, we have relied on the silhouette index for our analysis. Let us now show how the values of
index are relevant in terms of quality of the resulting clusters. Accordingly, we will carry out a detailed
the clusters found by the KMS-L2 and KMS-ED methods with 𝑘 = 5.

ation of irrelevant clusters

ette index results for KMS-L2 were indicative of irrelevant clusters (< 0.1). We can conclude that the
not evaluate the similarity of spatial patterns of rainfall data properly and this leads to the aggregation of
tions in the same cluster, as illustrated in Fig 5(a). For the same reason, the method separates situations
d very similar into different clusters, as seen on Fig 5(b). We precisely introduced the new similarity
o overcome this flaw.

ation of the irrelevance of centroids for L2

before, the centroids have a major role in KMS algorithms, and some author rely on them to describe
ypes extracted by their algorithms. The idea behind this is that these averaged fields are representative
. Fig 6 show why we believe this idea should be discarded when dealing with discontinuous fields such
shows, for a specific cluster found by KMS-L2, the centroid (Fig 6(a)), the nearest day to the centroid
a random day of the same cluster (Fig 6(c)).

e shows the following interesting aspects. The centroid does not look like any of the members of the
ered. We think that computing the average tends to create continuous artificial zones, which gives a
preciation of the existing meteorological structures and leads to poor results for the clustering of spatio-
all fields using L2. This problem can be partially avoided when using the ED as the centroid is now a
rainfall in each region. These distributions are much more meaningful for describing rainfall situations.
ing analysis, we will consider, as a representative of the cluster, not the centroid but the most represen-
of each cluster obtained. This is the element with the shortest distance to each cluster centroid (distance

D in their respective cases).

tion and homogeneity of the clusters

several times in this article, we prefer to rely on a single performance measure than on a multitude of
. We need, however, to prove that this performance measure is a good indicator of these considerations.
dedicated to the separation and homogeneity of the clusters.

aration

the separation of the clusters, Figs 7 and 8 show respectively the representative (see above) rainfall
al.: Preprint submitted to Elsevier Page 9 of 20
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lusters obtained by the KMS-L2 and KMS-ED methods for 𝑘 = 5. These figures also show, for each
field, the wind field of the corresponding day. This wind field has not been used during the clustering.

d in the physical analysis of the weather types extracted by our method, later in this article. Those
fields (both rainfall and wind) should be as different as possible.
learly shows that for KMS-L2, clusters C2 and C3 in fact depict situations that are quite similar with
southeast. C1 and C5 are also similar and depict low rainfall across the space and an atmospheric

iginating mainly from the northeast. The exact spatial location of these rainfall situations is the only
inguishes them, thus illustrating precisely the limits of L2.
s obtained for KMS-ED, shown in Fig 8, highlight, conversely, very diverse clusters. Each case shows
e more or less active.

ogeneity

anted to evaluate the homogeneity (the internal variability) of the clusters obtained for each method.
lusters, for the sake of conciseness, we will present only one cluster per method. For each method. we
uster whose 𝑆𝑐(𝐶𝑖) value (Equation 4) was the closest to the overall value of the corresponding method
se were the C2 cluster for the KMS-L2 method and the C4 cluster for the KMS-ED method. The distance
days composing a cluster to their representative was computed, and elements were sorted in ascending
racted six quantiles from this ranking, to evaluate how each cluster varied internally. Fig 9 shows the
ined for KMS-L2. Fig 10 does the same for KMS-DE.
the L2 distance (Fig 9), the first three fields were relatively similar to the representative element, whereas
ere different. In fact, on the central part and the northwestern edge, we found rainfall zones that were
. When grouping the results by the L2 distance, we observed a cluster of situations that were certainly
s of numbers but very distinct from a physical point of view.

ED (Fig 10), the elements of cluster C4 had a certain physical constancy although they differed slightly
appearance. This cluster consisted of low rainfall fields.

clusion on the intrinsic quality of clusters

pection confirmed the results observed by using only the silhouette index.

2 produced clusters of relative relevance, as some clusters representative were similar. Moreover, days
a cluster could be very different from a physical point of view.

2 produced more relevant clusters, which were reflective of diverse situations. Among a cluster, days
al.: Preprint submitted to Elsevier Page 10 of 20
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similar.

point of view of the physical separation of the clusters, the introduction of the ED has clearly enabled
of clusters with a much higher relevance. In addition to the better results obtained by KMS-ED, this

reinforce that clusters with a high silhouette index are more relevant when it comes to their physical

l analysis
in the introduction, we wanted to pinpoint some pitfalls encountered when clustering daily fields in
plications. We attempted to highlight them and present some partial solutions to these problems in the
ons. This section will focus on the remarkable results obtained by our simple method as soon as these
dealt with. Our major goal was to extract typical geospatial structures of meteorological data, focussing
ll. Some authors, like Jury and Malmgren (2012), have used several fields such as the surface temperature,
ure, and 𝑈 zonal wind to extract dominant modes with the help of a principal component analysis (PCA).
ombined analysis of different fields is something we aim to do in the future, our article focusses on only
fall) to illustrate the general method we are proposing.
hod, we chose to aggregate spatial areas in a controlled way (by using regions) to add as much physical
we could acquire in the design of the extraction of WTs. An interesting aspect of our study comes despite
tations, namely, we treated each day independently and clustered days by taking no account of the time
etween them, apart for the one found in the data themselves (this is a common approach).
se a physical analysis of the clusters obtained by looking at their intra- and interannual evolutions on a
hen, we will continue the study of the meteorological comparability of daily precipitation at the local
g, in this case, surface observations.

scales

ual variability and trends

ery interesting to observe the temporal distribution of the fields contained in each cluster to highlight
al and semi-annual cycles, as in Chadee and Clarke (2015). The frequencies were derived by applying
lysis technique KMS-L2 and KMS-ED to the daily atmospheric precipitation patterns defined over the
ted in Fig 1. We also show the results of Mann–Kendall’s nonparametric trend test (Yue et al. (2002)),
rformed on the annual frequencies of each group to test the null hypothesis of no trend at the 95%
el (5% significance level). Radiosonde parameters at different levels, such as specific humidity, wind
intensity, were used to characterise the clusters. The days in each of the clusters would thus compare

figurations in terms of outgoing longwave radiation (OLR), sea surface temperature (SST), and wind

al.: Preprint submitted to Elsevier Page 11 of 20
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e will try, as far as possible, to link them to the clusters found in previous study (Chadee and Clarke
n et al. (2016); Martinez et al. (2019)).

the results are shown in Fig 11. On the left, we show the annual variability of the monthly frequencies
g up each cluster, whereas the right side shows the inter-year change. Many of them have a similar

ution. Moreover, no significant trends over the 15 years of TRMM observations were found. This result
the L2 distance is still not very appropriate for classifying daily rainfall fields, as it weakly reflects the
ects for the TRMM daily rainfall.

, Fig 12, the monthly distributions obtained were clearly separated because they better integrated regional
climatic knowledge. With this slight improvement, the results revealed five clusters (𝑘=5) with high
𝑘) > 0.2), which can be characterised as follows :

resents 14.8% of the days analysed, with days spread over the whole 12 months, but data remained rather
over the first part of the year. The maximum was centred on the months of April and May. This cluster

ociated with CTs 1 to 5 found in Chadee and Clarke (2015) and WTs 1 to 3, 7, and 8 found in Moron
016). There were no significant trends for the annual frequencies.

C3, 12.5 and 10.4% respectively were close to each other because they were localised at the end of
. However, for C2, the maximum matched with September–October, whereas for C3, this occurred in
er. Decreases in the annual frequencies were found for C2 (𝑝-value=0.02 and 𝑟2=0.439), whereas there
significant trends for C3. These clusters were associated with WTs 4,5,6, and 8 in Moron et al. (2016).

the most prevalent type, in which it accounted for 32% of the days. The elements of this one were mainly
ted from December to April with a peak in February. It represents the cluster of the dry season. The
istribution showed a marked “dip” between July and November (Fig 12). Figure 13 shows observations
pper atmosphere at station 78897-TFFR Le Raizet. The daily precipitation fields of C4 showed a thin
r, which dried out at 800 hPa. In the lower levels, the trade winds were from the northeast, whereas for
ls below 500 hPa, the flow was predominantly from the northwest. In this case, the drivers, which are
H and the SST, limited the intensity of the observed rainfall (Davis et al. (1997); Dunion (2011); Moron

015)). The NASH and the North American High are connected together and provide strong diverging
inds and subsidence in the Caribbean. The ITZC migrates southwards favouring the development of the
n flank of NASH (Martinez et al. (2019)). A detailed analysis of C4 indicated the presence of heavy
ation. These conditions were related to cold fronts that managed to reach the low latitudes of the Lesser
al.: Preprint submitted to Elsevier Page 12 of 20
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(in January, April, and May). Indeed, at the interface between the two air masses, the trade winds carry
f warm, humid equatorial air, which intensifies convection and the development of active frontal cloud
roducing heavy rainfall Beucher (2010). The evolution of the number of days per cluster over the 15 years
M observations showed a positive correlation, meaning an increase of C4 (𝑝-value<0.022, 𝑟2=0.342).
ster can be associated with CTs 1 to 5 found in Chadee and Clarke (2015) and WTs 1 to 3, 7, and 8 found
n et al. (2016).

tred on July–August, was well separated from the dry season and contained the last third of the daily
analysed. It represents the cluster of the rainy season with the highest contribution to the annual rainfall.
unlike C4, the trade winds were established on a column of atmospheric air, which was higher and wetter
. At this time of year, the NASH is moving northeast, which allows the more humid trade winds to flow

ast Caribbean due to the longer course over the Atlantic Ocean on its southeast flank. The Atlantic ITCZ
its northern most extent in the Lesser Antilles and begins its southward migration at this time (Martinez
019)). This period corresponds to the increase in convection with increased moisture advection in the
an, which is favourable to higher daily precipitation (Jury and Malmgren (2012); Herrera and Ault
. There was also a significant positive trend (𝑝-value=0.028, 𝑟2=0.321) which reflects an increase of C5

2000 and 2014 (Fig 12). C5 can be related to CTs 6–7 and WTs 4–6 found in Chadee and Clarke (2015)
ron et al. (2016) respectively. Conflicting trade winds (shear lines), caused in this period by changes in
rection and wind speed, passing from the northeast sector to the southeast sector resulted in heavy cloud
d heavy rainfall. In addition, the close passages of the eastern waves triggered powerful updrafts with

eas of surface convergence favouring heavier rainfall on the eastern Antilles (Beucher (2010)).

ve retained clusters, C4 and C5 represent 62% of the sample, and these are the representative clusters
al cycle. The remaining third was divided equally between C1, C2, and C3. Among the latter, some
y represent temporal transitions between seasons. These transitions may highlight differences between
nd southern Caribbean. C2, C4, and C5 showed significant trends. The drying trend found for C4 also
d by other authors over longer periods and prior to these TRMM observations (Jury (2009); Jury and
12); Jury and Bernard (2019)). The decrease in the number of C2 days over the last decade, combined

ase in the number of C5 days, indicates a potential shift or even a tightening of the rainy season (Fig 12).
aily rainfall measured during these two periods, the increase in convection at the beginning and end of
e attributed to the oceanic and continental monsoon annual cycles (Jury and Malmgren (2012)). The
sitive influence on early summer rainfall but negative influence on late summer rainfall.
al.: Preprint submitted to Elsevier Page 13 of 20
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s to hurricanes season

egions, hurricanes are a major concern for resident populations and thus, it was of interest to analyse the
hurricanes in clusters.

torms (TS) and hurricanes (H) recorded at the National Oceanic and Atmospheric Administration (NOAA)
to 2014 helped us to attribute the different proportions of these types of atmospheric hazards to the clus-

n KMS-ED. This work had not been done by Vigaud and Robertson (2017); Moron et al. (2016); Sáenz
esada (2015); Jury (2009); Jury and Malmgren (2012). The proportions are presented in Table 2. C2,
ntained almost all of these hazards. The highest number of days with TS or H were found for C5, fol-

ters C2 and C3. These clusters included around 80% of the H and more than 90% of the TS. In relation
the clusters, 𝑃𝐶𝑥(𝐻) in Table 2 results show a proportion twice as large (13%) of H in C2 as that of C5

(6.9%). C1 and C4 contained few hazards. However, in the previous subsection, these clusters have
d as dry day clusters, but we did observe the presence of a few TS or H days. This seems to have been
t that the NOAA database covers the central Atlantic Ocean and the whole Caribbean region. These
e at the limit of our domain (Fig 1).

scales: Lesser Antilles of the east Caribbean

ragraph we focus on the TRMM rainfall observed over the mountainous and flat islands of eastern
agnitude of rainfall across the Caribbean are affected by localized mechanism like orographic lifting
ting. They can enhance, to a lesser extent, convection to produce very different rainfalls between the
leeward parts in these islands (Jury and Bernard (2019)). In Figure 14, we have calculated the mean

infall over all the meshes (occupying at least 20%) of the land surface, mean of spatial sum (MSS). The
xel of rainfall is represented by the mean of spatial mean (MSM). We also recorded the percentage of
in each case (DWR).

ative measures regrouped C1 and C4 (dry days), and C2 and C5 (rainy days), while C3 remained the
luster. The MSM results showed very different orders of magnitude, i.e. 5 to 7.5 𝑚𝑚/day for C2 and
𝑚/day for C3, and 1.04 to 2.07 𝑚𝑚/day for C1 and C4. The MSS values of the islands of Dominica,
nd Martinique were the highest. Mountain ranges of these islands are real imposing barriers to the trade
leads to orographic ascent of the humid air mass and precipitation. C1 and C4 had the highest DWRs on
ctively between 34 and 60%, thus reflecting the presence of many days without precipitation in these clus-
at islands, the values found were generally high but we believe there was bias due to the low surface area.
al.: Preprint submitted to Elsevier Page 14 of 20
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in Fig 15 compares TRMM to weather stations observations in Guadeloupe and Martinique. The
ad overestimated pixels without rain and underestimated high rainfall. These results were found by Jury
2019) for the cloudy peaks of this region. Biases reported here (e.g. low precipitation) could be related
culiarities of the micro climate in steep topography than to the performance of model physics and data

However, it should be noted that rainfall between 8.7 to 16.4 𝑚𝑚/day is relatively well measured by the

hat the class 8.7–16.4 𝑚𝑚/day represents a moderate rainy day (well detected by TRMM), the Fig 16
a-annual (𝑦-axis) frequency distribution for the analysed period (𝑥-axis). The intra-annual evolution of
r time showed good agreement between the local and regional scales. For the dry (C4) and wet (C5)

oderate rainfall class was almost evenly distributed with low frequencies. In the other three clusters,
gher frequencies appeared but the distribution was more scattered (dispersed). From 2002 to 2011 C1,
owed punctually isolated maximums of moderate rainfall frequencies, which were observed from April
C1 seemed to be the cluster of the April–May inter-season, with its dry to rainy transition, and C3
the cluster of the reverse transition during November–December.

ion and perspectives

sion
dy, we used a similarity measure more suitable for the analysis of climate data for clustering tasks based
k–Leibler measure. This involved the design of a new metric, named the expert distance (ED), in which
ge of the meteorological structures derived from observational studies was considered, and we proposed
ique strategy to strengthen the expected physical relevance. The unit data clustered were the daily rainfall
by TRMM measurements on either side of the Lesser Antilles (the Atlantic Ocean and Caribbean Sea),
onducted to obtain the clusters of days with similar climate profiles.
d unsupervised classification methods (KMS or HAC) to discover global trends within the clusters. The
rformed by using these two methods encountered the following difficulties. First, as rainfall totals were
ed, “near” fields in the sense of L2 were rare; the L2 norm tended to agglomerate fields with a common
re, although they were otherwise different. Additionally, the centroid used by KMS did not always
listic physical situation.

the L2 norm is frequently used in climate data clustering, the results obtained herein were unsatisfactory,
dard did not effectively quantify the physical similarity between configurations. To better quantify the
he daily rainfall, a spatial subdivision of fields was used. Once these patches were defined, we imple-
al.: Preprint submitted to Elsevier Page 15 of 20
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do-distance based on a relaxation of the precision of the spatial location of the fields, and we compiled
d compared them by using the Kullback–Leibler divergence. Similar concerns have already emerged in
trieval image research, and we developed a subdivision technique suitable to our field corresponding to
itation drivers.
n, we used the silhouette index to evaluate the quality, coherence, and separation distance between the
ers. We completed this analysis with a visual inspection of the clusters observed, which confirmed that
on allows us to obtain improved results than the L2 standard when applied to this type of meteorological
sters, resulting from our best algorithm, were evaluated by experts.
classes accounted for 62% of the daily totals, in almost similar proportions. For these, the monthly
d spatio-temporal averages were representative of the two predominant seasons at these latitudes, namely,
and rainy season. These were focussed respectively on the months of February and August–September.
interannual evolution revealed a significant increase in the number of constituent elements of these two

g the 15 years of measurements. There was a decrease in daily rainfall (drying), which was spread over
onths of the year. Additionally, the rainy season seemed to be earlier as it moved towards the month of

io-temporal averages of the daily totals were 5–6 times greater for the mountainous islands.
confirms the trends deduced by other bibliographical works. It also highlights certain small differences
ained unattainable by classical clustering methods. The results obtained led to finer analysis details
temporal dynamics of daily precipitation. Importantly, the analysed series was short and these results
accordance with increases in the observation period and improvements in the technologies used in the

f rainfall by satellites, while remaining subjacent to the evolution of the climate.
ird of the daily totals was rather representative of the transitions between the two main seasons. Two of
a more spread out intra-annual distribution of dry days, i.e. 14.8% of the total, followed by an average
ry rainy days in September–October. These results confirmed the drying trend in this region. With
oning and monthly durations, transitions were generally very difficult to identify. Only one of the clusters,
otal, was representative of the transition from the rainy to dry season.

etric used represents a concrete step forward in the analysis of possible climatic and seasonal trends
io-temporal data of daily rainfall. It offers good potential for identifying the dynamics of transitions,
erald the possible severity of the two main seasons.

was based on a collaboration between physicists and computer scientists interested in the methods of data
arge databases obtained either from satellite observations or computed as in the case of meteorological
al.: Preprint submitted to Elsevier Page 16 of 20
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ted clusters, from a climate physicist point of view, were characterised by relevance, if not originality.
believe that this method adds more finesse and accuracy in the analysis of the fields for a reasonable
sters.

tives
ted an approach that should be widely relevant to the present scope of Climate Informatics, as our
emain valid for any application that uses the clustering of fields. However, as our goal was the extraction
es, we focus on these perspectives in future.
e could do the exact same study for other single parameters, such as the wind or temperature, with the
e can knowingly compare the quality of the clusters found for each parameter, itilizing silhouette index.
ossible to select the parameters that give better clusters and probably show that some parameters are
e study of weather types in the Lesser Antilles.
ly, we might, with small adjustments, combine parameters to extract clusters of days by relying on a
ore complete information. We can evaluate such data with a couple or several parameters to obtain

tter clusters.
re, some parameters (for example, wind) might explain a phenomenon (for example, rainfall). Such an
possible by clustering the days according to a parameter (wind) and evaluating the quality of the cluster

he explained phenomenon (rainfall). Employing silhouette index, we should be able to select the best
a given phenomenon.

code availability
ithm presented in this work and developed by Emmanuel Biabiany, is called "dePrecitTRMM", imple-
U Octave (an alternative open-source of Matlab), and hosted at https://github.com/ebiabiany/expert-

pitation with all the dependencies. Please note that the whole computation (including data pre-formatting,
silhouette index calculation) takes about 48 hours, on a standard computer with an 8-core processor and
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ies of the histogram classes used to quantify daily rainfall data. These edges were determined from
ecords of the study area.

(%) 0 0.35 0.5 0.7 0.8 0.9 0.95 0.99 1
(𝑚𝑚) 0 ]0,1.2] ]1.2,2.2] ]2.2,5.2] ]5.2,8.7] ]8.7,16.4] ]16.4,26.9] ]26.9,59.2] ]59.2,+∞[

ive statistics and probabilities: analysis of the distribution of hurricanes and tropical storms in the five
of the KMS-ED method. 𝑃𝑇𝑆 (𝐶𝑥) expresses the probability that a TS is in 𝐶𝑥, 𝑃𝐻 (𝐶𝑥) expresses the
ity that a H is in 𝐶𝑥, 𝑃𝐶𝑥(𝑇𝑆) expresses the probability that 𝐶𝑥 produces a TS, and 𝑃𝐶𝑥(𝐻) expresses
ability that 𝐶𝑥 produces a H.

TS H Cluster sizes 𝑃𝑇𝑆 (𝐶𝑥) 𝑃𝐻 (𝐶𝑥) 𝑃𝐶𝑥(𝑇𝑆) 𝑃𝐶𝑥(𝐻)

1 12 799 0.013 0.049 0.001 0,015
20 88 677 0.253 0.362 0.029 0.130
11 39 567 0.139 0.160 0.019 0.069
3 9 1749 0.038 0.037 0.002 0.005
44 95 1623 0.557 0.391 0.027 0.058
79 243 5415

a of interest. Land is in zone A3: Lesser Antilles with the northeasterly part of South America. Zones A1,
e predominantly sea: a part of the Central Atlantic Ocean and the Cape Verde archipelago. These four
d for the design of the expert distance (ED).
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(a) (b)

resentation of the characteristics of the L2 distance: (a) a strong and localised fluctuation (blue) produces
istance as a multitude of small variations (red) from the reference (black); (b) whether the spatial shift is
igh (red), it produces the same L2 distance from the reference (black).

ematic showing the computation process of the expert distance (ED) for two days 𝐷1 and 𝐷2: zonal
using custom edges (𝐷𝑥𝑍𝑖), the use of symmetrised Kullback–Leibler divergence (𝐷𝐾𝐿𝑆) on each zone to
lues, and the computation of the average to obtain 𝐸𝐷(𝐷1, 𝐷2).

gram of the evolution of silhouette index (𝑆𝑎(𝑘) defined in Equation 5) in the function of 𝑘; the number
AC (solid line), KMS (broken line)—using L2 (black) and ED (red).
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(a)

(b)

Two days, for members of the same KMS-L2 cluster, but describing very different precipitation fields
Two days, for members of different KMS-L2 clusters, but very similar physically.

(a) (b)

(c)

mple of the centroid of cluster C2 from KMS-L2 computed by using the average (a) which is compared to
ment according to L2 (b) and another element of the cluster taken at random (c).
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1)

2)

3)

4)

5)

T: Graph of representative elements from the KMS-L2 method, with 𝑘 = 5, RIGHT: Graph of the wind
elocity from ERA-5 corresponding to the representative elements of the five clusters of the KMS-L2 method.
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1)

2)

3)

4)

5)

T: Graph of representative elements of the clusters of TRMM rainfall from the KMS-ED method, with
: Graph of the wind direction and velocity from ERA-5 corresponding to the representative elements of the
the KMS-ED method.
al.: Preprint submitted to Elsevier Page 24 of 20
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(1) (2)

(3) (4)

(5) (6)

rnal variability of cluster (C2) from the KMS-L2 method. Six days of this cluster are presented in increasing
2 distance from the representative features of the cluster: (1) representative element and (2,3,4,5,6) other

from a regular interval in relation to their distance L2 with (1).
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(1) (2)

(3) (4)

(5) (6)

ernal variability of cluster (C4) from the KMS-ED method. Six days of this cluster are presented in increasing
2 distance from the representative features of the cluster: (1) representative element and (2,3,4,5,6) other

from a regular interval in relation to their ED with (1).
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(C1)

(C2)

(C3)

(C4)

(C5)

FT: Monthly distribution of clusters using the KMS-L2 method over the year for the period 2000 to 2014.
ion in the frequency of each of the clusters over the years (with a dashed line for trends and the validity
lues are not statistically significant.
al.: Preprint submitted to Elsevier Page 27 of 20



Des

Figure 12: LE
RIGHT: Variat
indexes). High

E. Biabiany et
ign of an expert distance metric for climate clustering: the case of rainfall in the Lesser Antilles

(C1)

(C2)

(C3)

(C4)

(C5)

FT: Monthly distribution of clusters using the KMS-ED method over the year for the period 2000 to 2014.
ion in the frequency of each of the clusters over the years (with a dashed line for trends and the validity
lighted p-values are statistically significant (<0.05).
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(b)

Diagram of the evolution of humidity in the air layers as a function of the pressure level: the data collected
e belonging to cluster C4 in the period January–February–March (in red) and that of cluster C5 in the
gust–September (in blue), with their respective means (in black). (b) Diagram of the evolution of the wind
elocity in the air layers as a function of the pressure level: the data collected by a radiosonde belonging to
red) and that of cluster C5 (in blue).

Infos/Islands Guadeloupe Dominica Martinique St-Lucia Barbados St-Vincent Flat islands
MSS [mm/day] 8.98 16.24 13.21 10.79 4.14 7.21 7.40
MSM [mm/day] 1.50 1.80 1.47 1.80 2.07 1.80 3.38
DWR [%] 37 39 34 43 57 50 34
MSS [mm/day] 38.68 57.78 45.88 33.48 12.12 24.55 17.49
MSM [mm/day] 6.45 6.42 5.10 5.58 6.06 6.14 8.52
DWR [%] 22 24 18 26 42 37 22
MSS [mm/day] 12.45 19.24 19.29 13.64 6.89 13.55 6.51
MSM [mm/day] 2.07 2.14 2.14 2.27 3.44 3.39 3.21
DWR [%] 34 31 24 33 49 50 32
MSS [mm/day] 6.27 10.67 9.84 7.40 4.14 7.31 3.31
MSM [mm/day] 1.04 1.19 1.09 1.23 2.01 1.82 1.67
DWR [%] 38 36 31 40 57 55 36
MSS [mm/day] 33.48 57.74 46.69 30.78 14.60 26.46 9.07
MSM [mm/day] 5.58 6.19 5.19 5.13 7.30 6.61 4.65
DWR [%] 24 21 14 19 41 35 27

P: Lesser Antilles islands. DOWN: Detailed rainfall values measured by satellite for the Lesser Antilles
SS=Mean of spatial sum [mm/day], MSM=Mean of spatial mean[mm/day], and DWR=Percentage of

ainfall [%]), for KMS-ED clusters (from C1 to C5).
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(C2)

(C4)

(C5)

istribution of the TRMM rainfall (red outline) compared to ground stations (GS) rainfall (blue outline)
uadeloupe (in black) and Martinique (in white) for KMS-ED clusters (from C1 to C5). Classes that are
by TRMM are highlighted in red, those that are underestimated are highlighted in blue, and when TRMM
r to GS, the classes are highlighted in green.
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(C2)

(C4)

(C5)

ariation in the intra-annual (𝑦-axis) frequency distribution of moderate rainfall in Guadeloupe (8.7–16.4
he analysed period (𝑥-axis) from 2000 to 2014 in the five different clusters of KMS-ED (from C1 to C5).
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