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Design of an expert distance metric for climate clustering: the case of rainfall in the Lesser Antilles
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To expand our knowledge of the climate in the Lesser Antilles, we attempted to identify the spatio-temporal configurations of daily weather. We noticed certain pitfalls that can lead to poor results when using clustering algorithms and have proposed some steps towards the solution.

These advancements might prove interesting for climate informatics, as well as for many applications that cluster physical fields. We illustrated the pitfalls with a dataset of cumulative rainfall from NASA's Tropical Rainfall Measuring Mission for the period 2000 to 2014. First, the pitfall is the lack of numerical evaluation of the clusters found by the algorithms, which prevents the comparison of algorithms. We used silhouette index for this evaluation and to demonstrate other problems. Second, algorithms like K-means cluster the points around their barycentre. For many physical fields, this barycentre is trivial, which may lead to poor performances. Third, the L2 norm used in conventional clustering methods, such as K-means and hierarchical agglomerative clustering, focus on the exact location of fields, which leads to poor evaluations of similarity between fields. We replaced it by a similarity measure called the expert distance (ED) that compares the histograms of four zones, based on the symmetrised Kullback-Leibler divergence. It integrates the properties of the observed physical parameter and climate knowledge. With these improvements, the results revealed five clusters with high indexes. The algorithms now discriminate the daily scenarios favourably, thereby providing more physical meaning to the resulting clusters. The interpretation of these clusters as weather types is discussed.

Introduction

The automatic identification of spatio-temporal structures that are indicative of the atmosphere's low frequency variability has long been known as an important research objective [START_REF] Michelangeli | Weather regimes: Recurrence and quasi stationarity[END_REF]; [START_REF] Burlando | The synoptic-scale surface wind climate regimes of the mediterranean sea according to the cluster analysis of era-40 wind fields[END_REF]; [START_REF] Kaufman | Finding groups in data -an introduction to cluster analysis[END_REF]; [START_REF] Ayrault | North atlantic ultra high frequency variability[END_REF]; [START_REF] Ghil | waves" vs. "particles" in the atmosphere's phase space: A pathway to long-range forecasting[END_REF]; [START_REF] Jury | Joint modes of climate variability across the inter-americas[END_REF]). Called weather types (WTs), these structures can be recurrent, nearly stationary [START_REF] Michelangeli | Weather regimes: Recurrence and quasi stationarity[END_REF]; [START_REF] Brunet | Empirical normal modes versus empirical orthogonal functions for statistical prediction[END_REF]), and have their own identity [START_REF] Vautard | Multiple weather regimes over the north atlantic: Analysis of precursors and successors[END_REF]). The approach used in all these studies (except for [START_REF] Jury | Joint modes of climate variability across the inter-americas[END_REF] that will be discussed later), is as follows: for a selected physical parameter, a day is characterised by a spatial field that can be visualised as a map. The days that constitute the database are processed by a clustering method that creates clusters of similar days [START_REF] Tian | A survey on clustering based meteorological data mining[END_REF]; [START_REF] Hadzimejlic | Climate data analysis using clustering data mining techniques[END_REF]; [START_REF] Monteleoni | Climate informatics. Chapman and Hall/CRC. Data Mining and Knowledge Discovery Series[END_REF]). The average (named centroid) of each cluster of days is considered to be a WT. The two methods of clustering commonly First, the use of L2 as a similarity measure between two spatial fields raises questions. We show that the distance L2, used to compare two days, does not show the following basic characteristic: the proximity of two days in the sense of the retained distance must be equivalent to the proximity between them from a physical point of view. To overcome this, we propose a pseudo-distance to cluster spatio-temporal rainfall fields. We provide a physical explanation for the principles that led to the definition of this pseudo-distance and show how incorporating it will enable further realistic results.

Second, the use of a field average of a cluster days (its centroid) as the main representative of a cluster [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]; [START_REF] Gokila | Different versions of k-mean clustering in complete set of numerical data points[END_REF]) also raises questions. The rainfall dataset used in this study has many spatial discontinuities that can probably explain the poor results obtained by traditional methods. All the previous researchers used algorithms like KMS that aggregate days around centroids on more continuous datasets. The majority of the studies describe the final centroids of the clusters as a WT. However, for the type of data used in this study, this is trivial because this average may not be the representative of an existing physical scenario. The pseudo-distance that we propose improves this phenomenon when clustering.

To describe the resulting clusters, we present the most representative days of each cluster (not an average), which seem to be more relevant endpoint. These clusters are related to the WTs and circulation types (CTs) presented in the previous study. We consider their intra-and interannual dynamics to understand their links with the seasons and the interseasons. A specific analysis by island allowed us to understand the impact of these rainfall patterns on the Lesser Antilles, and we also compared satellite observation data (used for clustering) with data from ground rainfall stations.

The data used and the methodology developed are presented in section 2. Section 3 provides an evaluation of the results obtained for the study and a discussion of the important aspects of the results. It is divided into the following two parts: at first, we present a numeric comparison of methods, discuss our choices of parameters, and evaluate the quality of the resulting clusters to show that our method gives significantly better results than traditional methods; then, we provide a physical analysis by relating the clusters produced by this method to the existing knowledge on climatology in the Caribbean region. The last section is dedicated to the conclusions and perspectives.

Material and methods

Datasets

The study data consist of rainfall measured by the satellites of the Tropical Rainfall Measuring Mission (TRMM) [START_REF] Huffman | The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[END_REF]. These data were spatialised with a grid of 0.25 To determine recurring situations from the rainfall field, we used conventional clustering methods such as the HAC or KMS [START_REF] Monteleoni | Climate informatics. Chapman and Hall/CRC. Data Mining and Knowledge Discovery Series[END_REF]; [START_REF] Rokach | Clustering Methods[END_REF]; [START_REF] Parmar | Overview of clustering algorithm for weather data[END_REF]). Notably, in the climate datasets, a field is a vector in a space with very large dimensions (18, 887 pixels in our case), which made the search for relevant information relatively complex. To assess the study area, surface rainfall data supplied by Meteo France (Guadeloupe and Martinique) from 1979 to 2014 were used in the design of the expert distance (ED) (Section 2.4). To complete the analysis and interpretation of the clustering results, atmospheric circulation data at 850hPa from ERA-5 collected by radiosondes from Wyoming Weather from 1979 to 2014, and tropical storm and hurricane tracking data from 2000 to 2014 indexed on Unisys Weather were used (Section 3).

Clustering performance measures

As pointed out in Section 2.4, current publications in the field lack an important element, namely, they do not provide reliable, quantitative performance measures that indicate the quality of the resulting clusters. For example, in the article by [START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF], only the centroids of the clusters were evaluated and the clusters were considered to be correct because the centres were plausible and physically interpretable. However, the dispersion of the clusters was not evaluated.

The absence of such quantitative quality measurements is particularly problematic when it comes in comparing the clustering methods. It is necessary to implement a way to measure the quality of the clusters, even if quality is recognised in the literature as a challenging problem, primarily in the cases where it is difficult to form hypotheses on the shape of the clusters searched for [START_REF] Tibshirani | Estimating the number of clusters in data set via the gap statistic[END_REF]; [START_REF] Halkidi | On clustering validation techniques[END_REF]; [START_REF] Lallich | Indices de qualité en clustering[END_REF].

In the absence of ground truth information, here is a list of some internal quality measurements that can be used with the clusters: the silhouette index [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF]), Calinski-Harabasz index [START_REF] Caliski | A dendrite method for cluster analysis[END_REF]), and Davies-Bouldin index [START_REF] Davies | A cluster separation measure[END_REF]). All of them combine the following two essential qualities expected for clusters representing different physical situations: compactness (homogeneity) as well as distance (separation). We selected the silhouette index because it has the following benefits:

• It provides a quality measure for each day within its cluster, for each cluster, and for the method through all its resulting clusters,

• It is easy to interpret in terms of the pertinence of clusters.

Let us assume a clustering algorithm  𝑘 that divides a dataset into 𝑘 clusters. At the end of the clustering process, each point 𝑖 of the data is assigned to a specific cluster 𝐶 𝑖 . The silhouette index 𝑆(𝑖) for each 𝑖 is obtained as follows:

𝑆(𝑖) = 𝑏(𝑖) -𝑎(𝑖) 𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖)) , ( 1 
)
where 𝑎(𝑖) is the average of the distances between 𝑖 and the other elements in its cluster and 𝑏(𝑖) is the minimum of the averages of the computed distances between 𝑖 and the elements of every other cluster. In equations 2 and 3, 𝑑(𝑖, 𝑗)

expresses the distance used to compare two elements 𝑖 and 𝑗, as shown below:

𝑎 𝑖 = 1 |𝐶 𝑖 | -1 ∑ 𝑗∈𝐶 𝑖 ,𝑗≠𝑖 𝑑(𝑖, 𝑗), ( 2 
)
and

𝑏 𝑖 = 𝑚𝑖𝑛 𝑖≠𝑗 1 |𝐶 𝑗 | ∑ 𝑗∈𝐶 𝑗 𝑑(𝑖, 𝑗), ( 3 
)
where 𝐶 𝑖 is the cluster of 𝑖 and |𝐶 𝑖 | the size of 𝐶 𝑖 . By default, this distance 𝑑(𝑖, 𝑗) is the L2 norm. In this work, we will replace the L2 distance with ED (Equation 9). Two other criteria may be estimated. The first, which indicates the average quality of a cluster 𝐶 𝑖 , can be calculated by using the following formula:

𝑆𝑐(𝐶 𝑖 ) = 1 |𝐶 𝑖 | ∑ 𝑗∈𝐶 𝑖 𝑆(𝑗).
(4)

In order to evaluate all of the clusters obtained by applying a clustering method  𝑘 to our data, we can consider the average of each cluster's coefficients, namely:

𝑆𝑎( 𝑘 ) = 1 𝑘 𝑘 ∑ 𝑖=1 𝑆𝑐(𝐶 𝑖 ). (5) 
By definition, each coefficient is between -1 and 1. The coefficient reflects the combined evaluation of the proximity of an element to the elements of its cluster and the distance of this element to all the other clusters.

𝑆𝑎( 𝑘

) provides an indication of the quality of the result of a clustering method. For more information, readers can refer to [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF]. Here are some commonly accepted reference values that we will use later:

• values greater than 0.20 indicate good performance (existence of relevant and well separated clusters),

• values less than 0.10 indicate the opposite,

• negative values indicate that many points are assigned to clusters that do not represent the best possible choice.

Problems related to the L2 distance

All the work we were able to review in this domain uses the same distance measurement to compare two fields, namely, the distance associated with the L2 norm. For the record, this distance between two vectors of daily data 𝐷 1 (𝑣 1 , 𝑣 2 , .., 𝑣 𝑛 ) and 𝐷 2 (𝑣 1 , 𝑣 2 , .., 𝑣 𝑛 ) is calculated as follows:

𝑑 𝐿2 (𝐷 1 , 𝐷 2 ) = √ √ √ √ 𝑛 ∑ 𝑖=1 (𝐷 1 (𝑣 𝑖 ) -𝐷 2 (𝑣 𝑖 )) 2 , ( 6 
)
where 𝐷 𝑥 (𝑣 𝑖 ) is the i-th value 𝑣 of the vector of daily data 𝐷 𝑥 and 𝑛 is the length of vectors of daily data. This distance seems to be partly responsible for the difficulties encountered by the clustering methods in the field of climate informatics [START_REF] Monteleoni | Climate informatics. Chapman and Hall/CRC. Data Mining and Knowledge Discovery Series[END_REF]. Figure 2(a) shows this property schematically, in which the distance L2 found between the reference (in black) and the two fields is the same. In addition, for fields such as rainfall, which show extensive spatial and temporal irregularities, a day 𝐷 1 with a low spatial disparity relative to the reference (Fig 2(b))

will have a norm L2 equivalent to a day 𝐷 2 , red curve, with a bigger spatial disparity. Thirdly, when data are described in a large vector space, a multitude of small fluctuations that are spatially spread across the field can be considered as important as one single big and very localised fluctuation.

Design of the expert distance

In this section, as with other authors in different application fields before [START_REF] Pandit | A comparative study on distance measuring approches for clustering[END_REF]; [START_REF] Parmar | Overview of clustering algorithm for weather data[END_REF]; [START_REF] Gibbs | On choosing and bounding probability metrics[END_REF]; Shraddha and Suchita ( 2011)), we propose an alternative similarity measure based on the fact that the correction, even slight, of L2's biggest weaknesses should result in significant improvements. The construction of the proposed measure will reduce the influence of the spatial location by a suitable subdivision and a quantification.

Partial management of spatialization

For several computer vision applications, the image can be analysed at the patch level rather than at the individual pixel level [START_REF] Barnes | The patchmatch randomized matching algorithm for image manipulation[END_REF]; [START_REF] Dinu | Local patch dissimilarity for images[END_REF]; [START_REF] Amelio | A patch-based measure for image dissimilarity[END_REF]). Image patches contain contextual information and have advantages in terms of computations and generalisations [START_REF] Guo | Patch-based image correlation with rapid filtering[END_REF]). From this point of view, the decomposition of an image into patches or zones that do not overlap provides a simple but effective way of overcoming the curse of dimensionality [START_REF] Xin | Perceptual Digital Imaging: Methods and Applications[END_REF]).

In this study, we subdivided the rainfall field of the North Atlantic tropical zone into four patches (Fig 1 ) to limit the computation time and demonstrate the value of the approach without seeking to optimise it. The definition of these zones serves an important purpose, namely, to take the knowledge of field experts into consideration. Thus, each zone corresponds to a specific and known centre of action. In Fig 1,A1 is the zone in which the cold surges originate;

A2 is the North Atlantic Subtropical High (NASH) zone; A3 is influenced by the continental zone and the arc of the Lesser Antilles; and A4 is the zone of low pressure that is linked to the presence of the Intertropical Convergence Zone (ITCZ). To compare two fields, we subdivided the fields according to these four zones and then compared each of them with their correspondent.

Comparison of the distribution of intensities

Once each field had been spatially subdivided, we no longer had to pinpoint the exact location of the phenomena in each zone. It seems relatively reasonable to ignore their position down to the exact mesh, and instead we looked at the distribution of the rainfall intensities of the observed field, ignoring the notion of spatial location. In the absence of knowledge of the form of the distribution of rainfall intensities, the Kullback-Leibler divergence appears to be a judicious choice [START_REF] Kwitt | Image similarity measurement by kullback-leibler divergences between complex wavelet subband statistics for texture retrieval[END_REF]; [START_REF] Kullback | On information and sufficiency[END_REF]; [START_REF] Walker | On priors with a kullback-leibler property[END_REF]). It is expressed as follows:

𝐷 𝐾𝐿 (𝑃 , 𝑄) = ∑ 𝑐 𝑃 (𝑐)𝑙𝑜𝑔 𝑃 (𝑐) 𝑄(𝑐) , ( 7 
)
where 𝑃 and 𝑄 are two distributions of discrete probabilities and c is the index of possible values taken from each distribution. To obtain a metric for ℝ + that also has the symmetry property, we will use the symmetrised divergence of Kullback-Leibler, namely:

𝐷 𝐾𝐿𝑆 (𝑃 , 𝑄) = 𝐷 𝐾𝐿 (𝑃 , 𝑄) + 𝐷 𝐾𝐿 (𝑄, 𝑃 ). ( 8 
)
Although it is possible to define a measure of the Kullback-Leibler divergence adapted to continuous fields, we preferred to quantify the data differently because estimating the probability densities of the intensities raises parametrisation problems. Moreover, such quantification might help to reduce the effects of the small fluctuations noted in Section 2.3, even though edge effects around the boundaries of the selected intensity classes remain. The histogram bins were determined from the rainfall data collected in the area. We selected eight bins of possible intensities. The boundaries of these bins were selected from the rainfall data collected in the area such that the distribution of the bins was uniform (cf. Table 1).

The distinct intensity distributions obtained were then used to compute the Kullback-Leibler divergence in each zone.

The average of the divergences by zone provides the distance between two days. We call this the expert distance, which is referred to as ED, and the quantity is defined by:

𝐸𝐷(𝐷 1 , 𝐷 2 ) = 1 𝑛 × 𝑛 ∑ 𝑖=1 𝐷 𝐾𝐿𝑆 (𝐷 1 𝑍 𝑖 , 𝐷 2 𝑍 𝑖 ), (9) 
where 

𝐷

Results and discussion

In this section, we present the results and discuss the results at first from a computer science point of view. The last subsection will be dedicated to an analysis of the results for the specific application considered.

Performance measurements of clustering methods

We used algorithms such as HAC and KMS with which we separately linked L2 and ED. To reveal the possibilities of using these two distances, the evaluation of the quality of the clusters obtained by HAC-L2, KMS-L2, HAC-ED, and KMS-ED was performed by computing the silhouette coefficients (Equation 5). Figure 4 shows the evolution of the silhouette coefficient as a function of the number 𝑘 of clusters.

The results showed several interesting points for the comparison between KMS and HAC, which are summarised below. Notably, the methods based on the HAC algorithm produced coefficients that were significantly lower than those obtained by KMS algorithms. Additionally,

• For HAC-ED, the silhouette coefficient approached 0 for 𝑘 > 3, thus indicating the irrelevance of the clusters detected.

• HAC-L2 exhibited negative silhouette coefficients, thus indicating that the points were affected by suboptimal clusters.

• HAC-ED produced results superior to HAC-L2, although the performance of both remained very weak.

We can now eliminate the HAC algorithms and focus on KMS. This choice is in line with the literature [START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF], in which HAC has been used only to define the initial centroids of the KMS algorithm by ruling out any random selection of these centroids. Here,

• KMS-ED largely outperformed KMS-L2.

• KMS-ED exhibited values mainly over 0.2 for a significant number of clusters, thus indicating the presence of relevant structures within the data.

• KMS-L2 exhibited values under 0.1 for 𝑘 > 2, thus indicating irrelevant clusters.

• Although the shape of the curves generally decreased with 𝑘, a slight inflection was observed around 𝑘 = 5 in both cases.

• For this value of 𝑘 = 5, KMS-L2 had a silhouette value of 0.08, whereas KMS-ED had a value of 0.26.

The selection of the optimal 𝑘 was not as clear-cut as we had hoped, in spite of the noted inflection around 𝑘 = 5 in both cases. This led us to choose this number of clusters for the following analyses. When considering large maritime areas with little land surface, such as the Caribbean region ( 

Visual inspection of the clusters found

For the present time, we have relied on the silhouette index for our analysis. Let us now show how the values of the silhouette index are relevant in terms of quality of the resulting clusters. Accordingly, we will carry out a detailed inspection of the clusters found by the KMS-L2 and KMS-ED methods with 𝑘 = 5.

Illustration of irrelevant clusters

The silhouette index results for KMS-L2 were indicative of irrelevant clusters (< 0.1). We can conclude that the 

Illustration of the irrelevance of centroids for L2

As stated before, the centroids have a major role in KMS algorithms, and some author rely on them to describe the Weather Types extracted by their algorithms. The idea behind this is that these averaged fields are representative of the clusters. This figure shows the following interesting aspects. The centroid does not look like any of the members of the cluster considered. We think that computing the average tends to create continuous artificial zones, which gives a bad spatial appreciation of the existing meteorological structures and leads to poor results for the clustering of spatiotemporal rainfall fields using L2. This problem can be partially avoided when using the ED as the centroid is now a distribution of rainfall in each region. These distributions are much more meaningful for describing rainfall situations.

For the following analysis, we will consider, as a representative of the cluster, not the centroid but the most representative element of each cluster obtained. This is the element with the shortest distance to each cluster centroid (distance being L2 or ED in their respective cases).

Separation and homogeneity of the clusters

As stated several times in this article, we prefer to rely on a single performance measure than on a multitude of considerations. We need, however, to prove that this performance measure is a good indicator of these considerations.

This section is dedicated to the separation and homogeneity of the clusters.

Separation

To assess the separation of the clusters, Figs 7 and 8 show respectively the representative (see above) rainfall fields of the clusters obtained by the KMS-L2 and KMS-ED methods for 𝑘 = 5. These figures also show, for each representative field, the wind field of the corresponding day. This wind field has not been used during the clustering.

It will be used in the physical analysis of the weather types extracted by our method, later in this article. Those representative fields (both rainfall and wind) should be as different as possible. 

Homogeneity

We also wanted to evaluate the homogeneity (the internal variability) of the clusters obtained for each method.

Of these five clusters, for the sake of conciseness, we will present only one cluster per method. For each method. we selected the cluster whose 𝑆𝑐(𝐶 𝑖 ) value (Equation 4) was the closest to the overall value of the corresponding method 𝑆𝑎( 𝑘 ). These were the C2 cluster for the KMS-L2 method and the C4 cluster for the KMS-ED method. The distance of each of the days composing a cluster to their representative was computed, and elements were sorted in ascending order. We extracted six quantiles from this ranking, to evaluate how each cluster varied internally. In the case of the L2 distance (Fig 9), the first three fields were relatively similar to the representative element, whereas the last two were different. In fact, on the central part and the northwestern edge, we found rainfall zones that were well localised. When grouping the results by the L2 distance, we observed a cluster of situations that were certainly similar in terms of numbers but very distinct from a physical point of view.

In the case of ED (Fig 10), the elements of cluster C4 had a certain physical constancy although they differed slightly in their visual appearance. This cluster consisted of low rainfall fields.

Conclusion on the intrinsic quality of clusters

The visual inspection confirmed the results observed by using only the silhouette index.

• KMS-L2 produced clusters of relative relevance, as some clusters representative were similar. Moreover, days among a cluster could be very different from a physical point of view.

• KMS-L2 produced more relevant clusters, which were reflective of diverse situations. Among a cluster, days seemed similar.

From the point of view of the physical separation of the clusters, the introduction of the ED has clearly enabled the acquisition of clusters with a much higher relevance. In addition to the better results obtained by KMS-ED, this facet tends to reinforce that clusters with a high silhouette index are more relevant when it comes to their physical significance.

Physical analysis

As stated in the introduction, we wanted to pinpoint some pitfalls encountered when clustering daily fields in geoscience applications. We attempted to highlight them and present some partial solutions to these problems in the previous sections. This section will focus on the remarkable results obtained by our simple method as soon as these problems are dealt with. Our major goal was to extract typical geospatial structures of meteorological data, focussing only on rainfall. Some authors, like [START_REF] Jury | Joint modes of climate variability across the inter-americas[END_REF], have used several fields such as the surface temperature, sea-level pressure, and 𝑈 zonal wind to extract dominant modes with the help of a principal component analysis (PCA).

While such a combined analysis of different fields is something we aim to do in the future, our article focusses on only one field (rainfall) to illustrate the general method we are proposing.

In our method, we chose to aggregate spatial areas in a controlled way (by using regions) to add as much physical knowledge as we could acquire in the design of the extraction of WTs. An interesting aspect of our study comes despite one of its limitations, namely, we treated each day independently and clustered days by taking no account of the time dependency between them, apart for the one found in the data themselves (this is a common approach).

We propose a physical analysis of the clusters obtained by looking at their intra-and interannual evolutions on a large scale. Then, we will continue the study of the meteorological comparability of daily precipitation at the local scale, including, in this case, surface observations.

Large scales

Annual variability and trends

It is thus very interesting to observe the temporal distribution of the fields contained in each cluster to highlight possible annual and semi-annual cycles, as in [START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF]. The frequencies were derived by applying the cluster analysis technique KMS-L2 and KMS-ED to the daily atmospheric precipitation patterns defined over the domain indicated in Fig 1 . We also show the results of Mann-Kendall's nonparametric trend test [START_REF] Yue | Power of the mannkendall and spearman's rho tests for detecting monotonic trends in hydrological series[END_REF]), which was performed on the annual frequencies of each group to test the null hypothesis of no trend at the 95% confidence level (5% significance level). Radiosonde parameters at different levels, such as specific humidity, wind direction, and intensity, were used to characterise the clusters. The days in each of the clusters would thus compare to several configurations in terms of outgoing longwave radiation (OLR), sea surface temperature (SST), and wind circulation. We will try, as far as possible, to link them to the clusters found in previous study [START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF]; [START_REF] Moron | Weather types across the caribbean basin and their relationship with rainfall and sea surface temperature[END_REF]; [START_REF] Martinez | Seasonal climatology and dynamical mechanisms of rainfall in the caribbean[END_REF]).

For KMS-L2, the results are shown in Fig 11 . On the left, we show the annual variability of the monthly frequencies of days making up each cluster, whereas the right side shows the inter-year change. Many of them have a similar annual distribution. Moreover, no significant trends over the 15 years of TRMM observations were found. This result confirms that the L2 distance is still not very appropriate for classifying daily rainfall fields, as it weakly reflects the seasonality effects for the TRMM daily rainfall.

For KMS-ED, Fig 12, the monthly distributions obtained were clearly separated because they better integrated regional physical and climatic knowledge. With this slight improvement, the results revealed five clusters (𝑘=5) with high indexes (𝑆𝑎(𝑀 𝑘 ) > 0.2), which can be characterised as follows :

• C1, represents 14.8% of the days analysed, with days spread over the whole 12 months, but data remained rather grouped over the first part of the year. The maximum was centred on the months of April and May. This cluster was associated with CTs 1 to 5 found in [START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF] and WTs 1 to 3, 7, and 8 found in [START_REF] Moron | Weather types across the caribbean basin and their relationship with rainfall and sea surface temperature[END_REF]. There were no significant trends for the annual frequencies.

• C2 and C3, 12.5 and 10.4% respectively were close to each other because they were localised at the end of the year. However, for C2, the maximum matched with September-October, whereas for C3, this occurred in November. Decreases in the annual frequencies were found for C2 (𝑝-value=0.02 and 𝑟 2 =0.439), whereas there were no significant trends for C3. These clusters were associated with WTs 4,5,6, and 8 in [START_REF] Moron | Weather types across the caribbean basin and their relationship with rainfall and sea surface temperature[END_REF].

• C4 was the most prevalent type, in which it accounted for 32% of the days. The elements of this one were mainly distributed from December to April with a peak in February. It represents the cluster of the dry season. The annual distribution showed a marked "dip" between July and November (Fig 12). Figure 13 shows observations of the upper atmosphere at station 78897-TFFR Le Raizet. The daily precipitation fields of C4 showed a thin wet layer, which dried out at 800 hPa. In the lower levels, the trade winds were from the northeast, whereas for the levels below 500 hPa, the flow was predominantly from the northwest. In this case, the drivers, which are the NASH and the SST, limited the intensity of the observed rainfall [START_REF] Davis | The north atlantic subtropical anticyclone[END_REF]; [START_REF] Dunion | Rewriting the climatology of the tropical north atlantic and caribbean sea atmosphere[END_REF][START_REF] Moron | Interannual and intra-annual variability of rainfall in haiti (1905-2005)[END_REF]). The NASH and the North American High are connected together and provide strong diverging trade winds and subsidence in the Caribbean. The ITZC migrates southwards favouring the development of the southern flank of NASH [START_REF] Martinez | Seasonal climatology and dynamical mechanisms of rainfall in the caribbean[END_REF]. A detailed analysis of C4 indicated the presence of heavy precipitation. These conditions were related to cold fronts that managed to reach the low latitudes of the Lesser Antilles (in January, April, and May). Indeed, at the interface between the two air masses, the trade winds carry a flow of warm, humid equatorial air, which intensifies convection and the development of active frontal cloud bands producing heavy rainfall [START_REF] Beucher | Météorologie tropicale: des alizés au cyclone. Number vol. 2 in Cours et manuels -Direction de la météorologie[END_REF]. The evolution of the number of days per cluster over the 15 years of TRMM observations showed a positive correlation, meaning an increase of C4 (𝑝-value<0.022, 𝑟 2 =0.342).

This cluster can be associated with CTs 1 to 5 found in [START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF] and WTs 1 to 3, 7, and 8 found in [START_REF] Moron | Weather types across the caribbean basin and their relationship with rainfall and sea surface temperature[END_REF].

• C5, centred on July-August, was well separated from the dry season and contained the last third of the daily rainfall analysed. It represents the cluster of the rainy season with the highest contribution to the annual rainfall.

For C5, unlike C4, the trade winds were established on a column of atmospheric air, which was higher and wetter (Fig 13). At this time of year, the NASH is moving northeast, which allows the more humid trade winds to flow to the east Caribbean due to the longer course over the Atlantic Ocean on its southeast flank. The Atlantic ITCZ reaches its northern most extent in the Lesser Antilles and begins its southward migration at this time [START_REF] Martinez | Seasonal climatology and dynamical mechanisms of rainfall in the caribbean[END_REF]). This period corresponds to the increase in convection with increased moisture advection in the Caribbean, which is favourable to higher daily precipitation [START_REF] Jury | Joint modes of climate variability across the inter-americas[END_REF]; Herrera and Ault ( 2017)). There was also a significant positive trend (𝑝-value=0.028, 𝑟 2 =0.321) which reflects an increase of C5

between 2000 and2014 (Fig 12). C5 can be related to CTs 6-7 and WTs 4-6 found in [START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF] and [START_REF] Moron | Weather types across the caribbean basin and their relationship with rainfall and sea surface temperature[END_REF] respectively. Conflicting trade winds (shear lines), caused in this period by changes in wind direction and wind speed, passing from the northeast sector to the southeast sector resulted in heavy cloud cover and heavy rainfall. In addition, the close passages of the eastern waves triggered powerful updrafts with large areas of surface convergence favouring heavier rainfall on the eastern Antilles [START_REF] Beucher | Météorologie tropicale: des alizés au cyclone. Number vol. 2 in Cours et manuels -Direction de la météorologie[END_REF]).

Among the five retained clusters, C4 and C5 represent 62% of the sample, and these are the representative clusters of the bi-modal cycle. The remaining third was divided equally between C1, C2, and C3. Among the latter, some of the data may represent temporal transitions between seasons. These transitions may highlight differences between the northern and southern Caribbean. C2, C4, and C5 showed significant trends. The drying trend found for C4 also has been found by other authors over longer periods and prior to these TRMM observations [START_REF] Jury | An intercomparison of observational, reanalysis, satellite, and coupled model data on mean rainfall in the caribbean[END_REF]; [START_REF] Jury | Joint modes of climate variability across the inter-americas[END_REF]; [START_REF] Jury | Climate trends in the east antilles islands[END_REF]). The decrease in the number of C2 days over the last decade, combined with the increase in the number of C5 days, indicates a potential shift or even a tightening of the rainy season (Fig 12).

For TRMM daily rainfall measured during these two periods, the increase in convection at the beginning and end of summer can be attributed to the oceanic and continental monsoon annual cycles [START_REF] Jury | Joint modes of climate variability across the inter-americas[END_REF]). The latter has a positive influence on early summer rainfall but negative influence on late summer rainfall.

Links to hurricanes season

In our study regions, hurricanes are a major concern for resident populations and thus, it was of interest to analyse the distribution of hurricanes in clusters.

Tropical storms (TS) and hurricanes (H) recorded at the National Oceanic and Atmospheric Administration (NOAA) site from 2000 to 2014 helped us to attribute the different proportions of these types of atmospheric hazards to the clusters retained in KMS-ED. This work had not been done by [START_REF] Vigaud | Convection regimes and tropical-midlatitude interactions over the intra-american seas from may to november[END_REF]; [START_REF] Moron | Weather types across the caribbean basin and their relationship with rainfall and sea surface temperature[END_REF]; Sáenz and Durán-Quesada (2015); [START_REF] Jury | An intercomparison of observational, reanalysis, satellite, and coupled model data on mean rainfall in the caribbean[END_REF]; [START_REF] Jury | Joint modes of climate variability across the inter-americas[END_REF]. The proportions are presented in Table 2. C2, C3, and C5 contained almost all of these hazards. The highest number of days with TS or H were found for C5, followed by clusters C2 and C3. These clusters included around 80% of the H and more than 90% of the TS. In relation to the size of the clusters, 𝑃 𝐶𝑥 (𝐻) in Table 2 results show a proportion twice as large (13%) of H in C2 as that of C5

(5.8%) and C3 (6.9%). C1 and C4 contained few hazards. However, in the previous subsection, these clusters have been identified as dry day clusters, but we did observe the presence of a few TS or H days. This seems to have been due to the fact that the NOAA database covers the central Atlantic Ocean and the whole Caribbean region. These phenomena are at the limit of our domain (Fig 1).

Local scales: Lesser Antilles of the east Caribbean

In this paragraph we focus on the TRMM rainfall observed over the mountainous and flat islands of eastern Caribbean. Magnitude of rainfall across the Caribbean are affected by localized mechanism like orographic lifting or diurnal heating. They can enhance, to a lesser extent, convection to produce very different rainfalls between the windward and leeward parts in these islands [START_REF] Jury | Climate trends in the east antilles islands[END_REF]). In Figure 14, we have calculated the mean cumulative rainfall over all the meshes (occupying at least 20%) of the land surface, mean of spatial sum (MSS). The average per pixel of rainfall is represented by the mean of spatial mean (MSM). We also recorded the percentage of zeros included in each case (DWR).

These quantitative measures regrouped C1 and C4 (dry days), and C2 and C5 (rainy days), while C3 remained the intermediate cluster. The MSM results showed very different orders of magnitude, i.e. 5 to 7.5 𝑚𝑚/day for C2 and C5, 2 to 3.5 𝑚𝑚/day for C3, and 1.04 to 2.07 𝑚𝑚/day for C1 and C4. The MSS values of the islands of Dominica, Guadeloupe, and Martinique were the highest. Mountain ranges of these islands are real imposing barriers to the trade winds, which leads to orographic ascent of the humid air mass and precipitation. C1 and C4 had the highest DWRs on average, respectively between 34 and 60%, thus reflecting the presence of many days without precipitation in these clusters. For the flat islands, the values found were generally high but we believe there was bias due to the low surface area.

The histogram in Fig 15 compares TRMM to weather stations observations in Guadeloupe and Martinique. The TRMM data had overestimated pixels without rain and underestimated high rainfall. These results were found by [START_REF] Jury | Climate trends in the east antilles islands[END_REF] for the cloudy peaks of this region. Biases reported here (e.g. low precipitation) could be related more to the peculiarities of the micro climate in steep topography than to the performance of model physics and data assimilation. However, it should be noted that rainfall between 8.7 to 16.4 𝑚𝑚/day is relatively well measured by the TRMM data.

Considering that the class 8.7-16.4 𝑚𝑚/day represents a moderate rainy day (well detected by TRMM), the Fig 16

shows the intra-annual (𝑦-axis) frequency distribution for the analysed period (𝑥-axis). The intra-annual evolution of this class over time showed good agreement between the local and regional scales. For the dry (C4) and wet (C5) seasons, the moderate rainfall class was almost evenly distributed with low frequencies. In the other three clusters, peaks with higher frequencies appeared but the distribution was more scattered (dispersed). From 2002 to 2011 C1, C2, and C3 showed punctually isolated maximums of moderate rainfall frequencies, which were observed from April to December. C1 seemed to be the cluster of the April-May inter-season, with its dry to rainy transition, and C3

appeared to be the cluster of the reverse transition during November-December.

Conclusion and perspectives

Conclusion

In this study, we used a similarity measure more suitable for the analysis of climate data for clustering tasks based on the Kullback-Leibler measure. This involved the design of a new metric, named the expert distance (ED), in which some knowledge of the meteorological structures derived from observational studies was considered, and we proposed a novel and unique strategy to strengthen the expected physical relevance. The unit data clustered were the daily rainfall data obtained by TRMM measurements on either side of the Lesser Antilles (the Atlantic Ocean and Caribbean Sea), and this was conducted to obtain the clusters of days with similar climate profiles.

We applied unsupervised classification methods (KMS or HAC) to discover global trends within the clusters. The analysis we performed by using these two methods encountered the following difficulties. First, as rainfall totals were widely scattered, "near" fields in the sense of L2 were rare; the L2 norm tended to agglomerate fields with a common spatial structure, although they were otherwise different. Additionally, the centroid used by KMS did not always represent a realistic physical situation.

Although the L2 norm is frequently used in climate data clustering, the results obtained herein were unsatisfactory, as the L2 standard did not effectively quantify the physical similarity between configurations. To better quantify the similarity of the daily rainfall, a spatial subdivision of fields was used. Once these patches were defined, we imple-mented a pseudo-distance based on a relaxation of the precision of the spatial location of the fields, and we compiled histograms and compared them by using the Kullback-Leibler divergence. Similar concerns have already emerged in the field of retrieval image research, and we developed a subdivision technique suitable to our field corresponding to known precipitation drivers.

In addition, we used the silhouette index to evaluate the quality, coherence, and separation distance between the resulting clusters. We completed this analysis with a visual inspection of the clusters observed, which confirmed that expert deviation allows us to obtain improved results than the L2 standard when applied to this type of meteorological data. Five clusters, resulting from our best algorithm, were evaluated by experts.

Two main classes accounted for 62% of the daily totals, in almost similar proportions. For these, the monthly distribution and spatio-temporal averages were representative of the two predominant seasons at these latitudes, namely, the dry season and rainy season. These were focussed respectively on the months of February and August-September.

Moreover, the interannual evolution revealed a significant increase in the number of constituent elements of these two clusters during the 15 years of measurements. There was a decrease in daily rainfall (drying), which was spread over the first four months of the year. Additionally, the rainy season seemed to be earlier as it moved towards the month of July. The spatio-temporal averages of the daily totals were 5-6 times greater for the mountainous islands.

Our study confirms the trends deduced by other bibliographical works. It also highlights certain small differences that have remained unattainable by classical clustering methods. The results obtained led to finer analysis details of the spatio-temporal dynamics of daily precipitation. Importantly, the analysed series was short and these results may evolve in accordance with increases in the observation period and improvements in the technologies used in the observation of rainfall by satellites, while remaining subjacent to the evolution of the climate.

The last third of the daily totals was rather representative of the transitions between the two main seasons. Two of them showed a more spread out intra-annual distribution of dry days, i.e. 14.8% of the total, followed by an average decrease in very rainy days in September-October. These results confirmed the drying trend in this region. With variable positioning and monthly durations, transitions were generally very difficult to identify. Only one of the clusters, 10.4% of the total, was representative of the transition from the rainy to dry season.

The new metric used represents a concrete step forward in the analysis of possible climatic and seasonal trends based on spatio-temporal data of daily rainfall. It offers good potential for identifying the dynamics of transitions, which often herald the possible severity of the two main seasons.

This study was based on a collaboration between physicists and computer scientists interested in the methods of data mining from large databases obtained either from satellite observations or computed as in the case of meteorological reanalyses.

The extracted clusters, from a climate physicist point of view, were characterised by relevance, if not originality.

However, we believe that this method adds more finesse and accuracy in the analysis of the fields for a reasonable number of clusters.

Perspectives

We presented an approach that should be widely relevant to the present scope of Climate Informatics, as our observations remain valid for any application that uses the clustering of fields. However, as our goal was the extraction of weather types, we focus on these perspectives in future.

At first, we could do the exact same study for other single parameters, such as the wind or temperature, with the benefit that we can knowingly compare the quality of the clusters found for each parameter, itilizing silhouette index.

Hence, it is possible to select the parameters that give better clusters and probably show that some parameters are irrelevant in the study of weather types in the Lesser Antilles.

Interestingly, we might, with small adjustments, combine parameters to extract clusters of days by relying on a diverse and more complete information. We can evaluate such data with a couple or several parameters to obtain potentially better clusters.

Furthermore, some parameters (for example, wind) might explain a phenomenon (for example, rainfall). Such an analysis is now possible by clustering the days according to a parameter (wind) and evaluating the quality of the cluster according to the explained phenomenon (rainfall). Employing silhouette index, we should be able to select the best parameter for a given phenomenon.

Computer code availability

The algorithm presented in this work and developed by Emmanuel Biabiany, is called "dePrecitTRMM", implemented in GNU Octave (an alternative open-source of Matlab), and hosted at https://github.com/ebiabiany/expertdistance-precipitation with all the dependencies. Please note that the whole computation (including data pre-formatting, clustering and silhouette index calculation) takes about 48 hours, on a standard computer with an 8-core processor and 32 GB RAM. 

  • longitude × 0.25 • latitude. The geographic zone ranges from -66.25 to -20.25 • 𝐸 and from 5 to 30 • 𝑁. It includes the Lesser Antilles islands along with the northeastern part of South America and a part of the Central Atlantic Ocean with the Cape Verde archipelago (cf Fig 1). Each day was thus represented by a field of 101 × 187 values, which were transformed into a vector of 18, 887 components. The data covered the period from 2000 to 2014, representing a base of 5, 415 days.

  1 et 𝐷 2 are days and 𝐷 𝑥 𝑍 𝑖 is the histogram of the zone with reference 𝑖. In our case, the number of zones 𝑛 equals four as presented in Fig 1. All the operations listed above are summarised in Fig 3.

  Fig 1), according to authors of earlier works[START_REF] Vigaud | Convection regimes and tropical-midlatitude interactions over the intra-american seas from may to november[END_REF];[START_REF] Moron | Weather types across the caribbean basin and their relationship with rainfall and sea surface temperature[END_REF];[START_REF] Chadee | Daily near-surface large-scale atmospheric circulation patterns over the wider caribbean[END_REF];[START_REF] Sáenz | A climatology of low level wind regimes over central america using a weather type classification approach[END_REF], the number of WTs obtained by using KMS or HAC can range from 7 to 11. Hence, five WTs seems a bit low in regard to the literature.

  L2 norm does not evaluate the similarity of spatial patterns of rainfall data properly and this leads to the aggregation of different situations in the same cluster, as illustrated in Fig 5(a). For the same reason, the method separates situations that are indeed very similar into different clusters, as seen on Fig 5(b). We precisely introduced the new similarity measure ED to overcome this flaw.

  Fig 6 show why we believe this idea should be discarded when dealing with discontinuous fields such as rainfalls. It shows, for a specific cluster found by KMS-L2, the centroid (Fig 6(a)), the nearest day to the centroid (Fig 6(b)) and a random day of the same cluster (Fig 6(c)).

Figure 7

 7 Figure 7 clearly shows that for KMS-L2, clusters C2 and C3 in fact depict situations that are quite similar with rainfall in the southeast. C1 and C5 are also similar and depict low rainfall across the space and an atmospheric circulation originating mainly from the northeast. The exact spatial location of these rainfall situations is the only thing that distinguishes them, thus illustrating precisely the limits of L2. The results obtained for KMS-ED, shown in Fig 8, highlight, conversely, very diverse clusters. Each case shows centres that are more or less active.

  Fig 9 shows the quantiles obtained for KMS-L2. Fig 10 does the same for KMS-DE.

Figure 1 :Figure 2 :

 12 Figure 1: Area of interest. Land is in zone A3: Lesser Antilles with the northeasterly part of South America. Zones A1, A2, and A4 are predominantly sea: a part of the Central Atlantic Ocean and the Cape Verde archipelago. These four zones were used for the design of the expert distance (ED).

Figure 3 :

 3 Figure 3: Schematic showing the computation process of the expert distance (ED) for two days 𝐷 1 and 𝐷 2 : zonal quantification using custom edges (𝐷 𝑥 𝑍 𝑖 ), the use of symmetrised Kullback-Leibler divergence (𝐷 𝐾𝐿𝑆 ) on each zone to obtain four values, and the computation of the average to obtain 𝐸𝐷(𝐷 1 , 𝐷 2 ).

Figure 4 :

 4 Figure 4: Diagram of the evolution of silhouette index (𝑆𝑎( 𝑘 ) defined in Equation5) in the function of 𝑘; the number of clusters-HAC (solid line), KMS (broken line)-using L2 (black) and ED (red).
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 56713 Figure 5: (a) Two days, for members of the same KMS-L2 cluster, but describing very different precipitation fields (TRMM), (b) Two days, for members of different KMS-L2 clusters, but very similar physically.

Figure 15 :

 15 Figure15: Distribution of the TRMM rainfall (red outline) compared to ground stations (GS) rainfall (blue outline) observed in Guadeloupe (in black) and Martinique (in white) for KMS-ED clusters (from C1 to C5). Classes that are overestimated by TRMM are highlighted in red, those that are underestimated are highlighted in blue, and when TRMM is nearly similar to GS, the classes are highlighted in green.

Table 1

 1 Boundaries of the histogram classes used to quantify daily rainfall data. These edges were determined from rainfall records of the study area.

	Centiles (%)	0 0.35	0.5	0.7	0.8	0.9	0.95	0.99	1
	Rainfall (𝑚𝑚) 0 ]0,1.2] ]1.2,2.2] ]2.2,5.2] ]5.2,8.7] ]8.7,16.4] ]16.4,26.9] ]26.9,59.2] ]59.2,+∞[

Table 2

 2 Descriptive statistics and probabilities: analysis of the distribution of hurricanes and tropical storms in the five clusters of the KMS-ED method. 𝑃 𝑇 𝑆 (𝐶𝑥) expresses the probability that a TS is in 𝐶𝑥, 𝑃 𝐻 (𝐶𝑥) expresses the probability that a H is in 𝐶𝑥, 𝑃 𝐶𝑥 (𝑇 𝑆) expresses the probability that 𝐶𝑥 produces a TS, and 𝑃 𝐶𝑥 (𝐻) expresses the probability that 𝐶𝑥 produces a H.

	Clusters	TS	H	Cluster sizes	𝑃 𝑇 𝑆 (𝐶𝑥)	𝑃 𝐻 (𝐶𝑥)	𝑃 𝐶𝑥 (𝑇 𝑆)	𝑃 𝐶𝑥 (𝐻)
	C1 C2 C3 C4 C5	1 20 11 3 44	12 88 39 9 95	799 677 567 1749 1623	0.013 0.253 0.139 0.038 0.557	0.049 0.362 0.160 0.037 0.391	0.001 0.029 0.019 0.002 0.027	0,015 0.130 0.069 0.005 0.058
	Total	79	243	5415				

Clusters Infos/Islands Guadeloupe Dominica Martinique St-Lucia Barbados St-Vincent Flat islands

  

	C1	MSS [mm/day] MSM [mm/day] DWR [%]	8.98 1.50 37	16.24 1.80 39	13.21 1.47 34	10.79 1.80 43	4.14 2.07 57	7.21 1.80 50	7.40 3.38 34
	C2	MSS [mm/day] MSM [mm/day] DWR [%]	38.68 6.45 22	57.78 6.42 24	45.88 5.10 18	33.48 5.58 26	12.12 6.06 42	24.55 6.14 37	17.49 8.52 22
	C3	MSS [mm/day] MSM [mm/day] DWR [%]	12.45 2.07 34	19.24 2.14 31	19.29 2.14 24	13.64 2.27 33	6.89 3.44 49	13.55 3.39 50	6.51 3.21 32
	C4	MSS [mm/day] MSM [mm/day] DWR [%]	6.27 1.04 38	10.67 1.19 36	9.84 1.09 31	7.40 1.23 40	4.14 2.01 57	7.31 1.82 55	3.31 1.67 36
	C5	MSS [mm/day] MSM [mm/day] DWR [%]	33.48 5.58 24	57.74 6.19 21	46.69 5.19 14	30.78 5.13 19	14.60 7.30 41	26.46 6.61 35	9.07 4.65 27

Figure 14: UP: Lesser Antilles islands. DOWN: Detailed rainfall values measured by satellite for the Lesser Antilles islands (with MSS=Mean of spatial sum [mm/day], MSM=Mean of spatial mean[mm/day], and DWR=Percentage of days without rainfall [%]), for KMS-ED clusters (from C1 to C5).
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Figure 9: Internal variability of cluster (C2) from the KMS-L2 method. Six days of this cluster are presented in increasing order of the L2 distance from the representative features of the cluster: (1) representative element and (2,3,4,5,6) other elements taken from a regular interval in relation to their distance L2 with ( 1).
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