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Texture segmentation constitutes a central task in image processing, classically based on two-step procedures consisting first in computing hand-crafted features devised from a priori expert knowledge and second in combining them into clustering algorithms. Deep learning approaches can be seen as merging these two steps into a single one with both discovering features and performing segmentation. Using fractal textures, often seen as relevant models in real-world applications, the present work compares a recently devised texture segmentation algorithm incorporating expert-driven scale-free features estimation into a Joint TV optimization framework against convolutional neural network architectures. From realistic synthetic textures, comparisons are drawn not only for segmentation performance, but also with respect to computational costs, architecture complexities and robustness against departures between training and testing datasets.

I. INTRODUCTION

Context. Automated image segmentation constitutes a crucial task in image processing and computer vision, for many different purposes ranging from medical imaging [START_REF] Trullo | Joint segmentation of multiple thoracic organs in ct images with two collaborative deep architectures[END_REF] to autonomous driving [START_REF] Song | Lateral driving assistance using optical flow and scene analysis[END_REF]. In the last decade, the tremendous increase in computational/storage capabilities has triggered a massive use of deep learning for segmentation, because deep convolutional neural networks have the potential to discover and aggregate relevant information from large scale shapes to fine scale structures. Recently, numerous real-world applications, related to biological tissues [START_REF] Jennane | Fractal analysis of bone x-ray tomographic microscopy projections[END_REF], [START_REF] Marin | Mammographic evidence of microenvironment changes in tumorous breasts[END_REF], geological samples [START_REF] Angelo | Integrated seismic texture segmentation and clustering analysis to improved delineation of reservoir geometry[END_REF], satellite images [START_REF] Roux | A wavelet-based method for multifractal image analysis. III. applications to high-resolution satellite images of cloud structure[END_REF],. . . drove the focus specifically on texture segmentation, at the core of the present work. Texture segmentation however differs drastically from object detection. Indeed, textures are mostly characterized by small scale statistical properties rather than by geometry and large scale structures. Related works. For years, texture segmentation was performed via a classical two-step procedure: First, prior knowledge or expert choice driven features are computed (e.g., Gabor, gradients, differences of oriented Gaussians,. . . ) ; Second, these features are combined via a clustering algorithm (cf. [START_REF] Andrearczyk | Texture segmentation with fully convolutional networks[END_REF] for a state-of-the-art review). Recently, research focus has been on combining these two steps into a single one to improve interface detection and thus segmentation performance. This has been first envisaged by retaining hand-crafted features but modifying classical frameworks (e.g., spectral clustering based on multiple local cues in [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF], nonnegative matrix factorization in [START_REF] Yuan | Factorization-based texture segmentation[END_REF] or combining estimation and detection into a convex optimization formulation [START_REF] Pascal | Joint estimation of local variance and local regularity for texture segmentation. application to multiphase flow characterization[END_REF]). Recently, Deep Learning renewed this topic, jointly performing feature selection [START_REF] Donahue | Caffe: Convolutional architecture for fast feature embedding[END_REF] as well as segmentation, first for semantic segmentation [START_REF] Sermanet | Overfeat: Integrated recognition, localization and detection using convolutional networks[END_REF], [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], [START_REF] Hariharan | Hypercolumns for object segmentation and fine-grained localization[END_REF], [START_REF] Luc | Semantic segmentation using adversarial networks[END_REF], rapidly followed by texture segmentation [START_REF] Cimpoi | Deep filter banks for texture recognition, description, and segmentation[END_REF], [START_REF] Andrearczyk | Texture segmentation with fully convolutional networks[END_REF], [START_REF] Ustyuzhaninov | One-shot texture segmentation[END_REF]. Amongst others, fractal textures, also referred to as scale-free because their statistics are not controlled by particular scales, are considered Work supported by CBP (Blaise Pascal Center) with the use of SIDUS (Single Instance Distributing Universal System) implemented by E. Quemener. relevant models for and massively used in numerous real-world applications very different in nature (cf. e.g., [START_REF] Pentland | Fractal-based description of natural scenes[END_REF], [START_REF] Hnat | Scale-free texture of the fast solar wind[END_REF], [START_REF] Wendt | Wavelet leader multifractal analysis for texture classification[END_REF], [START_REF] Keller | Texture description and segmentation through fractal geometry[END_REF], [START_REF] Chaudhuri | Texture segmentation using fractal dimension[END_REF], [START_REF] Pascal | Joint estimation of local variance and local regularity for texture segmentation. application to multiphase flow characterization[END_REF]), ranging from physics of rough materials [START_REF] Roux | A wavelet-based method for multifractal image analysis. III. applications to high-resolution satellite images of cloud structure[END_REF] to art investigations [START_REF] Abry | When Van Gogh meets Mandelbrot: Multifractal classification of painting's texture[END_REF]. Interested readers are referred to several other contributions for further examples [START_REF] Keller | Texture description and segmentation through fractal geometry[END_REF], [START_REF] Kaplan | Extended fractal analysis for texture classification and segmentation[END_REF], [START_REF] Riaz | Texture classification using rotation-and scale-invariant gabor texture features[END_REF] and to a recent work [START_REF] Xu | Fractal dimension invariant filtering and its CNN-based implementation[END_REF], implementing a fractal dimension-based contour detector as a Convolutional Neural Network (CNN). Goal, contributions and outline. Making use of mixtures of synthetic fractal textures (defined in Section II-A), the goal of the present work is to compare expert-knowledge driven texture segmentation exploiting a priori chosen scale-free features (such as local regularity) within an advanced unsupervised joint TV based optimization framework [START_REF] Pascal | Joint estimation of local variance and local regularity for texture segmentation. application to multiphase flow characterization[END_REF] (see Section II-B) versus blind or non informed supervised CNN based Deep Learning (DL) approaches (described in Section III) inspired from those in [START_REF] Andrearczyk | Texture segmentation with fully convolutional networks[END_REF]. Comparisons are reported in Section IV not only in terms of absolute segmentation performance but also in terms of architecture complexities (three DL architectures are devised and compared), of learning complexities (computational costs and hyper-parameter tuning issues are discussed) as well as of robustness with respect to both the size of the training set and departures between training and testing sets, a realistic issue in realworld applications, where one cannot always fully control the natural variability encountered in data.

II. UNSUPERVISED LEARNINGFOR FRACTAL TEXTURES

A. Fractal textures

Fractal textures. A fractal texture consists of a stationary Gaussian field X(z), whose covariance structure is fully defined by its variance Σ 2 and a fractal parameter H (cf. e.g. [START_REF] Wendt | Wavelet leaders and bootstrap for multifractal analysis of images[END_REF] for detailed definition). Textured images correspond to discretization of the field X on a pixel grid, denoted X = (Xn)n∈Ω ∈ R N 1 ×N 2 . Piecewise fractal textures. For the present study, we consider piecewise fractal textures, consisting of a mixture of Q fractal textures (cf. Fig. 1, top left, for an example with Q = 3), each characterized by parameters Σ 2 q , Hq , q = {1, . . . , Q}. Local multiscale analysis. It has been well-documented that fractal textures can be well analyzed using multiscale transforms, such as wavelet coefficients and wavelet leaders (cf. e.g., [START_REF] Wendt | Wavelet leaders and bootstrap for multifractal analysis of images[END_REF]). Wavelet leaders L j,k at scale j and location 2 j k, are defined as a supremum of all wavelet coefficients located into a small spatial neighborhood at all finer scales [START_REF] Wendt | Wavelet leaders and bootstrap for multifractal analysis of images[END_REF]. It has been shown then that textures can be well-characterized by a local multiscale analysis as

L j,k = 2 j →0 vn2 jhn , n = 2 j k, (1) 
with v 2 n ∝ σ 2 n (a local variance) and where hn quantifies the regularity of the texture locally around location n. For homogeneous fractal textures, local variance and local regularities are constant over the texture: hn ≡ H and σ 2 n ≡ Σ 2 . For piecewise fractal textures, hn and σ 2 n are expected to form piecewise constant regions where ∀n ∈ Ωq, σ 2 n ≡ Σ 2 q and hn ≡ Hq.

B. Joint TV segmentation

Goal. The aim is to recover the underlying partition Ω = ∪ Q q=1 Ωq (cf. bottom-right on Fig. 1) of the image domain Ω from estimations of hn and σ 2 n performed locally (i.e. pixel-wise) using wavelet leaders. Segmentation scheme. To achieve that goal, we designed in [START_REF] Pascal | Joint estimation of local variance and local regularity for texture segmentation. application to multiphase flow characterization[END_REF] an objective function combining a least square data fidelity term, fitting the mathematical model (1), and total variation penalization, enforcing piecewise constancy, leading to the optimization problem:

v, h := arg min v,h j 2 j=j 1 v + jh -j (X) 2 2 + λPα(v, h) (2) 
where j (X) = log 2 (Lj) ∈ R N 1 ×N 2 , j = {j1, . . . , j2} are the non-decimated log-leaders and Pα = TV(v) + αTV(h) (cf. [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] for TV definition). The regularization parameters, λ > 0 and α > 0, have to be tuned to reach the best segmentation accuracy.

To perform the minimization (2), we have recourse to an accelerated proximal primal-dual algorithm with convergence guarantees to the global minimizer v, h [START_REF] Pascal | Nonsmooth convex joint estimation of local regularity and local variance for fractal texture segmentation[END_REF]. The segmentation M ROF (i.e. a label map of same size as the analyzed image) is then obtained by thresholding h as proposed in [START_REF] Cai | Multiclass segmentation by iterated rof thresholding[END_REF], i.e. M ROF = TQ( h).

III. SUPERVISED FULLY CNN

Fully convolutional neural networks (FCNN). -We followed the work of Andrearczyk et al. [START_REF] Andrearczyk | Texture segmentation with fully convolutional networks[END_REF] in which the state-of-the-art semantic segmentation FCN-8s Network [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], is tailored to texture segmentation. Mathematically, the FCNN takes entry X ( ) (256 × 256 image) and outputs 256×256 label map M ( ) ≡ R θ (X ( ) ), where θ denotes the weights of the network and R θ encapsulates the successive (convolution, activation, . . .) operations. The two major ingredients tuned to texture segmentation are, first, the skip connections with shallow layers (enabling to keep precise localization), and second, making use of a large number of filters at each layer to capture as much as can be of the rich properties of textures. The state-of-the-art FCNN in [START_REF] Andrearczyk | Texture segmentation with fully convolutional networks[END_REF] reaches a size of 8 • 10 7 weights for textured images of size N1 = N2 = 256. Networks designed here. Starting from the state-of-the-art FCNN described above, we further propose two successively simplified versions, whose sizes reduce respectively to 2 • 10 6 and 4 • 10 5 weights. The global architecture of the three networks is thus similar and they only differ in complexity (number of weights). Hence, in the following, they are referred to by their number of weights to emphasize the complexity hierarchy. The proposed networks are composed of (i) Several successive convolutional blocks, or layers, (BLOCKS 1, 2 on Fig. 1) combining a sequence of convolutions with ReLU activations. Layers are terminated by a polling operation, inducing resolution decrease enabling to deal with more global features as one gets deeper into the network. (ii) These layers are followed by a fully convolutional block composed of one convolutional layer having a large number of filters and wider kernels of size 5, one convolution getting to targeted final depth Q and one transposed convolution, upsampling the feature maps (BLOCK F on Fig. 1).

(iii) This is followed by skip connections between the output of shallow blocks (e.g. BLOCK 1 on Fig. 1) and the output of BLOCK F, performing successive appropriate upsampling to produce a label map with same resolution N1 × N2 as input images. (iv) Finally, a softmax activation is applied to produce decision, that is one class label per pixel.

(a) Two classes

(Q = 2) (b) Three classes (Q = 3) (c) Four classes (Q = 4)
Fig. 2: Texture configurations Σ 2 q , Hq , q = 1, . . . , Q .

These four steps are summarized in Fig. 1 for the 4 • 10 5 w. network. For all networks, the default filter size is p = 3, the default stride is s = 1 and a (2, 2) pooling is applied at the end of each block.

The three explored architectures are • 4 • 10 5 w. net: This proposed network is composed of 2 convolutional blocks. More specifically, BLOCK 1 is composed of two layers, each having 32 filters and BLOCK 2 has two layers, each having 64 filters. The fully convolutional layer in BLOCK F contains 256 filters. One skip connection combine information from BLOCK 1 and BLOCK F using Q filters.

• 2 • 10 6 w. net: This proposed network is composed of 3 blocks, BLOCK 1 with two layers, each having 32 filters, BLOCK 2 with two layers, each having 64 filters and BLOCK 3 with three layers each having 128 filters. The fully convolutional layer in BLOCK F contains 512 filters. Two skip connections connect BLOCK 1 and BLOCK 2 to the final block, each having Q filters.

• 8 • 10 7 w. net: Andrearczyk et al. [START_REF] Andrearczyk | Texture segmentation with fully convolutional networks[END_REF] network is composed of 4 convolutional blocks. BLOCK 1 is composed of two layers, with 64 filters, BLOCK 2 is composed of two layers, with 128 filters, BLOCK 3 is composed of three layers with 256 filters and BLOCK 4 has three layers, each having 512 filters. The fully convolutional layer in BLOCK F contains 4096 filters. Three skip connections connect BLOCK 1, BLOCK 2 and BLOCK 3 to final block. Supervised learning -From a database X ( ) , M ( ) L =0 an optimization strategy estimates the optimal weights θ of the network as:

θ = argmin θ d( M ( ) , R θ (X ( ) ) (3) 
where R θ summarized the successive steps (i)-(iv), composing the neural network. Finally the supervised segmentation is obtained as

M ( ) FCN = R θ (X).

IV. EXPERIMENTS ON SYNTHETIC TEXTURES

A. Experimental settings

Learning dataset. As sketched in Fig. 2, we investigate Q-class segmentation with Q ∈ {2, 3, 4}. Each training image X ( ) is built from a partition

Ω ( ) = ∪ Q q=1 Ω ( ) q , with q = q ⇒ Ω ( ) q ∩ Ω ( ) q = ∅ (4) 
randomly generated, and from the fractal descriptors of the Q textures Σ 2 q , Hq q=1,...,Q . For each Q, we consider two configurations, i.e., two different sets of characteristic descriptors { Σ 2 q , Hq , q = 1, . . . , Q}. In Config. I (in blue on Fig. 1) textures to be segmented have large ∆H ≡ Hq -H q and small ∆Σ 2 ≡ Σ 2 q -Σ 2 q and conversely in Config. II (in red in Fig. 1). To train neural networks, for Config. I, II and Q = {2, 3, 4}, we generated a data set of 2000 X ( ) , associated with ground truth segmentation M ( ) (label map equivalent to the partition

Ω ( ) = ∪ Q q=1 Ω ( ) q )
. Each texture X ( ) contains samples of each Q textures (i.e. Ω ( ) q = ∅, ∀q, ∀ ). TV-based texture segmentation. Following [START_REF] Pascal | Joint estimation of local variance and local regularity for texture segmentation. application to multiphase flow characterization[END_REF], the wavelet transform of textured images is performed using Daubechies wavelets with two vanishing moments [START_REF] Mallat | A wavelet tour of signal processing[END_REF]. The considered scales range from 2 j 1 = 2 1 to 2 j 2 = 2 3 . For each Q and each configuration, the Joint algorithm is run on one training image X (1) over a 20 × 20 grid of regularization parameters (λ, α), so as to select optimal parameters (in term of segmentation accuracy). Parameters λ and α are then frozen to optimal values and used to segment a set of one hundred test images (built in the same way as training images). FCNN supervised training. The training for supervised learning consists in minimizing the loss d, computed over the entire training dataset (cf. Eq. ( 3)) with respect to the weights θ of the network. Twoclass segmentation is trained minimizing binary cross entropy, while three and four-class use categorical cross entropy. The minimization is performed using ADAM optimizer with AMSGrad strategy [START_REF] Reddi | On the convergence of adam and beyond[END_REF], learning rate 2 10 

B. Results and Discussion

Convergence. Fig. 3a reports, for Config. I and with Q = 2, the evolution of accuracy for the three networks, trained on the training dataset of 2000 textures. Fig. 3a clearly shows that FCNN trained on the full dataset of 2000 textures do converge to a stable maximal accuracy after the use of 30 epochs. Equivalent plots and conclusions are obtained for other configurations. Performance. Tab. I reports segmentation performance after convergence, defined as segmentation accuracies (percentage of wellclassified pixels). For Q = 2, Tab. I shows that both FCNN and Joint TV optimization Algorithm achieve comparably high accuracy on Config I and II. For Q = 3, FCNN perform as well as for Q = 2 for both configurations, while Joint TV optimization Algorithm only maintains competitive accuracy on Config II. For Q = 4, FCNN performance suffer only from a mild decrease, while those of Joint TV optimization Algorithm significantly degrade. FCNN with different complexities (different depth and width) show similar performance despite a decrease by 200 of the number of parameters from the largest state-of-the-art FCN-8s to the smallest FCNN tested here. Robustness w.r.t. training set size S. To investigate the impact of the training set size, learning was conducted a second time using a small subset of the learning dataset described in Sec IV-A of only S = 20 textures. Fig. 3a shows that convergence requires a significantly larger number of epochs. Yet, Fig. 3b shows, that convergence occurs for The estimation is performed using the formula proposed in Eq. ( 5).

Interface accuracy. FCNN lead to irregular interfaces (as emphasized in [START_REF] Andrearczyk | Texture segmentation with fully convolutional networks[END_REF] and illustrated on Fig. 4). Yet, for applications requiring precise interface length measurements, such as [START_REF] Pascal | Joint estimation of local variance and local regularity for texture segmentation. application to multiphase flow characterization[END_REF], it is crucial to recover accurate and smooth contours. Tab. III compares relative errors on total interface length (i.e., the number of pixels at the border of two different regions) for Q = 2-class segmentation, and shows that joint TV optimization systematically and significantly outperforms FCNN. Moreover, when trained in one configuration and tested on another, FCNN perform particularly bad at measuring interfaces.

Train V. CONCLUSION This work showed that supervised FCNN compares favorably against unsupervised hand-crafted feature Joint TV optimization for fractal texture segmentation, even with reduced training data sets, and reduced complexities (compared to state-of-the-art architectures), at the cost though of much larger computation and memory resources. However, FCNN did not show robustness in training/testing datasets mismatch (even those with largest complexities) and yield poor estimation of interface lengths, thus still making their use debatable in real-world applications. Following recent works in deep learning literature a natural option would be to combine both approaches so as to exploit the advantages of each, as LISTA [START_REF] Gregor | Learning fast approximations of sparse coding[END_REF] did.
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 1 Fig. 1: Fully convolutional neural network for texture segmentation. Sketch of FCNN with skip connexions (simplest architecture, 4 10 5 weights).
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 3 Fig. 3: Evolution of accuracy along training phase. Accuracy of different FCNN trained on Config. I, for two-classes segmentation.

• 10 7 Fig. 4 : 7 FCNN 8 •

 7478 Fig. 4: Q = 2-class segmentation (trained and tested on Config. I), showing irregular contours for FCNN segmentation.

TABLE I :

 I Segmentation accuracy (% of well-classified pixels).

TABLE II :

 II Computational cost C for training phase.

  /Test Config. I/I Config. II/II Config. I/II Config. II/I

	Joint TV	14 ± 4	13 ± 2	48 ± 22	16 ± 4
	FCNN 8 • 10 7 33 ± 3	36 ± 2	112 ± 24	68 ± 18
	FCNN 2 • 10 6 37 ± 3	41 ± 3	213 ± 72	77 ± 4
	FCNN 4 • 10 5 24 ± 3	18 ± 2	337 ± 131	62 ± 9

TABLE III :

 III Relative error on interface length for two-class segmentation. FCNN are trained on S = 2000 images. (Similar results are obtained with S = 20.)