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DUALITY IN MASS-ACTION NETWORKS

ALEXANDRU IOSIF

Abstract. We introduce a duality theory for mass-action net-
works and we show that preclusters and maximal invariant polyhe-
dral supports are dual objects.

1. Introduction

A chemical reaction is a transformation between two sets of chemical
species; a set of chemical reactions is called chemical reaction network.
Often chemical reaction networks are regarded as dynamical systems
in which the concentrations of the chemical species are described by
partial differential equations depending on position and time. When
the chemical system is spatially homogeneous one can use ordinary
differential equations instead. This rough approximation is often made
in Biochemistry where the rate at which a concentration xi changes is

ẋi =
∑
j

φij(x1, . . . , xn).

Here j runs over all chemical reactions involving xi and φij is the rate
at which xi is consumed or produced by the jth reaction. A special case
of this dynamics can be derived from the Law of Mass-Action: “The
rate at which a unit of a chemical species is consumed or produced by a
chemical reaction is proportional to the product of the concentrations of
the reactants.” This law was first introduced by Guldberg and Waage in
a series of papers during the second part of XIX century. Interestingly
enough, this principle has been successfully applied to biochemical
reaction networks (see, for example, [5]).

2. Combinatorial view of mass-action networks

Mathematically, a mass-action network is a finite directed graph
whose vertices are labelled by monomials and whose edges are labelled
by rate constants :∏n

i=1 x
(Ye)i1
i

∏n
i=1 x

(Yp)i1
i

k1 , . . . ,
∏n

i=1 x
(Ye)ir
i

∏n
i=1 x

(Yp)ir
i

kr
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If we use the notation x = (x1, . . . , xn)T and k = (k1, . . . , kr)
T , any mass-

action network can be uniquely expressed as a quadruple (Ye, Yp, k, x).
The dynamics of a mass-action network is given by

(1) ẋ = (Yp − Ye)diag(k)xYe ,

where xYe is a column vector of length r such that (xYe)j =
∏n

i=1 x
(Ye)ij
i .

Realistic models tend to be large; hence often one does not intend
to solve them, but rather study their asymptotic behaviour, like their
steady states. Steady states are defined as the non-negative solutions of

(2) (Yp − Ye)diag(k)xYe = 0.

Note that, when one replaces the dynamical system (1) with the static
system (2), information about the conserved quantities is lost. Therefore
one has to regard the solutions of system (2) with respect to such
conserved quantities. In biochemical reaction networks one usually
restricts conservation laws to linear ones, that is, those which are of
the form z1x1 + . . . znxn = c, where z is an element of the conservation
space left–ker(Yp − Ye) and c is the value of the conserved quantity. As
x are nonnegative, it only makes sense to consider those solutions to
the conservation equations contained in Rn

≥0. The set of such solutions
gives rise to a polyhedron called invariant polyhedron. As the values of
the conserved quantities change, the shape of the invariant polyhedron
also changes. However it is known that there is only a finite number
of combinatorial changes of such polyhedra [3]. The relevance of these
polyhedra lays in the fact that they are related to siphons, which are
combinatorial objects that indicate which concentrations are allowed to
vanish at steady states. It is usual that one decorates the vertices of the
abstract shapes of such polyhedra by the product of the variables whose
supports coincide with these vertices (see [4] for a method to compute
all combinatorial types of invariant polyhedra and their decorations).
We call such representation a decorated abstract invariant polyhedron.
Siphons have also proved to be useful in finding partial solutions for
the Global Atractor Conjecture [2].

Note that when the trajectories of (1) are bounded (i.e., when the
system is conserved), it is enough to restrict z to the conservation cone
ker(Yp − Ye)T ∩ Rn

≥0, and invariant polyhedra become polytopes.
A strategy towards solving (2) is by first linearizing the vector

diag(k)xYe , and then by imposing binomial relations between its co-
ordinates. For the linearization step, note that x is non-negative, so
information about the stoichiometric cone ker(Yp−Ye)∩Rr

≥0 is enough.
For the second step, the authors of [1] introduced a key concept, namely
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clusters. Clusters and special unions of them, preclusters1, were used in
author’s thesis to show that mass-action networks with the isolation
property have toric steady states.

A set of species Σ = {xi | i ∈ I ⊆ [n]} is called a maximal invariant
polyhedral supports if all combinatorial types of decorated invariant
abstract polyhedra are invariant under the map xi 7→ xj for all xi, xj ∈ Σ.
In order to compute the maximal invariant polyhedral supports, one
needs to compute the chamber decomposition in the space of linear
conserved quantities, and decorate each ray with the corresponding
variables. The set of all variables decorating an individual ray is a
maximal invariant polyhedral support. A maximal symmetric chamber
support is a maximal set of concentration indices such that, when the
supports are changed within these sets, the vertices of the invariant
polyhedra do not change supports.

3. The dual of a mass-action network

There is a clear duality between the stoichiometric and the conser-
vation space. This duality can be interpreted as a duality between
chemical species and rate constants. Consequently, we define the dual
of a chemical reaction network to be(

xYe xYpk
)∗

= kY
T
e kY

T
p

x .

For conservative systems the duality between the conservation and
the stoichiometric space can be interpreted in terms of a duality be-
tween the corresponding nonnegative cones. As there is a one to one
correspondence between the extreme rays of the stoichiometric cone
and the minimal cycles of the mass-action network, one can conclude
that conserved quantities are dual to minimal cycles. Consequently we
get the following result:

Theorem. For conservative mass-action networks that do not have two
species with exactly the same rates the set of preclusters is dual to the
set of maximal invariant polyhedral supports.

The condition ẋi = ẋj is necessary because we need to make sure
that no further clustering on the left kernel is done.

We conclude with the following question:

Question. Is there a duality relation between clusters and siphons?

1Clusters and preclusters are defined in Chapter 4 of Author’s Thesis:
https://www.opendata.uni-halle.de/handle/1981185920/14078
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