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Abstract

Recently, the so-called subgroup induction property attracted the at-
tention of mathematicians working with branch groups. It was for example
used to prove that groups with this property are subgroup separable (lo-
cally extensively residually finite) or to describe their finitely generated
subgroups as well as their weakly maximal subgroups. Alas, until now,
there were only two know examples of groups with this property: the first
Grigorchuk group and the Gupta-Sidki 3-group.

The aim of this article is twofold. First, we investigate various conse-
quences of the subgroup induction property, such as being just infinite or
having all maximal subgroups of finite index. Then, we show that every
torsion GGS group has the subgroup induction property, hence providing
infinitely many new examples.

1 Introduction

Since their definition in 1997 (at the Groups St Andrews conference in Bath),
branch groups (see Section 2 for all the relevant definitions) have attracted
a lot of attention. Indeed, they are a rich source of examples of groups with
exotic properties. They also naturally appear in the classification of just infinite
groups [7], that is infinite groups whose proper quotients are all finite.

The most well-known branch group is the so-called first Grigorchuk group G,
which was the first example of a group of intermediate growth [6]. Another
well-studied family of branch groups are the Gupta-Sidka groups G, (p prime)
and their generalization, the GGS groups (see Section 4). The first Grigorchuk
group and the torsion GGS groups have been intensively studied and share many
properties: being just infinite, being finitely generated infinite torsion groups,
having all maximal subgroups of finite index, and more.

In 2003, Grigorchuk and Wilson showed [3] that G has a property now known
as the subgroup induction property. Roughly speaking, a group with the sub-
group induction property is a branch group such that any sufficiently nice prop-
erty of the group is shared by all of its finitely generated subgroups (see Section 3
for a proper definition). They then used this fact to show that every finitely
generated infinite subgroup of G is commensurable with G. Recall that two
groups G1 and Gy are commensurable if there exists H; of finite index in G;
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with Hy = Hs. In the same article, they also showed that G has the rather
rare property of being subgroup separable, where G is subgroup separable (also
called locally extensively residually finite or LERF) if all of its finitely generated
subgroups are closed in the profinite topology. Among other things, this implies
that G has a solvable membership problem. That is, there exists an algorithm
that, given g € G and a finitely generated subgroup H < G, decides if g be-
longs to H. Indeed, this follows from subgroup separability and having a finite
L-presentation, which is the case of G and of GGS groups, see [10].

Adapting the strategy of [3], Garrido showed [5] that the Gupta-Sidki 3-
group (3 also has the subgroup induction property, is subgroup separable and
that any finitely generated infinite subgroup H < (G3 is commensurable with
Gg or with G3 X G3.

In recent years, the subgroup induction property of a branch group G turned
out to be a versatile tool. For example, it was used in [14] to compute the Cantor-
Bendixon rank of G and Gs, in [11] to describe the weakly maximal subgroups
(subgroups that are maximal for the property of being of infinite index) of G
and in [9] to give a characterization of finitely generated subgroups of G, which
was used to show that (if G has the congruence subgroup property and some
other minor technical hypothesis) G is subgroup separable.

The aim of this article is twofold: first, to expand the list of properties
implied by the subgroup induction property, and second, to expand the list of
groups known to satisfy this property. With regard to the first goal, we prove
the following.

Theorem A. Let G be a finitely generated weakly branch group with the
subgroup induction property, then G is torsion. If G is branch, it is just infinite.

If, moreover, GG is a branch p-group, then all of its maximal subgroups are
of finite index.

In fact, the condition of G being a p-group can be relaxed, see Proposi-
tion 3.7, Lemma 3.5 and the discussion below it. We also obtain (see Theo-
rem 3.12 for a more general statement)

Theorem B. Let G < Aut(Ty) be a self-replicating branch group such that
Stabg(v) = Stabg(L) for every vertex v on the first level. Suppose that G
has the subgroup induction property and let H be an infinite finitely generated
subgroup of G. Then H is commensurable with one of G, G?,..., G4 1.

If moreover G is strongly self-replicating, has the congruence subgroup prop-
erty and is a p-group, then all maximal subgroups of H are of finite index.

In view of the above, it is natural to ask for examples of groups with the
subgroup induction property. Until now, the only known examples were G and
G'3. The second part of this article is devoted to providing infinitely many new
examples of such groups.

Theorem C. All the torsion GGS groups have the subgroup induction property.

In fact, by Theorem A we have that a GGS group has the subgroup induction
property if and only if it is torsion.



Organisation The small Section 2 quickly recalls the definitions of branch
groups, self-similar groups and other related notions. The definition of the
subgroup induction property is found in Section 3, which also contains the
proofs of Theorems A and B. The final section is dedicated to the proof of
Theorem C.
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2 Reminders on branch groups

Let d be an integer greater than 1 and let 7" be a d-regular rooted tree. That is,
T is a tree with a special vertex, called the root, of degree d and with all other
vertices of degree d+ 1. The set of all vertices at distance n from the root is the
n* level of the tree and will be denoted by £,,. There is a natural (partial) order
on the vertices of T' defined by w > v if the unique simple path starting from the
root and ending in w passes through v. The root is the smallest element for this
order. We identify T' with the free monoid {1,...,d}* with the lexicographical
order, where the children of z; ...x, are the z1...x,y for y € {1,...,d}. The
set of infinite rays starting at the root is denoted by 90T and is isomorphic to
the set of infinite words {1,...,d}>°. There is a natural metrizable topology on
0T obtained by declaring that two rays are near if they share a long common
prefix. With this topology, the space 0T is compact.

A subset X of T is a transversal (sometimes called a spanning leaf set, a cut
set or a section) if every ray of T passes through exactly one element of X. It
follows from the compacity of 0T that a transversal is always finite.

For any vertex v of T, we denote by T, the subtree of T consisting of all
w > v. It is naturally isomorphic! to 7.

Let G < Aut(T') be a group of automorphisms of 7" and V' be a subset
of vertices of T. The subgroup Stabg(V) = (),cy Stabg(v) is the pointwise
stabilizer of X, while Stabg(L,,) is the n'* level stabilizer. The rigid stabilizer
Ristg(v) of a vertex v in G is the set of elements of G acting trivially outside T,.
That is, Ristg(v) = Stabg(V) for V = {w € T|w ¢ T,}. Finally, the rigid
stabilizer of a level Ristg(L,,) is the subgroup generated by the Ristg(v) for all
vertices v of level n.

Definition 2.1. Let T be a d-regular rooted tree. A subgroup of G < Aut(T)
is weakly branch if G acts transitively on the levels and all the rigid stabilizers
of vertices are infinite.

MIf we identify T to {1,...,d}*, then the identification of T and T, is done by deleting of
the prefix corresponding to v.



If moreover all the Ristg(L,,) have finite index in G, then G is said to be
branch.

The class of branch groups naturally arises in the description of just infinite
groups, that is infinite groups whose quotients are all finite. More precisely, a
just infinite group is either a just infinite branch group, virtually a product of
simple groups, or virtually a product of hereditary just infinite groups (recall
that a group G is hereditary just infinite if all of its finite index subgroups are
just infinite), as was shown in [7]. On the other hand, not all branch groups are
just infinite. It is thus interesting to investigate which branch groups are just
infinite.

Apart from branch groups, another interesting class of subgroups of Aut(T")
is the class of self-similar groups. While these groups are of interest in their
own right, they are often studied in conjonction with branch groups. Indeed,
the intersection of these two classes (that is groups that are branch and self-
similar) contains a lot of interesting examples, including the first Grigorchuk
group and the GGS groups. In order to introduce self-similar groups, we will
need a little more notation.

Let T be a d-regular rooted tree. Recall that we identify the vertices of
T with the free monoid {1,...,d}*. Thus, we have a natural operation of
concatenation on the vertices of T. Geometrically, given v,w € T, the vertex
vw is the vertex of T, associated to w under the natural identification between
T, and T.

It follows from the definitions that for every automorphism g € Aut(7") and
every v € T, there exists a unique automorphism 9, € Aut(T) such that

g - (vw) = (g-v)(g);, -w)
for all w € T. This gives us, for every v € T', a map

©p: Aut(T) — Aut(T)

9H9|Tu-

This map restricts to a homomorphism between Stab(v) and Aut(T"), and it re-
stricts further to an isomorphism between Rist(v) and Aut(T"), where we denote
here by Stab(v) and Rist(v) the stabilizer and rigid stabilizer of v with respect
to the whole group Aut(7T'). The element ¢, (g) is called the section of g at v

Definition 2.2. For a d-regular rooted tree T, a group G < Aut(T) is said
to be self-similar if for any v, the image ¢, (Stabg(v)) is a subgroup of G. If
MOTEOVET ©, (StabG (U)) = @ for any vertex v, then G is said to be self-replicating
(or fractal). Finally, G is said to be strongly self-replicating if it is self-similar
and for every n and every v of level n we have ¢, (Staba(£,)) = G.

A subgroup H of [[,.;G:i is a subdirect product if for every i € I, the
canonical projection H — G is surjective. For example, G < Aut(T) is strongly
self-replicating if and only if it is self-similar and for every n the group Stabg (L)



is a subdirect product of G!#~l. The notion of subdirect product plays an
important role in the description of finitely generated subgroups of a group
with the subgroup induction property, see [9].

Another property that we will need, and that is often studied for branch
groups, is the congruence subgroup property, which asserts that two topologies
on G are equal. Indeed, it is possible to endow any subgroup G < Aut(T) with
both the profinite topology (generated by all the subgroups of finite index) and
the Aut(T) topology (generated by the Stabg(L,) and sometimes called the
congruence topology). The group G is said to have the congruence subgroup
property if these two topologies coincide, or equivalently if every subgroup of
finite index contains Stabg(L,,) for some n.

Finally, we will sometimes require our groups to have the property that for
every vertex v, the subgroup Stabg (v) stabilizes all the siblings of v. For self-
similar groups, this is equivalent to asking that Stabg(L£1) = Stabg(w) for any
vertex w € L4, and is also equivalent to the fact that the action of G/ Stabg(L1)
on L, is free. In particular, this property is satisfied as soon as G is self-similar
and such that G/ Stabg (L) acts transitively and cyclically on £;. This last
condition happens to be true for a lot of interesting branch groups (it is usually
a straightforward consequence of the definition), such as the first Grigorchuk
group and the GGS groups.

3 The subgroup induction property

The first appearance (without a name) of the subgroup induction property goes
back to [8], where it was expressed in terms of inductive classes of subgroups.

Definition 3.1. Let G < Aut(T') be a self-similar group. A class X of subgroups
of G is said to be inductive if

(A) Both {1} and G belong to X,

(B) If H < L are two subgroups of G with [L : H] finite, then L is in X if and
only if H isin X,

(C) If H is a finitely generated subgroup of Stabg(£1) and all first level sections
of H are in X, then H € X.

The group G has the subgroup induction property if for any inductive class
of subgroups X, every finitely generated subgroup of G is contained in X.

A slight modification of the above definition leads to the, a priori stronger,
notion of strong subgroup induction property. We say that a class X of sub-
groups of G is weakly inductive if it satisfies A, C and

(B’) If H < L are two subgroups of G with [L : H] finite, then L is in X if H
isin X.



The group G has the strong subgroup induction property if for any weakly
inductive class of subgroups X, every finitely generated subgroup of G is con-
tained in X'. The first Grigorchuk group [8], the Gupta-Sidki 3-group [5] as well
as all torsion GGS groups (Theorem 4.23) have the strong subgroup induction
property. On the other hand, there is no known examples of groups with the
subgroup induction property, but without the strong one. Nevertheless, the
equivalences given in [9] hint that Definition 3.1 is probably the right one.

On one hand, Definition 3.1 is convenient to prove that some group has
the subgroup induction property. On the other hand, it is sometimes easier
to use another characterization of it in order to study structural properties
of groups with the subgroup induction property. In [9], the second named
author, together with R. Grigorchuk and T. Nagnibeda, proposed the following
alternative definition and proved [9, Proposition 4.3] that for self-similar groups
the two definitions are equivalent.

Definition 3.2. A group G < Aut(T) has the subgroup induction property if
for every finitely generated subgroup H < G, there exists a transversal X of
T such that for each v € X, the section ¢, (Staby (X)) is either trivial or has
finite index in ¢, (Stabg(v)).

We will now use Definition 3.2 to prove several consequences of the subgroup
induction property.

First of all, a finitely generated branch group with this property must be
torsion and just infinite, hence proving the first part of Theorem A.

Proposition 3.3. Let G < Awt(T) be a finitely generated branch group with
the subgroup induction property. Then G is torsion and just infinite.

Proof. By [7, Theorem 4], a finitely generated torsion branch group is always
just infinite. Hence, the proposition directly follows from the next lemma. [

Lemma 3.4. Let G < Aut(T) be a group with the subgroup induction property
and such that Ristg(v) is infinite for every v € T. Then, G is torsion.

Proof. Let g be any element of G and let H := (g). Let X be a transversal of T
such that for every v € X, the section ¢, (Staby (X)) is either trivial or has finite
index in ¢, (Stabg(v)). If g is of infinite order, then at least one of these sections
is infinite, which implies that for some v € X, the subgroup ¢, (Stab (X )) is
isomorphic to Z and hence ¢, (Stabg(v)) is virtually Z. But then, the subgroup
Ristg(v) & ¢y (Ristg(v)) is also virtually Z. In particular, there exists a finite
index subgroup Z of Ristg(v) which is isomorphic to Z. Since Z has finite
index in Ristg(v), for every w > v the subgroup Ristz(w) < Z is non-trivial

and hence also isomorphic to Z. But then, by looking at all children w1, ..., wq
of v we have that Z =2 Z contains a subgroup isomorphic to Z¢ 2 Z¢ which is
absurd. O

Recall that the Frattini subgroup ®(G) of a group G is the intersection of all
the maximal subgroups of G. In the following, we will make use of the bigger



subgroup ®r(G) consisting of the intersection of maximal subgroups of finite
index of G. This is obviously a characteristic subgroup of G. Observe that
® 1 (G) has finite index in G as soon as G is a finitely generated p-group. More
generally, we have

Lemma 3.5. Let G be a group such that every finite quotient of G is nilpotent.
Then ®r(G) contains the derived subgroup G'. In particular, ®p(G) has finite
index in G if G’ does.

Proof. Let M be a maximal subgroup of finite index and N be its normal core.
Since M is of finite index, so is N, and M/N is a maximal subgroup of the
finite nilpotent group G/N. Since a finite group is nilpotent if and only if every
maximal subgroup is normal, we conclude that M is normal and hence G/M
is cyclic of prime order. In particular, G/M is abelian, which implies that M
contains G’. O

Observe that the condition that G’ has finite index in G is satisfied for a
broad class of groups. This is the case for example for finitely generated torsion
groups, or for non-abelian just infinite groups. In particular, if G is a finitely
generated branch group with the subgroup induction property, then it is non-
abelian and just infinite and therefore G’ has finite index in G. This implies
that for such a G, the subgroup ®#(G) has finite index in G as soon as every
finite quotient of G is nilpotent.

Lemma 3.6. Let G be a finitely generated group such that ®p(G) has finite
index in G. If H is a subgroup of G which is dense for the profinite topology,
then it contains a finitely generated subgroup which is also dense in G for the
profinite topology.

Proof. Since H is dense for the profinite topology and ®z(G) is of finite index,
we have H - ®r(G) = G. In particular, we have elements hy to h, of H such
that (h1,...,h,)®r(G) = G. Now, let N be a normal subgroup of finite index
of G. We claim that (hi,...,h,)N = G. Indeed, if it wasn’t the case, there
would exist some maximal subgroup M of G containing (hq,...,h,)N. This

subgroup is necessarily of finite index and hence contains @ (G). In particular,
we would have M > (hy,..., h,)®r(G) = G, which is absurd. We hence have

(i, shny= () (..., ha)N= (] G=G

N<::.G N<::.G
as desired. O

Using the above lemma, we prove that, under some technical hypothesis, the
subgroup induction property implies that all maximal subgroups are of finite
index.

Proposition 3.7. Let G < Aut(T) be a finitely generated branch group with
the subgroup induction property. If ®r(G) is not trivial, then every mazimal
subgroup of G has finite indez in G.



Proof. First of all, by Proposition 3.3 G is just infinite and hence the normal
subgroup ®7(G) # {1} has finite index in G.

Suppose now for a contradiction that there exists a maximal subgroup M
that has infinite index in G. Such a group is dense for the profinite topology.
By Lemma 3.6, M contains a finitely generated proper dense subgroup H < G.

Since G has the subgroup induction property, there must exist a transversal
X of T such that for every v € X, the section ¢, (Staby (X)) is either trivial
or has finite index in ¢,(Stabg(v)). This implies that for every v € X, the
subgroup ¢, (Staby (v)) is either finite or of finite index in ¢, (Stabg(v)).

On the other hand, it follows from Theorem 3.2 and Lemma 3.1 of [3] that
for every v € X, the subgroup ¢, (Stabg(v)) is a proper and dense subgroup
of ¢, (Stabg(v)) for the profinite topology on ¢, (Stabg(v)), since H is proper
and dense for the profinite topology on the just infinite branch group G. This
immediately leads to a contradiction. Indeed, since ¢, (Stabg(v)) is a residually
finite group, both finite subgroups and finite index subgroups are closed for the
profinite topology, and hence cannot be both dense and proper. O

Since ® (@) has finite index in G as soon as G is a finitely generated p-group,
the above Proposition finishes the proof of Theorem A.

In certain cases, it is even possible to generalize the above Proposition 3.7
to groups commensurable with a power of G.

Theorem 3.8. Let G < Aut(T) be a finitely generated strongly self-replicating
branch group with both the subgroup induction property and the congruence sub-
group property. Suppose that ®r(G) is not trivial.

Let T := G%) be the direct product of k copies of G for some k € N. If H
is a group commensurable with T' then all mazimal subgroups of H have finite
index in H.

Proof. Since G is branch, it is residually finite, and since it has the subgroup
induction property, it is just infinite by Proposition 3.3. Finally, by Proposition
3.7, all its maximal subgroups have finite index in G. Hence the result follows
from the forthcoming Proposition 3.11. O

In order to finish the proof of Theorem 3.8, let us recall some results from
[5] and [3].

Lemma 3.9 ([8, Lemma 1]). Let G be an infinite finitely generated group and
let H be a subgroup of finite index in G. If G has a maximal subgroup M
of infinite index, then H has a maximal subgroup of infinite index containing
HnM.

Recall that a chief factor of a group G is a non-trivial minimal normal
subgroup of a quotient of G. The chief factors of a residually finite just infinite
group are always finite.

Lemma 3.10 ([8, Lemma 3)). Let G1,...,Gy be groups with the property that
all chief factors are finite and that all mazximal subgroups have finite index. If



L is a subdirect product of [|G;, then all chief factors of L are finite and all
mazximal subgroups of L have finite index.

The following is an easy generalization of [8, Lemma 4] and [5, Theorem 5].

Proposition 3.11. Let G < Aut(T) be a finitely generated branch group such
that all chief factors are finite and all maximal subgroups have finite index.
Suppose moreover that G has the congruence subgroup property and is strongly
self-replicating.

Let T' == GF) be the direct product of k copies of G. If H is a group
commensurable with T then all mazimal subgroups of H have finite index in H.

Proof. By definition of commensurability, there exist K < H of finite index
and J < T of finite index with K isomorphic to J. For ¢ = 1,...,k, let G;
denote the i direct factor of T'. Then, for every i, the subgroup J; = J N G;
has finite index in G;. By assumption, for each i, there is some n; such that
{1} x -+ x Stab(L,,) x --- x {1} < J; and so L = Stab(L,,,) x - -- x Stab(L,,.)
is a finite index subgroup of J.

Now, by assumption, all of the maximal subgroups of G have finite index.
Furthermore, by strong self-replicatingness, the subgroup Stab(£,,) is a subdi-
rect product of copies of G. Thus L satisfies the assumptions of Lemma 3.10
and all of its maximal subgroups are of finite index. Lemma 3.9 then implies
that all maximal subgroups of J must have finite index in J. The result now
follows by applying Lemma 3.9 to K = J and H. O

We also prove Theorem B, which generalizes the main result of [8] and [5].

Theorem 3.12. Let G < Aut(Ty) be a self-replicating branch group such that
Stabg(v) = Stabg(L1) for every vertex v on the first level. Suppose that G
has the subgroup induction property and let H be an infinite finitely generated
subgroup of G. Then H is commensurable with one of G, G?,...,G4 1.

If moreover G is strongly self-replicating, has the congruence subgroup prop-
erty and ®p(G) is not trivial, then all mazimal subgroups of H are of finite
indez.

Proof. We begin by showing that G, G¢ and Ristg(v) are commensurable for
any vertex v. Indeed, since G is branch, Ristg(Ln) = [[,c., Ristg(v) has
finite index in G. In particular, for any vertex v of the n*" level, the section
¢u(Riste (L)) = Riste(v) has finite index in ¢, (Stabg(v)) = G. Hence G is
commensurable with Ristg(v) and G¢ is commensurable with Ristg(£;), which
is itself commensurable with G.

Now, let H be a finitely generated subgroup of G. By [9, Theorem 2.9],
there exists a finite index subgroup B of H that is isomorphic to H:’;l D; where
D; is a finite index subgroup of Ristg(v;) for some vertex v;. In particular, H
is commensurable with G™ for some integer m, with m > 1 if and only if H is
infinite.

The assertion on maximal subgroups of H is a direct application of Theo-
rem 3.8. o



As a last application of the subgroup induction property, we expand a result
of Skipper and Wesolek. See [14] for more and details on the Cantor-Bendixson
rank.

Proposition 3.13. Let G < Aut(T) be a finitely generated regular branch
group that is strongly self-replicating and such that for every vertex v of the
first level, we have Stabg(v) = Stabg(L1). Suppose that G has the congru-
ence subgroup property and the subgroup induction property. Then Sub(G) has
Cantor-Bendizson rank w.

Proof. The group G is just infinite by Proposition 3.3 and subgroup separable
by [9, Theorem 2.12]. Since it is subgroup separable and has the congruence

subgroup property, it has “well-approximated subgroups” [14, Lemma 2.12].
Moreover, the so-called “Grigorchuk-Nagnibeda alternative” [14, Definition 4.1]
is a weak form of the subgroup induction property in the sense of Definition 3.2.
Hence [14, Corollary 5.4] applies. O

4 Subgroup induction property for GGS groups

Until now, only two groups were known to possess the subgroup induction prop-
erty, namely the first Grigorchuk group acting on the binary rooted tree [38] and
the Gupta-Sidki group acting on the ternary rooted tree [5]. In this section, we
exhibit an infinite family of groups with this property, the torsion GGS groups.

4.1 General facts about GGS groups

Defined as a generalisation of both the second Grigorchuk group and the Gupta-
Sidki groups, the Grigorchuk-Gupta-Sidki groups, or GGS groups, are a well-
studied family of groups acting on rooted trees. Let us first define them, before
listing a few of their properties that will be useful later on.

Definition 4.1. Let p be an odd prime number, let T the p-regular tree and let
e = (eo,...,ep—2) beavector in (F,)P~1\{0}. The GGS group Ge = (a, b) with
defining vector e is the subgroup of Aut(7") generated by the two automorphisms

a=¢e-(1,...,1)
b= (a®,...,a%2b)

where ¢ is the cyclic permutation (12...p).

Remark 4.2. The definition of GGS groups naturally extends to n-regular
rooted tree for m an integer greater than 1. For example, Vokivsky studied
proved Proposition 4.5 in the context of n = p” a prime power. However, it is
usual to restrict the study of GGS groups on the ones acting on p-regular rooted
tree, p-prime, as some results (for example the classification of Lemma 4.12)
depend on this fact. This is why in the following we will always assume that T’
is a p-regular rooted tree with p prime.
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The Gupta-Sidki p-group is the GGS group acting with defining vector
(1,-1,0,...,0).

A GGS group G acting on the p-regular rooted tree T is always infinite
(since e # 0, [16]), residually-(finite p). By [2], a GGS group Ge is branch if
and only if e is not constant, which is equivalent by [1] to the fact that Ge
has the congruence subgroup property. Even if the GGS groups with constant
defining vector are not branch, they are still weakly branch [1].

If a GGS group is torsion, then it is strongly self-replicating [15]. It follows
directly from the definition that for every vertex v € £y on the first level, we
have Stabg(v) = Stabg(L1), or in other words, that the action of G/ Stabg (L)
on L; is free. Furthermore, G does not contain maximal subgroups of infinite
index, a fact that is due to Pervova [13] in the torsion case and to the first
named author and Anitha Thillaisundaram in the non-torsion case [4]. This
implies that every maximal subgroup of G is normal and of index p, and thus,
by Lemma 3.5, that the derived subgroup G’ is contained ®r(G) = ®(G) the
Frattini subgroup (that is, the intersection of all maximal subgroups) of G.

In what follows, we will frequently make use, often without explicitly men-
tioning them, of several structural properties of GGS groups, which we sum-
marize in the proposition below. A proof of these classical facts can be found,
among other sources, in [2].

Proposition 4.3. Let p be a prime number, let G be a GGS group acting on
the p-reqular rooted tree T, and let G' be its derived subgroup. Then,

(i) Stabg(L1) = (b)¢ = (b,aba=" ... aP~ ba~(P=D),
(ii) G = {a) x Stabg(L1),
(iit) G/G" = (oG, bG"Y = C}, x Cp,
(iv) Stabg(L2) < G' < Stabg(L1).
We will also use without mentioning it the following well-known trivial result.

Lemma 4.4. Let T be a d-regular rooted tree and a = ¢ - (1,...,1) where ¢ is
the cyclic permutation (12...d). For any element (z1,x2,...,xp) of Stab(L1)
we have
(X1, 22,...,2p)a = a(x2, T3, ..., Tp, T1).
As it follows from Lemma 3.4 that non-torsion GGS groups cannot have
the subgroup induction property, we will now focus exclusively on torsion GGS

groups. Luckily, there is a simple criterion, due to Vovkivksy, to decide whether
a GGS group is torsion or not.

Proposition 4.5 ([16, Theorem 1]). Let p be a prime, let e = (eg,. .., ep—2) be
a vector in (Fp)P~1\ {0} and let Ge be the corresponding GGS group. Then, G
is torsion if and only if

p—2

Z €e; = 0.

i=0

11



It follows from this criterion that torsion GGS groups have non-constant
defining vectors and hence are branch and have the congruence subgroup prop-
erty.

Subgroups of torsion GGS groups that do not fix the first level satisfy a
dichotomy that will be crucial in establishing the subgroup induction property.
This dichotomy was first obtained by Garrido for Gupta-Sidki groups, and then
generalised to all torsion GGS groups by the second named author.

Lemma 4.6 ([5, 11]). Let G be a torsion GGS group and H be a subgroup of
G that is not contained in Stabg(L1). Then either all first-level sections of H
are equal to G, or they are all contained in Stabg(L1), so that Staby(L1) =
Stabgr (L2).

4.2 Lengths in GGS groups

A GGS group G is always generated by two elements a and b, as in Definition 4.1.
However, for our purposes, the word length corresponding to this generating set
is not the most convenient, and we will prefer to it the word length given by
the generating set consisting of all powers of a and b. To avoid all possible
confusion, we will call the word length with this specific set of generators the
total length.

Definition 4.7. Let p be a prime number, let G be a GGS group and let g € G
be any element. The total length of g, which we will denote by A(g), is the word
length of g with respect to the generating set {a,a?,...,a?= 1 b,b% ... bP~1}.
In other words, A(g) is the smallest n € N such that

g =8182...5np
: 2 -1 3 12 -1
with s1,892,...,8, € {a,a%,...;aP71 b, b, ... bP7 1}

Since every GGS group G is generated by two elements a and b, every element
of G can be expressed as an alternating product of powers of a and powers of b.
To simplify our analysis, we will often want to ignore the powers of a, since they
have no action beyond the first level, and focus our attention only on the powers
of b. To this end, we introduce a different “length” from the total length, that
we will call the b-length.

Definition 4.8. Let p be a prime number, G be a GGS group and g € G be
any element. The b-length of g, denoted by |g|, is the smallest n € N such that

g=a"ba?b’? .. a"bra
with Uy ooy bntl, J1s- -y Jn € Z.

Remark 4.9. Please note that despite what its name and notation might sug-
gest, the b-length is not a norm in the usual sense, but merely a pseudo-norm,
since non-trivial elements, namely the powers of a, can have b-length 0.

12



The total length and the b-length are related to each other, and there are
relations between the length of an element and the length of its sections, as the
next proposition shows. These inequalities are all fairly standard, but we give
brief proofs here for completeness.

Proposition 4.10. Let p be a prime number, G be a GGS group and g € G be
any element of G, and let v € L1 be any vertex on the first level. We have

(i) 2lgl =1 < Mg) < 2|g] + 1,
(ii) Meo(9)) < lgl,
(iii) Mepw(g)) < MGH,

(iv) |pu(g)| < 125,

(V) Xwer, w9l < lgl.

Proof. (i) Let us write m = A(g), and let s1,...,8, € {a,...,aP~1,b,... bP71}
be such that g = s1...5s,,. By the minimality of m, if s; is a power of b, then
Si+1, if it exists, must be a power of a. Consequently, g can be written as an
alternating product of powers of ¢ and powers of b with at most mTH powers
of b. The first inequality thus holds.

For the second inequality, let us write n = |g|, and let i1, ..., %p+1,J1,.-.Jn €
Z be such that

g= At bt g2 piz atr bin gint1

As g can be written as a product of at most 2n + 1 elements belonging to the
set {a,...,aP71 b,...,bP71} we must have A\(g) < 2n + 1.
(ii) We will proceed by induction on n = |g|. If n = 0, then g = a’ for some
j € Z. In particular, for any v € £y, we have ¢,(g) = 1, so the result holds
in this case. Now, let us assume that it holds for a given n € N. Then, if
lg| = n + 1, we have g = g'b'a’ for some ¢’ € G with |¢g'| = n and some i, j € Z.
Since we have

pu(9) = pu(g'b'a’) = @ai.0(9)as o (b")
for any v € L4, the result follows from the induction hypothesis, the fact that
Mepw (b)) < 1 for all w € £; and subadditivity of the total length.
(iii) and (iv) follow directly from (i) and (ii).
(v) This follows by induction on n = |g|, using the fact that if g = g192, then

D lew(@ £ > lewlgn)l+ D lpwlga)l,

weLy weLy weLy

and that we have Y5 . [pw(a’)] = 0 and Y . |@u(b')] = 1 for all i €
(1,2,....p—1}. O
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4.3 Proof of the subgroup induction property for torsion
GGS groups

We will now prove that all torsion GGS group possess the subgroup induc-
tion property. In fact, we will prove something a priori stronger, namely that
they possess the strong subgroup induction property, see Definition 3.1 and the
discussion below it.

Let us begin by fixing some notation. For the rest of this section, p will
denote an odd prime and G will denote a torsion GGS group with defining
vector e = (eq, ..., ep—2) acting on the p-regular rooted tree 7.

Notation 4.11. For any g € G, we will denote by a4 and 3, the unique
elements of {0,1,...,p — 1} such that g =g a®sb%. Note that the existence of
such elements follows from point (iii) of Proposition 4.3.

The subgroups of a torsion GGS group G can be classified into three broad
classes, as the following lemma shows.

Lemma 4.12. Let H < G be a subgroup. Then, either
(1) H=aG,
(I) there exists ju € {0,1} such that HG' |G’ = (WV#)G' /G,
(II) there exists jg € {0,1,...,p — 1} such that HG'/G' = (ab’")G'|G'.

Proof. Since all maximal subgroups of G are of finite index [13], the Frattini
subgroup ®(G) is equal to ®z(G), see the discussion before Lemma 3.5. On the
other hand, since G is a p-group, all its finite quotients are finite p-groups and
hence nilpotent. Therefore, by Lemma 3.5 the derived subgroup G’ is contained
in ®p(G) = ®(G). This implies that HG’ is a proper subgroup of G if and only
if H is proper. Therefore, HG'/G’ is a proper subgroup of G/G’ if and only
if H is a proper subgroup of G. As G/G’ is isomorphic to Cj, x Cp, its proper
subgroups are all cyclic. Thus, either H = G, or HG' /G’ is a cyclic subgroup of
G/G’'. Cases II and III together cover all the possible cyclic subgroups of G/G’
and are mutually exclusive. O

In what follows, we will frequently need to study the first level stabiliser of
a given subgroup. The following lemma gives us a convenient generating set for
this stabiliser when the subgroup is of type III.

Lemma 4.13. Let H < G be a subgroup of type III (according to the classifi-
cation of Lemma 4.12) generated by a set S C H. Then, for any x € S with
ag # 0, the set

S = {;v’“yxk? |y €S k1,k2€{0,1,....,p— 1}, k1ay + oy + kaay =0 modp}

generates Stabp (L1).
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Proof. Let © € S be any element of S such that a, # 0. Then, since H is of
type 111, the set {z* | 0 < k < p — 1} is a Schreier transversal for Stabg (L;).
Therefore, by the Reidemeister-Schreier method (see for example [12]), the set

S = {xkly:r_kz |y €S, ki,ka e{0,....,p— 1}, b1z + oy — kaag =0 mod p}

generates Stabgy (£1). Taking k1 = p — 1 and y = z, which forces ks = 0, we
see that 27 € S”. Thus, multiplying elements of S on the right by zP when ko
is not zero, we can transform the generating set S” into the set S’, which must
consequently also generate Stabg (L4). O

The main idea behind the proof of the subgroup induction property for
torsion GGS groups is to use an argument of length reduction on the generators
of finitely generated subgroups to reduce the question to subgroups generated
by elements of length at most 1. We will establish this length reduction property
in the next several lemmas. While they are unfortunately rather technical at
times, they ultimately make the proof of the main result very short and simple.

Lemma 4.14. Let z,y € G be two elements, and suppose that o, # 0. Let
ki,ke € {0,1,...,p — 1} be such that k1o, + oy + kaay =0 mod p. Then, for
every v € Ly, there exist Iy € {k1,k1 — p} and lo € {ka, ko — p} such that

+ |z|.

ly oy < ly| +1
foulattyats)] < WL

Furthermore, this inequality is strict if |z| is odd.

Proof. Tt suffices to show that for every k € {0,1,...,p — 1} and for every
w € Ly, we have |py, (2%)] + |¢pw (¥ 7P)| < |z|. Indeed, we have

oo (@ ya')| < lpw, (@)] + [@w, (V)] + o (@),

where w; = yz'2-v and wo = 2'2-v. Therefore, if |y, (2F)|+|pw (2*7P)| < |2|, one
can choose Iy € {k1, k1 —p} and Iy € {ka, ko —p} such that |, (x1)], |, (z2)] <
%. Note that if || is odd, we have @, (x11)], |p, (2!2)] < |;c—|, since the b-length
of elements must always be an integer. The result then immediately follows
from the fact that |, (y)| < MTH for all we € £1 by Proposition 4.10 (iv).

To conclude the proof, it thus remains only to show that
0w (@")] + lpw (=" P)| < 2]

forallk € {0,1,...,p—1}and for allw € £y. Let us write z = a®* (21, 22, ..., ZTp).
By direct computation, we find that

<Pw(33k) = Tw+t(k—1)az Twt(k—2)ay - TwtazsLw
(with the exceptional case of ¢, (z°) =1 and |p,,(z%)| = 0) and that

k—py _ ,.—1 -1 -1
Pu(@"F) = Twtkas Pwt(k+D) o, Pwt(p-1)as”
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Therefore,
k—1 p—1
[Pu(@)] +1euw(@ ) < [zurio, | + D legkia,
i=0 i=k

P
=2 il
i=1

< =,

where we used Proposition 4.10 (v) and the easily established fact that |¢~!| =
|g| for all g € G. This concludes the proof. O

Lemma 4.15. Let H < G be a subgroup of type II (according to the classifi-
cation of Lemma 4.12) generated by a finite set S, and let M be the mazimal
b-length of elements in S. Then for all v € L1, the subgroup ¢, (H) is gener-
ated by the set S, := ¢, (S), whose elements are of b-length at most % In

particular, if M > 1, the elements of S, are all of length strictly less than M.

Proof. Since subgroups of type II are contained in the stabiliser of the first level,
y(H) is generated by ¢,(S). The inequality on the b-length is then given by
Proposition 4.10 (iv). O

Lemma 4.16. Let H < G be a finitely generated subgroup of type III (according
to the classification of Lemma 4.12). If H is generated by elements of b-length
at most M, then for every v € Ly, the subgroup ¢,(Staby (v)) is generated by
elements of b-length at most % Furthermore, if there exists x € H with ay # 0

and |x| < M, then o, (Stabg(v)) is generated by elements of b-length at most
3M—1

2

Proof. Since H is generated by elements of b-length at most M, the set S of all
elements of H of b-length at most M is a finite generating set for H. Let z € S
be an element such that o, # 0. Such an element must necessarily exist, since
H is of type III. By Lemma 4.13, the set

S = {;v’“yxk? |y €8S, k1,k2e{0,1,....,p— 1}, k1ay + oy + kocy =0 modp}

generates Staby (L£1). Notice that by taking k1 =p—1, y = x and ks = 0, we
find 27 € S'.

Let us fix v € £;. Since the action of G/ Stabg(L£1) on L is free, we have
Stabg (v) = Stabgy (L), and is thus generated by S’. Using Lemma 4.14, we
can define a set S obtained from S’ by replacing every element of the form
zFyzkz € §' with y # 2 by an element z''ya!? such that

+1
o) < ML gy

with I3 € {k1,k1 — p} and ls € {ka, ko — p}. This corresponds to multiplying

on the left and on the right elements of S’ different from z? by either z? or the
identity. Therefore, S” is also a generating set of Stabg (v).
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It follows that ¢, (S”) is a generating set of @, (Staby (v)). Let M’ be the
maximal b-length of any element in this generating set. By construction, we

have
+1

M
M'gmax{ +|:v|,|g0v(xp)|}.

Let us first show that |¢, (2P)| < |z|. As in the proof of Lemma 4.14, writing
z = a**(z1,22,...,2p), we find by direct computation that

Pv (:I;p) = Tyt (p—1)az; Lot (p—2)ay + + * Lota, Lv-

Therefore, by subadditivity and Proposition 4.10 (v), we have

p—1 p—1
o (@) <D [Totia.| = Y |zl < |a].
i=0 =0

Thus, we have M’ < max {2 + [z[,|z|} = 242 + |z|. Furthermore, it
follows from Lemma 4.14 that this inequality is strict if |z| is odd.

If |z| < M, then we have |x| < M — 1, since the length must be an integer.
Therefore, ¢, (Staby (w)) is generated by elements of b-length at most 32=1.
This proves the second part of the lemma. To finish the proof of the first part,
it remains only to treat the case where |z| = M.

If |x] = M and M is odd, then ¢, (Stabg(w)) is generated by elements of
b-length strictly smaller than % Again, since the length must be an integer,
we can say that the generators of ¢, (Stabg (w)) are of b-length at most 32=1.

Similarly, if || = M and M is even, we can bound the b-length of the
generators of ¢, (Staby (w)) by 28, since 222 is not an integer.

Thus, in all cases, ¢, (Staby(v)) can be generated by elements of b-length

at most %, which concludes the proof. O

Lemma 4.17. Let H < G be a finitely generated subgroup of type III (according
to the classification of Lemma /.12). If H is generated by elements of b-length
at most M, then for every w € Lo, the subgroup ¢, (Staby (w)) is generated by
elements of b-length at most 31\/{%2.

Proof. If M = 0, then we must have either H = {1} or H = (a). Since H
is of type III, the first case is impossible, and in the second case, we have
ow(Stabg (w)) = {1} for all w € L5. As the trivial subgroup is generated by
elements of b-length at most 0, the result holds in this case. Therefore, for the
rest of the proof, we may suppose that M > 1.

By Lemma 4.6, either ¢, (Stabg (v)) = G for every v € Ly, or the subgroup
@y (Stabg (v)) is of type II, according to the classification of Lemma 4.12, for
every v € £1. In the first case, the result is true, since ¢, (Stabg(w)) = G for
every w € Lo and is thus generated by elements of b-length at most 1 < %,
using the fact that M > 1. In the second case, by Lemma 4.15, it suffices to
show that for every v € L1, the subgroup ¢, (Stabg (v)) is generated by elements
of b-length at most %, which is the case according to Lemma 4.16. O
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Lemma 4.18. Let H < G be a subgroup of G generated by elements of b-length
at most 1. Then, for all vertices v € T, the subgroup p,(Stabg (v)) is generated
by elements of b-length at most 1.

Proof. By induction, it suffices to prove the result for v € £;.

The proof depends on the type of H, according to the classification of
Lemma 4.12. If H is of type I, or in other words, if H = G, then ¢, (Stabg (v)) =
G for all v € L4, so the result is trivial in this case. If H is of type II, the re-
sult immediately follows from Lemma 4.15. Lastly, if H is of type III, then by
Lemma 4.16, ¢, (Staby (v)) is generated by elements of length at most 2. As
the length must be an integer, the result follows. O

Lemma 4.19. Let H < G be subgroup of type 111, according to the classification
of Lemma /.12, generated by a finite set S. Let us assume that every element
of S is of b-length at most 2 and of total length at most 3. Then ., (Stabgy (w))
is generated by elements of b-length at most 1 for all w € Lo.

Proof. Using Lemma 4.6 and similarly to the proof of Lemma 4.17, we can sup-
pose that ¢, (Stab g (v)) is of type I1, according to the classification of Lemma 4.12,
for every v € L.

Thanks to Lemma 4.15, it suffices to show that ¢, (Staby (v)) is generated
by elements of b-length at most 2 for all v € £4, since the b-length must be an
integer.

Let us first suppose that there exists a non-trivial x € S such that |z| < 2.
Then, we cannot have x € G, since non-trivial elements of G’ must have b-length
at least 2. Indeed, any element of b-length strictly less than 2 can be written
as a'b’a® with i, j, k € Z, and for this element to be in G’, by Proposition 4.3
(iii), we must have j =0 mod p and i = —k mod p, which forces this element
to be the identity.

Therefore, z does not belong to G', and as H is a subgroup of type III, we
conclude that o, # 0. It then follows from Lemma 4.16 that ¢, (Stabg(v)) is
generated by elements of b-length at most %, and thus at most 2, for all v € £;.

Thus, it only remains to show that the result holds when every non-trivial
element of S is of b-length 2. Let us choose some non-trivial € S. In light of
Lemma 4.13, we need to show that for every v € L4, for every y € S and for
every ki, ko € {0,1,...,p—1} such that kiay + ay + kac; =0 mod p, we have

o (a1 ya®?)| < 2.

Since z and y are of b-length 2 and of total length at most 3, we must have
z = bM=a® b and y = bMwa™b™, with my,ng,my,n, € {1,2,...,p — 1}.
Therefore, we have

k1 ko _ pkpk * * * * *
Toyr T = bObaz b2am te b/ﬁam bklam-i-ay bklam-i-ozy-i-az . 'bklaz-‘ray-i-kzam’

where the * represent unspecified powers (possibly zero) and b; = a'ba~!. For
every v € L1, we have

lou (b)) = 1 ifl=v modp
o= 0 otherwise.
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As @y (zMyah?) = o, (b5)u(b].) - o (b,’;lam+ay+k2%), it suffices to show that
in the sequence

0, 03,20, ..., ki0g, k1o + oy, ko + oy + ag,y oo k1o + oy + kaag,

every number (modulo p) appears at most twice. Since «, # 0, using the fact
that p is prime and that k1 € {0,1,...,p—1}, we see that 0, ay, 20y, . . . , k1, are
all pairwise distinct, modulo p. Likewise, k1ay + oy, k1ag + 0oy + 0, . .. k1o +
oy + koo are also pairwise distinct modulo p. Consequently, a number (modulo
p) can appear at most twice in the sequence

0, 03,20, ..., ki0g, k1o + oy, ko + oy + ag,y oo k1o + oy + kaag,

since if it appeared three times, it would have to appear at least twice in either
0, 0,204, ...,kia, or in kiay + oy, k1o + oy + o, ..o k1o + oy + koo, by
the pigeonhole principle, which is impossible.

Thus, ¢, (Stabg(v)) is generated by elements of b-length at most 2 for all
v € L1, which concludes the proof. O

Lemma 4.20. Let H < G be a finitely generated subgroup of G. There exists
somen € N such that for every v € L,,, the subgroup ¢, (Stabg (v)) is generated
by elements of b-length at most 1.

Proof. Let us fix a finite set S of generators of H, and let M be the maximal
b-length of elements in S.

If H is a subgroup of type I, according to the classification of Lemma 4.12,
then H = G. In this case, the result is obviously true by taking n = 0. If
H is of type II, then by Lemma 4.15, if M > 1, the subgroups ¢, (Stabg(v))
are generated by elements of b-length strictly smaller than M for every v € £;.
Lastly, if H is of type III, then by Lemma 4.17, if M > 2, the subgroups
¢y (Stabg (v)) = G are generated by elements of b-length strictly smaller than
M for every v € L.

Thus, using induction and Lemma 4.18, it suffices to prove the result for
H of type III and generated by elements of b-length at most 2. Let x € S be
a generator of H such that a, # 0. Since we have |z| < 2, it follows from
Lemma 4.16 that ¢, (Stabg (v)) is generated by elements of b-length at most 3
for all v € £4. If p,(Staby(v)) = G for all v € £1 we are done. Otherwise,
by Lemma 4.6, Lemma 4.15 and Proposition 4.10 (ii), for every w € Lo, the
subgroup @, (Staby (w)) is generated by elements of b-length at most 2 and
of total length at most 3. If ¢, (Staby(w)) is of type I or II, then the result
follows from the argument above, and if it is of type III, the result follows from
Lemma 4.19. O

We are now missing only one piece to prove that a torsion GGS group has
the subgroup induction property, namely that a subgroup generated by elements
of length at most 1 must belong to every inductive class. We prove this fact in
the following two lemmas.
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Lemma 4.21. Let H < G be a subgroup of a torsion GGS group G, and let X
be a weakly inductive class of subgroups G (see Definition 5.1 and the discussion
below it). If there exists n € N such that ¢, (Stabg(v)) € X for all v € L,,
then H € X.

Proof. We proceed by induction on n. For n = 0, the result is trivially true.
Let us suppose that the result is true for some n € N, and let H < G be a
subgroup such that ¢, (Stabg(w)) € X for all w € L,,41. For each v € L,,, let
us write H, = Stabg(v). Our assumptions on H imply that for every v € L,
and for every u € £y, we must have ¢, (Staby, (u)) € X. Using Property C
of Definition 3.1 and the fact that Staby, (£1) = Stabp, (u), we conclude that
Stabg, (£1) € X. Since Staby, (£4) is of finite index in H,, we must also have
H, € X by Property B’ of Definition 3.1.

We have just shown that for every v € £,,, we have Staby(v) € X. Thus,
by our induction hypothesis, we have H € X. O

Lemma 4.22. Let X be a weakly inductive class, and let H < G be a subgroup
generated by elements of b-length at most 1. Then, H € X.

Proof. We begin by observing that if H is generated by elements of total
length 1, then H € X. Indeed, in this case, we have either H = G, H = (a) or
H = (b). Since both (a) and (b) are finite subgroups, the result follows.

If H is not generated by elements of total length 1, then H must be of
type II or III, according to the classification of Lemma 4.12. If H is of type II,
then for every v € L4, the subgroup ¢, (Stabgy (v)) is generated by elements of
total length 1 by Proposition 4.10 (ii), and thus belongs to X by the previous
argument. It follows that H € X.

Lastly, if H is of type III, then by Lemma 4.16, ¢, (Stabg (v)) is generated
by elements of b-length at most %, and thus at most 1, for every v € £;. As
vy (Stabg (v)) is either G or of type II by Lemma 4.6, the preceding argument
shows that ¢, (Stabg (v)) € X for every v € £;. Therefore, we must have H € X
by Lemma 4.21. O

We are now finally ready to prove that every torsion GGS has the strong
subgroup induction property, see the discussion after Definition 3.1.

Theorem 4.23. Every torsion GGS group has the strong subgroup induction
property.

Proof. The proof follows the same general strategy as in [5].

Let G be a torsion GGS group, and let X be a weakly inductive class of
subgroups. We need to show that every finitely generated subgroup of G belongs
to X.

Let H < G be a finitely generated subgroup. By Lemma 4.20, there exists
n € N such that ¢, (Stabg (v)) is generated by elements of b-length at most 1
for all v € £,,. Lemma 4.22 then implies that o, (Stabg(v)) € X for all v € L,,.
Therefore, H € X by Lemma 4.21. O
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As a corollary, we get that all torsion GGS groups are subgroup separable.
Corollary 4.24. FEvery torsion GGS group is subgroup separable.

Proof. This is a direct application of Theorem 4.23 and [9, Theorem 2.12]. More
precisely, in order to apply [9, Theorem 2.12], we use the fact that torsion GGS
groups are finitely generated, self-similar, satisfy Stabg(L1) = Stabg(v) for
every first level vertex v, are branch, have the congruence subgroup property
and have the subgroup induction property. O

There are other consequences of the subgroup induction property that could
be of interest for the study of torsion GGS groups. For instance, the structure of
their finitely generated subgroups can be described using the notion of blocks,
and one can classify their weakly maximal subgroups. We refer the interested
reader to [9] and [11] for more information about these consequences.
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