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Abstract. A granitic feldspar is well-ordered and has a stable thermoluminescence signal enabling its 

dating with high reliability. In contrast, a volcanic feldspar (sanidine) exhibits a slight cristallographic 

disorder and an anomalously fast fading of the thermoluminescence signal (Visocekas et al. 2014). It is 

shown here how disorder changes the decay of the signal and enhances the kinetics, while the increase in 

the microscopic complexity plays no role. 
 

1. Introductory description of the 
phenomenon and the material 
 

We begin with a few definitions [1] of the terms used in 

this paper. 

Definition of thermoluminescence (TL). It is the 

luminescence I emitted upon heating a mineral at a 

constant rate dT/dt where T (t) is the temperature (time). 

If the I-vs-T curve at a given rate is reproducible, it 

allows for dating of the mineral. 

The luminescent material. It is a K-feldspar (K-

aluminosilicate) which can be found in two varieties, 

called sanidine and microcline. The latter variety is also 

called granitic whereas the former is a volcanic feldspar. 

Quotation from [1]: « Sanidines and microclines have 

the same composition and similar lattice structures. They 

are two extreme phases of K Al Si3O8 feldspars. Sanidine 

is the high-temperature form whereas microcline is 

stable at low temperatures, or below approximately 

450 °C. [...] The angular difference between their optical 

axes is very small; an angle of 90 ° in sanidine becomes 

87 ° 40 ' in ‘ maximum ’ microcline. Microcline is 

ordered, whereas sanidine is still a crystal but 

‘ disordered ’. The 25 % Al atoms substituted for Si are 

randomly distributed in sanidine, whereas they are 

ordered in microcline. » The quick cooling of a volcanic 

feldspar quenches its high-temperature lattice structure 

which is metastable at room temperature [2]. 

Microscopic origin of the luminescence. It is due to 

a very small fraction of impurities (called activators) 

interspersed in the solid lattice. In feldspars, the presence 

of Fe3+ results in light-emitting centres in the blue and 

far-red ranges. Besides light-emitting centres, the 

mineral hosts electron traps whose energy levels lie in 

the 7.7-eV forbidden band gap. Once detrapped, an 

electron can be captured near the centre and excite it. A 

subsequent radiative deexcitation of the centre gives rise 

to a luminescence whose sensitivity to temperature is 

due to the fact that electron detrapping is thermally 

activated. As the temperature is raised the freed electrons 

continually feed the light-emitting centres. 

The thermoluminescence phenomenon. When a 

microcline sample is stored at room temperature, its TL 

signal does not fade during storage. In contrast, the TL 

signal of sanidine is observed to fade at a rate −25 % per 

year. Such a fast fading is called anomalous. Because its 

I-vs-T curve is not reproducible over time, sanidine 

cannot be used for dating by TL. 

The goal of this paper is to understand the physics of 

the so-called anomalous fading of sanidine. What is it 

that links the ill-ordered nature of sanidine to its inability 

to retain the energy released (in part) as the TL signal 

emitted upon heating? To answer this question, we shall 

examine what happens at a constant temperature because 

isothermal physics is easier to deal with. In section 2 we 

recall the state of knowledge of the isothermal 

luminescence decay in microcline and more generally 

speaking well-ordered minerals. In section 3 we examine 

how the tunnelling model which accounts for the kinetics 

in a well-ordered material can be rescued if the material 

exhibits some disorder. In section 4 we parallel electron 

transfer by tunnelling and energy transfer by exchange; 

the latter mechanism has been investigated in more 

detail. In section 5 we show how our electron-transfer 

problem can be traded for an energy-transfer problem for 

which a mathematical solution has already been reached. 

Section 6 explains why the complexity of disorder is not 

involved. 

 

2. Isothermal luminescence decay in 
well-ordered materials 

 

The time-resolved luminescence intensity I(t) in 

feldspars at a constant temperature does not follow the 

usual exponential decay law of phospho- or 

fluorescence. Decay is much slower, typically I(t)  1/t 

at large times. This had previously been observed in Mn-

activated calcium carbonate (Ca CO3 , 6-eV band gap): 

figure 2 of [3] shows constant It vs t over almost three 

decades of time. As I was independent of T in the range 

80–180 K, a tunnel-based decay mechanism had been 

suggested [3]. In Mn-activated zinc silicate (Zn2SiO4 , 5-

eV band gap) a similar very slow and athermal decay 

was observed later by Avouris and Morgan [4]. 

Quotation: « Both phosphorescence and photostimulated 

luminescence intensities are found to decay as the 
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reciprocal of the time, a result which requires a different 

interpretation from that given by the usual model of 

electron release from a distribution of trap levels. To 

account for these results we propose a new model based 

on the radiative recombination of electrons and holes 

through tunnelling from shallow traps or from excited 

states of the deeper traps. A simple expression is derived 

which describes the decay of both types of luminescence 

in phosphors under very general conditions for which 

tunnelling is the dominant recombination mechanism. » 

In a word, luminescence in Mn-activated calcium 

carbonate and zinc silicate is due to variable-range 

tunnelling. By tunnelling a trapped electron escapes to a 

capture centre where it will excite the light-emitting 

impurity (activator). It is alternatively said that the 

tunnelled electron ‘ recombines ’ at the centre. As time 

goes by, trapped electrons have been captured by nearby 

capture/recombination centres, and subsequently 

electrons can be captured only by remoter centres. A 

longer distance entails a slower decay rate. This has been 

called the gruyère [5] or Swiss cheese [6] model: the 

diameter of a spherical volume freed from trapped 

electrons increases logarithmically with time; see fig. 1. 

 

 
Fig. 1. The gruyère or Swiss cheese model of tunnelling-

induced luminescence in a solid. From [6]. 
 

A more general decay law was obtained later by 

Huntley [7]. Quotation: « Luminescence decay with time 

often shows a power-law dependence of the form 

intensity I  t−m, where t is time and m is usually in the 

range 1–1.5. [...] This power law can result from the 

tunnelling of trapped electrons to recombination centres 

that are randomly distributed, and [...] the range of 

exponents matches that of the observations. The 

explanation accounts for the most extreme case of an 

observed t−1.06 dependence extending over nine decades 

of time. » 

Let us reckon luminescence I(t) = N0|d/dt| in photon 

per second, where N0 is the initial number of trapped 

electrons able to excite a light-emitting centre, and (t) = 

N(t)/N0 is the fraction of as yet untransferred electrons at 

time t. (This formula for I(t) omits the radiative yield 

which effectively reduces N0 .) Let nA denote the number 

density of recombination centres capturing electrons 

released from traps, and let 1/(r) = s0 exp(−r) denote 

the rate of electron tunnelling from a trap to a 

recombination centre, as a function of their separation 

distance r. The number of electron-capture centres in a 

sphere of radius −1 is 

  n~A = 
4−3

3
 nA . 

For a time t >> s0
−1, Huntley arrives at 

  (t)  exp[− n~A ln3(s0t)]. 

The unsigned argument of the exponential function is the 

number of capture centres in a sphere of radius −1ln(s0t) 

which grows logarithmically with time. This is in 

keeping with the gruyère or Swiss cheese model of fig. 

1. For plausible values of n~A and over a wide time range, 

I(t) is found to be closely approximated by a power law 

A/tm where 0.95  m  1.5. 

 

3. The tunnelling model in sanidine 
 

3.1. The problem 

 

From the above expression of n~A , it is seen that I(t)  

|d/dt| cannot depend on temperature. This comes about 

because tunnelling is an athermal mechanism. Now in 

sanidine the fading of the TL signal is observed to 

depend on the storage temperature of the sample. The 

crucial point is that no loss of TL is observed if the 

sample is stored at liquid-nitrogen temperature [6]. 

A possible explanation for a temperature dependence 

was proposed long ago [3, 4]: electrons are not only 

tunnelled out of the ground state of a trap lying at level 

Eg but also out of an excited state lying at level Ee > Eg . 

Since the excited state is populated thermally according 

to a Boltzmann factor exp(−(Ee − Eg)/kT), this would 

account for the freezing of electron release at lower 

temperatures. This scenario predicts an Arrhenius 

dependence not observed in sanidine. The softer actual 

dependence might be accounted for by assuming a 

continuum of excited states. This mathematical 

assumption is, however, not physically realistic. The 

next subsection offers an alternative explanation. 

 

3.2. The physics of a disordered solid 

 

Room-temperature fading is observed only in the ill-

ordered feldspars known as sanidines. When a crystal 

exhibits some disorder, whether translational or 

orientational, its energy-band structure is altered. 

Between the first unoccupied band of extended (Bloch) 

states and the band-gap where no electron state is 

allowed, there is an energy range of localized (Mott) 

states, called the band tail. A state in the band tail is 

quantum-mechanically allowed but localized. This is 

shown in figure 2 after [8]. 
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Fig. 2. The allowed one-electron quantum states in a 

disordered solid. Besides the extended states of the conduction 

band lying above the mobility edge Ec , there exists a tail of 

localized states (hatched area) over a range E. The conduction 

band is virtually empty if the solid is semiconducting. Top: 

density of allowed states N(E). Bottom: decay length −1 of the 

localized states; at the mobility edge, −1 is becoming infinite 

which corresponds to an extended (Bloch) state. After figure 

6.8 of [8]. 
 

Let us give details about the physical nature of the 

electron states involved. A Bloch state of pseudo-

momentum p = h
_

k and energy E(p) is a travelling matter 

wave with a group velocity E/p expressing the mean 

flow of the probability of presence. Were the lattice 

perfectly periodic, that wave would be a stationary 

solution of Schrödinger's wave equation, i.e. with an 

infinite lifetime. Imperfections of the lattice, whether 

static (flaws and impurities) or dynamic (thermal 

vibrations), entail a finite lifetime and a finite velocity-

relaxation time v(p) of the Bloch state. As a result the 

mean free path of an electron in the Bloch state,  = 

vgv , is finite. Then, 

(i) under no electric force, an initially sharply 

peaked electron ensemble spreads out isotropically 

with a Fick diffusion coefficient D = 2/3v ; 

(ii) under a force F = e
_
(−V) derived from the 

macroscopic electric potential V, where e
_
 is the 

signed electron charge, electrons drift along the 

force at an ensemble-average velocity vF/m* 

where the effective mass m* is determined from the 

dispersion relation E(p). 

In contrast, a state in the band tail is an evanescent 

matter wave which does not propagate; a pseudo-

wavevector k is not relevant. The spatial extension of the 

evanescent matter wave, −1, is finite. If such a state is 

occupied by an electron and there is an empty state 

nearby, then the electron can ‘ hop ’ from the occupied to 

the empty state if the overlap of the two wave functions 

is not too small. The mechanism is tunnelling, but since 

there is a misfit in the energies of the initial and final 

states, the lattice has to supply or collect the energy 

difference in the guise of a phonon. Thereby an electron 

can walk at random between band-tail states lying at 

almost the same energy. In some steps energy is supplied 

by the lattice while in others it is released to the lattice. 

In the simplest (‘ nearest-neighbour ’) scenario, a step 

has a length −1 and the hopping frequency  depends on 

the tunnelling probability per unit time and the rate at 

which the lattice can supply energy. Statistically 

speaking, the random walk is characterised by a Fick 

diffusivity D. Taking hopping to be isotropic, D is given 

by −2/3. 

A note on nomenclature is important. The usual 

parlance of disordered conductors makes use of the word 

‘ mobility ’ in e.g. the phrase ‘ mobility edge ’ denoting 

the energy border Ec between extended (Bloch) and 

localized (Mott) states. However, the quantitative 

definition of mobility  refers to the response of an 

electron to an applied force, with  = v/m
* in the Drude 

model [9]. In our problem, there is no force and electrons 

move by diffusion. It is more appropriate to speak of a 

‘ diffusivity edge ’ as advocated by Butcher [10] when 

discussing mobility * and diffusivity D* as functions of 

the electron energy E. Quotation: « we would then speak 

of ‘ energy-dependent diffusivity ’ instead of ‘ energy-

dependent mobility ’ and ‘ diffusivity edge ’ instead of 

‘ mobility edge ’. It is important to emphasize that what 

is involved here is more than a matter of semantics. The 

terminology which is growing up in work on amorphous 

materials may ultimately lead to physical confusion 

because *(E) is much more intimately related to 

diffusivity than mobility. [...] The diffusive nature of the 

electronic motion in amorphous materials suggests that a 

greater emphasis will be placed on diffusivity than has 

been appropriate in crystalline materials. The energy-

dependent diffusivity provides the obvious tool for this 

purpose. By inserting a factor of 1/kT so that the result 

has the dimensions of mobility, we gain nothing in the 

formalism and lose something in the conceptual 

simplicity of the subject. » (See also [11].) 

Two hopping mechanisms are met in practice: 

(i) nearest-neighbour hopping giving an Arrhenius 

dependence D(T)  exp(−E0/kT); 

(ii) optimum-range hopping involving second, 

third... neighbours, such that 

 D(T)  exp(−(E1/kT))  with 1/4    1/3. 

The latter is the result of a trade-off beween tunnelling 

and thermal activation [8]. 
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3.3. Adapting the tunnelling model to the case 
of sanidine 

 

Call D (donor) an occupied electron trap lying in the 

band tail. The distance r between the trapped electron 

and a recombination centre acting as an electron acceptor 

A, is no longer constant in time. Because the electron 

can hop from a band-tail state to another, the distance r 

becomes a function of time for a given electron. The 

distance is a random variable in that, in a statistical 

ensemble of electrons in Gibbs’ sense, different electrons 

will have different histories. Denote Gibbs-ensemble 

averaging by ... Insofar as disorder is homogeneous, .. 

may be replaced by spatial averaging. The spatial 

average over a large volume is identical with the average 

over a large number of realisations, that is to say a 

Gibbs-ensemble average. This is an ergodicity property 

in space instead of time [12]. Now the tunnelling rate 

1/(r)  exp(−r) shown in figure 3 is a convex function 

of distance r so that, over a range of values of r, 

    1 

 (r) 
  exceeds  

 1 

 (r) 
 . 

0 2 4 6 8

0,0

0,5

1,0

T
u

n
n

e
ll
in

g
 r

a
te

  
1

/
(r

)

Distance  r

1/(r)  exp(−r)

 
Fig. 3. The tunnelling rate per unit time 1/ as a function of 

distance r (arbitrary units). 
 

Tunnelling is enhanced by the fact that r is a random 

variable owing to the diffusive motion of band-tail 

electrons. Enhancement can be strong because of the 

strong dependence of 1/ on r. This qualitatively 

explains why the phenomenon of hopping between band-

tail states is able to enhance the kinetics. We shall now 

address the phenomenon quantitatively. To this end we 

first recall the knowledge gained from exchange-

mediated energy-transfer studies in luminescent solids. 

 

4. Energy transfer by exchange 
 

4.1. What is meant by energy transfer? 

 

We quote the Encyclopedia of Spectroscopy and 

Spectrometry [13]: « Energy transfer refers to a process 

in which an excited atom or molecule (donor) transfers 

its excitation energy to an acceptor atom or molecule 

during the lifetime of the donor excited state. [...] As a 

result of energy transfer, the donor returns to its ground 

state while the acceptor is promoted to its excited state. 

If the acceptor is a luminescent species, it can emit by 

virtue of energy transfer, that is, the acceptor luminesces 

as a result of the excitation of the donor. Such a 

luminescence is called ‘ sensitized luminescence ’, and 

some textbooks use the terms ‘ sensitizer ’ and 

‘ activator ’ instead of ‘ donor ’ and ‘ acceptor ’. » This is 

pictured in figure 4. 

energy

D*

D

A*

A
 

Fig. 4. Energy transfer from donor D to acceptor A. In the case 

of an energy difference between the excited state of D and that 

of A, the transfer has to be assisted by a phonon. After [13]. 
 

Donor (D) to acceptor (A) energy transfer can 

proceed via two coupling mechanisms, termed 

multipolar and exchange. This terminology originates in 

the definitions of Coulomb and exchange integrals. Let 

 (r1 , r2)  D(r1)A(r2) − D(r2)A(r1). 

denote the two-electron D-A wave-function for parallel 

spins. It is antisymmetric in the exchange of electrons 1 

and 2. The coupling involves the matrix element 

  (|  e2 

 4|r1 − r2| 
|) = 

 Coulomb integral CDA − exchange integral JDA . 

Depending on the symmetries of the wave functions, the 

Coulomb integral is dipolar, quadrupolar etc, which is 

why one speaks of multipolar coupling. The basic 

studies are Förster’s [14] (Dexter’s [15]) for multipolar 

(exchange) coupling. 

In the remainder of the paper we shall be interested 

in exchange-mediated D-to-A energy transfer. It is 

epitomized by Rice [16] in the following sentences: 

« The exchange integral effectively reflects the initial 

overlap of the wave functions of donor and acceptor 

molecules, [...] weighted by the Coulomb energy, 

e2/4|r1 − r2|, of interaction between these initial and 

final states. Provided that both initial- and final-state 

wave functions are appreciable in the same region of 

space, the exchange integral is not negligible. Since the 

eigenfunctions decay as exp(−r/a) with a an approximate 

Bohr radius for these eigenfunctions ( 0.14 nm), the 

transfer probability [roughly] varies as the square of the 

exchange integral, i.e. 

  l(r) = A exp(−2r/a). 
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[...] The pre-exponential factor of the transfer probability 

is 

  A   fD()A() d, 

where fD() is the frequency-dependent donor emission 

spectrum (phosphorescence) and A() the absorption 

spectrum of the acceptor when the electron spin 

restriction is removed. » 

 

4.2. Electron transfer by tunnelling vs energy 
transfer by exchange 

 

We again quote Rice’s review [16]: « The dependence 

on the distance of separation of donor and acceptor is 

similar for energy transfer by the exchange effect and 

electron transfer by tunnelling. The probability of energy 

transfer from donor to acceptor (electron scavenger) is 

  l(r) =  exp[−(r − R)] 

where   1014 s−1 and −1  0.1 nm. In the same manner 

as energy transfers non-radiatively, the electron transfers 

rapidly (less than 0.01 ps or so) during which time the 

donor and acceptor nuclei remain essentially frozen 

(Franck-Condon principle). Henglein has emphasised the 

similarity of energy and electron transfer processes by 

representing electron transfer as the overlap of the donor 

oxidation spectrum and the acceptor reduction spectrum 

weighted by the orbital overlap of the donor anion and 

acceptor states. It is this latter term which leads to the 

exponential dependence of l(r). » 

In the next subsection we avail ourselves of this 

formal similarity to swap the electron-transfer problem 

for an energy-transfer problem which has already been 

investigated quantitatively. 

 

5. The solution 

 

5.1. The two-body problem in Smoluchowski's 
stochastic mechanics 

 

In the physical problem at stake in this paper, we have to 

do with electron donors D which move randomly by 

hopping, and electron acceptors A fixed at definite 

positions. Let us contemplate the reverse mathematical 

problem where a donor D is fixed while acceptors A 

move by diffusion. The number density nA of acceptors 

is governed by Fick's second law, 

  
 nA 

 t 
 + div(−DAnA) = 0, 

involving the diffusivity DA of A. This results in a 

continuous-time random walk of A, 

 xA(t) = xA(0)  and  xA(t)2 − xA(t)2 = 2DAt 

in one dimension [17]. On the average, A does not move. 

It spreads about its initial position xA(0). 

We now consider the more general, two-body 

problem where both A and D are diffusing. In addition 

we have 

 xD(t) = xD(0)  and  xD(t)2 − xD(t)2 = 2DDt, 

and the covariance xD(t)xA(t) − xD(t)xA(t) vanishes if 

the random variables xA and xD are independent. The 

upshot is that the D-A distance keeps constant on the 

average, 

  xD(t) − xA(t) = xD(0) − xA(0), 

while its variance grows up linearly in time, 

 (xD(t) − xA(t))2 − xD(t) − xA(t)2 = 2DDt + 2DAt. 

The relative motion is therefore a stochastic process 

characterized by a coefficient of mutual diffusion, 

  D = DD + DA . 

This enables us to trade the problem of fixed donors and 

moving acceptors for the problem of moving donors and 

fixed acceptors. As a result, if the problem of exchange-

mediated energy transfer from static D to moving A is 

solved, then the problem of tunnelling electron transfer 

from moving D to static A is solvable. It turns out that 

the former problem has indeed been solved, and this is 

the subject of the next subsection. 

 

5.2 The solution of energy transfer by exchange 

 

Just as in section 2, let (t) = N(t)/N0 denote the fraction 

of untransferred electrons at time t. The luminescence (in 

photon/s) is N0|d/dt|. As trapped electrons can hop, (t) 

will be less than 0(t) as calculated by Huntley in his 

model of static electron donors [7]. We write 

  (t) = 0(t) D(t), 

where 0(t) is the limiting form of (t) when diffusion is 

frozen i.e. as D → 0. The calculation of D due to 

electron hopping is possible using the study of exchange-

mediated energy transfer by Allinger and Blumen [18]. 

They found that 

  0(t) = exp[− n~A g3(s0t)], 

where g3(u)  ln3u + g32 ln2u for u >> 1 and g32  

1.73165. The g32 term is a small correction to Huntley's 

result given in section 2. Besides, 

  D(t) = exp[− 3n~A(2Dt)1/2g2(s0t)], 

where g2(u)  ln2u for u >> 1. 

The luminescence intensity is proportional to 

 | d 

dt
| = 3n~A 

ln2(s0t)

t
 [1 + 

2g32

 3 ln(s0t) 
] 0(t) 

x[1 + 
 (2Dt)1/2

 

2
 

ln(s0t) + 4

 ln(s0t) + 2g32 /3 
]D(t). 

In the case that ln(s0t) >> 1 this may be simplified to 

 | d 

dt
| = 3n~A 

ln2(s0t)

t
 0(t)[1 + 

 (2Dt)1/2
 

2
]D(t). 

For vanishing D i.e. D = 1, Huntley has shown that 

|d/dt|  A/tm over a wide range of times t >> s0
−1. We 

now address the correction due to non-vanishing D for t 

= 3x107 s  1 year. Again we have to resort to typical, 

plausible values of the microscopic parameters. With −1 

 0.1 nm and nA = 5x1017 cm−3 i.e. n~A = 3x10−6 [7], we 

compute s0t  1021 and 0(t) = exp(−0.36) so that traps 

have been slightly depleted. For a hopping diffusivity D 

= 10−6 m2/s, (2Dt)1/2  5x1010. The ensuing reduction in 

the number of excited donors is D(t) = exp[−3n~A 

(2Dt)1/2ln2(s0t)], whence D(t)  exp(−109) means that 

luminescence has been drastically exhausted by hopping. 

What is the justification for choosing D = 10−6 m2/s? 

In a disordered poor conductor, D = kT and e does not 

exceed 1 cm2/V.s at room T (this is related to the so-

called Ioffe-Regel criterion) [8]. Thus we have taken an 
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excess value of D and, in practice, TL fading over one 

year will be less drastic but it can be very significant. 

 

6. Synopsis 

 

This paper has been concerned with the way a 

luminescence decay can be affected by the appearance of 

a cristallographic disorder. The disorder gives rise to 

localized electron states in a band tail lying below the 

conduction band of extended (Bloch) states of the solid. 

An electron in the band tail can hop between states with 

a small, temperature-dependent diffusivity. Hopping 

enhances an electron’s probability per unit time to tunnel 

toward a recombination centre and activate a light-

emitting centre lying nearby. The enhancement of 

tunnelling depends on temperature, and it is prevented at 

liquid-nitrogen temperature where diffusivity is lower. 

Generally speaking, disorder generates complexity in 

the sense that a large number of microscopic 

configurations become possible. If the ‘ disorder 

variable ’ is a random scalar field endowed with 

statistical homogeneity, disorder is characterised by a 

(position-independent) average and 2-point, 3-point... 

spatial correlation functions [12]. Complexity may then 

be assessed by the number of correlation functions that 

are needed to describe the phenomenon. In contrast, 

simplicity may be associated with the need of resorting 

to the average and/or the 2-point function only. For 

example, in the scattering of light by the density 

fluctuations of an almost homogeneous medium, no role 

is played by the 3-point, 4-point... correlation functions 

of the random refraction-index field [19]. In the issue at 

hand in this paper, the disorder shows up through one 

single parameter, namely the diffusivity of band-tail 

electrons which reflects a 2-time velocity-correlation 

function [20]. In this sense complexity plays no role. 
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