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Electrochemical tandem trifluoromethylation of allylamines 
/formal (3+2)-cycloaddition for the rapid access to CF3-containing 
imidazolines and oxazolidines 

Aurélie Claraz,*a Aurélie Djian,a Géraldine Masson*a  

An electrochemical tandem radical trifluoromethylation of allylamines/formal (3+2)-cycloaddition with nitrile and carbonyl 

compounds has been developed under mild and environmentally benign reaction conditions. Such multicomponent reaction 

allowed the construction of CF3-containing imidazolines and oxazolidines by creating three new bonds from simple and easily 

available starting materials.

Imidazolines and oxazolidines are important five-membered 

azacycles existing in a number of natural products and bioactive 

molecules.1,2 They also serve as versatile intermediates in 

organic synthesis  and  effective ligand in asymmetric catalysis.3 

A considerable effort has been dedicated to the efficient 

construction of these heterocycles.4,5 Privileged methods for 

their syntheses are based on the formal (3+2)-cycloaddition of 

N-tosylaziridines as masked-1,3-dipoles A with nitrile or 

carbonyl compounds (Scheme 1a, eq. (i)).6,7 Recently, Xu et al. 

have reported a complementary method which involves a 

photochemical generation of 1,3-dipoles A by the addition of N-

centered radicals to aromatic alkenes followed by single 

electron transfer oxidation of the resulting β-amino radical 

intermediate  (eq. (ii)).8 Alternatively, Cheng et al. have 

disclosed an electrochemical formation of 1,3-dipoles A through 

an anodic oxidation of stilbenes, nucleophilic addition of 

sulfamates and second anodic oxidation step (eq. (iii)).9 

However, little attention has been paid to the synthesis of 

trifluoromethylated imidazolines and oxazolidines10 whereas 

the incorporation of a trifluoromethyl (CF3) group11 may 

produce heterocycles of high interests for medicinal, 

agrochemical and synthetic applications. Moreover, most of 

protocols used for that purpose are limited to the synthesis of 

2-imidazolines and 1,3-oxazolidines bearing a CF3 group at the 

2-position. Alternatively, Hanamoto et al. have developed 

elegant methods giving rise to those heterocycles with a CF3 

group at the 5-position but requiring nevertheless the prior 

preparation of trifluoromethylated aziridines.12,13 Therefore, 

the development of novel synthetic methods that allow 

efficient and rapid access to trifluoromethylated imidazolines 

and oxazolidines is still highly desirable. Herein, we report an 

electrochemical three-components tandem process for the 

preparation of 4-(2,2,2-trifluoroethyl)-2-imidazolines and  4-

(2,2,2-trifluoroethyl)-1,3-oxazolidines. 
 

Scheme 1 Synthesis of imidazolines and oxazolidines. 

Recently, we have described an efficient electrochemical14 

oxytrifluoromethylation of N-tethered alkenyl alcohols using 

the Langlois reagent15 as a trifluoromethyl precursor (Scheme 

1b).16‒18 On the basis of our previous work, we wished to 

develop a one-pot electrosynthetic procedure for the 

construction of CF3-containing 2-imidazolines and 1,3-

oxazolidines from easily available allylic amines and Langlois 

reagent. We envisaged a scenario in which the CF3 radical 

generated by electrooxidation could selectively react with N-

tosyl allylamines 1 and the resulting 1,3-dipole C, formed after 

an additional oxidation step of  the radical B, could be 

subsequently engaged in a formal (3+2)-cycloaddition with 
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nitriles or carbonyls to furnish the desired CF3-containing 5-

membered heterocycles. However, the development of such 

approach is not exempt of risk since the highly reactive 

carbocation C could be either intramolecularly trapped by 

nitrogen to form a trifluoromethylated aziridine19 or react with 

traces of water to give an amino-alcohol (Scheme 1c).  

To evaluate our proposed approach, we began by examining 

the reaction of N-tosyl allylamine 1a with the Langlois reagent 

(2a) in a mixture of acetonitrile and dichloromethane using 

LiClO4 as supporting electrolyte (Table 1). The mixture was 

electrolyzed at constant current at room temperature. To our 

delight, we did form the three-component imidazoline adduct 

3a in 40% yield, together with the aziridine 4 and -amino-

alcohol 5.  

 

Table 1 Optimization of reaction conditions for the synthesis of imidazoline 3aa 

 

Entry Additive (equiv.) 
Yieldb (%) 

3a 4 5 

1c - 40 33 13 

2 - 54 20 24 

3 K2CO3 (1) 49  21 7 

4d - 36 34 17 

5 CH3COOH (1) 22 22 8 

6 CF3COOH (1) 45 27 19 

7 Bi(OTf)3 (0.2) 45 19 20 

8 Bi(OTf)3 (1) 48 0 22 

9 BF3.OEt2 (0.5) 40 31 17 

10 BF3.OEt2 (1) 64 (62) 0 16 

11e BF3.OEt2 (1) 63 0 8 

12f BF3.OEt2 (1) 0 0 0 

a Reaction conditions: undivided cell, C(+)Ni(-), 1a (0.25 mmol), 2a (0.5 mmol), 

additive, CH3CN (2.5 mL), LiClO4 (0.2 M), CCE (15 mA), 3.2 F (1 h 25), rt. b NMR yield; 

isolated yield is written between parentheses. c CH2Cl2/CH3CN (1:1) instead of 

CH3CN. d 2.2 F (1 h) instead of 3.2 F. e C(+)C(-) instead of C(+)Ni(-). f No electricity. 

The addition of a base afforded no benefits, while the use of 

acetonitrile as the sole solvent made a small improvement to 

the conversion but had little effect on selectivity (entries 2-3). 

Lower yields were obtained with organic supporting 

electrolytes.20 Interestingly, shortening the reaction time 

afforded a higher amount of aziridine 4 (entries 4 vs 2). This 

result led us to assume that the formation of imidazoline 3a 

might proceed through an aziridine intermediate 4 which then 

could react with acetonitrile in a formal (3+2)-cycloaddition. 

Therefore, different acidic additives, which are known to 

mediate the ring opening of aziridines, were evaluated (entries 

5-10).6 Gratefully, upon adding one equivalent of BF3.OEt2, the 

formation of aziridine 4 was totally suppressed and the desired 

imidazoline 3a could be isolated in 62% yield (entry 10).21 It is 

also worth mentioning that similar yield was obtained with the 

cheap graphite electrode as cathode instead of nickel (entry 11).  

With the best reaction conditions in hand, the scope of this 

three-component reaction was examined. As shown in scheme 

2, allylamines 1a-f bearing both electron donating as well as 

electron withdrawing groups on the aromatic ring reacted 

smoothly affording the corresponding imidazolines 3a-f in 

moderate to good yields. The synthesis of imidazoline 3g with a 

2-naphtyl ring has been also achieved albeit with slightly lower 

yield. Other sulfonamides such as 2-nosyl and phenyl sulfonyl 

acted as good reaction partners to form the corresponding 

imidazolines 3h and 3i in 54% and 69% yields, respectively.  

However, no product was obtained with N-benzyl allylic amines, 

probably due to the direct oxidation of amine at the electrode. 

Remarkably, this multicomponent reaction could be performed 

with easily prepared sodium difluoromethylsulfinate 2b22 

furnishing the desired CF2H-containing imidazoline 3j in 31% 

yield. Pleasingly, the propionitrile and the sterically hindered 

iso-butyronitrile were found to react with 1a and Langlois 

reagent to yield 2-ethyl and 2-isopropyl imidazoline 3k-l, albeit 

with slightly lower yields probably due to the lower dielectric 

constants of these solvents.23 To demonstrate the synthetic 

potential of this 3-components tandem protocol, a 1 mmol scale 

experiment with substrate 1a was carried out affording the 

corresponding CF3-containing imidazoline 3a in 64% yield. 

Encouraged by this result, we next sought to extend this 

electrochemical multicomponent process to carbonyls as 

dipolarophiles (Table 2). Pleasingly, the reaction proceeded 

smoothly in acetone as solvent to afford the corresponding 

oxazolidine 6a in 49% yield (entry 1) along with amino-alcohol 

product 5 (29%). Interestingly, no formation of aziridine 4 was 

detected at the end of the reaction even in the absence of 

BF3.OEt2 (entry 2).  Finally, we were pleased to find that the yield 

of 6a increased when molecular sieves were added to trap 

traces of water present in the reaction media. 

A variety of allylamines 1a-i bearing various aryl rings and aza-

protecting groups were subjected to these conditions, 

furnishing the corresponding CF3-containing oxazolidines 6 in 

up to 70% yields (Scheme 3). Generally, the yields were slightly 

higher than for the construction of imidazolines. Pleasingly, 

slight modifications on the reaction conditions permitted the 

use of  pentan-3-one as solvent instead of acetone delivering 

the corresponding oxazolidine 6j in good yield (57%). More 

specifically, with this sterically hindered carbonyl compound, 

one equivalent of BF3.OEt2 was added at the end of the 

electrolysis to fully transform the remaining aziridine 4 into the 

desired 5-membered ring 6j. CF2H-containing oxazolidine 6k 

could also be prepared in a decent yield by using sodium 

difluoromethylsulfinate 2b. 

 



 

 

 

Scheme 2 Three-component synthesis of CF3-containing imidazolines.a,b  
a Reaction conditions: undivided cell, C(+)Ni(-), 1a (0.25 mmol), 2a (0.5 mmol), 
BF3.OEt2 (0.25 mmol), RCN (2.5 mL), LiClO4 (0.2 M), CCE (15 mA), 3.2 F, rt. b Isolated 
yield. c Reaction conducted on 1 mmol scale. d 2b instead of 2a. 

 

Table 2 Optimization of reaction conditions for the synthesis of oxazolidines 6aa 

 

Entry Additive (equiv.) 
Yieldb (%) 

6a 4 5 

1c BF3.OEt2 (1) 49 0 29 

2 - 52 0 40 

3 MS 3Å (300 mg) 69 (60)  0 0 

a Reaction conditions: undivided cell, C(+)Ni(-), 1a (0.25 mmol), 2a (0.5 mmol), 

additive, acetone (2.5 mL), LiClO4 (0.2 M), CCE (15 mA), 3.2 F (1 h 25), rt. b NMR 

yield; isolated yield is written between parentheses.  

 

Scheme 3 Three-component synthesis of CF3-containing oxazolidines.a,b  
a Reaction conditions: undivided cell, C(+)Ni(-), 1a (0.25 mmol), 2a (0.5 mmol), MS 
3Å (300 mg), acetone (2.5 mL), LiClO4 (0.2 M), CCE (15 mA), 3.2 F, rt. b Isolated 
yield. c With pentan-3-one instead of acetone, 2a (0.625 mmol), LiClO4 (0.4 M), 35 
°C, CCE  (15 mA), 2.8 F, 35 °C; then BF3.OEt2 (0.25 mmol), overnight, rt.   d 2b instead 
of 2a. 

A set of control experiments were conducted to shed light on 

the reaction mechanism.  No reaction occurred in the absence 

of current (Table 1, entry 12). Measuring the redox behavior of 

the reagents by cyclic voltammetry analysis revealed that the 

Langlois reagent 2a exhibited lower oxidation potentials (1.45 V 

vs Ag/AgCl) than that of N-tosyl allylamine 1a (2.11 V vs 

Ag/AgCl).20 To clarify the role of BF3.OEt2, the following 

additional experiment was performed: one equivalent of 

BF3.OEt2 was added to a mixture of imidazoline 3a and aziridine 

4. After 1 h, an almost complete conversion of 4 into 3a was 

observed (Scheme 4, eq. (a)), thus supporting that BF3.OEt2 

works as a Lewis-acid to promote the formal (3+2)-

cycloaddition between aziridine 4 and acetonitrile.6d‒h As 

mentioned above, no aziridine was observed at the end of the 

electrolysis when acetone was used as formal dipolarophile. 

However, when the reaction was stopped at 43% conversion of 

1a (1 F) under optimized conditions, the aziridine 4 was formed 

in 16% yield (Scheme 4, eq. (b)). This result inferred that 

aziridine 4 is also a key intermediate in this transformation. 

Based on this result, we reasoned that the lithium perchlorate 

electrolyte certainly served24 to mediate the formal (3+2)-

cycloaddition between aziridines and acetone. Indeed, when 

LiClO4 was replaced by Et4NBF4 as electrolyte, the aziridine 4 



 

 

was obtained in 31% yield supporting the crucial role of the 

lithium cation (Scheme 4, eq. (c)). 

 
Scheme 4 Control experiments.a 

a Chemical amounts, yields and conversions were determined by 1H NMR analysis 

of the crude material using 1,3,5-trimethoxybenzene as an internal standard. 

On the basis of the control experiments and the literature,16-

18 a plausible reaction mechanism is outlined in Scheme 5. 

Initially, the anodic oxidation of Langlois reagent via a single-

electron-transfer (SET) can deliver trifluoromethyl radical after 

fast extrusion of gaseous SO2. The regioselective addition of this 

radical onto the double bond could afford benzylic radical B, 

which can be further oxidized to carbocation C. An 

intramolecular attack of nitrogen atom on C could produce 

aziridine 4, which subsequently could undergo a formal (3+2)-

cycloaddition with nitriles or carbonyls in the presence of a 

Lewis acid to afford the corresponding imidazolines 3 or 

oxazolidines 6 (pathway a). The reductions of the proton H+ and 

SO2 would be the counter reactions taking place at the cathode 

to balance the overall transformation. Nevertheless, at the 

present stage of the development, we cannot totally exclude an 

alternative pathway involving a direct addition of nitriles or the 

acetone on the carbocation C followed by attack of sulfonamide 

on the resulting nitrilium and oxocarbenium ions D to form 

heterocyclic products 3 or 6 (pathway b). Both mechanisms may 

operate, although the dominant process certainly occurs via 

pathway a. 

 

Scheme 5 Proposed mechanism. 

Conclusions 

In summary, we have developed an electrochemical three-

component reaction for the rapid access to new CF3-containing 

imidazolines and oxazolidines from easily prepared allylic 

amines and cheap Langlois reagent as CF3 source. This original 

transformation proceeds through the tandem radical 

trifluoromethylation of allylic secondary amines/formal (3+2)-

cycloaddition with nitrile or carbonyl compounds allowing the 

creation of three new bonds under mild reaction conditions. 

This electrochemical process was also applicable to the 

construction of CF2H-containing imidazoline and oxazolidine. 

Further investigations of new electrochemical multicomponent 

tandem processes for the construction of heterocycles are 

currently under way in our laboratory. 
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