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21
22 ABSTRACT: An electrochemical intramolecular oxytrifluoromethylation of N-tethered alkenyl alcohols was developed providing
23 straightforward access to CF3-containg morpholines derivatives. The method features mild reaction conditions with direct anodic
24 oxidation of Langlois reagent as cheap and easy to handle trifluoromethylating reagent. Variously substituted 2-(2,2,2-trifluoro-
25 ethyl)morpholines were obtained in moderate to high yields under constant current electrolysis in an undivided cell.
26
27
28 Tetrahydro-1,4-oxazines, namely morpholine derivatives, are Scheme 1. Synthesis of CF3-containing Morpholines
29 privileged core skeletons that continually appear in numerous
30 pharmaceuticals and agrochemicals."? It belongs to the top 25 a) Previous work o
31 most frequent N-heterocycles in US‘FDA approvefi drugs.’ Re- trifluoromethylation CFs r;yé:l‘lszxeg;nsgn
32 cently, trifluoromethylated morpholines have received substan- —_— i—l
33 tial interest because the incorporation of a trifluoromethyl (CF3) (')‘ R2
34 group can significantly improve their physical, biological and CF

chemical properties.* Therefore, several efficient methods have f % °
35 been developed to construct trifluoromethylated morpholines ) \ S
36 that rely on two main strategies (Scheme 1a). The first one in- i) B G=oor1
37 volves the construction of the morpholine core via either cy- ) I L j —T
38 clization of trifluoromethylated linear compounds® or the ring cyclization R1\O trifluoromethylation
39 expansion of CFs-containing heterocycles.® The second one is b . .

. . T . . 7 ) Intramolecular oxytrifluoromethylation

40 based on trifluoromethylation of existing morpholines.” Alt-
41 hough both approaches have their own particular advantages, Y—CF3 orre °|:
42 exploring more efficient synthetic methodologies for valuable e R% ¢ + R? n CF3
43 trifluoromethylated morpholines is still highly desired. (HK[RQ Ho(‘\ﬁ: THO e Orjffw
44 Over past decades, the intramolecular difunctionalization of al- HO RY CFs RT CFs R
45 kenes involving the simultaneous formation of C—CF; and C-O
46 bonds has proven to be a powerful tool for synthesis of trifluo- c) Our Strategy
47 romethylated oxacycles.® This approach involves the generation ) tandem

of a CF; radical via a single-electron transfer (SET) process trifluoromethylation/cyclization I jg
48 which reacts with an alkene to provide a B-CFsz-substituted rad- k
49 ical intermediate. The resulting radical then undergoes a step- HO R*
50 wise SET oxidation and subsequent intramolecular O-nucleo- )
51 philic attack to produce oxygen-containing heterocycles In recept years, electrochemls.try9 has emerged as a powerfgl
52 (Scheme 1b). Surprisingly, to the best of our knowledge, such togl to‘ introduce a CF; group into alkenes' through t'he anodic
53 an intramolecular oxytrifluorometylation has not been investi- oxidation ofltlhlg: cheap and easy to handle Langlois reagent
54 gated for the preparation of CFs-containing morpholines. The (CB,SOZI\E)' It hasl;b.een applied for the construction of pyr-
55 development of such a cyclization reaction would provide an rollclliles,. oxindoles, 1nd011n68n()r_hydrmsoqumohne-1,3-d10-
56 efficient synthesis of novel family of trifluoromethylated mor- nes, ™ quinolinones and lactones™ via intramolecular processes.
e pholines (Scheme Ic). In this context and in line with our long-standing interest in rad-
58
59
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ical trifluoromethylation of alkenes,'>® we speculated that elec-

trochemical trifluoromethylation/cyclization of N-tethered
alken-6-ols is a worthwhile approach to accessing trifluoro-
methylated morpholines. Herein we report our preliminary ef-
forts toward the construction of new type of 2-(2,2,2-trifluoro-
ethyl)morpholine derivatives.

Our investigations began by studying the cyclization of alken-
6-ol 1a with Langlois reagent 2 in an undivided cell using
graphite carbon cathode, a platinum cathode under constant cur-
rent electrolysis and a mixture of CH;CN and H,O (v/v 1:1)
(Table 1). With LiClOy as the electrolyte, the desired morpho-
line 3a was isolated in 62% yield (entry 1). After testing other
organic solvents such as acetone and THF (entries 2 and 3),
CH;CN was considered to be the best one. Replacing H,O by
methanol had no significant effect. When the electrolysis was
conducted in pure CH3;CN to reduce the formation of intermo-
lecular oxytrifluoromethylated product,'® 3a was isolated with
an improved yield of 79%. Pleasingly, switching platinum
plated anode for cheap carbon graphite or nickel electrodes gave
similar results (entries 6 and 7). Further experiments have
shown that a change of the electrolyte or current intensity (from
15 to 30 mA) leads to a significantly decrease of yield (entries
8 and 9)."7

Table 1. Optimization of Reaction Conditions?

+)r?] C(-) Ts
j\ CF4S0,Na
HO™ Ph solvent, electrolyte

undivided cell [N j((f':a
0~ “Ph
15 mA, 3.2 F.mol™, rt

2 3a

entry  electrodes solvent yield® (%)

1 C(H)Pt(-) CH3CN/H20 (10:1) 62
2 C(H)Pt(-) acetone/H20 (10:1) 48
3 C(+)|Pt(-) THF/H>O0 (10:1) 39
4 C(H)|Pt(-) CH3;CN/MeOH (10:1) 63
5 C(+)|Pt(-) CH3CN 79
6 C(H)C(-)  CH:CN 78
7 C(#)Ni(-)  CH3CN 81
8¢ C(+)Ni(-)  CH:CN 50
9 C(HNi(-)  CHCN 69
10° C(H)INi(-)  CH;CN 0

@Reaction conditions: undivided cell, 1a (0.25 mmol), 2 (0.5
mmol), solvent (2.5 mL), LiClO4 (0.2 M), CCE (15 mA), 3.2 F.mol"
1, 1t. PIsolated yield. °n-BusNBF4 instead of LiClO4. 930 mA instead
of 15 Ma. ®No current.

With the best reaction conditions in hand, we next explored the
scope of the electrolytic oxytrifluoromethylation (Scheme 2). A
set of representative N-tethered alken-6-ols with various aryl
groups on the alkene proved to be suitable substrates, generat-
ing the desired morpholines in good to high yields (3a-3f). In
general, electron-poor aromatic rings with halogen substituents
reacted smoothly whereas slightly lower yield was obtained
with a para-tert-butyl substituent. This is mainly due to a com-
petitive trifluoromethylation of the arene ring. The N-2-nitro-
phenylsulfonyl substrates 1g and 1h underwent the oxytrifluo-

romethylation reaction with equal efficiency. Pleasingly sec-
ondary alcohol 1k was well tolerated furnishing the correspond-
ing 2,2,6-trisubstituted morpholine 3k in good yield as a mix-
ture of diastereoisomers. Moreover, enantioenriched alcohols 1i
and 1j were successfully engaged affording the corresponding
morpholines 3i and 3j in 36% and 65% yield, respectively, as a
mixture of diastereoisomers. The lower yield with 1i is presum-
ably due to overoxidation of the benzylic carbon. The polycy-
clic compounds 31 and 3m were produced in descent yields al-
beit with moderate diastereoselectivity. To our delight, this
method can also be applied to the synthesis of a difluorometh-
ylated morpholine 3n under slightly modified reaction condi-
tions with 3 equivalents of CF,HSO,Na'® as a source of CF,H
radical'® in CH;CN/H,O (10:1). To evaluate the potential appli-
cation of this protocol, a 1 mmol scale reaction of 1a was per-
formed under the standard reaction conditions. Delightfully, the
desired morpholine product (3a) was obtained in a comparable
yield (79%).

Scheme 2. Intramolecular Trifluoromethylation of N-teth-
ered Alken-6-ols 1°

\ r?] C(- G
undlwded cell CF3
WA\ + CF4SO0,Na

HO Ar CH,4CN, LiCIO,
15 mA, 3.2 F.mol ™", rt
2 3
E E E : i J<©
j<© j<©\ j<©\ Br
3a:81% (79%)°  3b: 85% 3c: 83% 3d: 88%

Ts Ts Ns Ns

[N CFy4 [N CF; [N CFy4 [N CF,4

°j<©\ Oj{@ °j<© °j<©\
t-Bu

3e: 80% 3f. 66% 39: 82% 3h: 67%

Tk@ % *k@

3i: 36% (dr = 55:45)"  3j: 65% (dr = 59:41)°  3k: 61% (dr = 50:50)°

44% (dr = 69:31)>  3m: 65% (dr = 55:45)" 3n: 62%

@Reaction conditions: undivided cell, C(+)|Ni(-), 1a (0.25
mmol), 2 (0.5 mmol), CH3CN (2.5 mL), LiClO4 (0.2 M), CCE (15
mA), 3.2 F.mol', rt. °dr were determined by '"H NMR analysis of
the reaction mixtures. °Reaction conducted on 1 mmol scale.

A further investigation revealed that the formation of seven-
membered oxacycle 5 by intramolecular oxytrifluoromethyla-
tion way of N-tethered alken-7-ol 4 was also possible (Scheme
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3). This provide a rapid access to 1,4-benzoxazepine, an im-
portant class of seven-membered rings heterocycles featuring
interesting biological properties and found in numerous drugs
and preclinical leads.?

Scheme 3. Intramolecular Trifluoromethylation of N-teth-

ered Alken-7-ols 42
C(+) rw Ni(-) 5 CFs

TSJL

N s

@; Ph + CF,SO,Na —undivided cell C@gph
OH CH,CN, LiCIO, o}

15 mA, 3.2 F.mol ™, rt

4 2 5:49%

@Reaction conditions: undivided cell, C(+)|Ni(-), 4 (0.25 mmol),
2 (0.5 mmol), CH3CN (2.5 mL), LiClO4 (0.2 M), CCE (15 mA),
3.2 F.mol’!, rt.

To gain more insight into the mechanism of the oxytrifluoro-
methylation of N-tethered alken-6-ols, some preliminary con-
trol experiments were performed. It is noteworthy that there is
no reaction in the absence of electric current (Table 1, entry 10).
Cyclic voltammetry (CV) analysis of Langlois reagent (2) in
CH3CN with LiClOy4 as electrolyte showed irreversible anodic
oxidation waves (See the Supporting Information, Figure S1) at
a potential much lower than that of substrate 1a (1.48 and 2.07
V vs Ag/AgCl respectively). On the basis of the above results
as well as other reports,'® a plausible reaction mechanism is de-
picted in scheme 4. The SET anodic oxidation of CF3SO,Na
would produce the CF; radical through the release of SO, from
CF;SO; radical. Subsequent regioselective addition of electro-
philic CF; radical to alkene 1 would lead to the radical interme-
diate 6, which would be further oxidized into cation 7 by a sec-
ond SET anodic oxidation. Final intramolecular nucleophilic
addition of the alcohol moiety would lead to the corresponding
trifluoromethylated morpholine 3 along with the release of H".
Reductions of H" and residual trace of water would be the coun-
ter-reactions taking place at the cathode.

Scheme 4. Plausible Mechanism

anode (+) ‘ | (-) cathode
‘ I
Ts Ts
N CF; N CF, ]
L
e e
HO™ N, 7 0" Ar
3
Ts
N CF; 1/2 Hy
S
HO
Ar Ts
' N H,0 e
1J/ k
HO™ Ar
y 1/2Hy, + OH
e\ SO, + CF, \—/ 2
CF380,

To further demonstrate the usefulness of our method to access
morpholine derivatives, the tosyl group of 3a was easily re-
moved under mild conditions by treatment with magnesium in

a sonicated methanol solution affording unprotected morpho-
line 8 in high yield (Scheme 5).

Scheme 5. Deprotection of Morpholine 3a

Ts H
N CF, Mg N CF3
[ﬁj{m MeOH, ))), rt, 1 h [n o
A i v rn
3a 8:81%

To conclude, we have developed an intramolecular radical ox-
ytrifluoromethylation of N-tethered alken-6-ols by using envi-
ronmentally friendly electrochemical reaction conditions with
Langlois reagent as cheap and easy to handle source of trifluo-
romethyl radical. The procedure is suitable for the synthesis of
a wide variety of functionalized oxytrifluoromethylated mor-
pholine derivatives. This protocol was extended to a N-tethered
alken-7-ol providing the synthesis of a CF3-containing benzox-
azepine. Extension of this method to the preparation of other
trifluoromethylated heterocycles is currently underway in our
laboratory and will be reported in due course.
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